WO2009092183A1 - 一种信号发射方法及发射机 - Google Patents

一种信号发射方法及发射机 Download PDF

Info

Publication number
WO2009092183A1
WO2009092183A1 PCT/CN2008/002010 CN2008002010W WO2009092183A1 WO 2009092183 A1 WO2009092183 A1 WO 2009092183A1 CN 2008002010 W CN2008002010 W CN 2008002010W WO 2009092183 A1 WO2009092183 A1 WO 2009092183A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
modulation
space
coding
result
Prior art date
Application number
PCT/CN2008/002010
Other languages
English (en)
French (fr)
Inventor
Jun Ren
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Publication of WO2009092183A1 publication Critical patent/WO2009092183A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing

Definitions

  • the present invention relates to signal processing techniques at the transmitter end of a communication system, and more particularly to a signal transmission method and transmitter. Background technique
  • CDD cyclic delay diversity
  • CDD can not only obtain partial coding gain, but also effectively Lowering the BER (Bit Error Rate), and also reducing the complexity of the receiver design, while flexibly configuring the number of transmitter antennas during transmission, is a practical and effective multi-antenna transmission technology, but This technique is difficult to achieve full-scale gain;
  • STBC Space Time Block Code
  • STBC Space Time Block Code
  • the basic principle of cyclic delay diversity is shown in Figure 1.
  • the output bit stream is bO, M, ..., bn, and the modulation symbol S1 is obtained through modulation mapping.
  • S2, . . . , Sm modulation symbols are subjected to OFDM (Orthogonal Frequency Division Multiplexing) modulation after serial-to-parallel conversion, and then time-domain signals F1, F2, ..., Fm are generated through the parallel conversion. .
  • the time domain signal is copied to K before being transmitted. The first copy remains as it is, without any delay.
  • d0 It is represented by d0, and the other cycles are delayed by dl, d2, ..., dK samples, and then each time.
  • the domain signal is added with a cyclic prefix CP (to prevent interference between OFDM symbols), and finally transmitted through K antennas after up-conversion and power amplification.
  • the basic principle of space-time block coding is shown in Figure 2.
  • the output bit stream after pre-bit processing such as convolutional coding, puncturing, and interleaving is b0, bl, ..., bn, and the modulation symbol S1 is obtained through modulation mapping.
  • S2, ..., Sm the modulation symbols are grouped and subjected to STBC coding.
  • Nt the number of transmit antennas
  • Nt the number of rows of the STBC matrix
  • each row of the STBC matrix corresponds to a transmit antenna
  • each line of the STBC-encoded output signal is subjected to OFDM modulation to generate a time domain signal, and then a cyclic prefix is added.
  • OFDM modulation to generate a time domain signal
  • a cyclic prefix is added.
  • both the cyclic delay diversity transmission and the space-time block coded transmission have their own shortcomings.
  • the former has the disadvantage that it is difficult to achieve full-scale gain, and the latter has the disadvantage of not contributing coding gain and space-time grouping.
  • the coding scheme is subject to the number of transmit antennas and the number of transmitter antennas cannot be flexibly configured. Summary of the invention
  • An object of the present invention is to provide a signal transmission method and a transmitter which solve the technical problem that the prior art cannot simultaneously achieve full diversity gain and coding gain.
  • the present invention provides a signal transmission method, including: performing space time block coding on a bit stream to obtain a coding result; performing orthogonal frequency division multiplexing modulation on the coding result to obtain a modulation result; The modulation result is subjected to cyclic delay diversity processing to obtain a processing result; the processing result is transmitted.
  • the step of performing space-time block coding on the bit stream to obtain an encoding result specifically includes: performing pre-processing on the input bit stream; modulating and mapping the pre-processed bit stream; The modulated signals obtained after the mapping are grouped, and the space-time block coding mode is selected; space-time block coding is performed to generate an Nt channel output signal, where Nt is the number of rows of the space-time block coded matrix.
  • the pre-processing includes: convolutional coding, puncturing and interleaving processing.
  • the step of performing orthogonal frequency division multiplexing modulation on the coding result to obtain a modulation result specifically includes: performing orthogonal frequency division multiplexing modulation on each of the output signals separately; generating Nt Orthogonal frequency division multiplexing signal.
