WO2009093367A1 - エタノールの製造方法 - Google Patents

エタノールの製造方法 Download PDF

Info

Publication number
WO2009093367A1
WO2009093367A1 PCT/JP2008/069523 JP2008069523W WO2009093367A1 WO 2009093367 A1 WO2009093367 A1 WO 2009093367A1 JP 2008069523 W JP2008069523 W JP 2008069523W WO 2009093367 A1 WO2009093367 A1 WO 2009093367A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid mixture
light
solid
plant
yeast
Prior art date
Application number
PCT/JP2008/069523
Other languages
English (en)
French (fr)
Inventor
Mikio Kuzuu
Original Assignee
Mikio Kuzuu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008036674A external-priority patent/JP4179399B1/ja
Priority claimed from JP2008235164A external-priority patent/JP4209462B1/ja
Application filed by Mikio Kuzuu filed Critical Mikio Kuzuu
Publication of WO2009093367A1 publication Critical patent/WO2009093367A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention is a reaction in which a solid-liquid mixture containing sugar is fermented with yeast to produce ethanol, and carbon dioxide generated during the fermentation is photo-synthesized by light irradiation of a plant chloroplast and a light-emitting diode to produce sugar.
  • the reaction and the reaction of fermenting the sugar obtained in the reaction with yeast to produce ethanol proceed in parallel in the same container.
  • the present invention relates to a method for producing ethanol.
  • Japanese Patent Application Laid-Open No. 07-087986 discloses “microalgae culture means 1” for culturing microalgae that accumulate starch in cells by photosynthesis, and “microalgae concentration” for concentrating a culture solution containing algal bodies cultured by this means.
  • a method for producing ethanol comprising means 2 ”and“ holding means 3 ”for producing ethanol by maintaining the slurry obtained by the means in a dark and anaerobic atmosphere while maintaining the pH in the range of 6.0 to 9.0 is described.
  • “microalgae culture means 1” and “holding means 3” are completely independent separate processes, and a separate process of “microalgae concentration means 2” is required between the two processes.
  • the operation is complicated, and it cannot be said that the ethanol production method is always highly efficient.
  • the “holding means 3” for generating ethanol needs to be kept in a dark and anaerobic atmosphere, it can be performed in parallel with the “microalgae culture means 1” that requires light irradiation in the same container. It was impossible.
  • Japanese Patent Laid-Open No. 2007-325564 discloses a method for inoculating koji mold and saccharifying a raw material subjected to a specific treatment to produce ethanol using rice as a cereal as a starting material and adding yeast to perform ethanol fermentation.
  • a method of synthesizing and utilizing industrial methanol or the like by simply reusing carbon dioxide generated as a by-product during ethanol fermentation without letting it escape to the atmosphere is described.
  • the above method describes the reuse of carbon dioxide generated during ethanol fermentation, the carbon dioxide is converted into a sugar that is a raw material for ethanol fermentation by photosynthesis, and the sugar is converted into the above ethanol fermentation. There was no suggestion or description about performing in parallel in the same container.
  • the present invention is a reaction in which a solid-liquid mixture containing sugar is fermented with yeast to produce ethanol, and carbon dioxide generated during the fermentation is photo-synthesized by light irradiation of a plant chloroplast and a light-emitting diode to produce sugar.
  • the reaction and the reaction of fermenting the sugar obtained in the reaction with yeast to produce ethanol proceed in parallel in the same container.
  • An object is to provide a method for producing ethanol.
  • the present inventors have performed a simple operation of irradiating light from a light-emitting diode in a closed system containing a solid-liquid mixture containing sugar, yeast and plant chloroplasts.
  • a reaction in which a solid-liquid mixture containing sugar is fermented with yeast to produce ethanol b) Reaction of photosynthesis of carbon dioxide generated during fermentation in a) by light irradiation of plant chloroplasts and light emitting diodes to sugar, and c) fermentation of sugar obtained in b) with yeast.
  • the present inventors have found that the reaction for producing ethanol proceeds in parallel. Moreover, it discovered that ethanol was efficiently manufactured by irradiating the light of a specific wavelength range in this case.
  • the present invention (1) A production process for producing ethanol by irradiating light from a light-emitting diode in a sealed system containing a solid-liquid mixture containing sugar, yeast and plant chloroplasts, and ethanol produced from the system.
  • a method for producing ethanol comprising a recovery step of recovering outside, In the generating step, a) a reaction in which a solid-liquid mixture containing sugar is fermented with yeast to produce ethanol; b) Reaction of photosynthesis of carbon dioxide generated during fermentation in a) by light irradiation of plant chloroplasts and light emitting diodes to sugar, and c) fermentation of sugar obtained in b) with yeast.
  • the reaction for producing ethanol proceeds in parallel, and the solid-liquid mixture containing sugar is saccharified by pyrolysis or hydrolysis of cellulose or hemicellulose, or rice, wheat, straw or corn containing starch Saccharify with koji, malt or enzyme, crush vegetables and / or fruits, or crush vegetables and / or fruits, then heat concentration method, freeze concentration method, reverse osmosis
  • the plant chloroplast is prepared by concentrating by one or more concentration methods selected from a concentration method and a vacuum concentration method, and the plant chloroplast is a seed plant, a fern plant, an algae, a moss plant, a bacterium Or a mixture of these
  • the method of producing ethanol is a plant chloroplast things, (2)
  • the light of the light emitting diode is light whose total light emission amount in the wavelength regions of 380 to 520 nm and 620 to 780 nm is 70% or more of the light emission amount over the entire wavelength region.
  • Production method (3) The method for producing ethanol according
  • the total light emission amount in the wavelength range of 380 to 520 nm and 620 to 780 nm is 70% or more of the light emission amount over the entire wavelength region means that the light emission spectrum of the light emitting diode used is measured and recorded. It means that a value indicating the sum of the spectrum areas in the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total spectrum area as a percentage is 70% or more.
  • the ethanol production method of the present invention produces sugar by a photosynthesis reaction using carbon dioxide generated in a sugar fermentation reaction as a raw material, and therefore does not discharge carbon dioxide. It can be said that this is a manufacturing method.
  • ethanol is produced using sugar produced by the photosynthesis reaction as a raw material, the ethanol recovery rate is high compared to normal ethanol fermentation, and three reactions are simultaneously performed in one container. Since it can be performed, it is a very excellent ethanol production method that is simple and efficient in operation.
  • additional carbon dioxide is added into the reaction system, whereby ethanol can be produced more efficiently.
  • the method for producing ethanol of the present invention comprises a production step of producing ethanol by irradiating light from a light-emitting diode in a sealed system containing a solid-liquid mixture containing sugar, yeast and plant chloroplasts, and from the system. A recovery step of recovering the produced ethanol out of the system.
  • the solid-liquid mixture containing sugar used in the present invention is saccharified by pyrolyzing or hydrolyzing cellulose or hemicellulose, or rice, wheat, straw or corn containing starch is saccharified using straw, malt or an enzyme agent.
  • cellulose or hemicellulose include cellulose or hemicellulose obtained from a plant body such as wood.
  • Saccharification of cellulose by thermal decomposition can be performed by a known method, for example, a method described in Japanese Patent No. 1400009.
  • the saccharification of cellulose or hemicellulose by hydrolysis can be carried out by a known method, for example, a method of hydrolysis using dilute sulfuric acid described in JP-B 61-0444479.
  • the solid-liquid mixture containing sugar is made of rice, wheat, straw or corn containing starch, and if necessary, subjected to a step of removing the hull, pulverization or pulverization, and the like. It can be prepared by adding.
  • the enzyme agent include amylase.
  • a solid-liquid mixture containing sugar is obtained by crushing vegetables and / or fruits, or crushing vegetables and / or fruits, followed by a heat concentration method, a freeze concentration method, a reverse osmosis concentration method, and a vacuum. It can prepare by concentrating by the 1 type (s) or 2 or more types of concentration method chosen from the concentration method.
  • the vegetables are not limited as long as they contain sugar, but specific examples include radish, sugar beet, cabbage, lettuce, Chinese cabbage, sugar cane, tomato, carrot, onion, leek and the like.
  • Fruits are not limited as long as they contain sugar, but specific examples include apples, tangerines, grapes, white peaches, yellow peaches, pears, pineapples, mangoes, bananas, melons, cherries, loquats, and blueberries. , Strawberry, kiwi, raspberry, blackberry, apricot, oyster, watermelon and the like.
  • the vegetables and fruits are preferably washed before pulverization.
  • a pulverization method a method usually used for pulverizing vegetables and / or fruits can be used, and examples thereof include pulverization using a mixer (for home use and business use).
  • the solid-liquid mixture containing sugar prepared by pulverizing vegetables and / or fruits can be further concentrated.
  • Concentration is particularly effective when the sugar content in the solid-liquid mixture is low.
