WO2009093863A2 - Process for crystallization and solid-liquid separation in terephthalic acid preparation - Google Patents

Process for crystallization and solid-liquid separation in terephthalic acid preparation Download PDF

Info

Publication number
WO2009093863A2
WO2009093863A2 PCT/KR2009/000362 KR2009000362W WO2009093863A2 WO 2009093863 A2 WO2009093863 A2 WO 2009093863A2 KR 2009000362 W KR2009000362 W KR 2009000362W WO 2009093863 A2 WO2009093863 A2 WO 2009093863A2
Authority
WO
WIPO (PCT)
Prior art keywords
solid
crystallization
terephthalic acid
liquid separation
separation process
Prior art date
Application number
PCT/KR2009/000362
Other languages
French (fr)
Korean (ko)
Other versions
WO2009093863A3 (en
Inventor
Young Hwan Chu
Chan Sik Park
Hyun Sig Kim
In Hyuk Kim
Original Assignee
Samsung Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Petrochemical Co., Ltd. filed Critical Samsung Petrochemical Co., Ltd.
Priority to KR1020107016569A priority Critical patent/KR101194067B1/en
Publication of WO2009093863A2 publication Critical patent/WO2009093863A2/en
Publication of WO2009093863A3 publication Critical patent/WO2009093863A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to a method for separating terephthalic acid having high purity by an effective method when the result of the oxidation reaction of paraxylene includes a large amount of reaction intermediates such as paratoluic acid in addition to terephthalic acid.
  • Terephthalic acid is a useful compound used as a raw material for a wide range of products and is used as the main raw material for polyethylene terephthalate (PET), polyester fibers, and polyester films for packaging and containers.
  • PET polyethylene terephthalate
  • Terephthalic acid is produced in more than 50 million tons per year worldwide and can be produced from 100,000 to 800,000 tons per year in a single plant.
  • terephthalic acid can be produced by the liquid phase exothermic oxidation of paraxylene in an acetic acid solvent using a gas containing air or other oxygen molecules as the oxidant as a source and using at least one heavy metal compound and at least one reaction promoter compound.
  • Amoco MC process which is the most widely used commercially to date, is described in detail in US Pat. No. 2,833,816 to Saffer et al.
  • the terephthalic acid and the liquid solvent and the dissolved solid are passed through the vacuum filter (4). Impurities are separated. Terephthalic acid separated into the solid phase contains some liquid solvent, so that it is completely dried and further dried to recover the solvent (5).
  • the basic principle of sedimentation column is to put slurry containing impurities at the top of the column and send it down to the bottom of the column, while at the bottom of the column, water or other washing water is put up and sent to the top of the column. It is to meet the washing action of impurities.
  • a method of solid-liquid separation by operating the hydraulic pressure from the bottom to the top lower than the gravity of the solid, the solid particles are gradually lowered to the bottom while being washed.
  • the advantage of this method is that it is possible to maximize the cleaning effect for solid particles containing high concentrations of impurities by increasing the residence time of the solid particles in the wash water and flowing the wash water in the opposite direction to the solid particles.
  • the above-mentioned patent preferentially removes most impurities from the primary sedimentation column 6, and then dissolves or melts the impurities by sufficiently raising the temperature using the heater 7 for the slurry flowing out to the bottom of the column. Recrystallization process is carried out in (8) to precipitate relatively high purity terephthalic acid. Then, the second settling column 9 is passed again to obtain very high purity terephthalic acid solid particles of 700 ppmw of 4-carboxybenzaldehyde from the bottom of the column.
  • the sedimentation column is not commercialized and operated, and it is easy to determine optimal values such as residence time, diameter and height of column, shape and size of inlet and outlet, space velocity to maximize the cleaning effect in terms of design. not. This is because these values vary greatly depending on the temperature and pressure during operation, and the flow rate of the slurry and washing water introduced.
  • impurities produced when oxidizing paraxylene and air in a liquid phase to prepare terephthalic acid are reaction intermediates before conversion to terephthalic acid, that is, 4-carboxybenzaldehyde, paratoluic acid, and the like.
  • These impurities when included in the terephthalic acid product, not only cause the polymerization performance of the polyester polymer to be degraded, but also have a negative effect on the color and transparency, and therefore, the content of the terephthalic acid should be minimized.
  • methods other than US Pat. No. 2,833,816, ie methods of completely converting these reaction intermediates to terephthalic acid through oxidation without using a catalyst combination of acetic acid solvent and cobalt / manganese / bromine have not been chemically known.
  • reaction intermediates such as paratoluic acid and 4-carboxybenzaldehyde
  • the present inventors have found that separation and purification are difficult with conventional methods such as vacuum filters or hydrogen reduction tablets when the amount of reaction intermediates such as paratoluic acid or 4-carboxybenzaldehyde is high.
  • the present invention can effectively separate the terephthalic acid from the reaction intermediate in order to increase the yield and ensure quality when the result of the oxidation reaction contains a large amount of reaction intermediates such as paratoluic acid in the production of terephthalic acid by the oxidation reaction of paraxylene. It is an object of the present invention to provide a method for crystallization and solid-liquid separation.
  • the present invention provides a crystallization and solid-liquid separation process for separating terephthalic acid into a solid phase from a slurry containing terephthalic acid and a reaction intermediate produced by oxidation of paraxylene, wherein the reaction intermediate is paratoluic acid and / or And containing 4-carboxybenzaldehyde, crystallizing the slurry and filtering in a high temperature high pressure filter to separate the terephthalic acid into a solid phase and to separate the mother liquor containing the reaction intermediate into a liquid phase.
  • the temperature is 130-220 ° C.
  • the operating pressure is 10-20 kgf / cm 2g to provide a crystallization and solid-liquid separation process.
  • the terephthalic acid slurry referred to in the present invention is preferably a slurry produced by an oxidation reaction using a catalyst system containing no bromine under a water solvent, and an oxidation reaction of paraxylene without using an acetic acid solvent.
  • the 4-CBA content in the slurry produced by the oxidation reaction of the para xylene is not important because it is not generated much in the actual reaction, it is about 1 to 5wt%.
  • paratoluic acid is solid at room temperature and has a melting point of 180 degrees
  • the separation temperature must be close to the melting point of the paratoluic acid (180 degrees).
  • the vacuum filter operates at room temperature, it is impossible to recover the liquid in the presence of a large amount of paratoluic acid.
  • the present invention uses a high temperature and high pressure filter because the reaction intermediate such as paratoluic acid or 4-carboxybenzaldehyde must be sufficiently raised in the presence of a large amount to separate the liquid into a liquid phase.
  • Impurities that are the most important reaction intermediates produced during the conversion of paraxylene to terephthalic acid by oxidation are 4-carboxybenzaldehyde and paratoluic acid. Melting points of 4-carboxybenzaldehyde and paratoluic acid are very high at 256 ° C and 182 ° C, respectively. Especially, 4-carboxybenzaldehyde is very difficult to separate from terephthalic acid due to its very similar properties to terephthalic acid. However, since terephthalic acid does not melt even when heated, it is sublimed at 402 ° C.
  • terephthalic acid remains in a solid phase and paratoluic acid is converted into a liquid.
  • 4-carboxybenzaldehyde is a solid, but partially dissolved in paratoluic acid to be converted into a liquid phase, it is possible to separate relatively high purity terephthalic acid through a high temperature solid-liquid separation method.
  • the filter when the solid-liquid separation is performed at a high temperature, a vacuum system that can only be performed at room temperature cannot be used, and therefore, the filtering must be performed by applying a pressure. Because of the thermodynamic characteristics, a certain pressure is required to maintain the equipment temperature at a high temperature, and basically, the temperature must be lowered to create a vacuum state, so the vacuum filter cannot be used and a high temperature can be maintained by applying pressure.
  • the high temperature high pressure filter is equipped with a large number of small cell type filters in a circular drum mounted in a high pressure vessel, and slowly rotates to fill the slurry, filter, wash, dry, discharge the cake, and recover the mother liquor.
  • a large number of small cell type filters in a circular drum mounted in a high pressure vessel, and slowly rotates to fill the slurry, filter, wash, dry, discharge the cake, and recover the mother liquor.
  • zone see Figure 5
  • the detailed operating principle will vary by manufacturer.
  • the high temperature and high pressure filter has no significant difference in operation principle from the vacuum filter except that the filtering is performed by applying pressure at a high temperature.
  • the high pressure filter in the present invention may be another feature that performs a drying process for the filter cake using steam.
  • the temperature range for performing the filtering is 130 ⁇ 220 °C, preferably 150 ⁇ 200 °C.
  • the temperature range is lower than this, the reaction intermediate does not completely turn into a liquid phase, and solid-liquid separation is not performed correctly.
  • the temperature is higher than this, it is preferable to operate the given range because energy is unnecessarily consumed.
  • the operating pressure should be adjusted to a level of 10 to 20 kgf / cm 2g, and preferably 12 to 18 kgf / cm 2 g. If the pressure range is lower than this, the temperature is lowered and the separation performance is lowered. If the pressure range is higher than this, the thickness of the equipment is unnecessarily thick and the filter may be clogged due to excessive pressure.
  • the crystal bath 11 may be connected to the front end of the high temperature and high pressure filter to adjust the particle size. It is preferable that the particle size of a solid particle is 30-120 micrometers. However, the number of crystal baths can be used within the range of 0-4, Preferably 1 group is suitable. This is because the operating temperature and pressure range of the high temperature high pressure filter are very high, similar to the operating temperature and pressure range of the oxidation reactor. Because it does not.
  • the operating temperature range of the crystal bath is 150 to 250 ° C, preferably 170 to 210 ° C. If it is lower than this range, the reaction intermediate is precipitated to reduce the separation effect, and when it is high, the effect of increasing the particle size through crystallization is insufficient.
  • terephthalic acid is still low in water solubility at high temperature of more than 180 °C while paratoluic acid is greatly increased, so that the hot water and steam can be used in the high temperature high pressure filter device to maximize the separation and washing effect.
  • the water used here can be used at no additional cost by introducing some of the water produced by the oxidation reaction into the crystal bath and filter.
  • the amount of water introduced into the crystal bath and the filter should be such that it does not excessively increase the water concentration when it is included in the mother liquor after filtering and refluxed into the oxidation reactor.
  • Crystal water tank is 30 ⁇ 80wt% internal water concentration, the amount of water to be injected into the filter is 0.2 ⁇ 2 tons per 1 ton solid.
  • the temperature of the cleaning liquid is also an important factor for maximizing the separation performance, and using a cleaning liquid in the range of 170 ⁇ 200 ° C is most suitable when considering the solubility of impurities.
  • the slurry and wash liquor are preferably in contact with each other in countercurrent.
  • the slurry and the washing liquid are filtered and washed with a small amount of washing water while continuously contacting the filters in two to five stages (13, 14, 15, and 16) in the countercurrent direction.
  • the effect can be maximized.
  • the final filter is in contact with the freshest washing liquid and the initial filter is in contact with the most washed washing liquid, so as to meet with the cleaner cleaner from the cake with more impurities to the cleaning with less cake.
  • the slurry passed through the high temperature and high pressure filter is separated into the cake and the mother liquor.
  • the moisture content of the cake can be reduced to 10 wt% or less, and the content of paratoluic acid and 4-carboxybenzaldehyde is also reduced to 10 wt% or less of the total weight of the cake.
  • the high temperature and high pressure filter treatment of 20 to 40 wt% of paratoluic acid and 2 to 5 wt% of 4-carboxybenzaldehyde is performed, the reaction is performed at about 2 wt% of paratoluic acid and about 1 wt% of 4-carboxybenzaldehyde.
  • the concentration of intermediates can be significantly reduced.
  • the moisture content of the cake may be lowered to 5 wt% or less.
  • the separated cake may be again subjected to a multi-step high temperature high pressure filter or purified by chemical methods to produce high purity terephthalic acid.
  • Separate mother liquor containing water and reaction intermediates can additionally produce terephthalic acid by refluxing into an oxidation reactor. At this time, some of the mother liquor may be purged out of the system to achieve a quality level.
  • the cake may contain several wt% of the reaction intermediate even after performing the high temperature and high pressure filter, in which case, as shown in US Pat. No. 2,833,816, acetic acid solvent and cobalt
  • the total amount of the reaction intermediate can be lowered to 5,000 ppm or less by further oxidizing the reaction intermediate at 160-220 ° C. using a catalyst system comprising manganese and bromine.
  • various purification techniques may be applied to further lower the total amount of the reaction intermediate to 200 ppm or less.
  • reaction product generated from the oxidation reaction contains a large amount of reaction intermediates
  • product quality can be secured by effectively separating solid terephthalic acid from them, and the liquid reaction intermediates are refluxed to the oxidation reactor.
  • the yield of terephthalic acid can be increased.
  • the very simple configuration of the crystallization and solid-liquid separation process can reduce the capital investment and more effectively manage the process.
  • the solid-liquid separation process can be easily and reliably applied and operated on a slurry containing a large amount of reaction intermediate.
  • 1 is a process diagram for separating terephthalic acid from the product of the oxidation of paraxylene according to US Pat. No. 2,833,816.
  • FIG. 2 is a process diagram for separating terephthalic acid from the product of oxidation of paraxylene according to US Pat. No. 4,334,086.
  • FIG. 3 is a process diagram for separating terephthalic acid from the product of the oxidation of paraxylene according to one embodiment of the present invention.
  • Figure 4 is a process for filtering, washing, cake discharge and mother liquor recovery of the product slurry of the oxidation reaction of para xylene in a high temperature and high pressure filter according to an embodiment of the present invention.
  • FIG 5 is a structural diagram of a high pressure filter that can be used in one embodiment of the present invention.
  • first filter part 14 second filter part
  • the method proposed in the present invention is applied to a terephthalic acid slurry containing a high concentration impurity having a total concentration of paratoluic acid and 4-carboxybenzaldehyde of 50 wt% or more and a terephthalic acid slurry containing a low concentration impurity of 50 wt% or less, respectively.
  • the effect was compared.
  • the terephthalic acid slurry produced in the reactor was passed through a crystal bath having an internal temperature of 170 ° C. and a high temperature high pressure filter having an internal temperature of 185 ° C. and an internal pressure of 15 kgf / cm 2 g, followed by terephthalic acid, paratoluic acid and 4-carboxybenzaldehyde. Before and after concentration (wt%) change was measured, and the results are shown in Table 1 below. However, cake washing and drying were not performed.
  • the terephthalic acid slurry produced in the reactor was passed through a crystal bath having an internal temperature of 165 ° C. and a high temperature high pressure filter having an internal temperature of 180 ° C. and an internal pressure of 14 kgf / cm 2 g, followed by terephthalic acid, paratoluic acid and 4-carboxybenzaldehyde. Before and after concentration (wt%) change was measured, and the results are shown in Table 2 below. However, cake washing and drying were not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a process for crystallization and solid-liquid separation to separate a solid-phase terephthalic acid from slurry including the terephthalic acid and reaction intermediates produced via a paraxylene oxidation, wherein the reaction intermediates include a paratoluic acid and a 4-carboxybenzaldehyde. The process comprises filtering the crystallized slurry in a high-temperature high-pressure filter, separating the terephthalic acid in the form of solid, and separating a mother liquid having the reaction intermediates in the form of liquid, characterized in that the operating temperature of the high-temperature, high-pressure filter is 130~220°C and the operating pressure thereof is 10~20kgf/cm2g. The slurry includes paratoluic acid at more than 10 wt %, preferably more than 20 wt %, and the crystallization can be carried out in a crystallization tank.