  • the step of performing cyclic delay diversity processing on the modulation result to obtain a processing result specifically includes:: each orthogonal frequency division multiplexing signal according to the number K of cyclic delay diversity Copying to ⁇ sample signal, the first sample signal remains intact, and each of the remaining sample signals is cyclically delayed to obtain K-1 delayed sample signals; a soft control switch is added to the delayed sample signal line If the joint processing of space-time packet coding and cyclic delay diversity is required, the delayed sample signal is added to the output stream by closing the switch; if only space-time packet coding is required, by opening The switch is configured to prevent the delayed sample signal from entering the output stream; adding a cyclic prefix to all sample signals added to the output stream; and applying the cyclic prefix plus the sample signal to the transmit antenna after upconversion and power amplification.
  • the present invention further provides a signal transmitter, comprising: a space time block coding module, configured to perform space time block coding on an input bit stream to obtain a coding result; an orthogonal frequency division multiplexing modulation module, And a cyclic delay diversity processing module, configured to perform cyclic delay diversity processing on the modulation result to obtain a processing result.
  • the space-time block coding module specifically includes sequential connection: a pre-processing unit, configured to perform pre-processing on the input bit stream; and a modulation and mapping unit, configured to compare the pre-processed ratio The special stream is modulated and mapped; the coding unit is configured to group the modulated signals obtained after modulation and mapping, select a space-time block coding mode, and perform space-time block coding to generate an M-channel output signal, where Nt is the null The number of rows of the block coded matrix.
  • the cyclic delay diversity processing module specifically includes: K lines, which are used to copy each of the orthogonal frequency division multiplexing signals into K sample signals, and the first sample signal remains unchanged. The remaining sample signals are cyclically delayed to obtain K-1 delayed sample signals; K-1 control switches are respectively disposed on the K-1 delayed sample signals.
  • control is a soft switch that can be controlled by software.
  • the embodiment of the present invention adopts space-time block coding at the front end of the transmitter, which can realize full gain, and is not limited to the number of transmitting antennas, and can flexibly configure the transmitting antenna;
  • the transmitter uses cyclic delay diversity transmission based on space-time block coding, the requirements for receiver design are greatly reduced, and additional transmit diversity gain can be obtained.
  • the soft control switch can be used to conveniently select between space-time block coded transmission and cyclic delay diversity and space-time block coded joint transmission, which has certain compatibility.
  • FIG. 3 is a schematic diagram of a basic principle of joint transmission of 2x2 STBC and cyclic delay diversity according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a basic principle of joint transmission of 4x4 STBC and cyclic delay diversity according to an embodiment of the present invention
  • FIG. 6 is a structural diagram of a transmitter according to an embodiment of the present invention. detailed description
  • space-time block coding is used at the front end of the transmitter, and after the OFDM modulation is performed on the coded output result, the output OFDM signal is subjected to cyclic delay diversity processing at the back end, and the delayed sample is processed in the cyclic delay diversity process.
  • a soft control switch is added to the line.
  • Figure 3 and Figure 4 are basic schematic diagrams of joint transmission of 2x2 STBC and 4x4 STBC and cyclic delay diversity, respectively.
  • the output bit stream after pre-bit processing such as convolutional coding, puncturing, and interleaving
  • modulation mapping modulation symbols S1, S2, ..., Sm are obtained, and modulation symbols are grouped and STBC coded, and the number of transmit antennas corresponding to STBC is M
  • the STBC-encoded output signal is OFDM modulated to generate a time domain signal with a cyclic prefix.
  • Each time domain signal is copied to K before being transmitted. The first one remains in its original state without any delay. It is represented by d0.
  • the other cycles are respectively delayed by dl, d2, ..., dK samples, and finally up-converted. And after power amplification, it is transmitted through NtxK antennas.
