WO2009093698A1 - Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device - Google Patents

Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2009093698A1
WO2009093698A1 PCT/JP2009/051092 JP2009051092W WO2009093698A1 WO 2009093698 A1 WO2009093698 A1 WO 2009093698A1 JP 2009051092 W JP2009051092 W JP 2009051092W WO 2009093698 A1 WO2009093698 A1 WO 2009093698A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
solvent
film
concentration
nanotube dispersion
Prior art date
Application number
PCT/JP2009/051092
Other languages
French (fr)
Japanese (ja)
Other versions
WO2009093698A4 (en
Inventor
Kaoru Narita
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2009550576A priority Critical patent/JPWO2009093698A1/en
Publication of WO2009093698A1 publication Critical patent/WO2009093698A1/en
Publication of WO2009093698A4 publication Critical patent/WO2009093698A4/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to a method for producing a carbon nanotube dispersion film applicable to transistors, sensors, and the like, and a method for producing a semiconductor element using the same.
  • a carbon nanotube has a structure in which a two-dimensional graphene sheet composed of a six-membered ring of carbon atoms is wound in a cylindrical shape, and is a thin tube-like material with a diameter of about 1 nm for a thin one and a length of several ⁇ m or more is there.
  • a carbon nanotube dispersion film is formed by a coating method, which is far less expensive than a semiconductor process, which is a manufacturing process of a normal MOS transistor, and a field effect transistor or element using this as a channel is formed.
  • the advantage of the coating method is not only the low cost, but also the choice of the substrate on which the element is formed.
  • the carbon nanotube dispersion film can be formed not only on a hard substrate such as a silicon substrate but also on a thin plastic. In this case, it has characteristics that are not found in conventional electronic devices, such as an electronic circuit that can be bent and a transparent electronic circuit, and has the potential to become a breakthrough in future IT terminal device technology.
  • Patent document 4 is mentioned as a technique relevant to forming a uniform coating film by the apply
  • a uniform coating film is formed by an inkjet coating method.
  • JP 2006-8861 A JP 2005-150410 A JP 2006-73774 A JP 2006-281189 A ES Show, J. P. Novak, PM Campbell, and D. Park, “Random networks of carbon nanotubes as an electronic material”, Applied Physics Letters, Vol. 82, No. 13, pp. 2145-2147, 2003.
  • FIG. 1 is a diagram illustrating an example of the change.
  • FIG. 1A shows a state in which a solvent 302 in which carbon nanotubes 3011 are dispersed is dropped in order to form a carbon nanotube dispersed film on a plastic substrate 310 on which metal electrodes 311 and 312 are formed.
  • FIG. 1B shows a state in which a predetermined time has elapsed from the state of FIG. 1A and the solvent in the droplets has evaporated to reduce the diameter of the droplets.
  • the temperature of the atmosphere is room temperature
  • the viscosity of the solvent in the droplet is low, convection of the solvent occurs and the carbon nanotube moves.
  • Most of the carbon nanotubes 3012 remain in the droplets and the concentration of the carbon nanotubes increases, but the carbon nanotubes aggregate at the droplet end 3014 and the metal electrode end 3013 immediately after coating.
  • the solvent evaporates, the droplet diameter further decreases, and the concentration of the carbon nanotubes further increases.
  • the carbon nanotubes concentrate and segregate and aggregate near the end of the droplet immediately after coating, the end of the metal electrode, and the location where the droplet finally exists.
  • a uniform dispersion film 3015 is formed.
  • An element having such a non-uniform dispersion film as a constituent element for example, a transistor having a non-uniform dispersion film in a channel has a problem that electric characteristics are unstable and variation is large.
  • the situation as shown in FIG. 1 is noticeable when the concentration of carbon nanotubes in the solvent is low and the wettability between the solvent and the substrate is not good.
  • the concentration of the carbon nanotube is increased, the on / off ratio, which is one of the performance of the transistor, is deteriorated, so that it cannot be increased beyond a certain concentration.
  • an additive may be added to improve the wettability between the solvent and the substrate, but in this case, the additive enters between the carbon nanotubes or between the carbon nanotubes and the electrode, resulting in an increase in resistance, which is the worst. In such a case, electrical conduction between the carbon nanotubes or between the carbon nanotubes and the electrode cannot be obtained.
  • FIG. 2 shows a state where the method disclosed in Patent Document 4 is applied to the application of the carbon nanotube dispersion.
  • Patent Document 4 in order to form a carbon nanotube dispersion film on a plastic substrate 410 on which a metal electrode 411 and a metal electrode 412 are formed, a dispersion liquid 402 in which carbon nanotubes 4011 are dispersed is applied by an inkjet method, The droplet is cooled and the solvent is frozen (FIG. 2 (a)). Thereafter, the solvent is sublimated as shown in FIGS. 2B and 2C to precipitate carbon nanotubes.
  • convection does not occur in the droplet, so that the carbon nanotubes do not segregate and aggregate, and finally, as shown in FIG. A carbon nanotube dispersion film 4012 is formed.
  • the film is formed so that the portion supporting the carbon nanotubes is removed, so that the film quality is very sparse and low in density.
  • a sparse film has a problem that it is easily peeled off in a subsequent process or is rough. Further, there is a problem that the characteristics of an element formed by a sparse film are unstable and have large variations. Furthermore, when a transistor is formed, there is a problem that the effect of the gate becomes difficult to work.
  • the present invention has been made in view of the above problems, and always provides a method for forming a uniform and dense carbon nanotube dispersion film, regardless of the characteristics of the carbon nanotube dispersion liquid and the type of the substrate, and the dispersion film as a constituent element. It is an object of the present invention to provide a method for manufacturing a semiconductor element having favorable electrical characteristics and small variations in characteristics.
  • a step of applying a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed in a solvent at a first concentration on a substrate is applied.
  • a step of cooling the droplets of the first carbon nanotube dispersion liquid to increase the viscosity of the solvent a step of depositing the carbon nanotubes uniformly by evaporating the solvent to form precipitation nuclei, and a carbon in the solvent.
  • a step of forming a carbon nanotube dispersion film A method of forming a carbon nanotube dispersion film is provided.
  • the present invention provides, as a second aspect, a method for manufacturing a semiconductor device using the method for forming a carbon nanotube dispersion film according to the first aspect of the present invention.