Description

테레프탈산 제조에서의 결정화 및 고액 분리 공정 Crystallization and Solid-Liquid Separation Process in the Production of Terephthalic Acid
본 발명은 파라자일렌의 산화반응의 결과물이 테레프탈산 이외에 파라톨루익산 등의 반응 중간체를 다량 포함할 경우 효과적인 방법으로 순도가 높은 테레프탈산을 분리해 내는 방법에 관한 것이다.The present invention relates to a method for separating terephthalic acid having high purity by an effective method when the result of the oxidation reaction of paraxylene includes a large amount of reaction intermediates such as paratoluic acid in addition to terephthalic acid.
테레프탈산은 광범위한 종류의 제품의 원료로 사용되는 유용한 화합물로서 폴리에틸렌 테레프탈레이트(PET), 폴리에스테르 섬유, 포장 및 용기용 폴리에스테르 필름의 주 원료로 사용된다. 테레프탈산은 전 세계에서 연간 5,000만톤 이상 제조되며 단일 공장에서 연간 10만톤 내지 80만톤 이상 제조 가능하다.Terephthalic acid is a useful compound used as a raw material for a wide range of products and is used as the main raw material for polyethylene terephthalate (PET), polyester fibers, and polyester films for packaging and containers. Terephthalic acid is produced in more than 50 million tons per year worldwide and can be produced from 100,000 to 800,000 tons per year in a single plant.
일반적으로 테레프탈산은 산화제로서 공기 또는 기타 산소분자를 포함하는 기체를 공급원으로 사용하고, 하나 이상의 중금속 화합물 및 하나 이상의 반응 촉진제 화합물을 사용하여 아세트산 용매에서 파라자일렌의 액상 발열 산화반응에 의해 생성될 수 있다. 이러한 방법에 기반을 두고 현재까지 상업적으로 가장 널리 사용되고 있는 소위 Amoco MC 공법은 Saffer 등에 의한 미국 특허 제2,833,816호에 상세히 기재되어 있다.In general, terephthalic acid can be produced by the liquid phase exothermic oxidation of paraxylene in an acetic acid solvent using a gas containing air or other oxygen molecules as the oxidant as a source and using at least one heavy metal compound and at least one reaction promoter compound. have. Based on this method, the so-called Amoco MC process, which is the most widely used commercially to date, is described in detail in US Pat. No. 2,833,816 to Saffer et al.
미국 특허 제2,833,816호에 기재된 방법을 적용하여 산화반응기 내에서 원료인 파라자일렌과 산소분자를 반응시키게 되면 고상의 테레프탈산이 생성되며 수율은 95% 이상으로 매우 높은 편이다. 산화반응을 통해 테레프탈산 외에도 반응 중간체, 예를 들면, 파라톨루알데히드(p-tolualdehyde), 파라톨루익산(p-toluic acid), 4-히드록시메틸벤조산(4-hydroxymethylbenzoic acid), 4-카르복시벤즈알데히드(4-carboxybenzaldehyde) 등이 소량 생성된다. 이렇게 생성된 불순물들은 그 양이 많지 않으며, 도 1에서 보는 바와 같이 결정화 과정(1, 2, 3)을 통해 테레프탈산의 입도 조절 후 진공필터(4)를 거쳐 고상인 테레프탈산과 액상인 용매 및 용해된 불순물들이 분리된다. 고상으로 분리된 테레프탈산은 일부 액상의 용매를 머금고 있으므로 이를 완전히 말리고 또한 용매를 완전히 회수하기 위해 건조과정(5)을 거치게 된다.When the method described in U.S. Patent No. 2,833,816 is applied to react paraxylene and oxygen molecules as raw materials in an oxidation reactor, solid terephthalic acid is produced and the yield is very high, 95% or more. In addition to terephthalic acid through oxidation, reaction intermediates such as p-tolualdehyde, p-toluic acid, 4-hydroxymethylbenzoic acid, and 4-carboxybenzaldehyde 4-carboxybenzaldehyde) is produced in small amounts. Thus produced impurities are not high in amount, and as shown in FIG. 1, after controlling the particle size of terephthalic acid through the crystallization process (1, 2, 3), the terephthalic acid and the liquid solvent and the dissolved solid are passed through the vacuum filter (4). Impurities are separated. Terephthalic acid separated into the solid phase contains some liquid solvent, so that it is completely dried and further dried to recover the solvent (5).
한편, 최근 들어 환경규제 및 유독성 물질 사용 제한에 관한 사회적 움직임과 더불어 테레프탈산 제조 방법도 초산과 브롬을 사용하지 않는 친환경적인 방법을 개발하고자 하는 시도가 지속적으로 이어져 왔다. 이러한 방법 중 대표적인 것이 물 용매와 무(無) 브롬 촉매계를 사용하여 산화반응을 수행하는 것이다.On the other hand, in recent years, in addition to social movements on environmental regulations and restrictions on the use of toxic substances, terephthalic acid production methods have been continuously attempted to develop environmentally friendly methods that do not use acetic acid and bromine. Typical of these methods is the oxidation reaction using a water solvent and a bromine free catalyst system.
예를 들면 Hanotier 등이 미국 특허 제4,334,086호에 공지한 대로 물과 반응중간체를 용매로 사용하여 테레프탈산을 제조하게 될 경우, 반응 후 생성되는 물질은 테레프탈산 이외에도 다량의 4-카르복시벤즈알데히드, 파라톨루익산 등의 반응 중간체를 포함하게 된다. 이 경우 상기 미국 특허 제 4,334,086호에서는 이러한 고농도의 불순물을 제거하기 위한 방법으로 도 2에서 보는 바와 같이 침강칼럼(sedimentation column)(6, 9)을 제시하였다.For example, when Hanotier et al. Produce terephthalic acid using water and a reaction intermediate as a solvent, as disclosed in US Pat. No. 4,334,086, the material produced after the reaction is a large amount of 4-carboxybenzaldehyde, paratoluic acid, etc. in addition to terephthalic acid. It will include the reaction intermediate of. In this case, US Pat. No. 4,334,086 suggests sedimentation columns 6 and 9 as shown in FIG. 2 as a method for removing such high concentration of impurities.
침강칼럼의 기본 원리는 칼럼의 상단에서 불순물을 포함하고 있는 슬러리를 투입하여 칼럼 하단으로 내려 보내 주는 한편 칼럼의 하단에서는 물이나 기타 세척수를 투입하여 칼럼 상단으로 올려 보내 줌으로써 슬러리와 세척수가 상호 역방향으로 만나면서 불순물의 세척작용이 이루어지도록 하는 것이다. 즉, 고액 분리의 한 방법으로서 액체가 하부에서 상부로 올라오는 유압을 고체의 중력보다 낮게 운전함으로써 고체 입자가 세척이 되면서 하부로 서서히 내려오게 하는 것이다. The basic principle of sedimentation column is to put slurry containing impurities at the top of the column and send it down to the bottom of the column, while at the bottom of the column, water or other washing water is put up and sent to the top of the column. It is to meet the washing action of impurities. In other words, as a method of solid-liquid separation, by operating the hydraulic pressure from the bottom to the top lower than the gravity of the solid, the solid particles are gradually lowered to the bottom while being washed.
이러한 방법의 장점은 고체 입자의 세척수 내 체류시간을 증가시키고 고체 입자와 역방향으로 세척수를 흐르게 함으로써 고농도의 불순물을 함유한 고체 입자에 대한 세척 효과를 극대화할 수 있다는 점이다. The advantage of this method is that it is possible to maximize the cleaning effect for solid particles containing high concentrations of impurities by increasing the residence time of the solid particles in the wash water and flowing the wash water in the opposite direction to the solid particles.
상기 언급한 특허에서는 제 1차 침강칼럼(6)에서 대부분의 불순물을 우선적으로 제거한 후 칼럼 하부로 유출되는 슬러리에 대해 가열기(7)를 이용하여 온도를 충분히 상승시킴으로써 불순물을 용해 또는 용융시키고 결정조(8)를 통해 재결정화 과정을 거침으로써 상대적으로 순도가 높은 테레프탈산을 석출시킨다. 그리고 나서 다시 제 2차 침강칼럼(9)을 통과함으로써 4-카르복시벤즈알데히드 700ppmw 수준의 매우 순도가 높은 테레프탈산 고체 입자를 칼럼 하부로부터 취득할 수 있도록 하고 있다.The above-mentioned patent preferentially removes most impurities from the primary sedimentation column 6, and then dissolves or melts the impurities by sufficiently raising the temperature using the heater 7 for the slurry flowing out to the bottom of the column. Recrystallization process is carried out in (8) to precipitate relatively high purity terephthalic acid. Then, the second settling column 9 is passed again to obtain very high purity terephthalic acid solid particles of 700 ppmw of 4-carboxybenzaldehyde from the bottom of the column.
