WO2009093698A4 - Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device - Google Patents

Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2009093698A4
WO2009093698A4 PCT/JP2009/051092 JP2009051092W WO2009093698A4 WO 2009093698 A4 WO2009093698 A4 WO 2009093698A4 JP 2009051092 W JP2009051092 W JP 2009051092W WO 2009093698 A4 WO2009093698 A4 WO 2009093698A4
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
film
solvent
concentration
dispersed
Prior art date
Application number
PCT/JP2009/051092
Other languages
French (fr)
Japanese (ja)
Other versions
WO2009093698A1 (en
Inventor
薫 成田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2009550576A priority Critical patent/JPWO2009093698A1/en
Publication of WO2009093698A1 publication Critical patent/WO2009093698A1/en
Publication of WO2009093698A4 publication Critical patent/WO2009093698A4/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to a method of manufacturing a carbon nanotube dispersed film applicable to a transistor, a sensor or the like, and a method of manufacturing a semiconductor device using the same.
  • a carbon nanotube has a tubular structure in which a two-dimensional graphene sheet composed of six-membered rings of carbon atoms is cylindrically wound, and the thin one is about 1 nm in diameter and long and several ⁇ m or more in length. is there.
  • a dispersion film of carbon nanotubes is formed by a coating method which is much lower in cost than a semiconductor process which is a manufacturing process of a normal MOS transistor, and a field effect transistor or device using this as a channel is formed.
  • the advantage of the application method is not only the low cost but also the choice of the substrate on which the device is formed.
  • the carbon nanotube dispersed film can be formed not only on a hard substrate such as a silicon substrate but also on a thin plastic or the like. In this case, it has characteristics that conventional electronic devices do not have, such as bendable electronic circuits and transparent electronic circuits, and has the possibility of becoming a breakthrough in future IT terminal device technology.
  • Patent document 4 is mentioned as a technique relevant to forming a uniform coating film by the apply
  • Patent document 4 forms a uniform coating film by the inkjet coating method.
  • FIG. 1 is a diagram showing an example of the change.
  • FIG. 1A shows a state in which a solvent 302 in which carbon nanotubes 3011 are dispersed is dropped to form a carbon nanotube dispersed film on a plastic substrate 310 on which a metal electrode 311 and a metal electrode 312 are formed.
  • FIG. 1 (b) shows a state in which the solvent in the droplet evaporates and the diameter of the droplet becomes smaller after a predetermined time has elapsed from the state of FIG. 1 (a). At this time, when the temperature of the atmosphere is room temperature, the viscosity of the solvent in the droplet is low, so that the convection of the solvent occurs and the movement of the carbon nanotube occurs.
  • the carbon nanotubes are concentrated and segregated and aggregated near the droplet end immediately after application, the metal electrode end, and the place where the droplet finally exists.
  • a uniform dispersion film 3015 is formed.
  • An element having such a nonuniform dispersion film as a component for example, a transistor having a nonuniform dispersion film in a channel, has a problem that the electrical characteristics are unstable and the variation is large.
  • the situation as shown in FIG. 1 is prominent when the concentration of carbon nanotubes in the solvent is low and the wettability between the solvent and the substrate is not good.
  • the concentration of carbon nanotubes is increased, the on / off ratio, which is one of the performances of the transistor, is deteriorated, and therefore, the concentration can not be made higher than a certain concentration.
  • the additive intrudes between the carbon nanotubes or between the carbon nanotubes and the electrode to increase the resistance, which is a worst case. In this case, the electrical continuity between the carbon nanotubes or between the carbon nanotubes and the electrode can not be obtained.
  • FIG. 4 the state at the time of applying the method disclosed by patent document 4 to application
  • a dispersion liquid 402 in which carbon nanotubes 4011 are dispersed is applied by an inkjet method, The drops are cooled and the solvent is frozen ( Figure 2 (a)). Thereafter, the solvent is sublimated as shown in FIGS. 2 (b) and 2 (c) to precipitate carbon nanotubes.
  • the convection in the droplets does not occur, the carbon nanotubes do not segregate and aggregate, and finally, as shown in FIG. 2 (d)
  • the carbon nanotube dispersed film 4012 is formed.
  • the film is formed such that the portion supporting the carbon nanotubes is removed, so the film quality becomes very sparse and low in density.
  • a sparse film has the problem that it is easily peeled off in the subsequent steps and the roughness is rough.
  • the characteristics of the element formed by the sparse film are unstable and the variation is large.
  • the effect of the gate is less effective.
  • the present invention has been made in view of such problems, and regardless of the characteristics of the carbon nanotube dispersion and the type of the substrate, always, a method for forming a uniform and dense carbon nanotube dispersion film, and the dispersion film as a component
  • An object of the present invention is to provide a method of manufacturing a semiconductor device having good electrical characteristics and small variations in characteristics.
  • a step of applying, onto a substrate, a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed at a first concentration in a solvent Cooling the droplets of the first carbon nanotube dispersion liquid to increase the viscosity of the solvent; evaporating the solvent to uniformly deposit carbon nanotubes to form precipitation nuclei; and carbon in the solvent Forming a coated film of a second carbon nanotube dispersion liquid in which the nanotubes are dispersed at a second concentration higher than the first concentration on the precipitation nuclei, and evaporating the solvent from the coated film of the second carbon nanotubes And a step of forming a dispersion film of carbon nanotubes.
  • the present invention provides a method of forming a carbon nanotube dispersion film.
  • the present invention is a method of manufacturing a semiconductor device using the method of forming a carbon nanotube dispersed film according to the first aspect of the present invention as the second aspect, Further, the present invention provides a method of manufacturing a semiconductor device characterized in that an electrode connected to a dispersed film of carbon nanotubes is formed.
  • a uniform and dense carbon nanotube dispersion film and this dispersion film as a component have good electrical characteristics and dispersion of characteristics.
  • a method of manufacturing a small semiconductor device can be provided.