  • concentration method include a heat concentration method, a freezing concentration method, a reverse osmosis concentration method, a vacuum concentration method, and a concentration method in which two or more of these are performed simultaneously or continuously.
  • concentration methods heat concentration method, freeze concentration method, reverse osmosis concentration method, vacuum concentration method
  • concentration method are usually methods known in the technical field (heat concentration method, freeze concentration method, reverse osmosis concentration method, vacuum concentration method). Can be done.
  • the solid-liquid mixture containing the saccharide prepared above can be sterilized as necessary.
  • the yeast used in the present invention is not particularly limited as long as it can produce ethanol, and specific examples include wine yeast, sake yeast, whiskey yeast, beer yeast and the like.
  • Plant chloroplasts used in the present invention include plant chloroplasts of seed plants, ferns, algae, moss plants, bacteria, or mixtures thereof. Although it does not specifically limit as a seed plant, For example, a ginkgo, rice, etc. are preferable. Although it does not specifically limit as a fern plant, For example, a cycad etc. are preferable. Although it does not specifically limit as algae, For example, kawamozuku, gray algae, crypt algae, wakame, euglena algae, chloracunion algae, cyanobacteria, uremo etc. are preferable.
  • a moss plant For example, a sphagnum moss, a black moss, a scallop, a scale moss, a sphagnum, a hornbill, etc. are preferable.
  • bacteria For example, cyanobacteria (extracted from a sea lion) etc. are preferable.
  • Preferred plant chloroplasts include bacterial plant chloroplasts and cyanobacterial plant chloroplasts.
  • the plant chloroplast used in the present invention preferably destroys the plant cell membrane so that the sugar produced by photosynthesis is efficiently fermented by the yeast in the solution.
  • the destruction of the cell membrane of the plant can be performed, for example, by crushing the plant.
  • the produced sugar is efficiently fermented without destroying the cell membrane, it is not necessary to destroy the cell membrane.
  • the sealed system is not particularly limited as long as it is a sealed container that can be irradiated with light and can cope with a volume change caused by the generated gas (carbon dioxide, oxygen).
  • a container etc. are mentioned.
  • light irradiation can be performed from the outside and / or the inside of the glass container, and in the case of a metal container, light irradiation can be performed from the inside of the container.
  • the said container is equipped with the expansion-contraction site
  • the system is preferably stirrable.
  • the glass container is, for example, a glass tube installed around a light emitting diode, and a solid-liquid mixture containing sugar, a solution containing yeast and plant chloroplasts are allowed to flow at a rate capable of an ethanol production reaction. It can also be a container capable of continuous reaction.
  • the glass container is composed of, for example, two glass plates capable of irradiating light from a light-emitting diode from both the front and back surfaces, a solid-liquid mixture containing sugar between the glass plates, yeast and plant chloroplasts. It may also be a container capable of continuous reaction by flowing a solution containing
  • the production step for producing ethanol is performed by irradiating the light of the light-emitting diode into the above-described sealed system.
  • Three reactions of producing ethanol proceed in parallel in the closed system.
  • Ethanol and carbon dioxide are produced by the fermentation of yeast in a) above.
  • the produced carbon dioxide is converted to sugar by photosynthesis b) of the light of the plant chloroplast and the light emitting diode, and oxygen is generated at this time.
  • the sugar is not particularly limited as long as it can be used for ethanol fermentation, and examples thereof include sucrose and glucose.
  • the sugar produced in b) is fermented by yeast (reaction c)) to produce ethanol and carbon dioxide.
  • the produced carbon dioxide is again ethanol through the photosynthesis of b) and alcohol fermentation of c). By repeating this cycle, almost all of the carbon dioxide is finally converted into ethanol and oxygen. Therefore, the progress of the reaction can be grasped by measuring the oxygen concentration in the gas present in the system.
  • the reaction is preferably carried out until the oxygen concentration in the gas present in the system reaches 90% or more, and more preferably the reaction is carried out until the concentration reaches 95% or more.
  • the light emitted from the light emitting diode used in the photosynthetic reaction is preferably light in which the total light emission amount in the wavelength regions of 380 to 520 nm and 620 to 780 nm is 70% or more of the light emission amount over the entire wavelength region, and more preferably , 80% or more of the light, and more preferably 90% or more of the light.
  • the above% is less than 70, ethanol production efficiency tends to decrease.
  • light having a wavelength shorter than 380 nm is not substantially contained, that is, the light emission amount is 5% or less, preferably 3% or less, and preferably 0%.
  • the total light emission amount in the wavelength range of 380 to 520 nm and 620 to 780 nm is 70% or more of the light emission amount over the entire wavelength region means that the light emission spectrum of the light emitting diode used is measured and recorded. It means that a value indicating the sum of the spectrum areas in the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total spectrum area as a percentage is 70% or more.
  • the manufacturing method of ethanol of this invention includes the collection
  • the recovery step is not particularly limited as long as it is a method capable of separating ethanol from the reaction system.
  • a known method such as a distillation method or a membrane separation method can be used.
  • the container used for the distillation operation can be used as it is, and the reaction liquid can be transferred to another container for use.
  • a preferred embodiment of the present invention is a method for producing ethanol in which additional carbon dioxide is added into the sealed system. By further adding carbon dioxide, the production efficiency of ethanol can be further improved.
  • the additional addition of carbon dioxide is achieved, for example, by connecting a carbon dioxide introduction tube to the reaction vessel or placing it in an atmosphere of carbon dioxide. When adding carbon dioxide, the entire system is sealed so that the carbon dioxide does not flow out.
  • the recovery step is achieved by distillation.
  • the distillation method any of simple distillation, azeotropic distillation, azeotropic distillation with addition of benzene, and the like can be selected according to the required purity of ethanol.
  • Production Example 1 Production of a solid-liquid mixture containing sugar (rice) 6 g of amylase and 315 g of water were added to 330 g of rice flour purchased from a food store, stirred with a mixer, boiled and kept at 70 ° C. to 80 ° C. for 12 hours. By saccharifying the rice flour, 651 g of a solid-liquid mixture (rice) containing sugar was prepared.
  • Production Example 2 Production of sugar-containing solid-liquid mixture (wheat) Add 6 g of amylase and 315 g of water to 330 g of flour purchased from a food store, stir with a mixer, boil in water and keep at 70 ° C. to 80 ° C. for 12 hours. By saccharifying the wheat flour, 651 g of a solid-liquid mixture (wheat) containing sugar was prepared.
  • Production Example 3 Production of Solid-Liquid Mixture Containing Sugar (Corn) 6 g of amylase and 315 g of water are added to 330 g of corn flour purchased from a food store, stirred with a mixer, boiled and kept at 70 ° C. to 80 ° C. for 12 hours. By saccharifying the corn flour, 651 g of a solid-liquid mixture (corn) containing sugar was prepared.
  • Examples 1 to 10 and Comparative Example 1 217 g of the solid-liquid mixture (rice) containing sugar produced in Production Example 1 and 3 g of yeast were stirred with a mixer to prepare 220 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast is divided into 11 100 mL beakers of 20 g each, and 10 types of different plant pulverized products are added to each beaker by 1 g and stirred.
  • Examples 11 to 20 and Comparative Example 2 217 g of the solid-liquid mixture (wheat) containing sugar produced in Production Example 2 and 3 g of yeast were stirred with a mixer to prepare 220 g of a solid-liquid mixture (wheat) containing sugar containing yeast.
  • the prepared solid-liquid mixture (wheat) containing sugar containing yeast is divided into 11 100 mL beakers of 20 g each, and 10 types of different plant pulverized products are added to each beaker by 1 g and stirred, and then each solution is transparent glass.
  • a solid-liquid mixture (wheat) containing sugar containing yeast without plant pulverized product was injected into a 100 mL syringe (Comparative Example 2).
  • the eleven syringes prepared above contain light from a total of 600 light emitting diodes composed of 200 white light emitting diodes, 200 red light emitting diodes, 100 yellow light emitting diodes and 100 indigo light emitting diodes (36 watts in total). / Hour) for 24 hours.
  • the oxygen concentration of the gas collected from each syringe was measured with an oxygen concentration meter.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was determined to be 77%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 2.
  • symbols a to j represent the same plants as shown above, and “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 21 to 30 and Comparative Example 3 217 g of the solid-liquid mixture (corn) containing saccharide produced in Production Example 3 and 3 g of yeast were stirred with a mixer to prepare 220 g of a solid-liquid mixture (corn) containing sugar containing yeast.
  • the prepared solid-liquid mixture (corn) containing sugar containing yeast is divided into 11 100 mL beakers of 20 g each, 10 g of different plant pulverized products are added to each beaker by 1 g and stirred, and then each solution is transparent glass. It was injected into a 100 mL syringe, which is a manufactured container (Examples 21 to 30).