  • the embodiment of the present invention adds a soft control switch (which can be controlled by software or hardware) at the entrance of the cyclic delay.
  • the soft control switch When the CDD is required, the soft control switch is closed to implement STBC and CDD.
  • the joint transmission process when CDD processing is not required, the soft control switch is turned off, and only the STBC is processed.
  • the dotted line frame portion indicates the space time block code transmission scheme
  • the switch when the switch is closed, the dotted line frame portion indicates the cyclic delay diversity transmission scheme.
  • FIG. 5 is a flowchart of a step of a signal transmitting side according to an embodiment of the present invention. As shown in the figure, the implementation steps include: Step 501: input a bit stream;
  • Step 502 Perform pre-bitstream processing such as convolutional coding, puncturing, and interleaving on the input bitstream.
  • Step 503 Perform symbol modulation and mapping on the pre-processed bitstream.
  • Step 504 Group the modulation symbols according to the requirement of the number of antennas encoded by the space-time block, and select a space-time group coding mode.
  • Step 505 outputting an Nt way symbol after space-time block coding
  • Step 506 Perform OFDM modulation on each symbol to generate an Nt OFDM symbol.
  • Step 507 Copy each symbol in the Nt OFDM symbol to K shares according to the number K of antennas of the cyclic delay diversity.
  • Step 508 the first one remains as it is, without any delay, represented by d0, and each of the other cycles has a delay of dl, d2, ..., dK;
  • Step 509 Before adding the cyclic delay sample, adding a soft control switch before the cyclic delay sample; determining whether to perform joint processing of STBC and CDD, if yes, performing step 510; otherwise, performing step 511;
  • Step 510 adding a cyclic prefix CP after adding the cyclic delay sample; when it is necessary to implement STBC and CDD When the joint processing, the soft control switch is closed; go to step 5 ⁇ 2;
  • Step 511 When CDD processing is not required, the soft control switch is turned off, and only STBC processing is performed; Step 512, finally, the signal is up-converted and power amplified, and then sent to the transmitting antenna.
  • FIG. 6 is a structural diagram of a transmitter according to an embodiment of the present invention. As shown in the figure, the transmitter includes a sequence connection: a space time block coding module 61, configured to perform space time block coding on the input bit stream;
  • the orthogonal frequency division multiplexing modulation module 62 is configured to perform orthogonal frequency division multiplexing modulation on the result of the space time block coding
  • the cyclic delay diversity processing module 63 is configured to perform cyclic delay on the result of the orthogonal frequency division multiplexing modulation. Diversity processing.
  • the space-time block coding module 61 specifically includes a sequence connection: a pre-processing unit 611, configured to perform pre-processing on the input bit stream, and a modulation and mapping unit 612, configured to modulate and map the pre-processed bit stream;
  • the encoding unit 613 is configured to group the modulated signals obtained after the modulation and mapping, select a space time block coding mode, and perform space time block coding to generate an Nt path output signal, where Nt is a matrix of the space time block coding. Rows.
  • the cyclic delay diversity processing module 63 specifically includes:
  • K lines are used to copy each of the orthogonal frequency division multiplexed signals into K sample signals, the first sample signal remains unchanged, and each sample signal is cyclically delayed to obtain K-1 delays.
  • K-1 control switches are respectively disposed on the lines of the K-1 delayed sample signals
  • K prefix units are respectively disposed at the end of the K lines for adding a cyclic prefix to the sample signal, and the sample signal added with the cyclic prefix is up-converted and power amplified and sent to the transmitting antenna.
  • the control switch is a soft switch that can be controlled by software.
  • the embodiment of the present invention uses space-time block coding at the front end of the transmitter to achieve full gain, and is not limited to the number of transmit antennas, and the transmit antenna can be flexibly configured;
  • the transmitter uses cyclic delay diversity transmission based on space-time block coding, the requirements for receiver design are greatly reduced, and additional transmit diversity gain can be obtained.
  • the soft control switch can be used to conveniently select between space-time block coded transmission and cyclic delay diversity and space-time block coded joint transmission, which has certain compatibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Description