  • a dispersion having a low concentration of carbon nanotubes is applied and cooled to increase the concentration of the solvent, thereby suppressing the movement of carbon nanotubes due to convection in the droplets, thereby By evaporating the solvent, the carbon nanotubes are deposited in the droplets while maintaining a uniform distribution.
  • a dispersion liquid with a high concentration of carbon nanotubes is applied to the same place, and the solvent is evaporated as it is in the liquid phase, and the carbon nanotubes deposited earlier are precipitated as nuclei, and a uniform and dense film is formed. Ru.
  • the carbon nanotube concentration of the dispersion to be first applied to the substrate is a concentration at which uniform precipitation nuclei can be formed on the substrate, and the carbon nanotube concentration of the dispersion to be applied later is a concentration at which segregation of carbon nanotubes does not occur. is there.
  • An element having the carbon nanotube-dispersed film formed in this manner as a component has good electrical performance and little variation in characteristics, so that the yield can be improved.
  • the dispersion film since the dispersion film has no segregation, and is uniform and dense, it is not necessary to consider non-uniformity, so that the element can be easily designed.
  • FIG. 3A shows a state in which the droplet 102 of the dispersion liquid in which the carbon nanotubes 1101 are dispersed is applied on the plastic substrate 110 on which the metal electrode 111 and the metal electrode 112 are formed.
  • the plastic of the substrate may be PET (PolyEthylene Telephthalate), PEN (PolyEthylene Naphthalate), or the like.
  • a solvent for the carbon nanotube dispersion liquid one obtained by adding a surfactant to water or an organic solvent (such as dichloroethane or dimethylformamide) can be used.
  • a surfactant those to which an anionic surfactant (such as sodium dodecylbenzene sulfonate (SDBS)) or a nonionic surfactant (such as Triton X) can be used.
  • SDBS sodium dodecylbenzene sulfonate
  • Triton X Triton X
  • a carbon nanotube dispersion liquid can be generated by adding a carbon nanotube to this solvent and performing ultrasonic treatment.
  • the concentration of carbon nanotubes is a concentration capable of forming uniform precipitation nuclei on the substrate.
  • the concentration of carbon nanotubes at this time is 1 ⁇ g / ml (about 1 ppm).
  • the substrate 110 and the metal electrodes 111 and 112 are cooled (for example, about 0 ° C.) to a temperature (a temperature equal to or lower than the melting point of the solvent) to a viscosity at which the solvent does not cause convection.
  • a temperature a temperature equal to or lower than the melting point of the solvent
  • the viscosity of the droplet 102 is increased at the moment of application, and the movement of the carbon nanotube due to the convection of the solvent inside the droplet can be suppressed.
  • FIG.3 (b), (c) has shown the state which evaporation advances.
  • the carbon nanotubes in the droplets adhere to the substrate 110 and the metal electrodes 111 and 112 in such a manner that the support of the solvent is lost.
  • the carbon nanotube since the carbon nanotube is fixed, the carbon nanotube concentration in the droplet does not become high due to movement or segregation at the end of the metal electrode, and uniform and thin carbon as shown in FIG.
  • the nanotube coating film 1012 is obtained as a precipitation nucleus.
  • FIG. 4 shows an atomic force micrograph showing the state of the carbon nanotube coated film 1012 when the dispersion liquid having a carbon nanotube concentration of less than 1 ppb is applied to the substrate 110 and the solvent is evaporated as described above.
  • the density of carbon nanotubes is very low, and there are only two carbon nanotubes (at two locations indicated by arrows in the figure) in the field of view Density is insufficient as precipitation nuclei).
  • FIG. 5 an atomic force representing the state of the carbon nanotube coated film 1012 when the dispersion having a carbon nanotube concentration of 1 ppb to 1 ppm is applied to the substrate 110 and the solvent is evaporated as described above. The photomicrograph is shown.
  • the carbon nanotubes are uniformly dispersed and in a good state as precipitation nuclei.
  • FIG. 6 shows an atomic force micrograph showing the state of the carbon nanotube coated film 1012 when the dispersion liquid having a carbon nanotube concentration of 1 ppm or more is applied to the substrate 110 and the solvent is evaporated as described above.
  • the density of the carbon nanotubes is high, and many carbon nanotubes overlap each other and aggregate, so they are not in a preferable state as precipitation nuclei.
  • the carbon nanotube concentration capable of forming uniform precipitation nuclei on the substrate is in the concentration range of 1 ppb to 1 ppm.
  • carbon nanotube dispersion having a higher concentration for example, a concentration of 5 ⁇ g / ml (about 5 ppm)
  • the concentration of the carbon nanotube dispersion 1013 is a concentration that does not cause segregation of carbon nanotubes.
  • the carbon nanotubes 1022 move by convection inside the droplets, and are precipitated with the carbon nanotubes 1011 deposited in the previous step as nuclei, and a uniform and dense film 1014 is formed (FIG. 7 (d)).
  • FIG. 8 shows an example in which the carbon nanotube dispersed film according to the present invention is applied to a channel of a transistor.
  • FIG. 8A is a plan view
  • FIG. 8B is a cross-sectional view taken along the line A-A 'in FIG.
  • metal electrodes 211 and 212 to be source and drain electrodes are formed on the plastic substrate 210 later.
  • the plastic substrate 210 is previously cooled to about ⁇ 20 ° C., which is a temperature below the melting point of the solvent.
  • the temperature of the plastic substrate 210 is raised to 50 ° C., and a carbon nanotube dispersion having a concentration of 5 ppm is applied onto the precipitation nuclei in the same manner as above, and then the solvent is evaporated to disperse the uniform and dense carbon nanotubes.
  • the membrane 201 was obtained. Since the carbon nanotube dispersed film 201 is in electrical contact with the metal electrodes 211 and 212 to be the source electrode and the drain electrode and electrically connected, the mat formed of carbon nanotubes formed between the metal electrodes 211 and 212 is used. Networks (films of precipitated carbon nanotubes in a network) form the channels of the transistors.
  • a thin film 203 of parylene is formed to form a gate insulating film.
  • a thin film 203 of parylene is formed to form a gate insulating film.
  • the concentration of the carbon nanotube dispersion to be applied in the later step is a concentration that does not cause segregation of carbon nanotubes, it is as thin as 1 ppm to 10 ppm, so the transistor on / off ratio is high and the coating film is uniform, so the characteristics vary. Can be formed.
  • FIG. It is a figure which shows the formation method of the carbon nanotube dispersion
  • FIG. It is a figure which shows the flow of the front