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 85%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured.
  • the above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 3.
  • symbols a to j represent the same plants as shown above, and “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 31 to 40 and Comparative Example 4 217 g of the solid-liquid mixture (corn) containing saccharide produced in Production Example 3 and 3 g of yeast were stirred with a mixer to prepare 220 g of a solid-liquid mixture (corn) containing sugar containing yeast.
  • the prepared solid-liquid mixture (corn) containing sugar containing yeast was divided into 11 100 mL beakers of 20 g each, 10 g of different plant pulverized products were added to each beaker by 1 g and stirred, and then each beaker was sealed. I put it in the box.
  • a fermentation experiment was conducted separately from the above experiment, and carbon dioxide released from the fermentation experiment was introduced into each beaker through a tube so as to be mixed at the liquid level of each beaker in the sealed box (Examples 31 to 40). ).
  • a beaker containing 20 g of a solid-liquid mixture (corn) containing sugar containing yeast and not containing plant pulverized material was placed in the sealed box (Comparative Example 4).
  • light of a total of 600 light emitting diodes composed of 200 white light emitting diodes, 200 red light emitting diodes, 100 orange light emitting diodes, and 100 purple light emitting diodes (36 watts / hour in total) 24 Irradiated for hours.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas in the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 85%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured.
  • the above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 4.
  • symbols a to j represent the same plants as shown above, and “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Production Example 4 Production of a solid-liquid mixture containing sugar (rice) 10 g of amylase (mixture of alpha amylase and glucoamylase) and 525 g of water were added to 530 g of rice flour purchased from a food store, stirred with a mixer, hot water roasted, and 70 ° C. Furthermore, 1065 g of a solid-liquid mixture (rice) containing sugar was prepared by saccharifying the rice flour over 12 hours while maintaining at 80 ° C.
  • amylase mixture of alpha amylase and glucoamylase
  • Examples 41 to 57 and Comparative Example 5 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 58 to 74 and Comparative Example 6 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 74%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 6.
  • the symbols a to q represent the same plants as shown above, and the “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 75 to 91 and Comparative Example 7 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 100%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 7.
  • the symbols a to q represent the same plants as shown above, and the “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 92 to 108 and Comparative Example 8 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 60%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured.
  • the above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 8.
  • the symbols a to q represent the same plants as shown above, and the “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 109 to 125 and Comparative Example 9 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 60%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured.
  • the above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 9.
  • the symbols a to q represent the same plants as shown above, and the “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • Examples 126 to 142 and Comparative Example 10 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 143 to 159 and Comparative Example 11 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 160 to 176 and Comparative Example 12 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred. It was injected into a 100 mL syringe, which is a manufactured container (Examples 160 to 176).
  • Examples 177 to 193 and Comparative Example 13 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 194 to 210 and Comparative Example 14 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 211 to 227 and Comparative Example 15 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred.
  • Examples 228 to 244 and Comparative Example 16 355 g of the solid-liquid mixture (rice) containing saccharide produced in Production Example 4 and 5 g of yeast were stirred with a mixer to prepare 360 g of a solid-liquid mixture (rice) containing sugar containing yeast.
  • the prepared solid-liquid mixture (rice) containing sugar containing yeast was divided into 18 100 mL beakers of 20 g each, and 17 types of pulverized products of different plants were added to each beaker by 1 g and stirred, and then each beaker was sealed. I put it in the box.
  • a fermentation experiment was conducted separately from the above experiment, and carbon dioxide released from the fermentation experiment was introduced into each beaker through a tube so as to be mixed at the liquid level of each beaker in the sealed box (Examples 228 to 244). ).
  • a beaker containing 20 g of a solid-liquid mixture (rice) containing sugar containing yeast without adding plant ground was placed in the sealed box (Comparative Example 16).
  • Each beaker was irradiated with light from a light emitting diode composed of 600 white light emitting diodes (36 watts / hour in total) for 24 hours.
  • the emission spectrum of the light-emitting diode was measured, and the ratio of the spectral area in the wavelength region of 380 to 520 nm and 620 to 780 nm to the total recorded spectral area was determined to be 80%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 16.
  • symbols a to j represent the same plants as shown above, and “area ratio” is the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectral area recorded in the emission spectrum. Represents the ratio (%).
  • the yield increased by 7 times, and the yield increased by about 1.4 times compared to Examples 41 to 57 in which no additional carbon dioxide was added. Further, in the case of q cyanobacteria (Example 244), the yield was increased about twice as compared with Example 57 in which no additional carbon dioxide was added.
  • Production Example 5 Production of a solid-liquid mixture containing sugar (sugar cane)
  • Sugar cane was purchased from a food store and washed. The liquid obtained by removing the sugar from the sugar cane juice was stirred to prepare 2000 g of molasses (a solid-liquid mixture containing sugar (sugar cane)).
  • Production Example 6 Production of solid-liquid mixture containing sugar (yellow peach) Yellow peach was purchased from a food store and washed. Yellow peach was pulverized to prepare a solid-liquid mixture (yellow peach) containing sugar without adding 2000 g of water.
  • Examples 245 to 254 and Comparative Example 17 660 g of the molasses produced in Production Example 5 (solid-liquid mixture containing sugar (sugar cane)) and 10 g of yeast and 870 g of water were stirred with a mixer, and the molasses containing sugar (solid-liquid mixture containing sugar (sugar cane)) 1540 was prepared.
  • the prepared molasses containing yeast (solid-liquid mixture (sugar cane) containing sugar) was divided into 11 300 mL beakers of 140 g each, and 10 g of different plant pulverized products were added to each beaker by 5 g and stirred.
  • Example 17 The solution was poured into a 300 mL syringe, a clear glass container (Examples 245 to 254).
  • the 11 syringes prepared above were irradiated with light from a total of 600 light-emitting diodes composed of 200 white light-emitting diodes, 200 red light-emitting diodes and 200 blue light-emitting diodes (36 watts / hour in total) for 24 hours. did.
  • the oxygen concentration of the gas collected from each syringe was measured with an oxygen concentration meter. Further, the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 93%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors. The results are summarized in Table 17.
  • symbols a to j represent the following plants, and “area ratio” is the ratio (%) of the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectrum area recorded in the emission spectrum. Represents.
  • Examples 255 to 264 and Comparative Example 18 A solid-liquid mixture (yellow peach) 1540 containing sugar containing yeast was prepared by stirring 660 g of the solid-liquid mixture (yellow peach) containing sugar produced in Production Example 6 and 10 g of yeast and 870 g of water with a mixer. The prepared solid-liquid mixture (yellow peach) containing sugar containing yeast is divided into 11 300 mL beakers of 140 g each, 10 g of different plant pulverized products are added to each beaker by 5 g and stirred, and then each solution is transparent. A 300 mL syringe, a glass container, was injected (Examples 255 to 264).
  • the emission spectrum of the light emitting diode was measured, and the ratio of the spectral areas of the wavelength regions of 380 to 520 nm and 620 to 780 nm with respect to the total recorded spectrum area was found to be 73%.
  • the solution in each syringe was distilled and the amount of alcohol recovered was measured. The above operation was performed three times in consideration of measurement errors.
  • the results are summarized in Table 18.
  • symbols a to j represent the following plants, and “area ratio” is the ratio (%) of the spectral area of the wavelength region of 380 to 520 nm and 620 to 780 nm with respect to the total spectrum area recorded in the emission spectrum. Represents.
  • the ethanol production method of the present invention does not emit carbon dioxide, and thus is said to be a useful method in terms of CO 2 reduction. Moreover, since the manufacturing method of ethanol of this invention can obtain oxygen as a by-product, this can also be utilized as an effective resource. In addition, since the ethanol production method of the present invention can take in carbon dioxide from the outside and convert it into ethanol, it can also be a useful ethanol production method from the viewpoint of fixing carbon dioxide. .