그러나, 이러한 침강칼럼의 문제점으로서 첫째, 실제적으로 설계가 매우 어렵다는 점을 들 수 있다. 침강칼럼은 현재 상업화되어 운전되고 있는 설비가 없으며 설계 측면에서 세척효과를 극대화 하기 위한 체류시간, 칼럼의 지름과 높이, 투입부와 배출부의 모양과 크기, 공간속도 등의 최적값을 결정하기가 쉽지 않다. 이는 운전 시 온도와 압력, 투입되는 슬러리와 세척수의 유량에 따라 이러한 값들이 크게 달라지기 때문이다. However, as a problem of the sedimentation column, first, it is practically very difficult to design. The sedimentation column is not commercialized and operated, and it is easy to determine optimal values such as residence time, diameter and height of column, shape and size of inlet and outlet, space velocity to maximize the cleaning effect in terms of design. not. This is because these values vary greatly depending on the temperature and pressure during operation, and the flow rate of the slurry and washing water introduced.
둘째, 대형 설비로서 운전하기가 쉽지 않다는 점을 들 수 있다. 특히 하부에서 상부로 투입하는 세척수의 유압을 상부에서부터 하부로 내려오는 고체 입자의 중력보다 낮게 운전하는 것은 매우 중요하고도 어려운 일이다. 고체 입자의 중력은 실질적으로 고체 입자의 입도, 밀도, 모양에 의해 상대적으로 결정되며 세척수의 밀도, 점도 등에 의해서도 고체 입자의 중력 저항이 달라지게 된다. 그리고 세척수의 물성은 다시 칼럼 내의 온도, 압력에 의해 결정되므로 올바른 운전을 실시하기 위해 조절해야 할 인자들이 매우 많으며 그 중에서는 실질적인 조절이 불가능한 변수도 있다.Second, it is not easy to operate as a large facility. In particular, it is very important and difficult to operate the hydraulic pressure of the washing water introduced from the bottom to the top lower than the gravity of the solid particles from the top to the bottom. Gravity of the solid particles is substantially determined by the particle size, density, and shape of the solid particles, and the gravity resistance of the solid particles also varies depending on the density and viscosity of the washing water. In addition, since the physical properties of the wash water are again determined by the temperature and pressure in the column, there are many factors that need to be adjusted in order to perform proper operation, and there are some variables that are not practically adjustable.
한편, 일반적으로 파라자일렌과 공기를 액상에서 산화반응시켜 테레프탈산을 제조하는 경우 발생할 수 있는 불순물들은 대부분 테레프탈산으로 전환되기 이전의 반응 중간체, 즉 4-카르복시벤즈알데히드, 파라톨루익산 등이다. 이러한 불순물들은 테레프탈산 제품에 포함되어 있을 경우 폴리에스터 고분자의 중합성능을 떨어뜨리는 원인이 될 뿐만 아니라 색도와 투명도 측면에서도 부정적인 영향을 미치므로 테레프탈산 제조 시 그 함량을 최소화해야 한다. 하지만 미국 특허 제2,833,816호 이외의 방법, 즉 초산 용매 및 코발트/망간/브롬의 촉매 조합을 사용하지 않고 산화반응을 통해 이러한 반응 중간체들을 완전히 테레프탈산으로 전환시키는 방법은 현재까지 화학적으로 알려진 바가 없다.On the other hand, in general, impurities produced when oxidizing paraxylene and air in a liquid phase to prepare terephthalic acid are reaction intermediates before conversion to terephthalic acid, that is, 4-carboxybenzaldehyde, paratoluic acid, and the like. These impurities, when included in the terephthalic acid product, not only cause the polymerization performance of the polyester polymer to be degraded, but also have a negative effect on the color and transparency, and therefore, the content of the terephthalic acid should be minimized. However, methods other than US Pat. No. 2,833,816, ie, methods of completely converting these reaction intermediates to terephthalic acid through oxidation without using a catalyst combination of acetic acid solvent and cobalt / manganese / bromine have not been chemically known.
물 용매와 무(無) 브롬 촉매계를 사용하여 산화반응을 수행하는 경우 파라자일렌이 테레프탈산으로 전환되는 과정에서 파라톨루익산이나 4-카르복시벤즈알데히드와 같은 반응 중간체 생성량이 상대적으로 많다. 본 발명자들은 파라톨루익산이나 4-카르복시벤즈알데히드와 같은 반응 중간체 생성량이 많은 경우 분리와 정제가 기존 방법, 즉 진공필터나 수소환원정제 등의 방법으로는 어렵다는 것을 발견하였다. When the oxidation reaction is performed using a water solvent and a bromine free catalyst system, the amount of reaction intermediates such as paratoluic acid and 4-carboxybenzaldehyde is relatively high during the conversion of paraxylene to terephthalic acid. The present inventors have found that separation and purification are difficult with conventional methods such as vacuum filters or hydrogen reduction tablets when the amount of reaction intermediates such as paratoluic acid or 4-carboxybenzaldehyde is high.
따라서, 본 발명은 파라자일렌의 산화반응에 의한 테레프탈산의 제조시 상기 산화반응의 결과물이 파라톨루익산 등의 반응 중간체를 다량 포함할 경우 수율 증대 및 품질 확보를 위해 반응 중간체로부터 테레프탈산을 효과적으로 분리할 수 있는 결정화 및 고액 분리 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention can effectively separate the terephthalic acid from the reaction intermediate in order to increase the yield and ensure quality when the result of the oxidation reaction contains a large amount of reaction intermediates such as paratoluic acid in the production of terephthalic acid by the oxidation reaction of paraxylene. It is an object of the present invention to provide a method for crystallization and solid-liquid separation.
본 발명은 파라자일렌의 산화반응에 의해 생성되는 테레프탈산 및 반응 중간체를 포함하는 슬러리로부터 상기 테레프탈산을 고상(固相)으로 분리하는 결정화 및 고액 분리 공정으로서, 상기 반응 중간체는 파라톨루익산 및/또는 4-카르복시벤즈알데히드를 포함하고, 상기 슬러리를 결정화한 후 고온 고압필터에서 필터링하여 상기 테레프탈산은 고상으로 분리하고 상기 반응 중간체를 포함하는 모액은 액상으로 분리하는 단계를 포함하며, 상기 고온 고압필터의 운전 온도는 130~220℃이며, 운전 압력은 10~20kgf/㎠g인 것이 특징인 결정화 및 고액 분리 공정을 제공한다. The present invention provides a crystallization and solid-liquid separation process for separating terephthalic acid into a solid phase from a slurry containing terephthalic acid and a reaction intermediate produced by oxidation of paraxylene, wherein the reaction intermediate is paratoluic acid and / or And containing 4-carboxybenzaldehyde, crystallizing the slurry and filtering in a high temperature high pressure filter to separate the terephthalic acid into a solid phase and to separate the mother liquor containing the reaction intermediate into a liquid phase. The temperature is 130-220 ° C., and the operating pressure is 10-20 kgf / cm 2g to provide a crystallization and solid-liquid separation process.
본 발명에서 언급되는 테레프탈산 슬러리는 물 용매 하에서 브롬을 포함하지 않는 촉매계를 사용한 산화반응에 의해 생성되며, 초산 용매를 사용하지 않은 파라자일렌의 산화반응으로부터 생성되는 슬러리인 것이 바람직하다. 또한, 상기 파라자일렌의 산화반응에 의해 생성되는 상기 슬러리 중 상기 파라톨루익산이 10wt% 이상, 바람직하게는 20wt% 이상 포함된 슬러리에 적용하는 것이 바람직하다. 상기 파라자일렌의 산화반응에 의해 생성되는 상기 슬러리 중 상기 4-CBA 함유량은, 실제 반응에서 많이 생성되지도 않으므로 중요하지 않으며, 1 ~ 5wt% 정도 이다.The terephthalic acid slurry referred to in the present invention is preferably a slurry produced by an oxidation reaction using a catalyst system containing no bromine under a water solvent, and an oxidation reaction of paraxylene without using an acetic acid solvent. In addition, it is preferable to apply to the slurry containing 10wt% or more, preferably 20wt% or more of the paratoluic acid in the slurry produced by the oxidation reaction of the para xylene. The 4-CBA content in the slurry produced by the oxidation reaction of the para xylene is not important because it is not generated much in the actual reaction, it is about 1 to 5wt%.
이하, 도 3 및 도 4를 참고로 하여 본 발명의 공정에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. Hereinafter, the process of the present invention will be described in detail with reference to FIGS. 3 and 4 so that those skilled in the art can easily carry out the process of the present invention.