  • the present invention provides a method for manufacturing a semiconductor device, characterized in that an electrode connected to a carbon nanotube dispersion film is formed in advance.
  • the carbon nanotube dispersion film is always uniform and dense, and the electrical characteristics are good with the dispersion film as a constituent element, resulting in variations in characteristics.
  • a manufacturing method of a small semiconductor element can be provided.
  • a dispersion liquid having a low carbon nanotube concentration is applied and cooled, and the concentration of the solvent is increased to suppress the movement of the carbon nanotubes due to convection in the droplets.
  • the concentration of the solvent is increased to suppress the movement of the carbon nanotubes due to convection in the droplets.
  • the carbon nanotubes are deposited in the droplets while maintaining a uniform distribution.
  • a dispersion with a high concentration of carbon nanotubes is applied to the same location and the solvent is evaporated while in the liquid phase, the carbon nanotubes previously deposited are deposited as nuclei, forming a uniform and dense film.
  • the concentration of carbon nanotubes in the dispersion liquid first applied to the substrate is a concentration at which uniform precipitation nuclei can be formed on the substrate, and the concentration of carbon nanotubes in the dispersion liquid applied later is such that segregation of carbon nanotubes does not occur. is there.
  • An element using the carbon nanotube dispersion film formed as described above as a constituent element has good electrical performance and little variation in characteristics, so that the yield can be improved.
  • the dispersion film since the dispersion film has no segregation and is uniform and dense, it is not necessary to consider non-uniformity, so that the device design is easy.
  • FIG. 3A shows a state in which a droplet 102 of a dispersion liquid in which carbon nanotubes 1101 are dispersed is applied on a plastic substrate 110 on which a metal electrode 111 and a metal electrode 112 are formed.
  • a plastic substrate 110 As the substrate plastic, PET (PolyEthylene Telephthalate), PEN (PolyEthylene Naphthalate), or the like can be used.
  • the solvent for the carbon nanotube dispersion liquid water or an organic solvent (dichloroethane, dimethylformamide, etc.) added with a surfactant can be used.
  • an anionic surfactant Sodium DodecylBenzene Sulfonate (SDBS) or the like
  • a nonionic surfactant Triton X or the like
  • a carbon nanotube dispersion can be produced by adding carbon nanotubes to this solvent and subjecting it to ultrasonic treatment.
  • the concentration of the carbon nanotube is set to a concentration at which uniform precipitation nuclei can be formed on the substrate.
  • the concentration of carbon nanotubes at this time is 1 ⁇ g / ml (about 1 ppm).
  • the substrate 110 and the metal electrodes 111 and 112 are cooled to a temperature (a temperature below the melting point of the solvent) at which the solvent does not cause convection (for example, about 0 ° C.).
  • a temperature a temperature below the melting point of the solvent
  • the viscosity of the droplet 102 becomes high at the moment of application, and the movement of the carbon nanotube due to the convection of the solvent inside the droplet can be suppressed.
  • FIGS. 3B and 3C show a state in which evaporation proceeds.
  • the carbon nanotubes in the droplets adhere to the substrate 110 and the metal electrodes 111 and 112 in such a way that the solvent is no longer supported.
  • the concentration of carbon nanotubes in the droplets does not increase due to movement, and segregation does not occur at the end of the metal electrode.
  • a nanotube coating film 1012 is obtained as a precipitation nucleus.
  • FIG. 4 shows an atomic force micrograph showing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of less than 1 ppb is applied to the substrate 110 and the solvent is evaporated as described above.
  • the density of the carbon nanotubes is very low, and there are only two carbon nanotubes in the field of view (in the two locations indicated by arrows in the figure). The density is insufficient as a precipitation nucleus.
  • FIG. 5 shows an atomic force representing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of 1 ppb to 1 ppm is applied to the substrate 110 and the solvent is evaporated as described above. A micrograph is shown.
  • FIG. 6 shows an atomic force micrograph showing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of 1 ppm or more is applied to the substrate 110 and the solvent is evaporated as described above.
  • the density of carbon nanotubes is high, and many carbon nanotubes overlap each other and are aggregated, which is not a preferable state as precipitation nuclei.
  • the concentration of carbon nanotubes capable of forming uniform precipitation nuclei on the substrate is set to a concentration range of 1 ppb to 1 ppm.
  • the carbon nanotube dispersion having a higher concentration for example, a concentration of 5 ⁇ g / ml (about 5 ppm)
  • Liquid 1013 is applied, and the solvent is evaporated in this liquid state (FIGS. 7B and 7C).
  • the concentration of the carbon nanotube dispersion liquid 1013 is a concentration that does not cause segregation of the carbon nanotubes.
  • the carbon nanotubes 1022 move due to the convection inside the droplets, and the carbon nanotubes 1011 deposited in the previous stage are deposited as nuclei, and a uniform and dense film 1014 is formed (FIG. 7D).
  • FIG. 8 shows an example in which the carbon nanotube dispersion film according to the present invention is applied to a channel of a transistor.
  • 8A is a plan view
  • FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG. 8A.
  • metal electrodes 211 and 212 to be source and drain electrodes later are formed on the plastic substrate 210, respectively.
  • the plastic substrate 210 is cooled in advance to about ⁇ 20 ° C., which is a temperature below the melting point of the solvent.
  • the temperature of the plastic substrate 210 is raised to 50 ° C., a carbon nanotube dispersion liquid having a concentration of 5 ppm is applied onto the precipitation nuclei by the same method as described above, and then the solvent is evaporated, thereby dispersing the carbon nanotubes uniformly and densely.
  • a film 201 was obtained. Since the carbon nanotube dispersion film 201 is electrically connected to and electrically connected to the metal electrodes 211 and 212 serving as the source electrode and the drain electrode, the carbon nanotube dispersed film 201 is a mat made of carbon nanotubes formed between the metal electrodes 211 and 212. Network (film of carbon nanotubes deposited in a net shape) forms the channel of the transistor.
  • a thin film 203 of parylene was formed to obtain a gate insulating film.
  • a thin film 203 of parylene was formed to obtain a gate insulating film.
  • the concentration of the carbon nanotube dispersion applied in the subsequent stage is a concentration at which segregation of the carbon nanotube does not occur, but it is as thin as 1 to 10 ppm, so the on / off ratio of the transistor is high and the coating film is uniform, resulting in variations in characteristics.
  • a field effect transistor with a small number of layers was formed.
  • FIG. It is a figure which shows the formation method of the carbon nanotube dispersion film by the apply
  • FIG. It is a figure which shows the flow of the front