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】操作が簡単で且つ製造効率に優れるエタノールの製造方法を提供する。 【解決手段】 糖を含む固液混合物、酵母及び植物葉緑体を含む密閉された系内において発光ダイオードの光を照射することによりエタノールを生成する生成工程と該系中から生成されたエタノールを系外に回収する回収工程とを含むエタノールの製造方法であって、 前記生成工程において、 a)糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、 b)a)の発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び c)b)で得られた糖を酵母により発酵させてエタノールを生成する反応 が並行して進行することを特徴とするエタノールの製造方法。

Description

エタノールの製造方法
 本発明は、糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、該発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び該反応で得られた糖を酵母により発酵させてエタノールを生成する反応の3つの反応が同一容器内で並行して進行することを特徴とする、操作が簡単で且つ製造効率に優れるエタノールの製造方法に関する。
 特開平07-087986号公報には、光合成により細胞内にデンプンを蓄積する微細藻を培養する“微細藻培養手段1”、該手段により培養した藻体を含む培養液を濃縮する“微細藻濃縮手段2”、該手段で得られるスラリーを、pH6.0~9.0の範囲に保ちながら暗黒かつ嫌気性雰囲気に保持してエタノールを生成させる“保持手段3”を含むエタノールの製造方法が記載されている。
 上記製造方法において、“微細藻培養手段1”及び“保持手段3”は、完全に独立した別工程であり、また、該2工程間には“微細藻濃縮手段2”という別工程を必要とするため、操作が煩雑であり、また、エタノールの製造方法として必ずしも効率が高いものとはいえなかった。
 特に、エタノールを生成させる“保持手段3”は、暗黒かつ嫌気性雰囲気に保持する必要があるため、光照射を必要とする“微細藻培養手段1”と同一容器内で並行して行うことはできないものであった。
 特開2007-325564号公報には、穀物として米を出発原料としてエタノールを製造するために、特定処理を施した原料に対して麹菌を接種し糖化させると共に酵母を添加してエタノール発酵させる方法が記載されており、また、エタノール発酵の際、副産物として発生する二酸化炭素を単に大気に逃すことなく再利用して工業用メタノール等を合成して活用する方法が記載されている。
 上記方法は、エタノール発酵の際に発生する二酸化炭素の再利用について記載するものの、該二酸化炭素を光合成によりエタノール発酵の原料である糖に変換すること、及び、該糖を上記のエタノール発酵とを同一容器内で並行して行うことに付いては何らの示唆も記載もなされていなかった。
 また、光合成の光源として発光ダイオードを用いて各種光合成生物に光合成を行わせ、これにより有用な有機物を製造する方法が報告されている(例えば、特開平10-113164号公報、特開2004-147641号公報、特開2002-315569号公報、登録実用新案第3073908号公報、勝田知尚、フォトバイオリアクターによる有用物質生産のための生物化学工学的検討、第59回日本生物工学会大会講演要旨集、2007年8月2日、p.107(講演番号:3D09-1)、参照)。
 しかし、上記方法は何れも、光合成により二酸化炭素から糖を生成する具体的な方法を記載するものではなかった。
特開平07-087986号公報 特開2007-325564号公報 特開平10-113164号公報 特開2004-147641号公報 特開2002-315569号公報 登録実用新案第3073908号公報 勝田知尚、フォトバイオリアクターによる有用物質生産のための生物化学工学的検討、第59回日本生物工学会大会講演要旨集、2007年8月2日、p.107(講演番号:3D09-1)
 本発明は、糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、該発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び該反応で得られた糖を酵母により発酵させてエタノールを生成する反応の3つの反応が同一容器内で並行して進行することを特徴とする、操作が簡単で且つ製造効率に優れるエタノールの製造方法の提供を課題とする。
 本発明者等は、上記課題を解決するために鋭意検討した結果、糖を含む固液混合物、酵母及び植物葉緑体を含む密閉された系内において発光ダイオードの光を照射するという簡単な操作により、
a)糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、
b)a)の発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び
c)b)で得られた糖を酵母により発酵させてエタノールを生成する反応
が並行して進行することを見出し、本発明を完成させた。
 また、この際、特定の波長領域の光を照射することにより効率良くエタノールが製造されることも見出した。
 即ち、本発明は、
(1)糖を含む固液混合物、酵母及び植物葉緑体を含む密閉された系内において発光ダイオードの光を照射することによりエタノールを生成する生成工程と該系中から生成されたエタノールを系外に回収する回収工程とを含むエタノールの製造方法であって、
前記生成工程において、
a)糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、
b)a)の発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び
c)b)で得られた糖を酵母により発酵させてエタノールを生成する反応
が並行して進行することを特徴とし、前記糖を含む固液混合物は、セルロース又はヘミセルロースを熱分解又は加水分解して糖化するか、デンプンを含む米、麦、芋又はトウモロコシを麹、麦芽又は酵素剤を用いて糖化するか、野菜類及び/又は果実類を粉砕するか、或いは、野菜類及び/又は果実類を粉砕した後に、加熱濃縮法、冷凍濃縮法、逆浸透濃縮法及び真空濃縮法から選ばれる1種又は2種以上の濃縮法で濃縮することにより調製されるものであり、前記植物葉緑体は、種子植物、シダ植物、藻類、コケ植物、細菌類又はこれらの混合物の植物葉緑体であるエタノールの製造方法、
(2)前記発光ダイオードの光は、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が全波長領域に亘る発光量の70%以上となる光である前記(1)記載のエタノールの製造方法、
(3)前記密閉された系内に、更なる二酸化炭素を添加する前記(1)又は(2)記載のエタノールの製造方法、
(4)前記回収工程が、蒸留によるものである前記(1)ないし(3)の何れか1つに記載のエタノールの製造方法、
に関する。
 尚、“380ないし520nm及び620ないし780nmの波長領域の発光量の合計が全波長領域に亘る発光量の70%以上となる”とは、使用する発光ダイオードの光の発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の合計を百分率で示した値が、70%以上となることを意味する。
 本発明のエタノールの製造方法は、糖の発酵反応で発生する二酸化炭素を原料として光合成反応により糖を産生するものであるため、二酸化炭素を排出せず、そのため、地球温暖化対策がなされたエタノールの製造方法といえる。
 加えて、光合成反応により産生された糖を原料としてエタノールが製造されるため、通常のエタノール発酵と比べると、エタノールの回収割合が高いものであり、更に、1つの容器内で3つの反応を同時に行えるため、操作が簡便で且つ効率的である、非常に優れたエタノールの製造方法である。
 また、本発明の好ましい態様においては、上記反応系内に、更なる二酸化炭素が添加されるが、それにより、更に効率よくエタノールを製造することができる。
 本発明のエタノールの製造方法は、糖を含む固液混合物、酵母及び植物葉緑体を含む密閉された系内において発光ダイオードの光を照射することによりエタノールを生成する生成工程と該系中から生成されたエタノールを系外に回収する回収工程とを含む。
 本発明に使用する糖を含む固液混合物は、セルロース又はヘミセルロースを熱分解又は加水分解して糖化するか、デンプンを含む米、麦、芋又はトウモロコシを麹、麦芽又は酵素剤を用いて糖化するか、野菜類及び/又は果実類を粉砕するか、或いは、野菜類及び/又は果実類を粉砕した後に、加熱濃縮法、冷凍濃縮法、逆浸透濃縮法及び真空濃縮法から選ばれる1種又は2種以上の濃縮法で濃縮することにより調製される。
 セルロース又はヘミセルロースとしては、木材等の植物体から得られるセルロース又はヘミセルロースが挙げられる。
 熱分解によるセルロースの糖化は、既知の方法、例えば、特許第1400009号公報に記載の方法により行うことができる。
 また、加水分解によるセルロース又はヘミセルロースの糖化は、既知の方法、例えば、特公昭61-044479号公報に記載の希硫酸を用いて加水分解する方法により行うことができる。
 また、糖を含む固液混合物は、デンプンを含む米、麦、芋又はトウモロコシを用い、必要に応じて外皮を取り除く工程、粉末化又は粉砕工程等を施し、これに麹、麦芽又は酵素剤を添加することにより調製することができる。
 上記酵素剤としては、アミラーゼが挙げられる。
 また、糖を含む固液混合物は、野菜類及び/又は果実類を粉砕するか、或いは、野菜類及び/又は果実類を粉砕した後に、加熱濃縮法、冷凍濃縮法、逆浸透濃縮法及び真空濃縮法から選ばれる1種又は2種以上の濃縮法で濃縮することにより調製することができる。
 野菜類としては、糖を含む限りにおいて何ら限定されるものではないが、具体例としては、ダイコン、甜菜、キャベツ、レタス、白菜、サトウキビ、トマト、ニンジン、タマネギ、ネギ等が挙げられる。
 果実類としては、糖を含む限りにおいて何ら限定されるものではないが、具体例としては、リンゴ、ミカン、ブドウ、白桃、黄桃、梨、パイナップル、マンゴー、バナナ、メロン、サクランボ、ビワ、ブルーベリー、イチゴ、キーウィ、ラズベリー、ブラックベリー、アンズ、カキ、スイカ等が挙げられる。
 上記野菜類及び果実類は、粉砕する前に洗浄するのが好ましい。
 粉砕方法としては、野菜類及び/又は果実類を粉砕するために通常使用されている方法を用いることができ、例えば、ミキサー(家庭用、業務用)による粉砕等が挙げられる。
 野菜類及び/又は果実類の粉砕により調製された糖を含む固液混合物は、更に、濃縮を行うことができる。
 濃縮は、固液混合物に含まれる糖の含有量が少ない場合に特に有効である。
 濃縮方法としては、加熱濃縮法、冷凍濃縮法、逆浸透濃縮法、真空濃縮法或いはこれらの2種以上を同時に又は連続的に行う濃縮法が挙げられる。
 上記濃縮法(加熱濃縮法、冷凍濃縮法、逆浸透濃縮法、真空濃縮法)は、通常、該技術分野において既知の方法(加熱濃縮法、冷凍濃縮法、逆浸透濃縮法、真空濃縮法)で行うことができる。
 尚、上記で調製された糖を含む固液混合物は、必要に応じて滅菌工程等を行うことができる。
 本発明に使用する酵母としては、エタノールを生成し得るものであれば特に限定されないが、具体的には、ワイン酵母、清酒酵母、ウィスキー酵母、ビール酵母等が挙げられる。
 本発明に使用する植物葉緑体としては、種子植物、シダ植物、藻類、コケ植物、細菌類又はこれらの混合物の植物葉緑体が挙げられる。
 種子植物としては、特に限定されないが、例えば、イチョウ、稲等が好ましい。
 シダ植物としては、特に限定されないが、例えば、ソテツ等が好ましい。
 藻類としては、特に限定されないが、例えば、カワモズク、灰色藻、クリプト藻、ワカメ、ユーグレナ藻、クロララクニオン藻、藍藻、ユレモ等が好ましい。
 コケ植物としては、特に限定されないが、例えば、ミズゴケ、クロゴケ、スギゴケ、ウロコゴケ、ゼニゴケ、ツノゴケ等が好ましい。
 細菌類としては、特に限定されないが、例えば、シアノバクテリア(アオコから抽出)等が好ましい。
 好ましい植物葉緑体としては、細菌類の植物葉緑体が挙げられ、また、シアノバクテリアの植物葉緑体が挙げられる。