파라자일렌의 산화반응에서 생성되는 반응 중간체를 테레프탈산으로부터 온전히 분리하여 반응기로 환류시킬 수 있는 기술의 개발은 테레프탈산의 수율 증대는 물론 최종 제품의 품질 확보에 있어 매우 중요하다.The development of a technology capable of completely separating the reaction intermediate generated in the oxidation reaction of paraxylene from the terephthalic acid and returning it to the reactor is very important for increasing the yield of terephthalic acid and securing the quality of the final product.
파라톨루익산은 상온에서 고체이며 용융점이 180도 수준이므로, 파라톨루익산이 10wt% 이상 존재하는 경우 이를 액체형태로 회수하기 위해서는 분리 온도가 파라톨루익산 용융점(180도)에 근접해야 한다. 그러나, 진공필터는 상온에서 작동하므로 파라톨루익산이 다량 존재 시 이를 액상으로 회수하는 것이 불가하다.Since paratoluic acid is solid at room temperature and has a melting point of 180 degrees, in order to recover the paratoluic acid in a liquid form when the paratoluic acid is present in more than 10 wt%, the separation temperature must be close to the melting point of the paratoluic acid (180 degrees). However, since the vacuum filter operates at room temperature, it is impossible to recover the liquid in the presence of a large amount of paratoluic acid.
따라서, 파라톨루익산이나 4-카르복시벤즈알데히드와 같은 반응 중간체가 다량 존재 시 온도를 충분히 상승시켜야, 액상으로 분리가 가능하기 때문에, 본 발명은 고온고압 필터를 사용한 것이다. Therefore, the present invention uses a high temperature and high pressure filter because the reaction intermediate such as paratoluic acid or 4-carboxybenzaldehyde must be sufficiently raised in the presence of a large amount to separate the liquid into a liquid phase.
파라자일렌의 산화반응에 의한 테레프탈산으로의 전환 과정에서 생성되는 가장 주요한 반응 중간체인 불순물은 4-카르복시벤즈알데히드와 파라톨루익산이다. 4-카르복시벤즈알데히드와 파라톨루익산의 녹는점은 각각 256℃와 182℃로서 매우 높은 편이며, 특히 4-카르복시벤즈알데히드는 테레프탈산과 물성이 매우 유사하여 테레프탈산으로부터 분리하기가 까다로운 물질이다. 하지만 테레프탈산은 가열해 주어도 녹지 않고 402℃에서 승화하는 특성이 있으므로, 온도를 180℃ 이상으로 상승시켜 주면 테레프탈산은 고상으로 유지되고, 파라톨루익산은 액체로 변환된다. 4-카르복시벤즈알데히드는 고체이지만 파라톨루익산에 일부 용해되어 액상으로 변환되므로 고온 고액분리 방법을 통해 상대적으로 고순도의 테레프탈산을 분리해 낼 수 있다.Impurities that are the most important reaction intermediates produced during the conversion of paraxylene to terephthalic acid by oxidation are 4-carboxybenzaldehyde and paratoluic acid. Melting points of 4-carboxybenzaldehyde and paratoluic acid are very high at 256 ° C and 182 ° C, respectively. Especially, 4-carboxybenzaldehyde is very difficult to separate from terephthalic acid due to its very similar properties to terephthalic acid. However, since terephthalic acid does not melt even when heated, it is sublimed at 402 ° C. Therefore, if the temperature is raised to 180 ° C or higher, terephthalic acid remains in a solid phase and paratoluic acid is converted into a liquid. 4-carboxybenzaldehyde is a solid, but partially dissolved in paratoluic acid to be converted into a liquid phase, it is possible to separate relatively high purity terephthalic acid through a high temperature solid-liquid separation method.
필터의 경우 고온에서 고액 분리를 수행하게 되면, 상온 조건에서 수행할 수 밖에 없는 진공 시스템은 사용할 수 없으며, 따라서 압력을 가하는 방식으로 필터링을 수행해야만 한다. 열역학적 특성상 설비온도를 고온으로 유지하기 위해서는 일정 압력이 필요하며, 기본적으로 진공상태를 만들려면 온도를 내려야 하므로 진공필터는 사용할 수 없고 압력을 가함으로써 고온을 유지할 수 있기 때문이다.In the case of the filter, when the solid-liquid separation is performed at a high temperature, a vacuum system that can only be performed at room temperature cannot be used, and therefore, the filtering must be performed by applying a pressure. Because of the thermodynamic characteristics, a certain pressure is required to maintain the equipment temperature at a high temperature, and basically, the temperature must be lowered to create a vacuum state, so the vacuum filter cannot be used and a high temperature can be maintained by applying pressure.
따라서, 이러한 고온 고액분리를 위한 설비로서 본 발명에서는 고온 고압필터(12)를 결정조(11) 후단에 장착하여 운용함으로써 고상의 테레프탈산을 효과적으로 분리할 수 있다.Therefore, in the present invention as a facility for such a high temperature solid-liquid separation, it is possible to effectively separate the solid terephthalic acid by operating the high-temperature high-pressure filter 12 mounted on the rear end of the crystal bath 11.
일반적으로 고온 고압필터는 고압 Vessel 내에 장착된 원형의 드럼에 소형의 셀(cell) 타입 필터를 다수 장착하여 천천히 회전하면서 슬러리의 셀 내부 충진, 필터링, 세척, 건조, 케이크 배출 및 모액 회수 등의 일련의 작업을 구역별로 수행하게 되며(도 5 참조), 세부적인 작동 원리는 제조 회사별로 차이가 있다. In general, the high temperature high pressure filter is equipped with a large number of small cell type filters in a circular drum mounted in a high pressure vessel, and slowly rotates to fill the slurry, filter, wash, dry, discharge the cake, and recover the mother liquor. Will be performed by zone (see Figure 5), and the detailed operating principle will vary by manufacturer.
고온 고압 필터는 고온에서 압력을 가하여 필터링을 수행한다는 것 이외에는 진공필터와 작동원리 면에서 큰 차이가 없다. 한편, 본 발명에서 고압필터는 스팀을 이용하여 필터케이크에 대해서 건조과정을 수행한다는 것이 또다른 특징이 될 수 있다. The high temperature and high pressure filter has no significant difference in operation principle from the vacuum filter except that the filtering is performed by applying pressure at a high temperature. On the other hand, the high pressure filter in the present invention may be another feature that performs a drying process for the filter cake using steam.
필터링을 수행하는 온도 범위는 130~220℃, 바람직하게는 150~200℃가 적합하다. 온도 범위가 이보다 낮을 경우에는 반응 중간체가 완전히 액상으로 변하지 않아 고액(固液) 분리가 올바로 이루어지지 않으며, 이보다 높을 경우에는 불필요하게 에너지를 소비하게 되므로 주어진 범위에서 운전을 하는 것이 바람직하다. 운전 온도를 유지하기 위해서 운전 압력은 10~20kgf/㎠g 수준으로 조정해 주어야 하며, 바람직하게는 12~18kgf/㎠g가 적합하다. 압력 범위가 이보다 낮을 경우에는 온도가 저하되어 분리 성능이 떨어지며, 이보다 높을 경우에는 불필요하게 설비의 두께를 두껍게 제조해야 하고 과도한 압력으로 인하여 필터가 막히는 등의 문제가 발생할 수 있다. 뿐만 아니라 대부분의 압력 필터 설비의 경우, 대기압과 필터 내부 압력의 차이를 특정 한계 이상으로 상승시키기 어렵다는 점을 명심해야 한다.The temperature range for performing the filtering is 130 ~ 220 ℃, preferably 150 ~ 200 ℃. When the temperature range is lower than this, the reaction intermediate does not completely turn into a liquid phase, and solid-liquid separation is not performed correctly. When the temperature is higher than this, it is preferable to operate the given range because energy is unnecessarily consumed. In order to maintain the operating temperature, the operating pressure should be adjusted to a level of 10 to 20 kgf / cm 2g, and preferably 12 to 18 kgf / cm 2 g. If the pressure range is lower than this, the temperature is lowered and the separation performance is lowered. If the pressure range is higher than this, the thickness of the equipment is unnecessarily thick and the filter may be clogged due to excessive pressure. In addition, it should be borne in mind that for most pressure filter installations it is difficult to raise the difference between the atmospheric pressure and the pressure inside the filter above a certain limit.