Abstract

A method for forming a uniform and dense carbon nanotube-dispersed film irrespective of the characteristics of the carbon nanotube-dispersed liquid and the type of substrate, and a method for manufacturing a semiconductor device having excellent electrical characteristics with less variation in characteristics are provided. The method for forming the carbon nanotube-dispersed film includes steps of coating a substrate (110) with a carbon nanotube-dispersed liquid containing carbon nanotubes (1101) dispersed in a solvent, cooling droplets (102) of the carbon nanotube-dispersed liquid to increase the viscosity of the solvent, evaporating the solvent to uniformly precipitate the carbon nanotubes (1101) and form a carbon nanotube coating film (1012), forming, on the carbon nanotube coating film (1012), a coating film of a carbon nanotube-dispersed liquid (1013) with higher carbon nanotube concentration, and evaporating the solvent from the coating film of carbon nanotube-dispersed liquid (1013) to form a film having dispersed carbon nanotubes (1022).

Description

カーボンナノチューブ分散膜の形成方法及び半導体素子の製造方法Method for forming carbon nanotube dispersed film and method for manufacturing semiconductor device
 本発明はトランジスタやセンサ等に応用可能なカーボンナノチューブ分散膜の製造方法及びこれを用いた半導体素子の製造方法に関する。 The present invention relates to a method for producing a carbon nanotube dispersion film applicable to transistors, sensors, and the like, and a method for producing a semiconductor element using the same.
 カーボンナノチューブは炭素原子の六員環で構成される二次元グラフェンシートを筒状に巻いた構造をとり、細いものでは直径が約1nm、長いもので長さが数μm以上という細長いチューブ状の材料である。 A carbon nanotube has a structure in which a two-dimensional graphene sheet composed of a six-membered ring of carbon atoms is wound in a cylindrical shape, and is a thin tube-like material with a diameter of about 1 nm for a thin one and a length of several μm or more is there.
 原子配列の仕方によって半導体的な性質も金属的な性質も示すため、カーボンナノチューブをトランジスタなどの電子デバイスに応用する期待が高まっている。 Because of its atomic arrangement, it exhibits both semiconductor and metallic properties, so there are increasing expectations that carbon nanotubes will be applied to electronic devices such as transistors.
 特に、最近では、通常のMOSトランジスタの製造工程である半導体プロセスと比べてはるかに低コストである塗布法によってカーボンナノチューブの分散膜を形成し、これをチャネルにした電界効果トランジスタや素子を形成するという試みがある(特許文献1~3及び非特許文献1~4参照)。 In particular, recently, a carbon nanotube dispersion film is formed by a coating method, which is far less expensive than a semiconductor process, which is a manufacturing process of a normal MOS transistor, and a field effect transistor or element using this as a channel is formed. (See Patent Documents 1 to 3 and Non-Patent Documents 1 to 4).
 塗布法の利点は、低コストであることだけでなく、素子を形成する基板を選ばないことである。 The advantage of the coating method is not only the low cost, but also the choice of the substrate on which the element is formed.
 つまり、シリコン基板のような硬い基板上のみならず、薄いプラスチック上などにもカーボンナノチューブ分散膜を形成可能である。この場合、折り曲げることの可能な電子回路や透明な電子回路といった、従来の電子機器にはない特徴を持つこととなり、将来のIT端末機器技術のブレイクスルーとなる可能性を秘めている。 That is, the carbon nanotube dispersion film can be formed not only on a hard substrate such as a silicon substrate but also on a thin plastic. In this case, it has characteristics that are not found in conventional electronic devices, such as an electronic circuit that can be bent and a transparent electronic circuit, and has the potential to become a breakthrough in future IT terminal device technology.
 塗布法によって均一な塗布膜を形成することに関連する技術として特許文献4が挙げられる。特許文献4は、インクジェット塗布法によって均一な塗布膜を形成するものである。
特開2006-8861号公報 特開2005-150410号公報 特開2006-73774号公報 特開2006-281189号公報 E.S. Show, J. P. Novak, P.M. Campbell, and D.Park, "Random networks of carbon nanotubes as an electronic material", Applied Physics Letters, Vol. 82, No.13, pp.2145-2147, 2003. E. Artukovic, M.Kaempgen, D.S. Hecht, S.Roth, and G. Gruner, "Transparent and Flexible Carbon Nanotube Transistors", Nano Letters, Vol.5, No.4, pp.757-760, 2005. S.-H. Hur, O Ok Park, J. A. Rogers, "Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors", Applied Physics Letters, Vol86, pp 243502, 2005. T. Takenobu, T. Takahashi, T. Kanbara, K. Tshkagoshi, Y. Aoyagi, Y. Iwasa, "High-performance transparent flexible transistors using carbon nanotubefilms", Applied Physics Letters, Vol. 88, pp.033511, 2006.
Patent document 4 is mentioned as a technique relevant to forming a uniform coating film by the apply | coating method. In Patent Document 4, a uniform coating film is formed by an inkjet coating method.
JP 2006-8861 A JP 2005-150410 A JP 2006-73774 A JP 2006-281189 A ES Show, J. P. Novak, PM Campbell, and D. Park, "Random networks of carbon nanotubes as an electronic material", Applied Physics Letters, Vol. 82, No. 13, pp. 2145-2147, 2003. E. Artukovic, M. Kaempgen, DS Hecht, S. Roth, and G. Gruner, "Transparent and Flexible Carbon Nanotube Transistors", Nano Letters, Vol. 5, No. 4, pp. 757-760, 2005. S.-H. Hur, O Ok Park, JA Rogers, "Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors", Applied Physics Letters, Vol86, pp 243502, 2005. T. Takenobu, T. Takahashi, T. Kanbara, K. Tshkagoshi, Y. Aoyagi, Y. Iwasa, "High-performance transparent flexible transistors using carbon nanotubefilms", Applied Physics Letters, Vol. 88, pp.033511, 2006.
 塗布法によってカーボンナノチューブの分散膜を基板上に形成するためには、カーボンナノチューブを溶媒中に分散させ、その分散液をディスペンサ装置やインクジェット装置などによって、基板の所定の位置に塗る方法が採られる。この際、溶媒や基板の種類、カーボンナノチューブの濃度、分散液中の添加剤の有無等によって状態が変化する。図1は、その変化の一例を示す図である。図1(a)は、金属電極311及び金属電極312が形成されたプラスチック基板310上にカーボンナノチューブ分散膜を形成するために、カーボンナノチューブ3011を分散させた溶媒302を滴下した状態を示している。
 図1(b)は、図1(a)の状態から所定の時間が経過し、液滴中の溶媒が蒸発して液滴の径が小さくなった状態を示している。このとき、雰囲気の温度が室温であると、液滴内の溶媒の粘度が低いため溶媒の対流が生じ、カーボンナノチューブの移動が起こる。大部分のカーボンナノチューブ3012は液滴中に残り、カーボンナノチューブの濃度が上昇するが、塗布直後の液滴端3014や金属電極端3013にはカーボンナノチューブが凝集する。さらに時間が経過すると溶媒の蒸発が進み、液滴径がさらに小さくなり、カーボンナノチューブの濃度はさらに上昇する。
In order to form a dispersion film of carbon nanotubes on a substrate by a coating method, a method is adopted in which carbon nanotubes are dispersed in a solvent and the dispersion is applied to a predetermined position of the substrate by a dispenser device or an ink jet device. . At this time, the state changes depending on the type of solvent and substrate, the concentration of carbon nanotubes, the presence or absence of additives in the dispersion, and the like. FIG. 1 is a diagram illustrating an example of the change. FIG. 1A shows a state in which a solvent 302 in which carbon nanotubes 3011 are dispersed is dropped in order to form a carbon nanotube dispersed film on a plastic substrate 310 on which metal electrodes 311 and 312 are formed. .
FIG. 1B shows a state in which a predetermined time has elapsed from the state of FIG. 1A and the solvent in the droplets has evaporated to reduce the diameter of the droplets. At this time, when the temperature of the atmosphere is room temperature, since the viscosity of the solvent in the droplet is low, convection of the solvent occurs and the carbon nanotube moves. Most of the carbon nanotubes 3012 remain in the droplets and the concentration of the carbon nanotubes increases, but the carbon nanotubes aggregate at the droplet end 3014 and the metal electrode end 3013 immediately after coating. As the time elapses, the solvent evaporates, the droplet diameter further decreases, and the concentration of the carbon nanotubes further increases.
