WO2009090771A1 - Laser interferometer and measuring instrument using the same - Google Patents

Laser interferometer and measuring instrument using the same Download PDF

Info

Publication number
WO2009090771A1
WO2009090771A1 PCT/JP2008/064150 JP2008064150W WO2009090771A1 WO 2009090771 A1 WO2009090771 A1 WO 2009090771A1 JP 2008064150 W JP2008064150 W JP 2008064150W WO 2009090771 A1 WO2009090771 A1 WO 2009090771A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical path
unit
light component
light
Prior art date
Application number
PCT/JP2008/064150
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Nakayabu
Youichi Tamura
Hideo Yachi
Akihiro Shimizu
Original Assignee
Prefecture Ishikawa
Sigma Koki Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prefecture Ishikawa, Sigma Koki Co., Ltd filed Critical Prefecture Ishikawa
Priority to CN2008801248420A priority Critical patent/CN101918788A/en
Publication of WO2009090771A1 publication Critical patent/WO2009090771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/15Cat eye, i.e. reflection always parallel to incoming beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the present invention relates to a laser interferometer for measuring a positional deviation caused when a moving member such as a table of a machine tool moves in an axial direction with respect to a support member, and more specifically, outputs each light component.
  • the present invention relates to a laser interferometer that can be adjusted in parallel and a measurement apparatus using the same.
  • a bed that is fixed to a floor in a factory or the like and a table that moves on the bed are provided.
  • a work piece or the like is set on the table, and the work is performed while moving the table in a predetermined axial direction.
  • six positional deviations (errors) in the axial direction, the horizontal direction, the vertical direction, the pitch direction, the yaw direction, and the roll direction may occur. These positional deviations need to be measured for purposes such as delivery and maintenance.
  • This type of laser interferometer inputs a reflecting mirror as a reflecting means having two plane mirrors inclined at a predetermined angle so as to be substantially V-shaped, and a laser beam having two polarization components orthogonal to each other.
  • a laser interference unit serving as a laser beam path generating unit that outputs each light component after being reciprocated twice by a reflecting mirror.
  • the laser interference unit is disposed in a direction perpendicular to the polarization beam splitter with respect to the axial direction, a polarization beam splitter having a polarization plane as a spectroscopic unit, a biprism as a refraction unit disposed between the polarization beam splitter and the reflecting mirror And a turning mirror.
  • the polarization beam splitter has an input / output unit that allows laser light to be input and also allows laser light that has been reciprocated twice to and from a reflecting mirror to be output.
  • One light component separated by the polarizing beam splitter passes through the turning mirror and the biprism sequentially, is reflected by the reflecting mirror, passes through the biprism and the turning mirror sequentially, and returns to the polarizing beam splitter. Thereafter, one light component is emitted from the polarizing beam splitter, passes through the biprism, is reflected by the reflecting mirror, passes through the biprism, and returns to the polarizing beam splitter.
  • One light component separated in this way by the polarization beam splitter reciprocates twice between the biprism and the reflecting mirror.
  • the other light component separated by the polarizing beam splitter passes through the biprism, is reflected by the reflecting mirror, passes through the biprism, and returns to the polarizing beam splitter.
  • the other light component sequentially passes through the turning mirror and the biprism, is reflected by the reflecting mirror, passes through the biprism and the turning mirror in sequence, and returns to the polarizing beam splitter. In this way, the other light component reciprocates twice between the biprism and the reflecting mirror along an optical path different from the one light component.
  • each optical component of the laser light that has reciprocated between the biprism and the reflecting mirror is output from the laser interference unit.
  • the laser light (interference signal) of each light component output from this laser interference unit is received by a photoelectric converter, and by measuring the relative change of the two optical path lengths based on the phase difference of the wavelength of each light component. The positional deviation in the roll direction can be calculated.
  • the laser light that goes to the biprism via the turning mirror and the laser light that goes to the biprism without going through the turning mirror are parallel, the laser light refracted by the biprism and emitted is reflected in the reflecting mirror.