상기 필터링을 성공적으로 수행하는데 있어 가장 중요한 사항 중 하나는 고체의 입도이다. 따라서 고온 고압필터를 운용하기 이전에 고체와 액체의 혼합 슬러리를 결정조에서 특정 시간 이상 체류시키면서 고체의 입자를 확대시키는 과정이 필요하다. 따라서 본 발명에서는 고온 고압필터 전단부에 결정조(11)를 연결하여 입도를 조절하는 과정을 거칠 수 있다. 고체 입자의 입도는 30 ~ 120 ㎛ 인 것이 바람직하다. 단, 결정조의 개수는 0~4개 범위 내에서 사용 가능하며, 바람직하게는 1기가 적합하다. 이는 고온 고압필터의 운전 온도와 압력의 범위가 산화반응기의 운전 온도와 압력 범위와 유사할 정도로 매우 높은 수준이므로, 실질적으로 결정조에서 입도 조절을 위해 감온, 감압을 수행하여도 그 폭이 크지는 않기 때문이다. One of the most important points in successfully performing the filtering is the particle size of the solid. Therefore, before operating the high temperature high pressure filter, a process of enlarging the particles of the solid is required while the mixed slurry of the solid and the liquid is held in the crystal bath for a specific time. Therefore, in the present invention, the crystal bath 11 may be connected to the front end of the high temperature and high pressure filter to adjust the particle size. It is preferable that the particle size of a solid particle is 30-120 micrometers. However, the number of crystal baths can be used within the range of 0-4, Preferably 1 group is suitable. This is because the operating temperature and pressure range of the high temperature high pressure filter are very high, similar to the operating temperature and pressure range of the oxidation reactor. Because it does not.
결정조의 운전 온도 범위는 150~250℃, 바람직하게는 170~210℃가 적합하다. 이 범위보다 낮을 경우에는 반응 중간체가 석출되어 분리 효과가 감소하며, 높을 경우에는 결정화를 통한 입도 증대 효과가 미비하다.The operating temperature range of the crystal bath is 150 to 250 ° C, preferably 170 to 210 ° C. If it is lower than this range, the reaction intermediate is precipitated to reduce the separation effect, and when it is high, the effect of increasing the particle size through crystallization is insufficient.
한편 180℃ 이상 고온에서 테레프탈산은 물에 대한 용해도가 여전히 낮은 반면, 파라톨루익산은 크게 증가하므로 이러한 차이점을 이용하여 고온의 물과 스팀을 고온 고압필터 장치에서 사용하도록 함으로써 분리 및 세척효과를 극대화할 수 있다. 여기서 사용되는 물은 산화반응으로 생성된 물 중 일부를 결정조와 필터로 투입해 줌으로써 추가적인 비용 없이 활용이 가능하다. On the other hand, terephthalic acid is still low in water solubility at high temperature of more than 180 ℃ while paratoluic acid is greatly increased, so that the hot water and steam can be used in the high temperature high pressure filter device to maximize the separation and washing effect. Can be. The water used here can be used at no additional cost by introducing some of the water produced by the oxidation reaction into the crystal bath and filter.
결정조와 필터로 투입해 주는 물의 양은 필터링 수행 후에 모액에 포함되어 산화반응기 내부로 환류되었을 때 물 농도를 지나치게 증가시키지 않는 수준이어야 한다. 결정조는 내부 물 농도가 30~80wt% 수준, 필터에 세척액으로 투입해 주는 물의 양은 고체 1톤 당 0.2~2톤 수준이 적당하다. 세척액의 온도 또한 분리 성능을 극대화시키기 위한 중요한 요소이며 170~200℃ 범위의 세척액을 사용하는 것이 불순물의 용해도를 고려했을 때 가장 적합하다. The amount of water introduced into the crystal bath and the filter should be such that it does not excessively increase the water concentration when it is included in the mother liquor after filtering and refluxed into the oxidation reactor. Crystal water tank is 30 ~ 80wt% internal water concentration, the amount of water to be injected into the filter is 0.2 ~ 2 tons per 1 ton solid. The temperature of the cleaning liquid is also an important factor for maximizing the separation performance, and using a cleaning liquid in the range of 170 ~ 200 ° C is most suitable when considering the solubility of impurities.
상기 슬러리 및 세척액은 서로 반대 방향(countercurrent)으로 접촉시키는 것이 바람직하다.The slurry and wash liquor are preferably in contact with each other in countercurrent.
즉, 필터링 및 세척 작업에 있어 도 4와 같이 슬러리와 세척액을 반대 방향으로(countercurrent) 2~5단의 필터(13, 14, 15, 16)에서 연속적으로 접촉시키면서 적은 양의 세척수로 필터 및 세척 효과를 극대화 할 수 있다. 다시 말해, 최종 필터에서는 가장 신선한 세척액과 접촉이 되도록 하고 최초 필터에서는 가장 많이 세척을 한 세척액과 접촉이 되도록 함으로써 불순물이 많은 케이크부터 적은 케이크로 세척이 되기까지 점점 더 깨끗한 세척액과 만나도록 하는 것이다.That is, in the filtering and washing operations, as shown in FIG. 4, the slurry and the washing liquid are filtered and washed with a small amount of washing water while continuously contacting the filters in two to five stages (13, 14, 15, and 16) in the countercurrent direction. The effect can be maximized. In other words, the final filter is in contact with the freshest washing liquid and the initial filter is in contact with the most washed washing liquid, so as to meet with the cleaner cleaner from the cake with more impurities to the cleaning with less cake.
고온 고압필터를 거친 슬러리는 케이크와 모액으로 분리되는데 케이크의 함수율은 10wt% 이하로 감소시킬 수 있으며, 이때 파라톨루익산과 4-카르복시벤즈알데히드의 함량 역시 케이크 전체 무게의 10wt% 이하로 감소된다. 파라톨루익산 20~40wt%, 4-카르복시벤즈알데히드 2~5wt% 수준의 슬러리에 대해서 본 발명의 고온 고압필터 처리를 해 줄 경우, 파라톨루익산 2wt% 내외, 4-카르복시벤즈알데히드 1wt% 내외 수준으로 반응 중간체의 농도를 획기적으로 감소시킬 수 있다. 특히, 고온 고압필터를 사용함으로써 테레프탈산의 결정화 과정 중에 공침(共沈)되는 4-카르복시벤즈알데히드에 비해 물에 대한 용해도가 높고 테레프탈산 입자 외부에 주로 형성되어 있는 파라톨루익산은 그 제거율이 매우 높다는 점은 주목할 만하다.The slurry passed through the high temperature and high pressure filter is separated into the cake and the mother liquor. The moisture content of the cake can be reduced to 10 wt% or less, and the content of paratoluic acid and 4-carboxybenzaldehyde is also reduced to 10 wt% or less of the total weight of the cake. When the high temperature and high pressure filter treatment of 20 to 40 wt% of paratoluic acid and 2 to 5 wt% of 4-carboxybenzaldehyde is performed, the reaction is performed at about 2 wt% of paratoluic acid and about 1 wt% of 4-carboxybenzaldehyde. The concentration of intermediates can be significantly reduced. In particular, by using a high temperature and high pressure filter, compared with 4-carboxybenzaldehyde which is co-precipitated during the crystallization process of terephthalic acid, the solubility in water is high and paratoluic acid mainly formed outside the terephthalic acid particles has a high removal rate. Notable
경우에 따라 스팀을 사용하여 건조 기능을 부가할 경우 케이크의 함수율을 5wt% 이하로 낮출 수도 있다. 분리된 케이크에 대해서 다시 다단계의 고온 고압필터를 적용하거나 화학적인 방법으로 정제하여 고순도의 테레프탈산을 제조할 수 있다. 물과 반응 중간체를 포함하고 있는 분리된 모액은 산화 반응기로 환류시켜 재산화함으로써 추가적으로 테레프탈산을 생산할 수 있다. 이때 품질 수준을 맞추기 위해 모액 중 일부를 계 외부로 퍼지할 수도 있다.In some cases, when steam is used to add a drying function, the moisture content of the cake may be lowered to 5 wt% or less. The separated cake may be again subjected to a multi-step high temperature high pressure filter or purified by chemical methods to produce high purity terephthalic acid. Separate mother liquor containing water and reaction intermediates can additionally produce terephthalic acid by refluxing into an oxidation reactor. At this time, some of the mother liquor may be purged out of the system to achieve a quality level.
산화반응의 결과물이 반응 중간체를 다량 포함할 경우에는 고온 고압필터를 수행하고 나서도 케이크 내에 수 wt% 수준의 반응 중간체를 함유할 수 있으며 이 경우 미국 특허 제 2,833,816호에서 제시한 바와 같이 초산 용매와 코발트, 망간 및 브롬을 포함하는 촉매계를 사용하여 160~220℃에서 반응 중간체를 추가 산화시켜 반응 중간체의 총량을 5,000ppm 이하로 낮출 수 있다. 이외에도 고온 고압필터를 수행한 이후에 반응 중간체의 총량을 200ppm 이하 수준으로 추가적으로 낮추기 위해 다양한 정제기법을 적용할 수 있다.If the result of the oxidation reaction contains a large amount of the reaction intermediate, the cake may contain several wt% of the reaction intermediate even after performing the high temperature and high pressure filter, in which case, as shown in US Pat. No. 2,833,816, acetic acid solvent and cobalt The total amount of the reaction intermediate can be lowered to 5,000 ppm or less by further oxidizing the reaction intermediate at 160-220 ° C. using a catalyst system comprising manganese and bromine. In addition, after performing the high temperature and high pressure filter, various purification techniques may be applied to further lower the total amount of the reaction intermediate to 200 ppm or less.