一种信号发射方法及发射机 技术领域
本发明涉及通信系统发射机端的信号处理技术, 特别是涉及一种信号发射方法及 发射机。 背景技术
CDD (cyclic delay diversity, 循环延迟分集〉 是一种通过发射机端的信号处理, 利用频率分集以达到发射分集效果的技术。结合前向纠错编码等技术, CDD不仅可以 获得部分编码增益, 有效地降低 BER (Bit Error Rate, 误码率), 而且还能够降低接收 机设计的复杂度, 同时发射过程中可以灵活地配置发射机天线的数目, 是一种实用而 有效的多天线发射技术, 但是该技术很难实现满分集增益; STBC (Space Time Block Code, 空时分组编码)是另一种重要的多天线发射技术, 它的特点主要包括: 能实现 满分集、 译码方案简单。 但其缺点是不贡献编码增益, 且空时分组编码的实现方案受 制于发射天线的数目, 不能灵活地配置发射机天线的数目。
循环延迟分集的基本原理如图 1所示, 经过卷积编码、 凿孔、 交织等前期比特处 理后的输出比特流为 bO,M,...,bn, 通过调制映射, 得到调制符号 Sl,S2,...,Sm, 调制符 号经过串并转换后进行 OFDM (Orthogonal Frequency Division Multiplexing,正交频分 复用) 调制, 再经过并转串产生时域信号 Fl,F2,...,Fm。 时域信号在发射出去前复制 为 K份,第一份保持原状,无任何延迟,用 d0表示,其他每份分别循环延迟 dl, d2, ..., dK个样本,然后将每一份时域信号加上循环前缀 CP (以防止 OFDM符号间的干扰), 最后经过上变频和功率放大后通过 K个天线发射出去。
空时分组编码的基本原理如图 2所示,经过卷积编码、凿孔、交织等前期比特处理 后的输出比特流为 b0,bl,...,bn, 通过调制映射, 得到调制符号 Sl,S2,...,Sm,调制符号经 过分组后进行 STBC编码, 设发射天线数目为 Nt, 则 STBC矩阵的行数为 Nt, STBC 矩阵的列数 C由 Nt确定(例如, Nt=2, C=2; Nt=4, C=8,等等), STBC矩阵的每一行 对应着一个发射天线, 每一行经过 STBC编码后的的输出信号经过 OFDM调制产生时 域信号, 然后加上循环前缀, 最后经过上变频和功率放大后通过 Nt个天线发射出去。
正如前面所述, 循环延迟分集发射和空时分组编码发射这两种方案均有各自的缺 点, 前者的缺点是很难实现满分集增益, 后者的缺点是不贡献编码增益, 且空时分组 编码方案受制于发射天线的数目, 不能灵活地配置发射机天线的数目。 发明内容
本发明的目的是提供一种信号发射方法及发射机, 解决现有技术不能同时实现满 分集增益和编码增益的技术问题。
为了实现上述目的, 本发明提供了一种信号发射方法, 包括: 对比特流进行空时 分组编码以获得编码结果; 对所述编码结果进行正交频分复用调制以获得调制结果; 对所述调制结果进行循环延迟分集处理以获得处理结果; 发射所述处理结果。
优选地, 上述的方法, 所述对比特流进行空时分组编码以获得编码结果的步骤具 体包括: 将输入的比特流进行前期处理; 对前期处理后的比特流进行调制和映射; 对 调制和映射后得到的调制信号进行分组, 并选择空时分组编码方式; 进行空时分组编 码, 生成 Nt路输出信号, 其中 Nt为所述空时分组编码的矩阵的行数。
优选地, 上述的方法, 所述前期处理包括: 卷积编码、 凿孔和交织处理。
优选地, 上述的方法, 所述对所述编码结果进行正交频分复用调制以获得调制结 果的步骤具体包括: 分别对每路所述输出信号进行正交频分复用调制; 生成 Nt路正 交频分复用信号。