  • the light beams are vertically reflected and follow the same optical path as the forward path in the return path of the laser beam, so that each light component of the laser beam output from the laser interference unit is parallel.
  • the parallelism of the two light components output from the laser interference unit may decrease.
  • a polarizing beam splitter as an optical component is generally known in the form of a cube in which a polarizing surface is provided between the inclined surfaces of two 45 ° right-angle prisms and bonded with an adhesive. Production accuracy may be reduced due to shrinkage of the agent when it is dried. If the manufacturing accuracy of the optical component is reduced, the optical path may be shifted in the reciprocal process of each light component, and the parallelism of the two light components output from the laser interference unit may be reduced.
  • the angle of the turning mirror can be adjusted to make the two light components output from the laser interference section parallel, but the adjustment work is very difficult and easier to adjust.
  • a laser interferometer that can be used has been desired.
  • the present invention makes it easy to adjust the deflection of each light component, improves the parallelism of each light component of the laser light output from the laser light path generation means, and improves the measurement accuracy of the positional deviation in the roll direction. It is an object of the present invention to provide a laser interferometer that can be used, and a measuring apparatus using the same.
  • the present invention includes a reflecting means (2) having two plane mirrors (4, 5) inclined at a predetermined angle; A spectroscopic unit (8, 208) that inputs and splits laser light having two polarization components whose polarization planes are orthogonal to each other, and is disposed between the spectroscopic unit (8, 208) and the reflecting means (2).
  • the refracting section (6) refracts each light component dispersed by the spectroscopic section (8, 208) at the predetermined angle so as to enter and reflect perpendicularly to the plane mirror (4, 5) of the reflecting means (2).
  • laser light path generation means for outputting each light component after reciprocating twice between the refraction part (6) and the reflection means (2),
  • the reflecting means (2) and the laser beam path generating means 3, 103, 203
  • the reflecting means (2) and the laser beam path generating means 3 103, 203
  • a laser interferometer (1, 101, 201) in which the distance of the optical path through which each light component passes is relatively changed by the relative positional relationship with The laser beam path generation means (3, 103, 203)
  • the light splitting unit (8, 208) and the refraction so that one light component passes when the light components first reciprocate and the other light component passes when the light components reciprocate next time.
  • a laser interferometer comprising a deflection unit (15) disposed between the unit (6) and having a pair of wedge prisms (15a, 15b) that can adjust a deflection direction of a light component passing therethrough. (1, 101, 201).
  • each light component that is incident on the refracting unit by adjusting the deflecting unit is made parallel so that each light component is incident and reflected perpendicularly to the plane mirror of the reflecting unit.
  • the parallelism of the components can be improved.
  • the laser beam path generation means (3, 103, 203) is configured such that the axial direction (for example, the Z-axis direction) of the spectroscopic unit (8, 208). ) And a reflecting portion (9, 209) that is arranged in a direction perpendicular to the optical axis (for example, the Y-axis direction) and reflects the laser light incident through the spectroscopic portion (8, 208) toward the refracting portion (6).
  • the deflection unit (15) is disposed between the reflection unit (9, 209) and the refraction unit (6).
  • the deflecting unit is disposed between the reflecting unit and the refracting unit, it is not necessary to adjust the reflecting unit when adjusting the polarization direction of each light component, and the adjustment work is easy.
  • the laser beam path generation unit (203) is perpendicular to the axial direction (eg, Z-axis direction) of the spectroscopic unit (208) (eg, Y-axis direction).
  • a reflection unit (209) that is disposed and reflects the laser beam incident through the spectroscopic unit (208) toward the refraction unit (6);
  • the deflection unit (15) is disposed between the spectroscopic unit (208) and the reflection unit (209).
  • the deflecting unit is disposed between the spectroscopic unit and the reflecting unit, it is not necessary to adjust the reflecting unit when adjusting the polarization direction of each light component, and the adjustment work is easy.
  • the present invention includes a housing (3a) for storing the laser light path generation means (3, 103),
  • the deflection unit (15) includes ring-shaped operating elements (16a, 16b) formed on the outer periphery of the wedge prism (15a, 15b),
  • the wedge prisms (15a, 15b) are arranged in the casing (3a) so that the operating elements (16a, 16b) are exposed from the casing (3a).