본 발명의 공정에 따르면, 산화반응으로부터 생성된 반응 생성물이 다량의 반응 중간체를 포함할 경우, 이들로부터 고상의 테레프탈산을 효과적으로 분리함으로써 제품 품질을 확보할 수 있으며, 액상의 반응 중간체를 산화 반응기로 환류시킴으로써 테레프탈산의 수율을 증대시킬 수 있다. 또한, 결정화 및 고액분리 공정을 매우 간단히 구성함으로써 설비 투자비를 감소시키고 공정 관리를 더욱 효과적으로 수행할 수 있다. 또한, 다량의 반응 중간체를 함유한 슬러리에 대해 고액분리 공정을 간편하고 안정성 있게 적용, 운용할 수 있다.According to the process of the present invention, when the reaction product generated from the oxidation reaction contains a large amount of reaction intermediates, product quality can be secured by effectively separating solid terephthalic acid from them, and the liquid reaction intermediates are refluxed to the oxidation reactor. By doing so, the yield of terephthalic acid can be increased. In addition, the very simple configuration of the crystallization and solid-liquid separation process can reduce the capital investment and more effectively manage the process. In addition, the solid-liquid separation process can be easily and reliably applied and operated on a slurry containing a large amount of reaction intermediate.
도 1은 미국 특허 제2,833,816호에 따라 파라자일렌의 산화반응의 생성물로부터 테레프탈산을 분리하는 공정도이다.1 is a process diagram for separating terephthalic acid from the product of the oxidation of paraxylene according to US Pat. No. 2,833,816.
도 2는 미국 특허 제4,334,086호 따라 파라자일렌의 산화반응의 생성물로부터 테레프탈산을 분리하는 공정도이다.2 is a process diagram for separating terephthalic acid from the product of oxidation of paraxylene according to US Pat. No. 4,334,086.
도 3은 본 발명의 일실시예에 따라 파라자일렌의 산화반응의 생성물로부터 테레프탈산을 분리하는 공정도이다.3 is a process diagram for separating terephthalic acid from the product of the oxidation of paraxylene according to one embodiment of the present invention.
도 4는 본 발명의 일실시예에 따라 고온 고압필터에서 파라자일렌의 산화반응의 생성물 슬러리를 필터링, 세척, 케이크 배출 및 모액 회수하는 공정도이다.Figure 4 is a process for filtering, washing, cake discharge and mother liquor recovery of the product slurry of the oxidation reaction of para xylene in a high temperature and high pressure filter according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에서 사용될 수 있는 고압필터의 구조도이다. 5 is a structural diagram of a high pressure filter that can be used in one embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1: 제1결정조 2: 제2결정조1: First Decision Group 2: Second Decision Group
3: 제3결정조 3: Article 3
4: 회전형 진공필터(Rotary Vacuum Filter)4: Rotary Vacuum Filter
5: 건조기 5: dryer
6: 제1침강칼럼 7: 가열기6: first settling column 7: heater
8: 결정조 9: 제2침강칼럼8: Decision Tree 9: Second Settlement Column
11: 결정조 11: crystal
12: 고온 고압 필터 (High-Temperature Pressure Filter)12: High-Temperature Pressure Filter
13: 제1필터부 14: 제2필터부13: first filter part 14: second filter part
15: 제3필터부 16: 제4필터부15: third filter unit 16: fourth filter unit
17: 제4모액저장소 18: 제3모액저장소17: 4th stock solution 18: 3rd stock solution
19: 제2모액저장소 20: 제1모액저장소19: second mother liquor storage 20: first mother liquor storage
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.
[실시예]EXAMPLE
아래 실시예에서는 파라톨루익산과 4-카르복시벤즈알데히드의 총 농도가 50wt% 이상인 고농도 불순물을 함유하고 있는 테레프탈산 슬러리와, 50wt% 이하인 저농도 불순물을 함유하고 있는 테레프탈산 슬러리에 대해서 본 발명에서 제안한 방법을 각각 적용하여 그 효과를 비교하였다.In the following examples, the method proposed in the present invention is applied to a terephthalic acid slurry containing a high concentration impurity having a total concentration of paratoluic acid and 4-carboxybenzaldehyde of 50 wt% or more and a terephthalic acid slurry containing a low concentration impurity of 50 wt% or less, respectively. The effect was compared.
[실시예 1] 고농도의 중간체 분리Example 1 Separation of Intermediate of High Concentration
반응기에서 생성된 테레프탈산 슬러리에 대해서 내부 온도가 170℃인 결정조 1기와, 내부 온도 185℃ 및 내부 압력 15kgf/㎠g인 고온 고압필터를 통과시킨 후, 테레프탈산, 파라톨루익산 및 4-카르복시벤즈알데히드의 전, 후 농도(wt%) 변화를 측정하였고, 그 결과를 아래 표 1에 기재하였다. 단, 케이크 세척과 건조는 실시하지 않았다.The terephthalic acid slurry produced in the reactor was passed through a crystal bath having an internal temperature of 170 ° C. and a high temperature high pressure filter having an internal temperature of 185 ° C. and an internal pressure of 15 kgf / cm 2 g, followed by terephthalic acid, paratoluic acid and 4-carboxybenzaldehyde. Before and after concentration (wt%) change was measured, and the results are shown in Table 1 below. However, cake washing and drying were not performed.
표 1
테레프탈산 파라톨루익산 4-카르복시벤즈알데히드
처리 전 17.5 78.3 4.3
처리 후 92.0 5.6 2.3
Table 1
Terephthalic acid Paratoluic acid 4-carboxybenzaldehyde
Before treatment 17.5 78.3 4.3
After treatment 92.0 5.6 2.3
[실시예 2] 저농도의 중간체 분리Example 2 Isolation of Intermediate at Low Concentration
반응기에서 생성된 테레프탈산 슬러리에 대해서 내부 온도가 165℃인 결정조 1기와, 내부 온도 180℃ 및 내부 압력 14kgf/㎠g인 고온 고압필터를 통과시킨 후, 테레프탈산, 파라톨루익산 및 4-카르복시벤즈알데히드의 전, 후 농도(wt%) 변화를 측정하였고, 그 결과를 아래 표 2에 기재하였다. 단, 케이크 세척과 건조는 실시하지 않았다.The terephthalic acid slurry produced in the reactor was passed through a crystal bath having an internal temperature of 165 ° C. and a high temperature high pressure filter having an internal temperature of 180 ° C. and an internal pressure of 14 kgf / cm 2 g, followed by terephthalic acid, paratoluic acid and 4-carboxybenzaldehyde. Before and after concentration (wt%) change was measured, and the results are shown in Table 2 below. However, cake washing and drying were not performed.
표 2
테레프탈산 파라톨루익산 4-카르복시벤즈알데히드
처리 전 58.3 37.4 4.3
처리 후 90.9 6.6 2.5
TABLE 2
Terephthalic acid Paratoluic acid 4-carboxybenzaldehyde
Before treatment 58.3 37.4 4.3
After treatment 90.9 6.6 2.5
다량의 반응중간체를 함유하고 있는 테레프탈산 슬러리에 대해서 진공필터를 적용한 사례가 없으며 분리도 불가능하다. 그러나, 상기 실시예에 의해 뒷받침될 수 있듯이, 반응중간체의 양에 상관없이 고온 고압에서 필터링을 실시할 경우에 (케이크 세척 및 건조는 미실시) 4-카르복시벤즈알데히드는 4.3wt%에서 2.3 ~ 2.5wt% 수준으로 감소가 되고 파라톨루익산은 185도, 15KG에서는 78.3wt%에서 5.6wt%로, 180도, 14KG에서는 37.4wt%에서 6.6wt%로 감소가 됨으로써 좀 더 높은 온도, 압력 조건에서 필터링을 수행하는 것이 그 효과 측면에서 월등히 뛰어나다.There is no case where a vacuum filter is applied to a terephthalic acid slurry containing a large amount of reaction intermediates and separation is not possible. However, as can be supported by the above examples, 4-carboxybenzaldehyde is 2.3 to 2.5 wt% at 4.3 wt% when filtering is carried out at high temperature and high pressure regardless of the amount of the intermediate. Paratoluic acid is reduced to 185 degrees, from 78.3wt% to 5.6wt% at 15KG, and from 180.37kg to 37.4wt% to 6.6wt%, filtering is performed at higher temperature and pressure conditions. Is far superior in terms of its effectiveness.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (12)