优选地, 上述的方法, 所述对所述调制结果进行循环延迟分集处理以获得处理结 果的步骤具体包括: 根据循环延迟分集的天线数 K, 将每路所述正交频分复用信号都 复制为 κ份样本信号, 第一份样本信号保持原状, 其余每份样本信号分别循环延迟得 到 K-1份有延迟的样本信号; 在所述有延迟的样本信号的线路上加上软控制开关; 如 果需要进行空时分组编和循环延迟分集的联合处理, 则通过闭合所述开关来将所述有 延迟的样本信号加入到输出流; 如果需要只进行空时分组编处理, 则通过打开所述开 关来阻止所述有延迟的样本信号迸入输出流; 对加入输出流的所有样本信号都加上循 环前缀; 将加上循环前缀的样本信号进行上变频和功率放大后送入发射天线。
为了实现上述目的,本发明还提供了一种信号发射机, 包括: 空时分组编码模块, 用于对输入的比特流进行空时分组编码以获得编码结果; 正交频分复用调制模块, 用 于对所述编码结果进行正交频分复用调制以获得调制结果; 循环延迟分集处理模块, 用于对所述调制结果进行循环延迟分集处理以获得处理结果。
优选地, 上述的发射机, 所述空时分组编码模块具体包括顺序连接的: 前期处理 单元, 用于将输入的比特流进行前期处理; 调制和映射单元, 用于对前期处理后的比 特流进行调制和映射; 编码单元, 用于对调制和映射后得到的调制信号进行分组, 选 择空时分组编码方式, 并进行空时分组编码, 生成 M路输出信号, 其中 Nt为所述空 时分组编码的矩阵的行数。
优选地, 上述的发射机, 所述循环延迟分集处理模块具体包括: K条线路, 用于 将每路所述正交频分复用信号复制为 K份样本信号, 第一份样本信号保持原状, 其余 每份样本信号分别循环延迟得到 K-1份有延迟的样本信号; K-1个控制开关, 分别设 置在所述 K-1个有延迟的样本信号的线路上。
优选地, 上述的发射机, 所述控制幵关为可以由软件实施控制的软开关。
本发明实施例的技术效果在于- 1 ) 本发明实施例在发射机前端采用空时分组编码, 可实现满增益, 且不受限于 发射天线数目, 可灵活配置发射天线;
2) 由于发射机在空时分组编码的基础上采用了循环延迟分集发射, 因此大大降 低了对接收机设计的要求, 同时可以获得额外的发射分集增益。
3 ) 采用软控制开关可以方便地在空时分组编码发射和循环延迟分集与空时分组 编码联合发射之间进行选择, 具有一定的兼容性。 附图说明
图 1为 K=4的循环延迟分集发射示意图;
图 2为 Nt=4的空时分组编码发射示意图;
图 3为本发明实施例提供的 2x2 STBC与循环延迟分集联合发射的基本原理图; 图 4为本发明实施例提供的 4x4 STBC与循环延迟分集联合发射的基本原理图; 图 5为本发明实施例提供的信号发射方的步骤流程图;
图 6为本发明实施例提供的发射机的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合附图对具体实 施例进行详细描述。
本发明实施例在发射机前端采用空时分组编码,在编码输出结果进行 OFDM调制 后, 对输出的 OFDM信号, 在后端进行循环延迟分集处理, 并在循环延迟分集处理中 的有延迟样本的线路上加上了软控制开关。 融合了循环延迟分集和空时分组编码的优 点, 克服了它们的缺点, 并且具有一定的兼容性。
图 3和图 4分别为 2x2 STBC和 4x4 STBC与循环延迟分集联合发射的基本原理 图, 如图 3和图 4所示, 经过卷积编码、 凿孔、 交织等前期比特处理后的输出比特流 为 b0,bl,...,bn, 通过调制映射, 得到调制符号 Sl,S2,...,Sm, 调制符号经过分组, 进行 STBC编码, 设 STBC对应的发射天线数目为 M, 则 STBC矩阵的行数为 Nt, STBC 矩阵的列数 C由 Nt确定 (例如, Nt=2, C=2; Nt=4, C=8,等等), STBC矩阵的每一 行对应一个 OFDM符号调制模块, 经过 STBC编码后的的输出信号经过 OFDM调制 产生一路时域信号, 并加上循环前缀。 每一路时域信号在发射出去前复制为 K份, 第 一份保持原状,无任何延迟, 用 d0表示, 其他每份分别循环延迟 dl, d2, ..., dK个 样本, 最后经过上变频和功率放大后通过 NtxK个天线发射出去。