  • the deflecting unit can be operated without disassembling the casing, and adjustment work is easy.
  • the spectroscopic unit (8) can freely input laser light and can output laser light reciprocated twice to the reflecting means (2).
  • the laser beam path generation means (103) includes a re-input unit (17) for returning the laser beam output from the input / output unit (8a) to the input / output unit (8a). .
  • the laser beam output by the re-input unit reciprocating twice between the refracting unit and the reflecting means is reciprocated twice between the refracting unit and the reflecting means, so that the sensitivity is improved.
  • the measurement accuracy of the positional deviation in the roll direction is improved.
  • the present invention (see FIGS. 1 and 2), the laser interferometer (1), Based on the phase difference of the wavelength of the laser light of each light component output from the laser light path generation means (3), the relative change in the distance of the light path of each light component is measured.
  • Laser length measuring means (12) to obtain, Either one of the reflecting means (2) and the laser beam path generating means (3) is fixed to a support member (21) supported by a reference floor (30);
  • the other of the reflecting means (2) and the laser beam path generating means (3) is fixed to a moving member (22) supported so as to be movable in the axial direction (for example, the Z-axis direction) with respect to the supporting member (21).
  • the relative positional relationship between the moving member and the supporting member can be measured without including the inclination of the supporting member due to the movement of the moving member, and the positional deviation in the roll direction can be measured well.
  • FIG. 9 is a cross-sectional view of the laser interference section along the line BB in FIG. 8.
  • the top view of the laser interference part seen from the arrow C direction in FIG.
  • FIG. 1 is a perspective view showing a measuring device and a machine tool when the laser interference unit is fixed to the table
  • FIG. 2 is a perspective view showing the measuring device and the machine tool when the reflecting mirror is fixed to the table
  • FIG. It is a perspective schematic diagram which shows the laser interferometer which concerns on this embodiment.
  • 4 is a perspective view of the laser interference portion
  • FIG. 5 is a cross-sectional view of the laser interference portion along the line AA in FIG.
  • FIG. 6 is an explanatory diagram showing the optical path of the laser beam passing through the deflecting unit
  • FIG. 6A is an explanatory diagram showing the optical path when the deflection direction of the laser beam is adjusted by the deflecting unit in the laser interference unit.
  • FIG. 6B is an explanatory diagram showing the deflection range of the laser light that passes through the deflecting unit.
  • a measuring device 50 that can measure the positional deviation of the machine tool 20 includes a laser interferometer 1 and a laser head (laser length measuring means) 12.
  • the machine tool 20 includes, for example, a bed (support member) 21 that is placed and supported on a floor 30 of a factory, and the bed 21 supports a guide member 21a.
  • a table (moving member) 22 is supported on the guide member 21a so as to be movable in the Z-axis direction (axial direction). The table 22 moves in the Z-axis direction by driving a motor (not shown), for example.
  • a tool post 23 is provided on the bed 21 of the machine tool 20, and an arm 24 provided on the tool post 23 has a chuck 25.
  • a tool such as a tool is attached to the chuck 25, a work piece is set and fixed on the table 22, and the work piece and the tool are brought into contact with each other by moving the table 22. Do the work.
  • the machine tool 20 shown in FIG. 1 is a schematic diagram that is simply shown for convenience of explanation, and has been described as an example that moves in the Z-axis direction. The operation is performed.
  • the laser head 12 is arranged on the floor 30 with, for example, a tripod 12b, and the laser head 12 has laser light having two polarization components orthogonal to each other, specifically, P waves (for example, linearly polarized light) (Longitudinal wave) and a laser oscillator capable of irradiating a laser beam having an S wave (for example, a transverse wave) that is a linearly polarized light having a plane of polarization orthogonal to the P wave and a different frequency, and the P wave of the input laser beam And a photoelectric converter capable of measuring the amount of change in the optical path length, which will be described in detail later, based on the wavelengths of the S wave and the S wave.