Abstract

A method for forming a uniform and dense carbon nanotube-dispersed film irrespective of the characteristics of the carbon nanotube-dispersed liquid and the type of substrate, and a method for manufacturing a semiconductor device having excellent electrical characteristics with less variation in characteristics are provided. The method for forming the carbon nanotube-dispersed film includes steps of coating a substrate (110) with a carbon nanotube-dispersed liquid containing carbon nanotubes (1101) dispersed in a solvent, cooling droplets (102) of the carbon nanotube-dispersed liquid to increase the viscosity of the solvent, evaporating the solvent to uniformly precipitate the carbon nanotubes (1101) and form a carbon nanotube coating film (1012), forming, on the carbon nanotube coating film (1012), a coating film of a carbon nanotube-dispersed liquid (1013) with higher carbon nanotube concentration, and evaporating the solvent from the coating film of carbon nanotube-dispersed liquid (1013) to form a film having dispersed carbon nanotubes (1022).

Description

カーボンナノチューブ分散膜の形成方法及び半導体素子の製造方法Method of forming carbon nanotube dispersed film and method of manufacturing semiconductor device
 本発明はトランジスタやセンサ等に応用可能なカーボンナノチューブ分散膜の製造方法及びこれを用いた半導体素子の製造方法に関する。 The present invention relates to a method of manufacturing a carbon nanotube dispersed film applicable to a transistor, a sensor or the like, and a method of manufacturing a semiconductor device using the same.
 カーボンナノチューブは炭素原子の六員環で構成される二次元グラフェンシートを筒状に巻いた構造をとり、細いものでは直径が約1nm、長いもので長さが数μm以上という細長いチューブ状の材料である。 A carbon nanotube has a tubular structure in which a two-dimensional graphene sheet composed of six-membered rings of carbon atoms is cylindrically wound, and the thin one is about 1 nm in diameter and long and several μm or more in length. is there.
 原子配列の仕方によって半導体的な性質も金属的な性質も示すため、カーボンナノチューブをトランジスタなどの電子デバイスに応用する期待が高まっている。 Since semiconductor properties and metal properties are exhibited depending on the way of atomic arrangement, there is a growing expectation that carbon nanotubes will be applied to electronic devices such as transistors.
 特に、最近では、通常のMOSトランジスタの製造工程である半導体プロセスと比べてはるかに低コストである塗布法によってカーボンナノチューブの分散膜を形成し、これをチャネルにした電界効果トランジスタや素子を形成するという試みがある(特許文献1~3及び非特許文献1~4参照)。 In particular, recently, a dispersion film of carbon nanotubes is formed by a coating method which is much lower in cost than a semiconductor process which is a manufacturing process of a normal MOS transistor, and a field effect transistor or device using this as a channel is formed. There have been attempts (see Patent Documents 1 to 3 and Non-patent Documents 1 to 4).
 塗布法の利点は、低コストであることだけでなく、素子を形成する基板を選ばないことである。 The advantage of the application method is not only the low cost but also the choice of the substrate on which the device is formed.
 つまり、シリコン基板のような硬い基板上のみならず、薄いプラスチック上などにもカーボンナノチューブ分散膜を形成可能である。この場合、折り曲げることの可能な電子回路や透明な電子回路といった、従来の電子機器にはない特徴を持つこととなり、将来のIT端末機器技術のブレイクスルーとなる可能性を秘めている。 That is, the carbon nanotube dispersed film can be formed not only on a hard substrate such as a silicon substrate but also on a thin plastic or the like. In this case, it has characteristics that conventional electronic devices do not have, such as bendable electronic circuits and transparent electronic circuits, and has the possibility of becoming a breakthrough in future IT terminal device technology.
 塗布法によって均一な塗布膜を形成することに関連する技術として特許文献4が挙げられる。特許文献4は、インクジェット塗布法によって均一な塗布膜を形成するものである。
特開2006-8861号公報 特開2005-150410号公報 特開2006-73774号公報 特開2006-281189号公報 E.S. Show, J. P. Novak, P.M. Campbell, and D.Park, "Random networks of carbon nanotubes as an electronic material", Applied Physics Letters, Vol. 82, No.13, pp.2145-2147, 2003. E. Artukovic, M.Kaempgen, D.S. Hecht, S.Roth, and G. Gruner, "Transparent and Flexible Carbon Nanotube Transistors", Nano Letters, Vol.5, No.4, pp.757-760, 2005. S.-H. Hur, O Ok Park, J. A. Rogers, "Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors", Applied Physics Letters, Vol86, pp 243502, 2005. T. Takenobu, T. Takahashi, T. Kanbara, K. Tshkagoshi, Y. Aoyagi, Y. Iwasa, "High-performance transparent flexible transistors using carbon nanotubefilms", Applied Physics Letters, Vol. 88, pp.033511, 2006.
Patent document 4 is mentioned as a technique relevant to forming a uniform coating film by the apply | coating method. Patent document 4 forms a uniform coating film by the inkjet coating method.
JP, 2006-8861, A JP 2005-150410 A JP, 2006-73774, A JP, 2006-281189, A ES Show, J. P. Novak, PM Campbell, and D. Park, "Random networks of carbon nanotubes as an electronic material", Applied Physics Letters, Vol. 82, No. 13, pp. 2145-2147, 2003. E. Artukovic, M. Kaempgen, DS Hecht, S. Roth, and G. Gruner, "Transparent and Flexible Carbon Nanotube Transistors", Nano Letters, Vol. 5, No. 4, pp. 757-760, 2005. S. H. Hur, O. Ok Park, JA Rogers, "Extreme bendability of single-walled carbon nanotube networks from high-temperature growth substrates to plastic and their use in thin-film transistors", Applied Physics Letters, Vol 86, pp. 243502, 2005. T. Takenobu, T. Takahashi, T. Kanbara, K. Tshkagoshi, Y. Aoyagi, Y. Iwasa, "High-performance transparent flexible flexible transistors using carbon nano tubefilms", Applied Physics Letters, Vol. 88, pp. 033511, 2006.
 塗布法によってカーボンナノチューブの分散膜を基板上に形成するためには、カーボンナノチューブを溶媒中に分散させ、その分散液をディスペンサ装置やインクジェット装置などによって、基板の所定の位置に塗る方法が採られる。この際、溶媒や基板の種類、カーボンナノチューブの濃度、分散液中の添加剤の有無等によって状態が変化する。図1は、その変化の一例を示す図である。図1(a)は、金属電極311及び金属電極312が形成されたプラスチック基板310上にカーボンナノチューブ分散膜を形成するために、カーボンナノチューブ3011を分散させた溶媒302を滴下した状態を示している。
 図1(b)は、図1(a)の状態から所定の時間が経過し、液滴中の溶媒が蒸発して液滴の径が小さくなった状態を示している。このとき、雰囲気の温度が室温であると、液滴内の溶媒の粘度が低いため溶媒の対流が生じ、カーボンナノチューブの移動が起こる。大部分のカーボンナノチューブ3012は液滴中に残り、カーボンナノチューブの濃度が上昇するが、塗布直後の液滴端3014や金属電極端3013にはカーボンナノチューブが凝集する。さらに時間が経過すると溶媒の蒸発が進み、液滴径がさらに小さくなり、カーボンナノチューブの濃度はさらに上昇する。