为了达到与空时分组编码方案的兼容性, 本发明实施例在循环延迟的入口增加了 软控制开关(可采用软件或硬件进行控制), 当需要 CDD时, 软控制开关闭合, 实现 STBC和 CDD的联合发射处理,当不需要 CDD处理时,软控制开关断开,只进行 STBC 的处理。 从图 3和图 4中可以看出, 当开关断开时, 虚线框部分表示的是空时分组编 码发射方案, 当开关闭合时, 点划线框部分表示的是循环延迟分集发射方案。
图 5为本发明实施例提供的信号发射方的步骤流程图, 如图, 实现步骤包括: 步骤 501, 输入比特流;
步骤 502, 将输入的比特流进行卷积编码、 凿孔、 交织等前期比特流处理; 步骤 503, 对前期处理后的比特流进行符号调制和映射;
步骤 504, 根据空时分组编码的天线数 Nt的要求, 对调制符号分组, 选择空时分 组编码方式;
步骤 505, 空时分组编码后输出 Nt路符号;
步骤 506, 每路符号分别进行 OFDM调制, 生成 Nt路 OFDM符号;
步骤 507, 根据循环延迟分集的天线数 K, 将 Nt路 OFDM符号中的每一路符号 再复制为 K份;
步骤 508, 第一份保持原状,无任何延迟, 用 d0表示, 其他每份分别循环延迟 dl, d2, …, dK个样丰;
步骤 509, 在加入循环延迟样本之前,在循环延迟样本前加上软控制开关; 判断是 否进行 STBC和 CDD的联合处理, 是则执行步骤 510, 否则执行步骤 511 ;
步骤 510,在加入循环延迟样本之后加上循环前缀 CP;当需要实现 STBC和 CDD 的联合处理时, 软控制开关闭合; 转步骤 5Ϊ2;
步骤 511, 当不需要 CDD处理时, 软控制开关断开, 只进行 STBC的处理; 步骤 512, 最后将信号进行上变频和功率放大后送入发射天线。
图 6为本发明实施例提供的发射机的结构图。 如图, 发射机包括顺序连接的: 空时分组编码模块 61, 用于对输入的比特流进行空时分组编码;
正交频分复用调制模块 62, 用于对空时分组编码的结果进行正交频分复用调制; 循环延迟分集处理模块 63,用于对正交频分复用调制的结果进行循环延迟分集处 理。
所述空时分组编码模块 61具体包括顺序连接的: 前期处理单元 611, 用于将输入 的比特流进行前期处理; 调制和映射单元 612, 用于对前期处理后的比特流进行调制 和映射; 编码单元 613, 用于对调制和映射后得到的调制信号进行分组, 选择空时分 组编码方式, 并进行空时分组编码, 生成 Nt路输出信号, 其中 Nt为所述空时分组编 码的矩阵的行数。
所述循环延迟分集处理模块 63具体包括:
K条线路, 用于将每路所述正交频分复用信号复制为 K份样本信号, 第一份样本 信号保持原状, 其佘每份样本信号分别循环延迟得到 K-1份有延迟的样本信号;
K-1个控制开关, 分别设置在所述 K-1个有延迟的样本信号的线路上;
K个前缀单元,分别设置在所述 K条线路的末端,用于对样本信号加上循环前缀, 并将加上循环前缀的样本信号进行上变频和功率放大后送入发射天线。所述控制开关 为可以由软件实施控制的软开关。
由上可知, 采用本发明实施例的优势是:
1 )本发明实施例在发射机前端釆用空时分组编码, 可实现满增益, 且不受限于 发射天线数目, 可灵活配置发射天线;
2) 由于发射机在空时分组编码的基础上采用了循环延迟分集发射, 因此大大降 低了对接收机设计的要求, 同时可以获得额外的发射分集增益。
3)采用软控制开关可以方便地在空时分组编码发射和循环延迟分集与空时分组 编码联合发射之间进行选择, 具有一定的兼容性。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人 员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