  • P waves for example, linearly polarized light
  • S wave for example, a transverse wave
  • a photoelectric converter capable of measuring the amount of change in the optical path length, which will be described in detail later, based on the wavelengths of the S wave and the S wave.
  • the laser head 12 is provided with an input / output head 12a that coaxially performs the irradiation of the laser light of the laser oscillator and the input of the laser light to the photoelectric converter.
  • the head 12a is directed to the input / output unit 8a of the laser interference unit 3 of the laser interferometer 1 to be described later, and is arranged so as to input / output laser light in the Z-axis direction.
  • the bed and table of the machine tool 20 have various names depending on their shapes and roles. For example, there are names such as a spindle head, a tool post, a column, and a stage.
  • the bed 21 is a support member supported by the floor 30, and the table 22 is a moving member that moves relative to the bed 21.
  • the laser head 12 is integrally provided with the laser oscillator and the photoelectric converter, but may be provided separately.
  • a laser interferometer 1 which is a main part of the present invention includes a reflecting mirror (reflecting means) 2 and a laser interfering section (laser optical path generating means) 3, and the reflecting mirror 2 is shown in FIG.
  • the two plane mirrors 4 and 5 are inclined at a predetermined angle substantially symmetrical with respect to the laser interference unit 3 so as to be substantially V-shaped.
  • the reflecting mirror 2 has a substantially rectangular parallelepiped reflecting mirror case 2a, and the plane mirrors 4 and 5 are stored in the main body case 2a.
  • a slit-like hole 2b through which laser light passes is formed on the surface of the main body case 2a that faces the laser interference portion 3.
  • the laser interference unit 3 includes a biprism (refractive unit) 6 having two wedge prisms 6a and 6b, quarter wavelength plates (second wavelength plates) 7a and 7b, polarization It has a beam splitter (spectral part) 8, a planar reflector (reflecting part) 9, a quarter wavelength plate (first wavelength plate) 10, a cube corner prism (optical path axis changing part) 11, and a deflecting part 15. It is comprised and is stored in the interference part case (casing) 3a of a substantially rectangular parallelepiped shape. 4 and 5, the biprism 6 and the cube corner prism 11 are attached to the interference part case 3a and exposed, but each optical component may be arranged inside the interference part case 3a.
  • a biprism (refractive unit) 6 having two wedge prisms 6a and 6b, quarter wavelength plates (second wavelength plates) 7a and 7b, polarization It has a beam splitter (spectral part) 8, a planar reflector (reflecting part) 9, a
  • the interference case 3a is formed with holes 3b through which the laser beam for the laser head 12 passes and holes 3c and 3d through which the laser beam for the reflecting mirror 2 passes.
  • the polarization beam splitter 8 includes a polarization plane 8b inclined at an angle of about 45 ° with respect to the Z-axis direction, and an input / output plane (input / output section) 8a for inputting and outputting laser light.
  • the input / output surface 8a is located on the opposite side of the Z-axis direction of the polarizing beam splitter 8 with respect to the reflecting mirror 2, that is, the input / output head 12a of the laser head 12 is in the Z-axis direction.
  • the planar reflector 9 is disposed in a direction perpendicular to the Z-axis direction of the polarizing beam splitter 8 (Y-axis direction), and has an angle of approximately 45 ° with respect to the Z-axis direction of the polarizing beam splitter 8. It is integrally formed on an inclined surface that is inclined in the direction.
  • the biprism 6 and quarter-wave plates 7a and 7b are disposed on the Z-axis direction between the polarizing beam splitter 8 and the planar reflector 9 and the reflector 2, respectively. Further, the cube corner prism 11 is disposed on the opposite side of the polarizing beam splitter 8 with respect to the planar reflector 9, and a quarter wavelength is provided between the cube corner prism 11 and the polarizing beam splitter 8. A plate 10 is arranged.