In order to form a dispersion film of carbon nanotubes on a substrate by a coating method, a method is adopted in which carbon nanotubes are dispersed in a solvent, and the dispersion is applied to a predetermined position of the substrate by a dispenser device or an inkjet device. . At this time, the state changes depending on the type of solvent and substrate, the concentration of carbon nanotubes, the presence or absence of additives in the dispersion, and the like. FIG. 1 is a diagram showing an example of the change. FIG. 1A shows a state in which a solvent 302 in which carbon nanotubes 3011 are dispersed is dropped to form a carbon nanotube dispersed film on a plastic substrate 310 on which a metal electrode 311 and a metal electrode 312 are formed. .
FIG. 1 (b) shows a state in which the solvent in the droplet evaporates and the diameter of the droplet becomes smaller after a predetermined time has elapsed from the state of FIG. 1 (a). At this time, when the temperature of the atmosphere is room temperature, the viscosity of the solvent in the droplet is low, so that the convection of the solvent occurs and the movement of the carbon nanotube occurs. Most of the carbon nanotubes 3012 remain in the droplets, and the concentration of the carbon nanotubes rises, but the carbon nanotubes aggregate on the droplet end 3014 and the metal electrode end 3013 immediately after application. As time passes further, evaporation of the solvent proceeds, the droplet diameter further decreases, and the concentration of carbon nanotubes further increases.
 最終的には、図1(c)に示すように、塗布直後の液滴端、金属電極端、及び液滴が最後に存在する場所の近傍にカーボンナノチューブが集中して偏析、凝集し、不均一な分散膜3015が形成される。 Finally, as shown in FIG. 1 (c), the carbon nanotubes are concentrated and segregated and aggregated near the droplet end immediately after application, the metal electrode end, and the place where the droplet finally exists. A uniform dispersion film 3015 is formed.
 このような不均一な分散膜を構成要素とした素子、例えば不均一な分散膜をチャネルに持つトランジスタは、電気的特性が不安定でばらつきが大きいという問題がある。 An element having such a nonuniform dispersion film as a component, for example, a transistor having a nonuniform dispersion film in a channel, has a problem that the electrical characteristics are unstable and the variation is large.
 さらに、分散膜が偏析すると、所望の位置に素子を形成することが困難であるという問題もある。 Furthermore, when the dispersion film is segregated, there is a problem that it is difficult to form an element at a desired position.
 図1に示したような状況は、溶媒中のカーボンナノチューブの濃度が低く、溶媒と基板との濡れ性が良くない場合に顕著に現れる。 The situation as shown in FIG. 1 is prominent when the concentration of carbon nanotubes in the solvent is low and the wettability between the solvent and the substrate is not good.
 しかし、カーボンナノチューブの濃度を高くすると、トランジスタの性能の一つであるオン・オフ比が悪くなるため、一定の濃度以上に濃くはできない。 However, when the concentration of carbon nanotubes is increased, the on / off ratio, which is one of the performances of the transistor, is deteriorated, and therefore, the concentration can not be made higher than a certain concentration.
 また、溶媒と基板との濡れ性を高めるため、添加剤を加えることも考えられるが、その場合、カーボンナノチューブ間又はカーボンナノチューブと電極との間に添加剤が入り込んで抵抗が上昇し、最悪の場合、カーボンナノチューブ同士又はカーボンナノチューブと電極との間の電気的な導通が取れなくなってしまう。 In order to improve the wettability between the solvent and the substrate, it is conceivable to add an additive, but in that case, the additive intrudes between the carbon nanotubes or between the carbon nanotubes and the electrode to increase the resistance, which is a worst case. In this case, the electrical continuity between the carbon nanotubes or between the carbon nanotubes and the electrode can not be obtained.
 また、特許文献4に開示される方法をカーボンナノチューブ分散液の塗布に適用した場合の状態を図2に示す。特許文献4では、金属電極411及び金属電極412が形成されたプラスチック基板410上にカーボンナノチューブ分散膜を形成するために、カーボンナノチューブ4011を分散させた分散液402をインクジェット法によって塗布した後、液滴を冷却し溶媒を凍結する(図2(a))。その後、溶媒を図2(b)、(c)に示すように昇華させ、カーボンナノチューブを析出させる。この際には、図2で示した場合とは異なり、液滴内での対流が生じないため、カーボンナノチューブは偏析して凝集することはなく、最終的には図2(d)に示すようなカーボンナノチューブ分散膜4012が形成される。 Moreover, the state at the time of applying the method disclosed by patent document 4 to application | coating of a carbon nanotube dispersion liquid is shown in FIG. In Patent Document 4, in order to form a carbon nanotube dispersed film on a plastic substrate 410 on which a metal electrode 411 and a metal electrode 412 are formed, a dispersion liquid 402 in which carbon nanotubes 4011 are dispersed is applied by an inkjet method, The drops are cooled and the solvent is frozen (Figure 2 (a)). Thereafter, the solvent is sublimated as shown in FIGS. 2 (b) and 2 (c) to precipitate carbon nanotubes. At this time, unlike the case shown in FIG. 2, since the convection in the droplets does not occur, the carbon nanotubes do not segregate and aggregate, and finally, as shown in FIG. 2 (d) The carbon nanotube dispersed film 4012 is formed.
 しかし、上記のように溶媒を昇華させた場合、カーボンナノチューブを支持する部分が抜けるように膜が形成されるため、非常に疎で密度の低い膜質となる。このような疎な膜には、その後の工程において容易に剥がれたり、粗さが粗いという問題がある。また、疎な膜によって形成された素子の特性は、不安定でばらつきが大きいという問題がある。さらに、トランジスタを形成した場合、ゲートの効果が効きにくくなるという問題もある。 However, when the solvent is sublimed as described above, the film is formed such that the portion supporting the carbon nanotubes is removed, so the film quality becomes very sparse and low in density. Such a sparse film has the problem that it is easily peeled off in the subsequent steps and the roughness is rough. In addition, there is a problem that the characteristics of the element formed by the sparse film are unstable and the variation is large. Furthermore, in the case of forming a transistor, there is a problem that the effect of the gate is less effective.