1. 一种信号发射方法, 其特征在于, 包括:
对比特流进行空时分组编码以获得编码结果;
对所述编码结果进行正交频分复用调制以获得调制结果;
对所述调制结果进行循环延迟分集处理以获得处理结果;
发射所述处理结果。
2. 根据权利要求 1所述的方权法, 其特征在于, 所述对比特流进行空时分组编码以 获得编码结果的步骤具体包括- 将输入的比特流进行前期处理;
对前期处理后的比特流进行调制和映射;
对调制和映射后得到的调制信号进行分组, 并求选择空时分组编码方式; 进行空时分组编码, 生成 M路输出信号, 其中 Nt为所述空时分组编码的矩阵的 行数。
3. 根据权利要求 2所述的方法, 其特征在于, 所述前期处理包括: 卷积编码、 凿 孔和交织处理。
4. 根据权利要求 2所述的方法, 其特征在于, 所述对所述编码结果进行正交频分 复用调制以获得调制结果的步骤具体包括:
分别对每路所述输出信号进行正交频分复用调制;
生成 Nt路正交频分复用信号。
5. 根据权利要求 4所述的方法, 其特征在于, 所述对所述调制结果进行循环延迟 分集处理以获得处理结果的步骤具体包括:
根据循环延迟分集的天线数 K,将每路所述正交频分复用信号都复制为 Κ份样本 信号, 第一份样本信号保持原状, 其余每份样本信号分别循环延迟得到 K-1份有延迟 的样本信号;
在所述有延迟的样本信号的线路上加上软控制开关;
如果需要进行空时分组编和循环延迟分集的联合处理, 则通过闭合所述开关来将 所述有延迟的样本信号加入到输出流; 如果需要只进行空时分组编处理, 则通过打开 所述开关来阻止所述有延迟的样本信号进入输出流;
对加入输出流的所有样本信号都加上循环前缀; 将加上循环前缀的样本信号进行上变频和功率放大后送入发射天线。
6. 一种信号发射机, 其特征在于, 包括: ·
空时分组编码模块, 用于对输入的比特流进行空时分组编码以获得编码结果; 正交频分复用调制模块, 用于对所述编码结果进行正交频分复用调制以获得调制 结果;
循环延迟分集处理模块, 用于对所述调制结果进行循环延迟分集处理以获得处理 结果。
7. 根据权利要求 6所述的发射机, 其特征在于, 所述空时分组编码模块具体包括 顺序连接的:
前期处理单元, 用于将输入的比特流进行前期处理;
调制和映射单元, 用于对前期处理后的比特流进行调制和映射;
编码单元, 用于对调制和映射后得到的调制信号进行分组, 选择空时分组编码方 式, 并进行空时分组编码, 生成 Nt路输出信号, 其中 Nt为所述空时分组编码的矩阵 的行数。
8. 根据权利要求 7所述的发射机, 其特征在于, 所述循环延迟分集处理模块具体 包括:
K条线路, 用于将每路所述正交频分复用信号复制为 K份样本信号, 第一份样本 信号保持原状, 其余每份样本信号分别循环延迟得到 K-1份有延迟的样本信号;
K-1个控制开关, 分别设置在所述 K-1个有延迟的样本信号的线路上。
9. 根据权利要求 7所述的发射机, 其特征在于, 所述控制开关为可以由软件实施 控制的软开关。
PCT/CN2008/002010 2007-12-24 2008-12-15 一种信号发射方法及发射机 WO2009092183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007103040725A CN101471755B (zh) 2007-12-24 2007-12-24 一种信号发射方法及发射机
CN200710304072.5 2007-12-24