 本発明に使用する植物葉緑体は、光合成により生成した糖が溶液中の酵母により効率よく発酵されるように、通常、植物の細胞膜を破壊しておくことが好ましい。植物の細胞膜の破壊は、例えば、植物を粉砕することにより行われ得る。
 しかし、細胞膜を破壊しなくても生成した糖が効率よく発酵される場合には、細胞膜を破壊しておく必要は無い。
 密閉された系としては、密閉され且つ光照射が可能で、且つ、発生した気体(二酸化炭素、酸素)による体積変化に対応可能な容器であれば、特に限定されないが、例えば、ガラス容器、金属容器等が挙げられる。
 ガラス容器の場合、光照射は、ガラス容器の外側から及び/又は内側から行うことができ、金属容器の場合は、容器の内側から光照射を行うことができる。
 また、上記容器は、発生する気体に対応できるよう、発生した気体を一時的に収容できる伸縮可能な部位を備えていることが好ましい。
 また、上記系は、攪拌可能であることが好ましい。
 また、上記ガラス容器は、例えば、発光ダイオードの周りに設置されたガラス管であって、糖を含む固液混合物、酵母及び植物葉緑体を含む溶液をエタノール生成反応が可能な速度で流すことによる連続反応が可能な容器でもあり得る。
 また、上記ガラス容器は、例えば、裏と表の両面から発光ダイオードの光照射が可能な、2枚のガラス板から構成され、該ガラス板の間に糖を含む固液混合物、酵母及び植物葉緑体を含む溶液をエタノール生成反応が可能な速度で流すことによる連続反応が可能な容器でもあり得る。
 本発明のエタノールの製造方法における、エタノールを生成する生成工程は、上述の密閉された系内に発光ダイオードの光を照射することにより行われが、該生成工程において、
a)糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、
b)a)の発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び
c)b)で得られた糖を酵母により発酵させてエタノールを生成する反応
の3つの反応が、前記密閉された系中で、並行して進行する。
 上記a)の酵母による発酵により、エタノールと二酸化炭素が生成する。
 生成した二酸化炭素は、植物葉緑体と発光ダイオードの光による光合成b)により、糖に変換され、またこの際、酸素が発生する。
 上記糖は、エタノール発酵に使用可能な糖であれば、特に限定されず、例えば、ショ糖、ブドウ糖等が挙げられる。
 上記b)で生成した糖は、酵母により発酵され(反応c))、エタノールと二酸化炭素が生成するが、生成した二酸化炭素は、再度b)の光合成、c)のアルコール発酵を経由してエタノールと酸素に変換され、このサイクルを繰り返すことにより最終的に二酸化炭素はその殆ど全てが、エタノールと酸素に変換されることとなる。
 従って、系中に存在する気体中の酸素濃度を測定することによって、反応の進行状況を把握することができる。
 系中に存在する気体中の酸素濃度が90%以上になるまで反応させることが好ましく、また、該濃度が95%以上になるまで反応させることがより好ましい。
 光合成反応で使用する発光ダイオードの光は、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が全波長領域に亘る発光量の70%以上となる光であるのが好ましく、より好ましくは、80%以上となる光であり、更に好ましくは90%以上となる光である。
 上記%が70未満である場合は、エタノールの製造効率が低下する傾向にある。
 また、380nmよりも短い波長の光は、実質的に含まれない、即ち、発光量が5%以下、また、3%以下が好ましく、また、0%であるのが望ましい。
 尚、“380ないし520nm及び620ないし780nmの波長領域の発光量の合計が全波長領域に亘る発光量の70%以上となる”とは、使用する発光ダイオードの光の発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の合計を百分率で示した値が、70%以上となることを意味する。
 本発明のエタノールの製造方法は、エタノールを生成する生成工程に加えて、生成されたエタノールを系外に回収する回収工程とを含む。
 回収工程は、反応系中からエタノールを分離し得る方法であれば、特に限定はしないが、例えば、蒸留法、膜分離法等の既知の方法を用いることができる。
 また、蒸留法でエタノールを回収する場合、蒸留操作に使用する容器は、生成工程を行った容器をそのまま使用することができ、また、別容器に反応液を移し変えて使用することもできる。
 本発明の好ましい態様は、前記密閉された系内に、更なる二酸化炭素を添加するエタノールの製造方法である。
 更なる二酸化炭素の添加により、エタノールの製造効率を更に向上することができる。
 上記更なる二酸化炭素の添加は、例えば、反応容器に、二酸化炭素の導入管を接続したり、二酸化炭素の雰囲気下に置くこと等により達成される。
 尚、二酸化炭素を添加する際、二酸化炭素が外部に流出しないように、系全体として密閉されるようにする。
 本発明の好ましい態様において、前記回収工程は、蒸留により達成される。
 蒸留法としては、要求されるエタノールの純度に応じて、単蒸留、共沸蒸留、ベンゼンを加えた共沸蒸留等の何れを選択することもできる。
製造例1:糖を含む固液混合物(米)の製造
 食品店より購入した米粉330gにアミラーゼ6g及び水315gを加え、ミキサーで攪拌し、湯煎して70℃ないし80℃に保ち、12時間かけて米粉を糖化することにより、糖を含む固液混合物(米)651gを調製した。
製造例2:糖を含む固液混合物(小麦)の製造
 食品店より購入した小麦粉330gにアミラーゼ6g及び水315gを加え、ミキサーで攪拌し、湯煎して70℃ないし80℃に保ち、12時間かけて小麦粉を糖化することにより、糖を含む固液混合物(小麦)651gを調製した。
製造例3:糖を含む固液混合物(トウモロコシ)の製造
 食品店より購入したトウモロコシ粉330gにアミラーゼ6g及び水315gを加え、ミキサーで攪拌し、湯煎して70℃ないし80℃に保ち、12時間かけてトウモロコシ粉を糖化することにより、糖を含む固液混合物(トウモロコシ)651gを調製した。
実施例1ないし10及び比較例1
 製造例1で製造した糖を含む固液混合物(米)217g及び酵母3gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)220gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ11個の100mLビーカーに分け、異なる植物の粉砕物10種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例1ないし10)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例1)。
 上記で用意した11本の注射器に白色発光ダイオード200個、赤色発光ダイオード200個、青色発光ダイオード100個及び緑色発光ダイオード100個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、80%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表1に纏めた。
 尚、表中、記号aないしjは以下の植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
a:イチョウの葉、b:ソテツの葉、c:稲の葉、d:カワモズク、e:灰色藻、f:クリプト藻、g:生ワカメ、h:ユーグレナ藻、i:クロララクニオン藻、j:藍藻
Figure JPOXMLDOC01-appb-T000001
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が80%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例1ないし10)が、これは、植物葉緑体を用いなかった場合(比較例1)に比して、約1.3倍の収量増であった。
実施例11ないし20及び比較例2
 製造例2で製造した糖を含む固液混合物(小麦)217g及び酵母3gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(小麦)220gを調製した。
 調製した酵母入りの糖を含む固液混合物(小麦)を20gづつ11個の100mLビーカーに分け、異なる植物の粉砕物10種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例11ないし20)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(小麦)20gを100mLの注射器に注入した(比較例2)。
 上記で用意した11本の注射器に白色発光ダイオード200個、赤色発光ダイオード200個、黄色発光ダイオード100個及び藍色発光ダイオード100個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、77%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表2に纏めた。
 尚、表中、記号aないしjは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000002
結果:
 デンプンを含む小麦を糖化して調製された固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が77%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例11ないし20)が、これは、植物葉緑体を用いなかった場合(比較例2)に比して、約1.3倍の収量増であった。
実施例21ないし30及び比較例3
 製造例3で製造した糖を含む固液混合物(トウモロコシ)217g及び酵母3gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(トウモロコシ)220gを調製した。
 調製した酵母入りの糖を含む固液混合物(トウモロコシ)を20gづつ11個の100mLビーカーに分け、異なる植物の粉砕物10種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例21ないし30)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(トウモロコシ)20gを100mLの注射器に注入した(比較例3)。
 上記で用意した11本の注射器に白色発光ダイオード200個、赤色発光ダイオード200個、橙色発光ダイオード100個及び紫色発光ダイオード100個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、85%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表3に纏めた。
 尚、表中、記号aないしjは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000003
結果:
 デンプンを含むトウモロコシを糖化して調製された固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が85%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、4.3ないし4.5mL程度のエタノールが製造された(実施例21ないし30)が、これは、植物葉緑体を用いなかった場合(比較例3)に比して、約1.3倍の収量増であった。
実施例31ないし40及び比較例4
 製造例3で製造した糖を含む固液混合物(トウモロコシ)217g及び酵母3gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(トウモロコシ)220gを調製した。
 調製した酵母入りの糖を含む固液混合物(トウモロコシ)を20gづつ11個の100mLビーカーに分け、異なる植物の粉砕物10種類を1gづつ各ビーカーに添加して攪拌した後、各ビーカーを密閉した箱の中に置いた。