 以上のように、均一で緻密なカーボンナノチューブ分散膜を形成することと、良好な特性の素子を形成することとを両立させることは困難であった。 As described above, it has been difficult to simultaneously achieve the formation of a uniform and dense carbon nanotube dispersed film and the formation of an element with good characteristics.
 本発明は係る問題に鑑みてなされたものであり、カーボンナノチューブ分散液の特性や基板の種類によらず、つねに、均一で緻密なカーボンナノチューブ分散膜の形成方法、及びこの分散膜を構成要素とし電気的特性が良好で、特性のばらつきが小さい半導体素子の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and regardless of the characteristics of the carbon nanotube dispersion and the type of the substrate, always, a method for forming a uniform and dense carbon nanotube dispersion film, and the dispersion film as a component An object of the present invention is to provide a method of manufacturing a semiconductor device having good electrical characteristics and small variations in characteristics.
 上記目的を達成するため、本発明は、第1の態様として、溶媒中にカーボンナノチューブを第1の濃度で分散させた第1のカーボンナノチューブ分散液を基板上に塗布する工程と、塗布された第1のカーボンナノチューブ分散液の液滴を冷却して溶媒の粘度を増加させる工程と、溶媒を蒸発させることによりカーボンナノチューブを一様に析出させて析出核を形成する工程と、溶媒中にカーボンナノチューブを第1の濃度よりも高い第2の濃度で分散させた第2のカーボンナノチューブ分散液の塗布膜を析出核上に形成する工程と、第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程とを有することを特徴とするカーボンナノチューブ分散膜の形成方法を提供するものである。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a step of applying, onto a substrate, a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed at a first concentration in a solvent. Cooling the droplets of the first carbon nanotube dispersion liquid to increase the viscosity of the solvent; evaporating the solvent to uniformly deposit carbon nanotubes to form precipitation nuclei; and carbon in the solvent Forming a coated film of a second carbon nanotube dispersion liquid in which the nanotubes are dispersed at a second concentration higher than the first concentration on the precipitation nuclei, and evaporating the solvent from the coated film of the second carbon nanotubes And a step of forming a dispersion film of carbon nanotubes. The present invention provides a method of forming a carbon nanotube dispersion film.
 また、上記目的を達成するため、本発明は、第2の態様として、上記本発明の第1の態様に係るカーボンナノチューブ分散膜の形成方法を用いた半導体素子の製造方法であって、基板上には、カーボンナノチューブの分散膜と接続される電極を形成しておくことを特徴とする半導体素子の製造方法を提供するものである。 In addition, in order to achieve the above object, the present invention is a method of manufacturing a semiconductor device using the method of forming a carbon nanotube dispersed film according to the first aspect of the present invention as the second aspect, Further, the present invention provides a method of manufacturing a semiconductor device characterized in that an electrode connected to a dispersed film of carbon nanotubes is formed.
 本発明によれば、カーボンナノチューブ分散液の特性や基板の種類によらず、つねに、均一で緻密なカーボンナノチューブ分散膜、及びこの分散膜を構成要素とし電気的特性が良好で、特性のばらつきが小さい半導体素子の製造方法を提供できる。 According to the present invention, regardless of the characteristics of the carbon nanotube dispersion and the type of the substrate, always, a uniform and dense carbon nanotube dispersion film and this dispersion film as a component have good electrical characteristics and dispersion of characteristics. A method of manufacturing a small semiconductor device can be provided.
 本発明においては、始めにカーボンナノチューブ濃度が低い分散液を塗布してこれを冷却し、溶媒の濃度を上昇させることで、液滴中の対流によるカーボンナノチューブの動きを抑制し、液滴中の溶媒を蒸発させることで、カーボンナノチューブが液滴中で一様な分布を保ったまま析出させる。次に、カーボンナノチューブ濃度が高い分散液を同一場所に塗布し、液相のまま溶媒を蒸発させると、前に析出させたカーボンナノチューブが核となって析出し、均一で緻密な膜が形成される。最初に基板に塗布する分散液のカーボンナノチューブ濃度は、基板上に一様な析出核を形成可能な濃度であり、後に塗布する分散液のカーボンナノチューブ濃度は、カーボンナノチューブの偏析が発生しない濃度である。 In the present invention, first, a dispersion having a low concentration of carbon nanotubes is applied and cooled to increase the concentration of the solvent, thereby suppressing the movement of carbon nanotubes due to convection in the droplets, thereby By evaporating the solvent, the carbon nanotubes are deposited in the droplets while maintaining a uniform distribution. Next, a dispersion liquid with a high concentration of carbon nanotubes is applied to the same place, and the solvent is evaporated as it is in the liquid phase, and the carbon nanotubes deposited earlier are precipitated as nuclei, and a uniform and dense film is formed. Ru. The carbon nanotube concentration of the dispersion to be first applied to the substrate is a concentration at which uniform precipitation nuclei can be formed on the substrate, and the carbon nanotube concentration of the dispersion to be applied later is a concentration at which segregation of carbon nanotubes does not occur. is there.
 このようにして形成したカーボンナノチューブ分散膜を構成要素とした素子は、電気的性能が良好で、特性のばらつきが少ないため、歩留まりを改善できる。また、分散膜には偏析が無く、均一かつ緻密であるため、不均一性を考慮する必要がないため、素子の設計が容易である。 An element having the carbon nanotube-dispersed film formed in this manner as a component has good electrical performance and little variation in characteristics, so that the yield can be improved. In addition, since the dispersion film has no segregation, and is uniform and dense, it is not necessary to consider non-uniformity, so that the element can be easily designed.
 本発明の好適な実施の形態について説明する。
 図3(a)は、金属電極111及び金属電極112が形成されたプラスチック基板110上にカーボンナノチューブ1101が分散された分散液の液滴102を塗布した状態を示している。基板のプラスチックは、PET(PolyEthylene Telephthalate)やPEN(PolyEthylene Naphthalate)等を使用可能である。カーボンナノチューブ分散液の溶媒としては、水や有機溶媒(ジクロロエタン、ジメチルホルムアミドなど)に界面活性剤を添加したものを使用できる。界面活性剤としては、陰イオン性界面活性剤(ドデシルベンゼンスルホン酸ナトリウム(Sodium DodecylBenzene Sulfonate:SDBS)など)や非イオン性界面活性剤(トリトンXなど)を添加したものを使用できる。
A preferred embodiment of the present invention will be described.
FIG. 3A shows a state in which the droplet 102 of the dispersion liquid in which the carbon nanotubes 1101 are dispersed is applied on the plastic substrate 110 on which the metal electrode 111 and the metal electrode 112 are formed. The plastic of the substrate may be PET (PolyEthylene Telephthalate), PEN (PolyEthylene Naphthalate), or the like. As a solvent for the carbon nanotube dispersion liquid, one obtained by adding a surfactant to water or an organic solvent (such as dichloroethane or dimethylformamide) can be used. As the surfactant, those to which an anionic surfactant (such as sodium dodecylbenzene sulfonate (SDBS)) or a nonionic surfactant (such as Triton X) can be used.