Publications (1)

Publication Number Publication Date
WO2009092183A1 true WO2009092183A1 (zh) 2009-07-30

Family

ID=40828899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/002010 WO2009092183A1 (zh) 2007-12-24 2008-12-15 一种信号发射方法及发射机

Country Status (2)

Country Link
CN (1) CN101471755B (zh)
WO (1) WO2009092183A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944988B (zh) * 2009-07-08 2013-07-24 上海无线通信研究中心 谱域信道复用传输系统的发射接收装置及方法
CN101997798B (zh) * 2009-08-13 2013-05-01 上海无线通信研究中心 谱分多址接入系统发射及接收装置、上行及下行接入系统
RU2518509C2 (ru) * 2009-09-21 2014-06-10 Эппл Инк Способ передачи потока данных и мобильная станция
CN101860514B (zh) * 2010-05-24 2012-09-26 航天恒星科技有限公司 一种基于自适应符号载波分配的不等差错保护方法
US8995320B2 (en) * 2012-04-16 2015-03-31 Qualcomm Incorporated Systems and methods of using space time block codes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770658A (zh) * 2004-10-13 2006-05-10 三星电子株式会社 基站中使用块编码和周期性延迟变异的传输设备和方法
CN1956350A (zh) * 2005-10-25 2007-05-02 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
WO2007081977A2 (en) * 2006-01-11 2007-07-19 Interdigital Technology Corporation Method and apparatus for implementing space time processing with unequal modulation and coding schemes
CN101057417A (zh) * 2004-09-03 2007-10-17 高通股份有限公司 用于无线通信系统的使用空时和空频发射分集方案的空间扩展

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859068A (zh) * 2005-05-08 2006-11-08 北京三星通信技术研究有限公司 多天线通信系统的空时编码传输和接收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057417A (zh) * 2004-09-03 2007-10-17 高通股份有限公司 用于无线通信系统的使用空时和空频发射分集方案的空间扩展
CN1770658A (zh) * 2004-10-13 2006-05-10 三星电子株式会社 基站中使用块编码和周期性延迟变异的传输设备和方法
CN1956350A (zh) * 2005-10-25 2007-05-02 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送系统、方法及无线通信系统
WO2007081977A2 (en) * 2006-01-11 2007-07-19 Interdigital Technology Corporation Method and apparatus for implementing space time processing with unequal modulation and coding schemes

Also Published As

Publication number Publication date
CN101471755A (zh) 2009-07-01
CN101471755B (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
KR100906285B1 (ko) 직교 주파수 분할 통신 시스템에서 공간-시간 블록 코딩
EP2232755B1 (en) Method for transmitting a sequence of symbols in a multiple-input multiple-output (mimo) network including a transmitter having a set of transmit antennas and a receiver having a set of receive antennas
US7609613B2 (en) Cyclic delay diversity and space coded-hybrid diversity transmitter
JP4440971B2 (ja) 性能向上のための時空間周波数ブロック符号化装置及び方法
KR100721068B1 (ko) 차분 시공간 블럭 코딩
EP1608081A2 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
EP1619800A1 (en) Method and apparatus for space interleaved communication in a multiple antenna communication system
WO2006014143A1 (en) Method for transmitting a digital data stream, transmitter, method for receiving a digital data stream and receiver
TW201244405A (en) Cooperative MIMO in multicell wireless networks
KR100720870B1 (ko) 성능 향상위한 시공간 블록 부호화 장치 및 방법을구현하는 송수신 장치 및 방법
CA2472243A1 (en) High rate transmission diversity transmission and reception
EP1610487A2 (en) Apparatus and method for full-diversity, full-rate space-time block coding for even number of transmit antennas
WO2007104209A1 (fr) Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale
WO2005109679A1 (en) Apparatus and method for encoding/decoding space time block code in a mobile communication system using multiple input multiple output scheme
JP2005513953A5 (zh)
KR101639462B1 (ko) 다중 안테나 신호 처리 시스템 및 그 방법
WO2009092183A1 (zh) 一种信号发射方法及发射机
US8126069B2 (en) Re-transmission in a MIMO communication system
CN105322991B (zh) 基于wfrft预编码的多输入多输出传输系统及传输方法
WO2005069509A1 (ja) 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
KR20060016420A (ko) 성능 향상된 시공간 블록 부호화 장치 및 방법
WO2011069453A1 (zh) Sc-fdma系统中链路传输装置及方法和空时块码编码器及方法
CN114050891A (zh) 一种时空二维信道编码方法
Otefa et al. Performance analysis of 802.11 n wireless LAN physical layer
Lubisi A new automatic repeat request protocol based on Alamouti space-time block code over Rayleigh fading channels.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871361

Country of ref document: EP

Kind code of ref document: A1