 上記実験とは別に発酵実験を行い、該発酵実験から放出される二酸化炭素を、上記密閉した箱中の各ビーカーの液面で混ざるように、各ビーカーに管を通して導入した(実施例31ないし40)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(トウモロコシ)20gが入ったビーカーを上記密閉した箱中に入れた(比較例4)。
 上記の各ビーカーに白色発光ダイオード200個、赤色発光ダイオード200個、橙色発光ダイオード100個及び紫色発光ダイオード100個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、85%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表4に纏めた。
 尚、表中、記号aないしjは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000004
結果:
 デンプンを含むトウモロコシを糖化して調製された固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、更なる二酸化炭素を添加して、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が85%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、5.3ないし5.6mL程度のエタノールが製造された(実施例31ないし40)が、これは、植物葉緑体を用いなかった場合(比較例4)に比して、約1.6倍の収量増であり、また、更なる二酸化炭素を添加していない実施例21ないし30に比して、約1.24倍の収量増であった。
製造例4:糖を含む固液混合物(米)の製造
 食品店より購入した米粉530gにアミラーゼ(アルファアミラーゼとグルコアミラーゼの混合)10g及び水525gを加え、ミキサーで攪拌し、湯煎して70℃ないし80℃に保ち、12時間かけて米粉を糖化することにより、糖を含む固液混合物(米)1065gを調製した。
実施例41ないし57及び比較例5
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例41ないし57)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例5)。
 上記で用意した18本の注射器に白色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、80%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表5に纏めた。
 尚、表中、記号aないしqは以下の植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
a:イチョウの葉、b:ソテツの葉、c:稲の葉、d:カワモズク、e:灰色藻、f:クリプト藻、g:生ワカメ、h:ユーグレナ藻、i:クロララクニオン藻、j:藍藻、k:ミズゴケ、l:クロゴケ、m:スギゴケ、n:ウロコゴケ、o:ゼニゴケ、p:ツノゴケ、q:シアノバクテリア(アオコから抽出)
Figure JPOXMLDOC01-appb-T000005
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が80%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例41ないし57)が、これは、植物葉緑体を用いなかった場合(比較例5)に比して、約1.3倍の収量増であった。
実施例58ないし74及び比較例6
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例58ないし74)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例6)。
 上記で用意した18本の注射器に赤色発光ダイオード200個、青色発光ダイオード200個及び緑色発光ダイオード200個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、74%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表6に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000006
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が74%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例58ないし74)が、これは、植物葉緑体を用いなかった場合(比較例6)に比して、約1.3倍の収量増であった。
実施例75ないし91及び比較例7
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例75ないし91)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例7)。
 上記で用意した18本の注射器に赤色発光ダイオード300個及び青色発光ダイオード300個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、100%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表7に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000007
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が100%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例75ないし91)が、これは、植物葉緑体を用いなかった場合(比較例7)に比して、約1.3倍の収量増であった。
実施例92ないし108及び比較例8
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例92ないし108)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例8)。
 上記で用意した18本の注射器に青色発光ダイオード300個及び緑色発光ダイオード300個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、60%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表8に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000008
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が60%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例108)を除き、何れの植物葉緑体を用いた場合も、3.3ないし3.4mL程度のエタノールが製造された(実施例92ないし107)が、これは、植物葉緑体を用いなかった場合(比較例8)に比して、約1.1倍の収量増であった。qのシアノバクテリアの場合(実施例108)は、比較例8に比して、約1.23倍の収量増があった。
実施例109ないし125及び比較例9
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例109ないし125)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例9)。
 上記で用意した18本の注射器に赤色発光ダイオード300個及び緑色発光ダイオード300個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、60%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表9に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000009
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が60%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例125)を除き、何れの植物葉緑体を用いた場合も、3.2ないし3.3mL程度のエタノールが製造された(実施例109ないし124)が、これは、植物葉緑体を用いなかった場合(比較例9)に比して、約1.1倍程度の収量増であった。qのシアノバクテリアの場合(実施例125)は、比較例9に比して、約1.22倍の収量増があった。
実施例126ないし142及び比較例10
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例126ないし142)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例10)。
 上記で用意した18本の注射器に青色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、100%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表10に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000010
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が100%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例126ないし142)が、これは、植物葉緑体を用いなかった場合(比較例10)に比して、約1.3倍の収量増であった。
実施例143ないし159及び比較例11
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例143ないし159)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例11)。
 上記で用意した18本の注射器に赤色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、100%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表11に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000011
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が100%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.8ないし3.9mL程度のエタノールが製造された(実施例143ないし159)が、これは、植物葉緑体を用いなかった場合(比較例11)に比して、約1.3倍の収量増であった。
実施例160ないし176及び比較例12
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例160ないし176)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例12)。
 上記で用意した18本の注射器に緑色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、20%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表12に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000012
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が20%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例176)を除き、何れの植物葉緑体を用いた場合も、3.4ないし3.5mL程度のエタノールが製造された(実施例160ないし175)が、これは、植物葉緑体を用いなかった場合(比較例12)に比して、約1.15倍程度の収量増であった。qのシアノバクテリアの場合(実施例176)は、比較例12に比して、約1.27倍の収量増があった。