  1. 파라자일렌의 산화반응에 의해 생성되는 테레프탈산 및 반응 중간체를 포함하는 슬러리로부터 상기 테레프탈산을 고상으로 분리하는 결정화 및 고액 분리 공정으로서, A crystallization and solid-liquid separation process for separating the terephthalic acid into a solid phase from a slurry containing terephthalic acid and a reaction intermediate produced by oxidation of paraxylene,
    상기 반응 중간체는 파라톨루익산 및 4-카르복시벤즈알데히드를 포함하고, The reaction intermediate comprises paratoluic acid and 4-carboxybenzaldehyde,
    상기 슬러리를 결정화한 후 고온 고압필터에서 필터링하여 상기 테레프탈산은 고상으로 분리하고 상기 반응 중간체를 포함하는 모액은 액상으로 분리하는 단계를 포함하며,Crystallizing the slurry and then filtering in a high temperature and high pressure filter to separate the terephthalic acid into a solid phase and to separate the mother liquor including the reaction intermediate into a liquid phase.
    상기 고온 고압필터의 운전 온도는 130~220℃이며, 운전 압력은 10~20kgf/㎠g인 것이 특징인 결정화 및 고액 분리 공정.Crystallization and solid-liquid separation process, characterized in that the operating temperature of the high temperature high pressure filter is 130 ~ 220 ℃, the operating pressure is 10 ~ 20kgf / ㎠g.
  2. 제1항에 있어서, 상기 결정화는 결정조에서 진행되는 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 1, wherein the crystallization proceeds in a crystal bath.
  3. 제1항 또는 제2항에 있어서, 상기 파라자일렌의 산화반응은 물 용매 하에서 브롬을 포함하지 않는 촉매계를 사용하여 진행되며, 초산 용매는 사용하지 않는 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 1 or 2, wherein the oxidation of paraxylene is carried out using a catalyst system containing no bromine under a water solvent, and no acetic acid solvent is used.
  4. 제1항 또는 제2항에 있어서, 상기 슬러리 중 상기 파라톨루익산은 10wt% 이상 포함된 것이 특징인 결정화 및 고액 분리 공정. The process of claim 1 or 2, wherein the paratoluic acid in the slurry contains 10 wt% or more.
  5. 제1항 또는 제2항에 있어서, 상기 슬러리는 고온 고압필터에서 물을 포함하는 세척액 및 스팀을 사용하여 필터링과 세척을 하는 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 1 or 2, wherein the slurry is filtered and washed using a washing liquid and steam containing water in a high temperature high pressure filter.
  6. 제5항에 있어서, 상기 슬러리 및 세척액은 서로 반대 방향으로 접촉시키는 것이 특징인 결정화 및 고액 분리 공정. 6. The crystallization and solid-liquid separation process according to claim 5, wherein the slurry and the washing liquid are brought into contact with each other in opposite directions.
  7. 제2항에 있어서, 상기 결정조의 운전 온도는 150~250℃인 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 2, wherein the operation temperature of the crystal bath is 150 to 250 ° C.
  8. 제2항에 있어서, 상기 결정조의 내부 물 농도가 30~80wt%인 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 2, wherein the internal water concentration of the crystal bath is 30 to 80 wt%.
  9. 제2항에 있어서, 상기 결정조의 개수는 1~4개인 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 2, wherein the number of crystal baths is 1-4.
  10. 제1항 또는 제2항에 있어서, 상기 고온 고압필터에서 사용하는 세척액의 양은 고체 1톤 당 0.2~2톤이며, 세척액의 온도는 170~200℃ 인 것이 특징인 결정화 및 고액 분리 공정.The crystallization and solid-liquid separation process according to claim 1 or 2, wherein the amount of the washing liquid used in the high temperature high pressure filter is 0.2 to 2 tons per ton of solid, and the temperature of the washing liquid is 170 to 200 ° C.
  11. 제1항 또는 제2항에 있어서, 상기 고온 고압필터 후 액상으로 분리되는 상기 반응 중간체를 포함하는 모액은 산화 반응기로 환류시키는 것이 특징인 결정화 및 고액 분리 공정.The process of claim 1 or 2, wherein the mother liquor comprising the reaction intermediate separated into a liquid phase after the high temperature and high pressure filter is refluxed to an oxidation reactor.
  12. 제1항 또는 제2항에 있어서, 상기 고온 고압필터 후 분리되는 테레프탈산을 포함하는 케이크는, 초산 용매와 코발트, 망간 및 브롬을 포함하는 촉매계를 사용하여 160~220℃에서 추가 산화시켜 반응 중간체의 총 농도를 5,000ppm 이하로 감소시키는 것이 특징인 결정화 및 고액 분리 공정.The cake of claim 1 or 2, wherein the cake containing terephthalic acid separated after the high temperature and high pressure filter is further oxidized at 160 to 220 DEG C using an acetic acid solvent and a catalyst system containing cobalt, manganese and bromine. Crystallization and solid-liquid separation process characterized by reducing the total concentration to 5,000 ppm or less.
PCT/KR2009/000362 2008-01-25 2009-01-23 Process for crystallization and solid-liquid separation in terephthalic acid preparation WO2009093863A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020107016569A KR101194067B1 (en) 2008-01-25 2009-01-23 Crystallization and solid-liquid separation process in preparation of terephthalic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080008021 2008-01-25
KR10-2008-0008021 2008-01-25