 最終的には、図1(c)に示すように、塗布直後の液滴端、金属電極端、及び液滴が最後に存在する場所の近傍にカーボンナノチューブが集中して偏析、凝集し、不均一な分散膜3015が形成される。 Eventually, as shown in FIG. 1 (c), the carbon nanotubes concentrate and segregate and aggregate near the end of the droplet immediately after coating, the end of the metal electrode, and the location where the droplet finally exists. A uniform dispersion film 3015 is formed.
 このような不均一な分散膜を構成要素とした素子、例えば不均一な分散膜をチャネルに持つトランジスタは、電気的特性が不安定でばらつきが大きいという問題がある。 An element having such a non-uniform dispersion film as a constituent element, for example, a transistor having a non-uniform dispersion film in a channel has a problem that electric characteristics are unstable and variation is large.
 さらに、分散膜が偏析すると、所望の位置に素子を形成することが困難であるという問題もある。 Furthermore, when the dispersion film is segregated, there is a problem that it is difficult to form an element at a desired position.
 図1に示したような状況は、溶媒中のカーボンナノチューブの濃度が低く、溶媒と基板との濡れ性が良くない場合に顕著に現れる。 The situation as shown in FIG. 1 is noticeable when the concentration of carbon nanotubes in the solvent is low and the wettability between the solvent and the substrate is not good.
 しかし、カーボンナノチューブの濃度を高くすると、トランジスタの性能の一つであるオン・オフ比が悪くなるため、一定の濃度以上に濃くはできない。 However, if the concentration of the carbon nanotube is increased, the on / off ratio, which is one of the performance of the transistor, is deteriorated, so that it cannot be increased beyond a certain concentration.
 また、溶媒と基板との濡れ性を高めるため、添加剤を加えることも考えられるが、その場合、カーボンナノチューブ間又はカーボンナノチューブと電極との間に添加剤が入り込んで抵抗が上昇し、最悪の場合、カーボンナノチューブ同士又はカーボンナノチューブと電極との間の電気的な導通が取れなくなってしまう。 In addition, an additive may be added to improve the wettability between the solvent and the substrate, but in this case, the additive enters between the carbon nanotubes or between the carbon nanotubes and the electrode, resulting in an increase in resistance, which is the worst. In such a case, electrical conduction between the carbon nanotubes or between the carbon nanotubes and the electrode cannot be obtained.
 また、特許文献4に開示される方法をカーボンナノチューブ分散液の塗布に適用した場合の状態を図2に示す。特許文献4では、金属電極411及び金属電極412が形成されたプラスチック基板410上にカーボンナノチューブ分散膜を形成するために、カーボンナノチューブ4011を分散させた分散液402をインクジェット法によって塗布した後、液滴を冷却し溶媒を凍結する(図2(a))。その後、溶媒を図2(b)、(c)に示すように昇華させ、カーボンナノチューブを析出させる。この際には、図2で示した場合とは異なり、液滴内での対流が生じないため、カーボンナノチューブは偏析して凝集することはなく、最終的には図2(d)に示すようなカーボンナノチューブ分散膜4012が形成される。 FIG. 2 shows a state where the method disclosed in Patent Document 4 is applied to the application of the carbon nanotube dispersion. In Patent Document 4, in order to form a carbon nanotube dispersion film on a plastic substrate 410 on which a metal electrode 411 and a metal electrode 412 are formed, a dispersion liquid 402 in which carbon nanotubes 4011 are dispersed is applied by an inkjet method, The droplet is cooled and the solvent is frozen (FIG. 2 (a)). Thereafter, the solvent is sublimated as shown in FIGS. 2B and 2C to precipitate carbon nanotubes. In this case, unlike the case shown in FIG. 2, convection does not occur in the droplet, so that the carbon nanotubes do not segregate and aggregate, and finally, as shown in FIG. A carbon nanotube dispersion film 4012 is formed.
 しかし、上記のように溶媒を昇華させた場合、カーボンナノチューブを支持する部分が抜けるように膜が形成されるため、非常に疎で密度の低い膜質となる。このような疎な膜には、その後の工程において容易に剥がれたり、粗さが粗いという問題がある。また、疎な膜によって形成された素子の特性は、不安定でばらつきが大きいという問題がある。さらに、トランジスタを形成した場合、ゲートの効果が効きにくくなるという問題もある。 However, when the solvent is sublimated as described above, the film is formed so that the portion supporting the carbon nanotubes is removed, so that the film quality is very sparse and low in density. Such a sparse film has a problem that it is easily peeled off in a subsequent process or is rough. Further, there is a problem that the characteristics of an element formed by a sparse film are unstable and have large variations. Furthermore, when a transistor is formed, there is a problem that the effect of the gate becomes difficult to work.
 以上のように、均一で緻密なカーボンナノチューブ分散膜を形成することと、良好な特性の素子を形成することとを両立させることは困難であった。 As described above, it has been difficult to achieve both the formation of a uniform and dense carbon nanotube dispersion film and the formation of an element having good characteristics.
 本発明は係る問題に鑑みてなされたものであり、カーボンナノチューブ分散液の特性や基板の種類によらず、つねに、均一で緻密なカーボンナノチューブ分散膜の形成方法、及びこの分散膜を構成要素とし電気的特性が良好で、特性のばらつきが小さい半導体素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and always provides a method for forming a uniform and dense carbon nanotube dispersion film, regardless of the characteristics of the carbon nanotube dispersion liquid and the type of the substrate, and the dispersion film as a constituent element. It is an object of the present invention to provide a method for manufacturing a semiconductor element having favorable electrical characteristics and small variations in characteristics.
 上記目的を達成するため、本発明は、第1の態様として、溶媒中にカーボンナノチューブを第1の濃度で分散させた第1のカーボンナノチューブ分散液を基板上に塗布する工程と、塗布された第1のカーボンナノチューブ分散液の液滴を冷却して溶媒の粘度を増加させる工程と、溶媒を蒸発させることによりカーボンナノチューブを一様に析出させて析出核を形成する工程と、溶媒中にカーボンナノチューブを第1の濃度よりも高い第2の濃度で分散させた第2のカーボンナノチューブ分散液の塗布膜を析出核上に形成する工程と、第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程とを有することを特徴とするカーボンナノチューブ分散膜の形成方法を提供するものである。 In order to achieve the above object, as a first aspect of the present invention, a step of applying a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed in a solvent at a first concentration on a substrate is applied. A step of cooling the droplets of the first carbon nanotube dispersion liquid to increase the viscosity of the solvent, a step of depositing the carbon nanotubes uniformly by evaporating the solvent to form precipitation nuclei, and a carbon in the solvent. Forming a coating film of the second carbon nanotube dispersion liquid in which the nanotubes are dispersed at a second concentration higher than the first concentration on the precipitation nucleus, and evaporating the solvent from the coating film of the second carbon nanotube. And a step of forming a carbon nanotube dispersion film. A method of forming a carbon nanotube dispersion film is provided.
 また、上記目的を達成するため、本発明は、第2の態様として、上記本発明の第1の態様に係るカーボンナノチューブ分散膜の形成方法を用いた半導体素子の製造方法であって、基板上には、カーボンナノチューブの分散膜と接続される電極を形成しておくことを特徴とする半導体素子の製造方法を提供するものである。 In order to achieve the above object, the present invention provides, as a second aspect, a method for manufacturing a semiconductor device using the method for forming a carbon nanotube dispersion film according to the first aspect of the present invention. The present invention provides a method for manufacturing a semiconductor device, characterized in that an electrode connected to a carbon nanotube dispersion film is formed in advance.
 本発明によれば、カーボンナノチューブ分散液の特性や基板の種類によらず、つねに、均一で緻密なカーボンナノチューブ分散膜、及びこの分散膜を構成要素とし電気的特性が良好で、特性のばらつきが小さい半導体素子の製造方法を提供できる。 According to the present invention, regardless of the characteristics of the carbon nanotube dispersion and the type of the substrate, the carbon nanotube dispersion film is always uniform and dense, and the electrical characteristics are good with the dispersion film as a constituent element, resulting in variations in characteristics. A manufacturing method of a small semiconductor element can be provided.