 この溶媒にカーボンナノチューブを加え超音波処理を施すことでカーボンナノチューブ分散液を生成できる。カーボンナノチューブの濃度は、基板上に一様な析出核を形成可能な濃度とする。例えば、このときのカーボンナノチューブの濃度は1μg/ml(約1ppm)とする。 A carbon nanotube dispersion liquid can be generated by adding a carbon nanotube to this solvent and performing ultrasonic treatment. The concentration of carbon nanotubes is a concentration capable of forming uniform precipitation nuclei on the substrate. For example, the concentration of carbon nanotubes at this time is 1 μg / ml (about 1 ppm).
 分散液を塗布する前に、基板110及び金属電極111、112は、溶媒が対流を起こさなくなる粘度となる程度の温度(溶媒の融点以下の温度)に冷却しておく(例えば0℃程度)。これによって液滴102の粘度は塗布された瞬間に高くなり、液滴内部の溶媒の対流によるカーボンナノチューブの動きを抑制できる。 Before applying the dispersion liquid, the substrate 110 and the metal electrodes 111 and 112 are cooled (for example, about 0 ° C.) to a temperature (a temperature equal to or lower than the melting point of the solvent) to a viscosity at which the solvent does not cause convection. As a result, the viscosity of the droplet 102 is increased at the moment of application, and the movement of the carbon nanotube due to the convection of the solvent inside the droplet can be suppressed.
 次に、液滴が塗布された基板の雰囲気圧力を下げ(例えば0.1気圧程度まで)、液滴の溶媒を蒸発させる。図3(b)、(c)は、蒸発が進む状態を示している。液滴中のカーボンナノチューブは、溶媒の支持が無くなる形で基板110や金属電極111、112に付着していく。このとき、カーボンナノチューブは固定されているため、動きによって液滴中のカーボンナノチューブ濃度が濃くなることや、金属電極端に偏析することはなく、図3(d)のように一様で薄いカーボンナノチューブ塗布膜1012が析出核として得られる。 Next, the atmospheric pressure of the substrate to which the droplet is applied is lowered (for example, to about 0.1 atm) to evaporate the solvent of the droplet. FIG.3 (b), (c) has shown the state which evaporation advances. The carbon nanotubes in the droplets adhere to the substrate 110 and the metal electrodes 111 and 112 in such a manner that the support of the solvent is lost. At this time, since the carbon nanotube is fixed, the carbon nanotube concentration in the droplet does not become high due to movement or segregation at the end of the metal electrode, and uniform and thin carbon as shown in FIG. The nanotube coating film 1012 is obtained as a precipitation nucleus.
 図4に、カーボンナノチューブ濃度が1ppb未満の分散液を基板110に塗布し、上記のようにして溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブの密度が非常に低く、視野内にはカーボンナノチューブが2本(図中に矢印で示す2箇所に)しか存在しておらず(粒状に見えるのはカーボンナノチューブではなく別の微粒子である)、析出核としては密度が不十分である。一方、図5に、カーボンナノチューブ濃度が1ppbから1ppmの間の分散液を基板110に塗布し、上記のようにして溶媒溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブが一様に分散しており、析出核として良好な状態である。
 さらに、図6に、カーボンナノチューブ濃度が1ppm以上の分散液を基板110に塗布し、上記のようにして溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブの密度が高く、多くのカーボンナノチューブは互いに重なり合って凝集しているため、析出核として好ましい状態ではない。
 以上のことから、本実施形態においては、基板上に一様な析出核を形成可能なカーボンナノチューブ濃度を1ppbから1ppmの濃度範囲とする。
FIG. 4 shows an atomic force micrograph showing the state of the carbon nanotube coated film 1012 when the dispersion liquid having a carbon nanotube concentration of less than 1 ppb is applied to the substrate 110 and the solvent is evaporated as described above. In the illustrated example, the density of carbon nanotubes is very low, and there are only two carbon nanotubes (at two locations indicated by arrows in the figure) in the field of view Density is insufficient as precipitation nuclei). On the other hand, in FIG. 5, an atomic force representing the state of the carbon nanotube coated film 1012 when the dispersion having a carbon nanotube concentration of 1 ppb to 1 ppm is applied to the substrate 110 and the solvent is evaporated as described above. The photomicrograph is shown. In the illustrated example, the carbon nanotubes are uniformly dispersed and in a good state as precipitation nuclei.
Further, FIG. 6 shows an atomic force micrograph showing the state of the carbon nanotube coated film 1012 when the dispersion liquid having a carbon nanotube concentration of 1 ppm or more is applied to the substrate 110 and the solvent is evaporated as described above. . In the illustrated example, the density of the carbon nanotubes is high, and many carbon nanotubes overlap each other and aggregate, so they are not in a preferable state as precipitation nuclei.
From the above, in the present embodiment, the carbon nanotube concentration capable of forming uniform precipitation nuclei on the substrate is in the concentration range of 1 ppb to 1 ppm.
 次に、図7(a)に示すように、前段階で形成したカーボンナノチューブ膜と同一箇所に先に塗布したものよりも濃度の高い(例えば、濃度5μg/ml(約5ppm))カーボンナノチューブ分散液1013を塗布し、今度は液相のまま溶媒を蒸発させる(図7(b)、(c))。なお、カーボンナノチューブ分散液1013の濃度は、カーボンナノチューブの偏析を生じさせない濃度である。この際、液滴の内部の対流によってカーボンナノチューブ1022が動き、前段階で析出させたカーボンナノチューブ1011を核として析出し、均一で緻密な膜1014が形成される(図7(d))。後段階の塗布時に基板の温度を高く(例えば50℃)しておくことで対流を促し、溶媒の蒸発に要する時間を短縮できる。 Next, as shown in FIG. 7A, carbon nanotube dispersion having a higher concentration (for example, a concentration of 5 μg / ml (about 5 ppm)) than that previously applied to the same portion as the carbon nanotube film formed in the previous step The solution 1013 is applied, and this time the solvent is evaporated in the liquid phase (Fig. 7 (b), (c)). The concentration of the carbon nanotube dispersion 1013 is a concentration that does not cause segregation of carbon nanotubes. At this time, the carbon nanotubes 1022 move by convection inside the droplets, and are precipitated with the carbon nanotubes 1011 deposited in the previous step as nuclei, and a uniform and dense film 1014 is formed (FIG. 7 (d)). By raising the temperature of the substrate (for example, 50 ° C.) at the time of coating in the later stage, convection can be promoted to shorten the time required for the evaporation of the solvent.