実施例177ないし193及び比較例13
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例177ないし193)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例13)。
 上記で用意した18本の注射器に黄色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、0%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表13に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000013
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が0%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例193)を除き、何れの植物葉緑体を用いた場合も、3.2ないし3.4mL程度のエタノールが製造された(実施例177ないし192)が、これは、植物葉緑体を用いなかった場合(比較例13)に比して、約1.1倍程度の収量増であった。qのシアノバクテリアの場合(実施例193)は、比較例13に比して、約1.22倍の収量増があった。
実施例194ないし210及び比較例14
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例194ないし210)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例14)。
 上記で用意した18本の注射器に紫色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、100%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表14に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000014
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が100%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例210)を除き、何れの植物葉緑体を用いた場合も、3.8ないし4.0mL程度のエタノールが製造された(実施例194ないし209)が、これは、植物葉緑体を用いなかった場合(比較例14)に比して、約1.3倍の収量増であった。qのシアノバクテリアの場合(実施例210)は、比較例14に比して約1.47倍の収量増であった。
実施例211ないし227及び比較例15
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、100mLの注射器に注入した(実施例211ないし227)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gを100mLの注射器に注入した(比較例15)。
 上記で用意した18本の注射器に橙色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、50%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表15に纏めた。
 尚、表中、記号aないしqは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000015
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が50%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例227)を除き、何れの植物葉緑体を用いた場合も、3.4ないし3.5mL程度のエタノールが製造された(実施例211ないし226)が、これは、植物葉緑体を用いなかった場合(比較例15)に比して、約1.15倍程度の収量増であった。qのシアノバクテリアの場合(実施例227)は、比較例15に比して、約1.26倍の収量増があった。
実施例228ないし244及び比較例16
 製造例4で製造した糖を含む固液混合物(米)355g及び酵母5gをミキサーで攪拌し、酵母入りの糖を含む固液混合物(米)360gを調製した。
 調製した酵母入りの糖を含む固液混合物(米)を20gづつ18個の100mLビーカーに分け、異なる植物の粉砕物17種類を1gづつ各ビーカーに添加して攪拌した後、各ビーカーを密閉した箱の中に置いた。
 上記実験とは別に発酵実験を行い、該発酵実験から放出される二酸化炭素を、上記密閉した箱中の各ビーカーの液面で混ざるように、各ビーカーに管を通して導入した(実施例228ないし244)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(米)20gが入ったビーカーを上記密閉した箱中に入れた(比較例16)。
 上記の各ビーカーに白色発光ダイオード600個から構成される発光ダイオードの光(合計で36ワット/時)を24時間照射した。発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、80%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表16に纏めた。
 尚、表中、記号aないしjは上記で示したのと同じ植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
Figure JPOXMLDOC01-appb-T000016
結果:
 デンプンを含む米を糖化して調製された固液混合物、酵母及び種々の植物(aないしq)の植物葉緑体を含む密閉された系内に、更なる二酸化炭素を添加して、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が80%となる発光ダイオードの光を照射すると、qのシアノバクテリアの場合(実施例244)を除き、何れの植物葉緑体を用いた場合も、5.5ないし5.6mL程度のエタノールが製造された(実施例228ないし243)が、これは、植物葉緑体を用いなかった場合(比較例16)に比して、約1.7倍の収量増であり、また、更なる二酸化炭素を添加していない実施例41ないし57に比して、約1.4倍の収量増であった。また、qのシアノバクテリアの場合(実施例244)は、更なる二酸化炭素を添加していない実施例57に比して約2倍の収量増であった。
製造例5:糖を含む固液混合物(サトウキビ)の製造
 食品店よりサトウキビを購入し洗浄した。サトウキビを絞った汁から砂糖を除いた液体を攪拌し、2000gの廃糖蜜(糖を含む固液混合物(サトウキビ))を調製した。
製造例6:糖を含む固液混合物(黄桃)の製造
 食品店より黄桃を購入し洗浄した。黄桃を粉砕し、2000gの水を加えない糖を含む固液混合物(黄桃)を調製した。
実施例245ないし254及び比較例17
 製造例5で製造した廃糖蜜(糖を含む固液混合物(サトウキビ))660g及び酵母10gと870gの水をミキサーで攪拌し、酵母入りの廃糖蜜(糖を含む固液混合物(サトウキビ))1540を調製した。
 調製した酵母入りの廃糖蜜(糖を含む固液混合物(サトウキビ))を140gづつ11個の300mLビーカーに分け、異なる植物の粉砕物10種類を5gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、300mLの注射器に注入した(実施例245ないし254)。
 尚、比較として、植物の粉砕物を入れない酵母入りの廃糖蜜(糖を含む固液混合物(サトウキビ))140gを300mLの注射器に注入した(比較例17)。
 上記で用意した11本の注射器に白色発光ダイオード200個、赤色発光ダイオード200個及び青色発光ダイオード200個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、93%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表17に纏めた。
 尚、表中、記号aないしjは以下の植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
a:イチョウの葉、b:ソテツの葉、c:稲の葉、d:カワモズク、e:灰色藻、f:クリプト藻、g:生ワカメ、h:ユーグレナ藻、i:クロララクニオン藻、j:藍藻
Figure JPOXMLDOC01-appb-T000017
結果:
 野菜類であるサトウキビを粉砕して調製された糖を含む固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が93%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.0ないし3.6mL程度のエタノールが製造された(実施例245ないし254)が、これは、植物葉緑体を用いなかった場合(比較例17)に比して、約1.65倍の収量増であった。
実施例255ないし264及び比較例18
 製造例6で製造した糖を含む固液混合物(黄桃)660g及び酵母10gと870gの水をミキサーで攪拌し、酵母入りの糖を含む固液混合物(黄桃)1540を調製した。
 調製した酵母入りの糖を含む固液混合物(黄桃)を140gづつ11個の300mLビーカーに分け、異なる植物の粉砕物10種類を5gづつ各ビーカーに添加して攪拌した後、各溶液を透明ガラス製の容器である、300mLの注射器に注入した(実施例255ないし264)。
 尚、比較として、植物の粉砕物を入れない酵母入りの糖を含む固液混合物(黄桃)140gを300mLの注射器に注入した(比較例18)。
 上記で用意した11本の注射器に赤色発光ダイオード200個、緑色発光ダイオード200個、紫色発光ダイオード100個及び藍色発光ダイオード100個から構成される計600個の発光ダイオードの光(合計で36ワット/時)を24時間照射した。各注射器から回収された気体の酸素濃度を酸素濃度測定器で測定した。また、発光ダイオードの発光スペクトルを測定し、記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率を求めたところ、73%であった。
 各注射器の中の溶液を蒸留し、アルコールの回収量を測定した。
 測定誤差を考慮して上記操作を3回行った。
 結果を表18に纏めた。
 尚、表中、記号aないしjは以下の植物を表わし、“面積比”は、発光スペクトルにおいて記録された全スペクトル面積に対する380ないし520nm及び620ないし780nmの波長領域のスペクトル面積の比率(%)を表わす。
a:イチョウの葉、b:ソテツの葉、c:稲の葉、d:カワモズク、e:灰色藻、f:クリプト藻、g:生ワカメ、h:ユーグレナ藻、i:クロララクニオン藻、j:藍藻
Figure JPOXMLDOC01-appb-T000018
結果:
 果実類である黄桃を粉砕して調製された糖を含む固液混合物、酵母及び種々の植物(aないしj)の植物葉緑体を含む密閉された系内に、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が73%となる発光ダイオードの光を照射すると、何れの植物葉緑体を用いた場合も、3.3ないし3.9mL程度のエタノールが製造された(実施例255ないし264)が、これは、植物葉緑体を用いなかった場合(比較例18)に比して、約1.64倍の収量増であった。
 本発明のエタノールの製造方法は、二酸化炭素を排出しないため、CO2削減の観点において有用な方法とえいる。また、本発明のエタノールの製造方法は、副生成物として酸素が得られるため、これを有効な資源として活用することもできる。
 また、本発明のエタノールの製造方法は、外部からの二酸化炭素を取り込んでエタノールに変換し得るものであるため、二酸化炭素を固定化するという観点からも有用なエタノールの製造方法となり得るものである。
                                                                        