Publications (2)

Publication Number Publication Date
WO2009093863A2 true WO2009093863A2 (en) 2009-07-30
WO2009093863A3 WO2009093863A3 (en) 2009-10-22

Family

ID=40901554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000362 WO2009093863A2 (en) 2008-01-25 2009-01-23 Process for crystallization and solid-liquid separation in terephthalic acid preparation

Country Status (2)

Country Link
KR (1) KR101194067B1 (en)
WO (1) WO2009093863A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334086A (en) * 1981-03-16 1982-06-08 Labofina S.A. Production of terephthalic acid
US4357475A (en) * 1980-03-21 1982-11-02 Labofina, S.A. Process for the production and the recovery of terephthalic acid
US5175355A (en) * 1991-04-12 1992-12-29 Amoco Corporation Improved process for recovery of purified terephthalic acid
KR20070093412A (en) * 2004-12-15 2007-09-18 사우디 베이식 인더스트리즈 코포레이션 Process for preparing purified terephthalic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357475A (en) * 1980-03-21 1982-11-02 Labofina, S.A. Process for the production and the recovery of terephthalic acid
US4334086A (en) * 1981-03-16 1982-06-08 Labofina S.A. Production of terephthalic acid
US5175355A (en) * 1991-04-12 1992-12-29 Amoco Corporation Improved process for recovery of purified terephthalic acid
KR20070093412A (en) * 2004-12-15 2007-09-18 사우디 베이식 인더스트리즈 코포레이션 Process for preparing purified terephthalic acid

Also Published As

Publication number Publication date
KR101194067B1 (en) 2012-10-24
KR20100103640A (en) 2010-09-27
WO2009093863A3 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
RU2114098C1 (en) Method of producing of crude aromatic polycarboxylic acid
CA2108269C (en) Process for preparation of crude terephthalic acid suitable for reduction to prepare purified terephthalic acid
US5705682A (en) Process for producing highly pure terephthalic acid
EP0778255B1 (en) Process for production of acrylic acid
CA2062063C (en) Process for the production of terephthalic acid
EP2450342B1 (en) Process for production of a dried carboxylic acid cake suitable for use in polyester production
CN106006676B (en) A kind of method of NaOH in recovery H soda acid process of smelting
US4438279A (en) Fiber-grade terephthalic acid recovered from the effluent from paraxylene oxidation in acetic acid and the catalytic hydrogenation of the oxidation effluent in the presence of metallic platinum family metals
CN105111074B (en) A kind of alkali decrement waste water solid residue esterification recoverying and utilizing method
WO2009024872A2 (en) Improved process for the recovery of terephthalic acid
WO2009093863A2 (en) Process for crystallization and solid-liquid separation in terephthalic acid preparation
JP2003519205A (en) Method for recovering purified terephthalic acid (PTA)
CN102137707A (en) Process and equipment for recovery of valuable materials from terephthalic acid manufacture
CN101525287B (en) Method for refining sebacic acid
KR100976034B1 (en) Method for recovering high purity terephthalic acid
CN108484390A (en) A kind of aromatic carboxylic acid production process method and apparatus of energy-saving and environmental protection
US9328051B2 (en) Methods and apparatus for isolating dicarboxylic acid
CN208471943U (en) A kind of aromatic carboxylic acid&#39;s process units of energy-saving and environmental protection
JPH0717901A (en) Production of high-purity isophthalic acid
RU2047594C1 (en) Process for preparing benzenedicarboxylic acid isomers having high purification degree
KR820002006B1 (en) Process for recovering terephthalic acid
KR100881166B1 (en) Method of preparing terephthalic acid
CN1034363A (en) The commercial terephthalic acid process for separating residue
JP3201436B2 (en) Production method of high purity isophthalic acid
US9388111B2 (en) Methods and apparatus for isolating dicarboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704746

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20107016569

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704746

Country of ref document: EP

Kind code of ref document: A2