 図8は、本発明に係るカーボンナノチューブ分散膜をトランジスタのチャネルに応用した例である。図8(a)は平面図、図8(b)は、図8(a)のA-A’断面図である。図8(b)において、プラスチック基板210上には、後にソース電極及びドレイン電極となる金属電極211、212がそれぞれ形成されている。また、プラスチック基板210は、予め溶媒の融点以下の温度である-20℃程度に冷却されている。 FIG. 8 shows an example in which the carbon nanotube dispersed film according to the present invention is applied to a channel of a transistor. FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view taken along the line A-A 'in FIG. In FIG. 8 (b), metal electrodes 211 and 212 to be source and drain electrodes are formed on the plastic substrate 210 later. The plastic substrate 210 is previously cooled to about −20 ° C., which is a temperature below the melting point of the solvent.
 ここへ、SDBSを添加した水にカーボンナノチューブを1ppm加え、超音波処理することで分散させた溶液をディスペンサ装置やインクジェット装置などによって塗布した。塗布した液滴202は、円形状となって凍結し固化するため、次に基板の雰囲気を真空状態として液的中の溶媒を昇華させることで、均一で薄いカーボンナノチューブ析出核が得られた。 Here, 1 ppm of carbon nanotubes was added to water to which SDBS was added, and a solution dispersed by ultrasonication was applied by a dispenser device, an inkjet device, or the like. Since the applied droplets 202 are frozen and solidified in a circular shape, next, by making the atmosphere of the substrate vacuum, the solvent in the liquid is sublimated, and uniform thin carbon nanotube precipitation nuclei are obtained.
 次に、プラスチック基板210の温度を50℃に上昇させ、濃度5ppmのカーボンナノチューブ分散液を析出核上に上記同様の方法で塗布してから溶媒を蒸発させることによって、均一で緻密なカーボンナノチューブ分散膜201を得た。カーボンナノチューブ分散膜201は、ソース電極やドレイン電極となる金属電極211、212と電気的にオーミックコンタクトがとられて導通しているため、金属電極211、212間に形成されたカーボンナノチューブからなるマット状のネットワーク(網状に析出したカーボンナノチューブの膜)がトランジスタのチャネルを形成する。その後、例えばパリレンの薄膜203を形成することにより、ゲート絶縁膜とした。この際、カーボンナノチューブ分散膜の膜質が緻密であるため、剥がれることはなく、粗さも小さいため絶縁耐圧が良好なゲート絶縁膜を形成できた。 Next, the temperature of the plastic substrate 210 is raised to 50 ° C., and a carbon nanotube dispersion having a concentration of 5 ppm is applied onto the precipitation nuclei in the same manner as above, and then the solvent is evaporated to disperse the uniform and dense carbon nanotubes. The membrane 201 was obtained. Since the carbon nanotube dispersed film 201 is in electrical contact with the metal electrodes 211 and 212 to be the source electrode and the drain electrode and electrically connected, the mat formed of carbon nanotubes formed between the metal electrodes 211 and 212 is used. Networks (films of precipitated carbon nanotubes in a network) form the channels of the transistors. Thereafter, for example, a thin film 203 of parylene is formed to form a gate insulating film. At this time, since the film quality of the carbon nanotube dispersed film is dense, it does not peel off, and since the roughness is small, a gate insulating film having a good withstand voltage can be formed.
 その後、金属のゲート電極213を形成することで、電界効果トランジスタを完成させた。後段階で塗布するカーボンナノチューブ分散液の濃度は、カーボンナノチューブの偏析が生じない濃度ではあるが、1ppm~10ppmと薄いため、トランジスタのオン・オフ比は高く、塗布膜が均一なため特性のばらつきの少ない電界効果トランジスタを形成できた。 After that, a metal gate electrode 213 was formed to complete a field effect transistor. Although the concentration of the carbon nanotube dispersion to be applied in the later step is a concentration that does not cause segregation of carbon nanotubes, it is as thin as 1 ppm to 10 ppm, so the transistor on / off ratio is high and the coating film is uniform, so the characteristics vary. Can be formed.
 なお、上記実施形態は本発明の好適な実施の一例であり、本発明はこれに限定されることはなく、様々な変形が可能である。 The above embodiment is an example of a preferred embodiment of the present invention, and the present invention is not limited to this, and various modifications are possible.
 この出願は、2008年1月24日に出願された日本出願特願2008-014037を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-014037 filed on Jan. 24, 2008, the entire disclosure of which is incorporated herein.
塗布法によるカーボンナノチューブ分散膜の形成方法を示す図である。It is a figure which shows the formation method of the carbon nanotube dispersion | distribution film | membrane by the apply | coating method. 特許文献4に開示されるカーボンナノチューブ分散膜の形成方法を示す図である。It is a figure which shows the formation method of the carbon nanotube dispersion | distribution film | membrane disclosed by patent document 4. FIG. 本発明の好適な実施の形態に係るカーボンナノチューブ分散膜の形成方法の前段階の流れを示す図である。It is a figure which shows the flow of the front | former stage of the formation method of the carbon nanotube dispersion | distribution film | membrane which concerns on the preferable embodiment of this invention. カーボンナノチューブ濃度が1ppb未満の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force micrograph showing the state of the carbon nanotube coating film at the time of applying the dispersion liquid whose carbon nanotube density | concentration is less than 1 ppb on a board | substrate, and evaporating a solvent. カーボンナノチューブ濃度が1ppbから1ppm間の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force microscope picture showing the state of the carbon nanotube coating film at the time of applying the dispersion liquid in which carbon nanotube concentration is 1 ppb to 1 ppm on a substrate, and evaporating the solvent. カーボンナノチューブ濃度が1ppm以上の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force micrograph showing the state of the carbon nanotube coating film at the time of applying the dispersion liquid whose carbon nanotube density | concentration is 1 ppm or more to a board | substrate, and evaporating a solvent. 本発明の好適な実施の形態に係るカーボンナノチューブ分散膜の形成方法の後段階の流れを示す図である。It is a figure which shows the flow of the latter step of the formation method of the carbon nanotube dispersion film which concerns on the suitable embodiment of this invention. 本発明に係るカーボンナノチューブ分散膜を応用したトランジスタのチャネルを示す図である。It is a figure which shows the channel of the transistor which applied the carbon nanotube dispersion film which concerns on this invention.
符号の説明Explanation of sign
 102、202  液滴
 110  基板
 111、112、211、212  金属電極
 201  カーボンナノチューブ分散膜
 203  薄膜
 210  プラスチック基板
 213  ゲート電極
 1011、1022  カーボンナノチューブ
 1012  カーボンナノチューブ塗布膜
 1013  カーボンナノチューブ分散液
 1014  膜
 