 本発明においては、始めにカーボンナノチューブ濃度が低い分散液を塗布してこれを冷却し、溶媒の濃度を上昇させることで、液滴中の対流によるカーボンナノチューブの動きを抑制し、液滴中の溶媒を蒸発させることで、カーボンナノチューブが液滴中で一様な分布を保ったまま析出させる。次に、カーボンナノチューブ濃度が高い分散液を同一場所に塗布し、液相のまま溶媒を蒸発させると、前に析出させたカーボンナノチューブが核となって析出し、均一で緻密な膜が形成される。最初に基板に塗布する分散液のカーボンナノチューブ濃度は、基板上に一様な析出核を形成可能な濃度であり、後に塗布する分散液のカーボンナノチューブ濃度は、カーボンナノチューブの偏析が発生しない濃度である。 In the present invention, first, a dispersion liquid having a low carbon nanotube concentration is applied and cooled, and the concentration of the solvent is increased to suppress the movement of the carbon nanotubes due to convection in the droplets. By evaporating the solvent, the carbon nanotubes are deposited in the droplets while maintaining a uniform distribution. Next, when a dispersion with a high concentration of carbon nanotubes is applied to the same location and the solvent is evaporated while in the liquid phase, the carbon nanotubes previously deposited are deposited as nuclei, forming a uniform and dense film. The The concentration of carbon nanotubes in the dispersion liquid first applied to the substrate is a concentration at which uniform precipitation nuclei can be formed on the substrate, and the concentration of carbon nanotubes in the dispersion liquid applied later is such that segregation of carbon nanotubes does not occur. is there.
 このようにして形成したカーボンナノチューブ分散膜を構成要素とした素子は、電気的性能が良好で、特性のばらつきが少ないため、歩留まりを改善できる。また、分散膜には偏析が無く、均一かつ緻密であるため、不均一性を考慮する必要がないため、素子の設計が容易である。 An element using the carbon nanotube dispersion film formed as described above as a constituent element has good electrical performance and little variation in characteristics, so that the yield can be improved. In addition, since the dispersion film has no segregation and is uniform and dense, it is not necessary to consider non-uniformity, so that the device design is easy.
 本発明の好適な実施の形態について説明する。
 図3(a)は、金属電極111及び金属電極112が形成されたプラスチック基板110上にカーボンナノチューブ1101が分散された分散液の液滴102を塗布した状態を示している。基板のプラスチックは、PET(PolyEthylene Telephthalate)やPEN(PolyEthylene Naphthalate)等を使用可能である。カーボンナノチューブ分散液の溶媒としては、水や有機溶媒(ジクロロエタン、ジメチルホルムアミドなど)に界面活性剤を添加したものを使用できる。界面活性剤としては、陰イオン性界面活性剤(ドデシルベンゼンスルホン酸ナトリウム(Sodium DodecylBenzene Sulfonate:SDBS)など)や非イオン性界面活性剤(トリトンXなど)を添加したものを使用できる。
A preferred embodiment of the present invention will be described.
FIG. 3A shows a state in which a droplet 102 of a dispersion liquid in which carbon nanotubes 1101 are dispersed is applied on a plastic substrate 110 on which a metal electrode 111 and a metal electrode 112 are formed. As the substrate plastic, PET (PolyEthylene Telephthalate), PEN (PolyEthylene Naphthalate), or the like can be used. As the solvent for the carbon nanotube dispersion liquid, water or an organic solvent (dichloroethane, dimethylformamide, etc.) added with a surfactant can be used. As the surfactant, an anionic surfactant (Sodium DodecylBenzene Sulfonate (SDBS) or the like) or a nonionic surfactant (Triton X or the like) can be used.
 この溶媒にカーボンナノチューブを加え超音波処理を施すことでカーボンナノチューブ分散液を生成できる。カーボンナノチューブの濃度は、基板上に一様な析出核を形成可能な濃度とする。例えば、このときのカーボンナノチューブの濃度は1μg/ml(約1ppm)とする。 A carbon nanotube dispersion can be produced by adding carbon nanotubes to this solvent and subjecting it to ultrasonic treatment. The concentration of the carbon nanotube is set to a concentration at which uniform precipitation nuclei can be formed on the substrate. For example, the concentration of carbon nanotubes at this time is 1 μg / ml (about 1 ppm).
 分散液を塗布する前に、基板110及び金属電極111、112は、溶媒が対流を起こさなくなる粘度となる程度の温度(溶媒の融点以下の温度)に冷却しておく(例えば0℃程度)。これによって液滴102の粘度は塗布された瞬間に高くなり、液滴内部の溶媒の対流によるカーボンナノチューブの動きを抑制できる。 Before applying the dispersion, the substrate 110 and the metal electrodes 111 and 112 are cooled to a temperature (a temperature below the melting point of the solvent) at which the solvent does not cause convection (for example, about 0 ° C.). As a result, the viscosity of the droplet 102 becomes high at the moment of application, and the movement of the carbon nanotube due to the convection of the solvent inside the droplet can be suppressed.
 次に、液滴が塗布された基板の雰囲気圧力を下げ(例えば0.1気圧程度まで)、液滴の溶媒を蒸発させる。図3(b)、(c)は、蒸発が進む状態を示している。液滴中のカーボンナノチューブは、溶媒の支持が無くなる形で基板110や金属電極111、112に付着していく。このとき、カーボンナノチューブは固定されているため、動きによって液滴中のカーボンナノチューブ濃度が濃くなることや、金属電極端に偏析することはなく、図3(d)のように一様で薄いカーボンナノチューブ塗布膜1012が析出核として得られる。 Next, the atmospheric pressure of the substrate on which the droplet is applied is lowered (for example, to about 0.1 atmosphere), and the solvent of the droplet is evaporated. FIGS. 3B and 3C show a state in which evaporation proceeds. The carbon nanotubes in the droplets adhere to the substrate 110 and the metal electrodes 111 and 112 in such a way that the solvent is no longer supported. At this time, since the carbon nanotubes are fixed, the concentration of carbon nanotubes in the droplets does not increase due to movement, and segregation does not occur at the end of the metal electrode. As shown in FIG. A nanotube coating film 1012 is obtained as a precipitation nucleus.
 図4に、カーボンナノチューブ濃度が1ppb未満の分散液を基板110に塗布し、上記のようにして溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブの密度が非常に低く、視野内にはカーボンナノチューブが2本(図中に矢印で示す2箇所に)しか存在しておらず(粒状に見えるのはカーボンナノチューブではなく別の微粒子である)、析出核としては密度が不十分である。一方、図5に、カーボンナノチューブ濃度が1ppbから1ppmの間の分散液を基板110に塗布し、上記のようにして溶媒溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブが一様に分散しており、析出核として良好な状態である。
 さらに、図6に、カーボンナノチューブ濃度が1ppm以上の分散液を基板110に塗布し、上記のようにして溶媒を蒸発させた場合のカーボンナノチューブ塗布膜1012の状態を表す原子間力顕微鏡写真を示す。図示する例においては、カーボンナノチューブの密度が高く、多くのカーボンナノチューブは互いに重なり合って凝集しているため、析出核として好ましい状態ではない。
 以上のことから、本実施形態においては、基板上に一様な析出核を形成可能なカーボンナノチューブ濃度を1ppbから1ppmの濃度範囲とする。
FIG. 4 shows an atomic force micrograph showing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of less than 1 ppb is applied to the substrate 110 and the solvent is evaporated as described above. In the illustrated example, the density of the carbon nanotubes is very low, and there are only two carbon nanotubes in the field of view (in the two locations indicated by arrows in the figure). The density is insufficient as a precipitation nucleus. On the other hand, FIG. 5 shows an atomic force representing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of 1 ppb to 1 ppm is applied to the substrate 110 and the solvent is evaporated as described above. A micrograph is shown. In the example shown in the figure, the carbon nanotubes are uniformly dispersed and are in good condition as precipitation nuclei.
Further, FIG. 6 shows an atomic force micrograph showing the state of the carbon nanotube coating film 1012 when a dispersion having a carbon nanotube concentration of 1 ppm or more is applied to the substrate 110 and the solvent is evaporated as described above. . In the example shown in the drawing, the density of carbon nanotubes is high, and many carbon nanotubes overlap each other and are aggregated, which is not a preferable state as precipitation nuclei.
From the above, in this embodiment, the concentration of carbon nanotubes capable of forming uniform precipitation nuclei on the substrate is set to a concentration range of 1 ppb to 1 ppm.