Claims (4)

  1. 糖を含む固液混合物、酵母及び植物葉緑体を含む密閉された系内において発光ダイオードの光を照射することによりエタノールを生成する生成工程と該系中から生成されたエタノールを系外に回収する回収工程とを含むエタノールの製造方法であって、
    前記生成工程において、
    a)糖を含む固液混合物を酵母により発酵させてエタノールを生成する反応、
    b)a)の発酵の際に発生する二酸化炭素を、植物葉緑体と発光ダイオードの光照射により光合成させて糖とする反応、及び
    c)b)で得られた糖を酵母により発酵させてエタノールを生成する反応
    が並行して進行することを特徴とし、前記糖を含む固液混合物は、セルロース又はヘミセルロースを熱分解又は加水分解して糖化するか、デンプンを含む米、麦、芋又はトウモロコシを麹、麦芽又は酵素剤を用いて糖化するか、野菜類及び/又は果実類を粉砕するか、或いは、野菜類及び/又は果実類を粉砕した後に、加熱濃縮法、冷凍濃縮法、逆浸透濃縮法及び真空濃縮法から選ばれる1種又は2種以上の濃縮法で濃縮することにより調製されるものであり、前記植物葉緑体は、種子植物、シダ植物、藻類、コケ植物、細菌類又はこれらの混合物の植物葉緑体であるエタノールの製造方法。
  2. 前記発光ダイオードの光は、380ないし520nm及び620ないし780nmの波長領域の発光量の合計が全波長領域に亘る発光量の70%以上となる光である請求項1記載のエタノールの製造方法。
  3. 前記密閉された系内に、更なる二酸化炭素を添加する請求項1又は2記載のエタノールの製造方法。
  4. 前記回収工程が、蒸留によるものである請求項1ないし3の何れか1項に記載のエタノールの製造方法。

                                                                            
PCT/JP2008/069523 2008-01-21 2008-10-28 エタノールの製造方法 WO2009093367A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008036674A JP4179399B1 (ja) 2008-01-21 2008-01-21 アルコールの製造方法
JP2008-036674 2008-01-21
JP2008-235164 2008-09-12
JP2008235164A JP4209462B1 (ja) 2008-09-12 2008-09-12 エタノールの製造方法

Publications (1)

Publication Number Publication Date
WO2009093367A1 true WO2009093367A1 (ja) 2009-07-30

Family

ID=40900883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069523 WO2009093367A1 (ja) 2008-01-21 2008-10-28 エタノールの製造方法

Country Status (1)

Country Link
WO (1) WO2009093367A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133351A3 (en) * 2008-04-28 2010-06-17 Naturally Scientific Energy Limited Production of biofuel from plant tissue culture sources
JP2011254748A (ja) * 2010-06-08 2011-12-22 Kobe Univ エタノールの生産方法
KR20170082519A (ko) * 2014-10-01 2017-07-14 에그플랜트 에스.알.엘. 바이오폴리머 매트릭스 복합체의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148587A (ja) * 1974-05-22 1975-11-28
JPH0787986A (ja) * 1993-09-27 1995-04-04 Mitsubishi Heavy Ind Ltd 微細藻からのエタノールの製造方法
JP2000060585A (ja) * 1998-08-19 2000-02-29 Japan Science & Technology Corp Co2 の培養バイオマス変換によるエタノールの生産方 法
JP3073908U (ja) * 2000-06-07 2000-12-15 達治 小林 光合成細菌増殖用光源及び該光源を設置してなる汚水処理装置
JP2002315569A (ja) * 2001-04-24 2002-10-29 Tokai Sangyo Kk 藻類の培養方法
JP2007325564A (ja) * 2006-06-09 2007-12-20 Satake Corp エタノールの製造方法及びその製造施設

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148587A (ja) * 1974-05-22 1975-11-28
JPH0787986A (ja) * 1993-09-27 1995-04-04 Mitsubishi Heavy Ind Ltd 微細藻からのエタノールの製造方法
JP2000060585A (ja) * 1998-08-19 2000-02-29 Japan Science & Technology Corp Co2 の培養バイオマス変換によるエタノールの生産方 法
JP3073908U (ja) * 2000-06-07 2000-12-15 達治 小林 光合成細菌増殖用光源及び該光源を設置してなる汚水処理装置
JP2002315569A (ja) * 2001-04-24 2002-10-29 Tokai Sangyo Kk 藻類の培養方法
JP2007325564A (ja) * 2006-06-09 2007-12-20 Satake Corp エタノールの製造方法及びその製造施設

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133351A3 (en) * 2008-04-28 2010-06-17 Naturally Scientific Energy Limited Production of biofuel from plant tissue culture sources
EP2311970A1 (en) * 2008-04-28 2011-04-20 Naturally Scientific Technologies Limited Method for the production of bioproducts
US9447442B2 (en) 2008-04-28 2016-09-20 Naturally Scientific Technologies Limited Production of biofuel from tissue culture sources
US10465215B2 (en) 2008-04-28 2019-11-05 Naturally Scientific Technologies Limited Production of biofuel from tissue culture sources
JP2011254748A (ja) * 2010-06-08 2011-12-22 Kobe Univ エタノールの生産方法
KR20170082519A (ko) * 2014-10-01 2017-07-14 에그플랜트 에스.알.엘. 바이오폴리머 매트릭스 복합체의 제조 방법
US10961387B2 (en) 2014-10-01 2021-03-30 Eggplant S.R.L. Methods for producing biopolymer matrix composites
KR102535278B1 (ko) 2014-10-01 2023-05-22 에그플랜트 에스.알.엘. 바이오폴리머 매트릭스 복합체의 제조 방법

Similar Documents

Publication Publication Date Title
Shokrkar et al. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture
Rodríguez et al. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation
Mohanty et al. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation
ES2390347T3 (es) Método para la producción aumentada de biogás en fermentadores anaerobios termofílicos
Zhang et al. Biological hydrogen production from renewable resources by photofermentation
Asli A study on some efficient parameters in batch fermentation of ethanol using Saccharomyces cerevesiae SC1 extracted from fermented siahe sardasht pomace
US20080085536A1 (en) Production of Cellulose in Halophilic Photosynthetic Prokaryotes (Cyanobacteria)
CN103154260A (zh) 制造丁醇或丙酮的工艺
JP5775862B2 (ja) 微細藻類の培養方法及び微細藻類の使用方法
CN110066834A (zh) 一种白藜芦醇的提取方法
Horiuchi et al. Biological approach for effective utilization of worthless onions—vinegar production and composting
JP2010094093A (ja) 柑橘類外皮からエタノールを製造する方法
WO2009093367A1 (ja) エタノールの製造方法
Ishika et al. How harvesting frequency influence the biomass and lipid productivities of Nannochloropsis sp.
Horiuchi et al. Onion alcohol production by repeated batch process using a flocculating yeast
Wijanarko et al. Effect of photoperiodicity on CO2 fixation by Chlorella vulgaris Buitenzorg in bubble column photobioreactor for food supplement production
Chatterjee et al. Isolation And Characterization of Local Yeast Strains From Waste Fruit Juices, Jaggery, And Dahi Samples
Wang et al. Research on separation, identification, and kinetic characterization of mixed photosynthetic and anaerobic culture (MPAC) for hydrogen production
Bhatti et al. Impact of storage time, rain and quality of molasses in the production of bioethanol
James et al. Effect of phosphorus-limited nutrients on growth and glucose production from microalgae
JP4209462B1 (ja) エタノールの製造方法
CN102433290B (zh) 一株产瓜氨酸的菌株及用该菌株生物合成瓜氨酸的方法
CN109825546B (zh) 一种利用雨生红球藻生产虾青素的方法
US20080124767A1 (en) Production and Secretion of Sucrose in Photosynthetic Prokaryotes (Cyanobacteria)
JP6478366B2 (ja) アルコール製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871198

Country of ref document: EP

Kind code of ref document: A1