 
102, 202 Droplet 110 Substrate 111, 112, 211, 212 Metal electrode 201 Carbon nanotube dispersed film 203 Thin film 210 Plastic substrate 213 Gate electrode 1011, 1022 Carbon nanotube 1012 Carbon nanotube coated film 1013 Carbon nanotube dispersed solution 1014 film

Claims (11)

  1.  溶媒中にカーボンナノチューブを第1の濃度で分散させた第1のカーボンナノチューブ分散液を基板上に塗布する工程と、
     塗布された前記第1のカーボンナノチューブ分散液の液滴を冷却して溶媒の粘度を増加させる工程と、
     溶媒を蒸発させることによりカーボンナノチューブを一様に析出させて析出核を形成する工程と、
     溶媒中にカーボンナノチューブを前記第1の濃度よりも高い第2の濃度で分散させた第2のカーボンナノチューブ分散液の塗布膜を前記析出核上に形成する工程と、
     前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程とを有することを特徴とするカーボンナノチューブ分散膜の形成方法。
    Applying a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed at a first concentration in a solvent on a substrate;
    Cooling the applied droplets of the first carbon nanotube dispersion to increase the viscosity of the solvent;
    Uniformly depositing carbon nanotubes by evaporating the solvent to form precipitated nuclei;
    Forming a coating film of a second carbon nanotube dispersion liquid in which carbon nanotubes are dispersed at a second concentration higher than the first concentration in a solvent on the precipitation nuclei;
    And evaporating the solvent from the second carbon nanotube coating film to form a carbon nanotube dispersion film.
  2.  前記溶媒は、水及び有機溶媒の少なくとも一方と、界面活性剤とを含むことを特徴とする請求項1記載のカーボンナノチューブ分散膜の形成方法。 The method for forming a carbon nanotube-dispersed film according to claim 1, wherein the solvent contains at least one of water and an organic solvent, and a surfactant.
  3.  前記第1のカーボンナノチューブ分散液の冷却温度は、溶媒の融点以下であることを特徴とする請求項1又は2記載のカーボンナノチューブ分散膜の形成方法。 The method for forming a carbon nanotube-dispersed film according to claim 1 or 2, wherein the cooling temperature of the first carbon nanotube dispersion liquid is equal to or lower than the melting point of a solvent.
  4.  前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程を減圧雰囲気下で行うことを特徴とする請求項1から3のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The carbon nanotube dispersion according to any one of claims 1 to 3, wherein the step of evaporating the solvent from the coating film of the second carbon nanotube to form a dispersion film of carbon nanotubes is performed under a reduced pressure atmosphere. Method of film formation.
  5.  前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程を、常温以上の温度環境下において行うことを特徴とする請求項1から4のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The process according to any one of claims 1 to 4, characterized in that the step of evaporating the solvent from the second carbon nanotube coated film to form a dispersed film of carbon nanotubes is performed under a temperature environment higher than normal temperature. Of forming a carbon nanotube dispersed film of
  6.  前記第1、第2のカーボンナノチューブ分散液は、所定量のカーボンナノチューブを加えた溶媒に超音波処理を施すことによって形成されることを特徴とする請求項1から5のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The said 1st, 2nd carbon nanotube dispersion liquid is formed by performing an ultrasonication to the solvent which added the carbon nanotube of the predetermined amount, Method of forming a carbon nanotube dispersed film.
  7.  前記第1の濃度は、前記基板上に一様な析出核を形成可能な濃度であり、前記第2の濃度は、カーボンナノチューブの偏析が生じない濃度であることを特徴とする請求項1から6のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The first concentration is a concentration capable of forming uniform precipitation nuclei on the substrate, and the second concentration is a concentration at which segregation of carbon nanotubes does not occur. 6. A method of forming a carbon nanotube dispersed film according to any one of 6.
  8.  前記第1の濃度は1ppbから1ppmの間の濃度であり、前記第2の濃度は1ppm以上の濃度であることを特徴とする請求項7記載のカーボンナノチューブ分散膜の形成方法。 8. The method according to claim 7, wherein the first concentration is a concentration between 1 ppb and 1 ppm, and the second concentration is a concentration of 1 ppm or more.
  9.  請求項1から8のいずれか1項記載のカーボンナノチューブ分散膜の形成方法を用いた半導体素子の製造方法であって、
     前記基板上には、前記カーボンナノチューブの分散膜と接続される電極を形成しておくことを特徴とする半導体素子の製造方法。
    A method of manufacturing a semiconductor device using the method of forming a carbon nanotube dispersed film according to any one of claims 1 to 8,
    An electrode connected to the dispersed film of carbon nanotubes is formed on the substrate in advance.
  10.  前記電極を前記基板上に間隔を空けて形成しておき、該電極同士で挟まれた領域に前記カーボンナノチューブの分散膜を形成することを特徴とする請求項9記載の半導体素子の製造方法。 10. The method of manufacturing a semiconductor device according to claim 9, wherein the electrodes are formed on the substrate at intervals, and a dispersion film of the carbon nanotubes is formed in a region sandwiched between the electrodes.
  11.  前記カーボンナノチューブの分散膜の上に、さらに別の電極を形成することを特徴とする請求項10記載の半導体素子の製造方法。
     
     
    11. The method of manufacturing a semiconductor device according to claim 10, wherein another electrode is formed on the dispersed film of carbon nanotubes.

PCT/JP2009/051092 2008-01-24 2009-01-23 Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device WO2009093698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550576A JPWO2009093698A1 (en) 2008-01-24 2009-01-23 Method for forming carbon nanotube dispersed film and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-014037 2008-01-24
JP2008014037 2008-01-24

Publications (2)

Publication Number Publication Date
WO2009093698A1 WO2009093698A1 (en) 2009-07-30
WO2009093698A4 true WO2009093698A4 (en) 2009-12-10

Family

ID=40901201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051092 WO2009093698A1 (en) 2008-01-24 2009-01-23 Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2009093698A1 (en)
WO (1) WO2009093698A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177555A2 (en) 2011-06-20 2012-12-27 Yazaki Corporation Cohesive assembly of carbon and its application
JP7090400B2 (en) 2017-03-08 2022-06-24 浜松ホトニクス株式会社 Semiconductor photodetector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338948B2 (en) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 Method for producing carbon nanotube semiconductor device
JP4834950B2 (en) * 2003-09-12 2011-12-14 ソニー株式会社 Method for manufacturing field effect semiconductor device
JP2006049435A (en) * 2004-08-02 2006-02-16 Sony Corp Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device
US7504132B2 (en) * 2005-01-27 2009-03-17 International Business Machines Corporation Selective placement of carbon nanotubes on oxide surfaces
JP2007150030A (en) * 2005-11-29 2007-06-14 Toppan Printing Co Ltd Thin-film transistor, and method of manufacturing same

Also Published As

Publication number Publication date
JPWO2009093698A1 (en) 2011-05-26
WO2009093698A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
TWI710065B (en) Method for fabricating a transistor
JP5177695B2 (en) Switching element and manufacturing method thereof
Seo et al. Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices
TW200425513A (en) Field effect transistor and manufacturing method thereof
JP2008028390A (en) Process of manufacturing conductive configuration
KR100951946B1 (en) Transparent and flexible thin film transistor having carbon nano tube, and method of fabricating thereof
TWI636575B (en) Method for making tft
Lee et al. Semiconducting carbon nanotube network thin-film transistors with enhanced inkjet-printed source and drain contact interfaces
JP2007027525A (en) Method of manufacturing semiconductor device, semiconductor device, and method of forming insulation film
WO2009093698A4 (en) Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device
JP5501604B2 (en) Organic thin film transistor
JP5549073B2 (en) Organic semiconductor device and manufacturing method thereof
JP2008235374A (en) Organic field effect transistor
Yuan et al. Stacking transfer of wafer-scale graphene-based van der Waals superlattices
Yoon et al. Fabrication of Stretchable Single‐Walled Carbon Nanotube Logic Devices
Kim et al. Alternative to pentacene patterning for organic thin film transistor
JP2008071867A (en) Organic transistor, and manufacturing method of organic transistor
JP2008053607A (en) Manufacturing method of field effect transistor using carbon nanotube dispersion polymer
US10388896B2 (en) Apparatus and method for forming organic thin film transistor
KR20210029332A (en) Fiber integrated thin film transistor and manufacturing method of the same
TW200949954A (en) Mathod for making thin film transistor
Halevi et al. Additive manufacturing of micrometric crystallization vessels and single crystals
KR100878872B1 (en) Organic thin film transistor comprising gate electrode of nanocrystalline conductive carbon layer, fabrication method thereof, and organic semiconductor device comprising the same
Onojima et al. Preparation of wettability-controlled surface by electrostatic spray deposition to improve performance uniformity of small molecule/polymer blend organic field-effect transistors
Hines et al. Transfer printing as a method for fabricating hybrid devices on flexible substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704351

Country of ref document: EP

Kind code of ref document: A1