 次に、図7(a)に示すように、前段階で形成したカーボンナノチューブ膜と同一箇所に先に塗布したものよりも濃度の高い(例えば、濃度5μg/ml(約5ppm))カーボンナノチューブ分散液1013を塗布し、今度は液相のまま溶媒を蒸発させる(図7(b)、(c))。なお、カーボンナノチューブ分散液1013の濃度は、カーボンナノチューブの偏析を生じさせない濃度である。この際、液滴の内部の対流によってカーボンナノチューブ1022が動き、前段階で析出させたカーボンナノチューブ1011を核として析出し、均一で緻密な膜1014が形成される(図7(d))。後段階の塗布時に基板の温度を高く(例えば50℃)しておくことで対流を促し、溶媒の蒸発に要する時間を短縮できる。 Next, as shown in FIG. 7 (a), the carbon nanotube dispersion having a higher concentration (for example, a concentration of 5 μg / ml (about 5 ppm)) than that previously applied to the same location as the carbon nanotube film formed in the previous step. Liquid 1013 is applied, and the solvent is evaporated in this liquid state (FIGS. 7B and 7C). The concentration of the carbon nanotube dispersion liquid 1013 is a concentration that does not cause segregation of the carbon nanotubes. At this time, the carbon nanotubes 1022 move due to the convection inside the droplets, and the carbon nanotubes 1011 deposited in the previous stage are deposited as nuclei, and a uniform and dense film 1014 is formed (FIG. 7D). By increasing the temperature of the substrate (for example, 50 ° C.) during subsequent application, convection is promoted, and the time required for solvent evaporation can be shortened.
 図8は、本発明に係るカーボンナノチューブ分散膜をトランジスタのチャネルに応用した例である。図8(a)は平面図、図8(b)は、図8(a)のA-A’断面図である。図8(b)において、プラスチック基板210上には、後にソース電極及びドレイン電極となる金属電極211、212がそれぞれ形成されている。また、プラスチック基板210は、予め溶媒の融点以下の温度である-20℃程度に冷却されている。 FIG. 8 shows an example in which the carbon nanotube dispersion film according to the present invention is applied to a channel of a transistor. 8A is a plan view, and FIG. 8B is a cross-sectional view taken along the line A-A ′ of FIG. 8A. In FIG. 8B, metal electrodes 211 and 212 to be source and drain electrodes later are formed on the plastic substrate 210, respectively. In addition, the plastic substrate 210 is cooled in advance to about −20 ° C., which is a temperature below the melting point of the solvent.
 ここへ、SDBSを添加した水にカーボンナノチューブを1ppm加え、超音波処理することで分散させた溶液をディスペンサ装置やインクジェット装置などによって塗布した。塗布した液滴202は、円形状となって凍結し固化するため、次に基板の雰囲気を真空状態として液的中の溶媒を昇華させることで、均一で薄いカーボンナノチューブ析出核が得られた。 Here, 1 ppm of carbon nanotubes was added to water to which SDBS was added, and a solution dispersed by ultrasonic treatment was applied by a dispenser device or an inkjet device. Since the coated droplet 202 was frozen in a circular shape and solidified, a uniform and thin carbon nanotube precipitation nucleus was obtained by sublimating the solvent in the liquid state with the substrate atmosphere in a vacuum state.
 次に、プラスチック基板210の温度を50℃に上昇させ、濃度5ppmのカーボンナノチューブ分散液を析出核上に上記同様の方法で塗布してから溶媒を蒸発させることによって、均一で緻密なカーボンナノチューブ分散膜201を得た。カーボンナノチューブ分散膜201は、ソース電極やドレイン電極となる金属電極211、212と電気的にオーミックコンタクトがとられて導通しているため、金属電極211、212間に形成されたカーボンナノチューブからなるマット状のネットワーク(網状に析出したカーボンナノチューブの膜)がトランジスタのチャネルを形成する。その後、例えばパリレンの薄膜203を形成することにより、ゲート絶縁膜とした。この際、カーボンナノチューブ分散膜の膜質が緻密であるため、剥がれることはなく、粗さも小さいため絶縁耐圧が良好なゲート絶縁膜を形成できた。 Next, the temperature of the plastic substrate 210 is raised to 50 ° C., a carbon nanotube dispersion liquid having a concentration of 5 ppm is applied onto the precipitation nuclei by the same method as described above, and then the solvent is evaporated, thereby dispersing the carbon nanotubes uniformly and densely. A film 201 was obtained. Since the carbon nanotube dispersion film 201 is electrically connected to and electrically connected to the metal electrodes 211 and 212 serving as the source electrode and the drain electrode, the carbon nanotube dispersed film 201 is a mat made of carbon nanotubes formed between the metal electrodes 211 and 212. Network (film of carbon nanotubes deposited in a net shape) forms the channel of the transistor. Thereafter, for example, a thin film 203 of parylene was formed to obtain a gate insulating film. At this time, since the film quality of the carbon nanotube dispersion film was dense, it was not peeled off, and since the roughness was small, a gate insulating film with good withstand voltage could be formed.
 その後、金属のゲート電極213を形成することで、電界効果トランジスタを完成させた。後段階で塗布するカーボンナノチューブ分散液の濃度は、カーボンナノチューブの偏析が生じない濃度ではあるが、1ppm~10ppmと薄いため、トランジスタのオン・オフ比は高く、塗布膜が均一なため特性のばらつきの少ない電界効果トランジスタを形成できた。 Thereafter, a metal gate electrode 213 was formed to complete a field effect transistor. The concentration of the carbon nanotube dispersion applied in the subsequent stage is a concentration at which segregation of the carbon nanotube does not occur, but it is as thin as 1 to 10 ppm, so the on / off ratio of the transistor is high and the coating film is uniform, resulting in variations in characteristics. A field effect transistor with a small number of layers was formed.
 なお、上記実施形態は本発明の好適な実施の一例であり、本発明はこれに限定されることはなく、様々な変形が可能である。 In addition, the said embodiment is an example of suitable implementation of this invention, This invention is not limited to this, A various deformation | transformation is possible.
 この出願は、2008年1月24日に出願された日本出願特願2008-014037を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-014037 filed on January 24, 2008, the entire disclosure of which is incorporated herein.
塗布法によるカーボンナノチューブ分散膜の形成方法を示す図である。It is a figure which shows the formation method of the carbon nanotube dispersion film by the apply | coating method. 特許文献4に開示されるカーボンナノチューブ分散膜の形成方法を示す図である。It is a figure which shows the formation method of the carbon nanotube dispersion | distribution film | membrane disclosed by patent document 4. FIG. 本発明の好適な実施の形態に係るカーボンナノチューブ分散膜の形成方法の前段階の流れを示す図である。It is a figure which shows the flow of the front | former stage of the formation method of the carbon nanotube dispersion | distribution film | membrane which concerns on suitable embodiment of this invention. カーボンナノチューブ濃度が1ppb未満の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force microscope photograph showing the state of a carbon nanotube coating film when a dispersion liquid having a carbon nanotube concentration of less than 1 ppb is applied to a substrate and the solvent is evaporated. カーボンナノチューブ濃度が1ppbから1ppm間の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force microscope photograph showing the state of the carbon nanotube coating film when a dispersion liquid having a carbon nanotube concentration of 1 ppb to 1 ppm is applied to a substrate and the solvent is evaporated. カーボンナノチューブ濃度が1ppm以上の分散液を基板に塗布し、溶媒を蒸発させた場合のカーボンナノチューブ塗布膜の状態を表す原子間力顕微鏡写真である。It is an atomic force microscope photograph showing the state of a carbon nanotube coating film when a dispersion liquid having a carbon nanotube concentration of 1 ppm or more is applied to a substrate and the solvent is evaporated. 本発明の好適な実施の形態に係るカーボンナノチューブ分散膜の形成方法の後段階の流れを示す図である。It is a figure which shows the flow of the latter stage of the formation method of the carbon nanotube dispersion | distribution film | membrane which concerns on suitable embodiment of this invention. 本発明に係るカーボンナノチューブ分散膜を応用したトランジスタのチャネルを示す図である。It is a figure which shows the channel of the transistor which applied the carbon nanotube dispersion | distribution film | membrane which concerns on this invention.
符号の説明Explanation of symbols
 102、202  液滴
 110  基板
 111、112、211、212  金属電極
 201  カーボンナノチューブ分散膜
 203  薄膜
 210  プラスチック基板
 213  ゲート電極
 1011、1022  カーボンナノチューブ
 1012  カーボンナノチューブ塗布膜
 1013  カーボンナノチューブ分散液
 1014  膜
 
 
102, 202 Droplet 110 Substrate 111, 112, 211, 212 Metal electrode 201 Carbon nanotube dispersion film 203 Thin film 210 Plastic substrate 213 Gate electrode 1011, 1022 Carbon nanotube 1012 Carbon nanotube coating film 1013 Carbon nanotube dispersion liquid 1014 Film

Claims (11)

  1.  溶媒中にカーボンナノチューブを第1の濃度で分散させた第1のカーボンナノチューブ分散液を基板上に塗布する工程と、
     塗布された前記第1のカーボンナノチューブ分散液の液滴を冷却して溶媒の粘度を増加させる工程と、
     溶媒を蒸発させることによりカーボンナノチューブを一様に析出させて析出核を形成する工程と、
     溶媒中にカーボンナノチューブを前記第1の濃度よりも高い第2の濃度で分散させた第2のカーボンナノチューブ分散液の塗布膜を前記析出核上に形成する工程と、
     前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程とを有することを特徴とするカーボンナノチューブ分散膜の形成方法。
    Applying a first carbon nanotube dispersion liquid in which carbon nanotubes are dispersed in a solvent at a first concentration on a substrate;
    Cooling the applied droplets of the first carbon nanotube dispersion to increase the viscosity of the solvent;
    A step of uniformly depositing carbon nanotubes by evaporating a solvent to form a precipitation nucleus;
    Forming a coating film of a second carbon nanotube dispersion liquid in which carbon nanotubes are dispersed in a solvent at a second concentration higher than the first concentration on the precipitation nuclei;
    And a method of forming a carbon nanotube dispersion film by evaporating a solvent from the second carbon nanotube coating film.
  2.  前記溶媒は、水及び有機溶媒の少なくとも一方と、界面活性剤とを含むことを特徴とする請求項1記載のカーボンナノチューブ分散膜の形成方法。 2. The method of forming a carbon nanotube dispersion film according to claim 1, wherein the solvent contains at least one of water and an organic solvent and a surfactant.
  3.  前記第1のカーボンナノチューブ分散液の冷却温度は、溶媒の融点以下であることを特徴とする請求項1又は2記載のカーボンナノチューブ分散膜の形成方法。 The method for forming a carbon nanotube dispersion film according to claim 1 or 2, wherein the cooling temperature of the first carbon nanotube dispersion liquid is not higher than the melting point of the solvent.
  4.  前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程を減圧雰囲気下で行うことを特徴とする請求項1から3のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The carbon nanotube dispersion according to any one of claims 1 to 3, wherein the step of evaporating the solvent from the second carbon nanotube coating film to form a carbon nanotube dispersion film is performed in a reduced-pressure atmosphere. Method for forming a film.
  5.  前記第2のカーボンナノチューブの塗布膜から溶媒を蒸発させてカーボンナノチューブの分散膜を形成する工程を、常温以上の温度環境下において行うことを特徴とする請求項1から4のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 5. The step of evaporating a solvent from the second carbon nanotube coating film to form a carbon nanotube dispersion film is performed in a temperature environment of room temperature or higher. 6. Of forming a carbon nanotube dispersion film.
  6.  前記第1、第2のカーボンナノチューブ分散液は、所定量のカーボンナノチューブを加えた溶媒に超音波処理を施すことによって形成されることを特徴とする請求項1から5のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The said 1st, 2nd carbon nanotube dispersion liquid is formed by performing an ultrasonic treatment to the solvent which added the predetermined amount carbon nanotube, The one of Claim 1 to 5 characterized by the above-mentioned. A method of forming a carbon nanotube dispersion film.
  7.  前記第1の濃度は、前記基板上に一様な析出核を形成可能な濃度であり、前記第2の濃度は、カーボンナノチューブの偏析が生じない濃度であることを特徴とする請求項1から6のいずれか1項記載のカーボンナノチューブ分散膜の形成方法。 The first concentration is a concentration at which uniform precipitation nuclei can be formed on the substrate, and the second concentration is a concentration at which segregation of carbon nanotubes does not occur. 7. The method for forming a carbon nanotube dispersed film according to any one of 6 above.
  8.  前記第1の濃度は1ppbから1ppmの間の濃度であり、前記第2の濃度は1ppm以上の濃度であることを特徴とする請求項7記載のカーボンナノチューブ分散膜の形成方法。 The method of forming a carbon nanotube dispersion film according to claim 7, wherein the first concentration is a concentration between 1 ppb and 1 ppm, and the second concentration is a concentration of 1 ppm or more.
  9.  請求項1から8のいずれか1項記載のカーボンナノチューブ分散膜の形成方法を用いた半導体素子の製造方法であって、
     前記基板上には、前記カーボンナノチューブの分散膜と接続される電極を形成しておくことを特徴とする半導体素子の製造方法。
    A method for manufacturing a semiconductor device using the method for forming a carbon nanotube dispersion film according to claim 1,
    An electrode connected to the carbon nanotube dispersion film is formed on the substrate.
  10.  前記電極を前記基板上に間隔を空けて形成しておき、該電極同士で挟まれた領域に前記カーボンナノチューブの分散膜を形成することを特徴とする請求項9記載の半導体素子の製造方法。 10. The method of manufacturing a semiconductor element according to claim 9, wherein the electrodes are formed on the substrate with a space therebetween, and the carbon nanotube dispersion film is formed in a region sandwiched between the electrodes.
  11.  前記カーボンナノチューブの分散膜の上に、さらに別の電極を形成することを特徴とする請求項10記載の半導体素子の製造方法。
     
     
    11. The method of manufacturing a semiconductor device according to claim 10, further comprising forming another electrode on the carbon nanotube dispersion film.

PCT/JP2009/051092 2008-01-24 2009-01-23 Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device WO2009093698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550576A JPWO2009093698A1 (en) 2008-01-24 2009-01-23 Method for forming carbon nanotube dispersed film and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-014037 2008-01-24
JP2008014037 2008-01-24

Publications (2)

Publication Number Publication Date
WO2009093698A1 true WO2009093698A1 (en) 2009-07-30
WO2009093698A4 WO2009093698A4 (en) 2009-12-10

Family

ID=40901201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051092 WO2009093698A1 (en) 2008-01-24 2009-01-23 Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2009093698A1 (en)
WO (1) WO2009093698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529559A (en) * 2011-06-20 2014-11-13 矢崎総業株式会社 Carbon agglomeration assembly and its applications
JP2018148138A (en) * 2017-03-08 2018-09-20 浜松ホトニクス株式会社 Semiconductor photo detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071654A (en) * 2002-08-01 2004-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing carbon nanotube semiconductor device
JP2005093472A (en) * 2003-09-12 2005-04-07 Sony Corp Method of manufacturing field effect semiconductor device
JP2006049435A (en) * 2004-08-02 2006-02-16 Sony Corp Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device
WO2006081040A2 (en) * 2005-01-27 2006-08-03 International Business Machines Corporation Selective placement of carbon nanotubes on oxide surfaces
JP2007150030A (en) * 2005-11-29 2007-06-14 Toppan Printing Co Ltd Thin-film transistor, and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071654A (en) * 2002-08-01 2004-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing carbon nanotube semiconductor device
JP2005093472A (en) * 2003-09-12 2005-04-07 Sony Corp Method of manufacturing field effect semiconductor device
JP2006049435A (en) * 2004-08-02 2006-02-16 Sony Corp Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device
WO2006081040A2 (en) * 2005-01-27 2006-08-03 International Business Machines Corporation Selective placement of carbon nanotubes on oxide surfaces
JP2007150030A (en) * 2005-11-29 2007-06-14 Toppan Printing Co Ltd Thin-film transistor, and method of manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529559A (en) * 2011-06-20 2014-11-13 矢崎総業株式会社 Carbon agglomeration assembly and its applications
US9617158B2 (en) 2011-06-20 2017-04-11 Yazaki Corporation Cohesive assembly of carbon and its application
US10312503B2 (en) 2011-06-20 2019-06-04 Yazaki Corporation Cohesive assembly of carbon and its application
JP2018148138A (en) * 2017-03-08 2018-09-20 浜松ホトニクス株式会社 Semiconductor photo detector
US11205676B2 (en) 2017-03-08 2021-12-21 Hamamatsu Photonics K.K. Semiconductor light detection element
JP7090400B2 (en) 2017-03-08 2022-06-24 浜松ホトニクス株式会社 Semiconductor photodetector
US11664405B2 (en) 2017-03-08 2023-05-30 Hamamatsu Photonics K.K. Semiconductor light detection element
JP7445705B2 (en) 2017-03-08 2024-03-07 浜松ホトニクス株式会社 semiconductor photodetector

Also Published As

Publication number Publication date
WO2009093698A4 (en) 2009-12-10
JPWO2009093698A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
Xiong et al. Direct writing of graphene patterns on insulating substrates under ambient conditions
Rogers Making graphene for macroelectronics
Seo et al. Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices
Nobusa et al. Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification
Aikawa et al. Deformable transparent all-carbon-nanotube transistors
JP5177695B2 (en) Switching element and manufacturing method thereof
TW200425513A (en) Field effect transistor and manufacturing method thereof
US20110248243A1 (en) Carbon nanotube field effect transistor for printed flexible/rigid electronics
JP6446521B2 (en) Thin film transistor manufacturing method
Liu et al. Highly stretchable graphene nanoribbon springs by programmable nanowire lithography
CN102354668A (en) Preparation method of carbon-based nanometer material transistor
Lee et al. Semiconducting carbon nanotube network thin-film transistors with enhanced inkjet-printed source and drain contact interfaces
US20140147675A1 (en) Structure and method for a graphene-based apparatus
CN113193115B (en) Suspended carbon nano tube field effect transistor and preparation method thereof
Liu et al. Scalable Submicron Channel Fabrication by Suspended Nanofiber Lithography for Short‐Channel Field‐Effect Transistors
WO2009093698A1 (en) Method for forming carbon nanotube-dispersed film and method for manufacturing semiconductor device
JP5549073B2 (en) Organic semiconductor device and manufacturing method thereof
JP2005123290A (en) Thin-film transistor and its manufacturing method
Li et al. Large area roll-to-roll printed semiconducting carbon nanotube thin films for flexible carbon-based electronics
Yoon et al. Fabrication of Stretchable Single‐Walled Carbon Nanotube Logic Devices
Yuan et al. Stacking transfer of wafer-scale graphene-based van der Waals superlattices
Park et al. Directly drawn top-gate semiconducting carbon nanotube thin-film transistors and complementary inverters
JP6588054B2 (en) Method and apparatus for manufacturing organic thin film transistor
KR20210029332A (en) Fiber integrated thin film transistor and manufacturing method of the same
Halevi et al. Additive manufacturing of micrometric crystallization vessels and single crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704351

Country of ref document: EP

Kind code of ref document: A1