  • the positions of the biprism 6 and the quarter wavelength plates 7a and 7b in the Z-axis direction are as follows: the reflecting mirror 2, the biprism 6, the quarter wavelength plates 7a and 7b, and the polarization beam splitter. 8 and the planar reflector 9 are preferable, but the reflector 2, the quarter-wave plates 7a and 7b, the biprism 6, the polarization beam splitter 8, and the planar reflector 9 may be disposed in this order.
  • the quarter wave plates 7a and 7b are separate bodies, they may be integrated.
  • the quarter-wave plate is a crystal piece sliced accurately with respect to the crystal axis.
  • the quarter-wave plates 7a and 7b are tilted at 45 ° on the crystal axis in the XY plane.
  • the quarter-wave plate 10 is used with the crystal axis inclined at 45 ° in the XZ axis plane.
  • the deflecting unit 15 is formed on the outer periphery of a pair (two) of wedge prisms 15a and 15b that can adjust the deflection direction of the passing laser beam and the wedge prisms 15a and 15b.
  • Ring-shaped holders 16a and 16b for holding the prisms 15a and 15b, and more specifically between the polarizing beam splitter 8 and the biprism 6, more specifically between the planar reflector 9 and the biprism 6. are disposed between the quarter-wave plate 7 a and the flat reflector 9.
  • Each of the wedge prisms 15a and 15b has a disk shape in which both end surfaces are formed as planes, and one plane is a predetermined angle ⁇ w with respect to the other plane (XY plane) (see FIG. 6A). It is a wedge-shaped prism formed on an inclined surface that is inclined.
  • the wedge prisms 15a and 15b are arranged close to each other so that the planes of the wedge prisms 15a and 15b face each other, and the holders 16a and 16b of the wedge prisms 15a and 15b are aligned with the central axes of the wedge prisms 15a and 15b. It is supported in the interference part case 3a so as to be rotatable about the center.
  • the holders 16a and 16b are supported in the interference part case 3a so that the outer circumferences of the holders 16a and 16b are exposed to the outside of the interference part case 3a.
  • the exposed holders 16a and 16b may be operated, and it is not necessary to disassemble the interference case 3a. Therefore, the adjustment operation of the wedge prisms 15a and 15b is simple.
  • the wedge prisms 15a and 15b are rotated about the central axes of the wedge prisms 15a and 15b in the direction of arrow A (clockwise) or in the direction of arrow B (counterclockwise).
  • the deflection direction of the passing laser beam can be adjusted.
  • each wedge prism 15a and 15b is moved in the direction of arrow A or the arrow.
  • the laser beam emitted from the wedge prism 15b enters the wedge prism 15a is wedge prism 15a, 15b of the inclined surface of the inclined angle ⁇ predetermined substantially conical region R corresponding to w Is deflected in any direction that passes through. Therefore, the deflection direction of the laser beam can be adjusted by rotating the wedge prisms 15a and 15b in the direction of arrow A or arrow B.
  • the laser interferometer 1 of the first embodiment inputs laser light having S wave and P wave from the input / output surface 8a of the polarization beam splitter 8, and each light component dispersed by the polarization beam splitter 8 is A laser beam having two light components from the laser head 12 is configured to reciprocate twice between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3 and output from the input / output surface 8a of the polarization beam splitter 8. Is input to the laser interferometer 3 of the laser interferometer 1 and the positional deviation in the roll direction is measured based on the interference signals generated by the two light components that are the outputs of the laser interferometer 3. Prior to this measurement operation, the laser head 12 emits laser light having two light components, and the reflecting mirror 2 and the laser interference unit 3 are deflected so that the respective light components output from the laser interference unit 3 are parallel to each other. It is necessary to adjust the part 15.
  • Laser light having P and S waves is output in parallel to the Z-axis direction from the laser oscillator of the laser head 12 and is input / output surface 8a of the polarization beam splitter 8 via optical paths a1 and b1 shown in FIG. Is input.
  • the laser beam input to the input / output surface 8a of the polarization beam splitter 8 is split into a first light component (P wave) and a second light component (S wave) by the polarization surface 8b, and the P wave is transmitted to the first optical path ( 3 passes through a2 to a11), and the S wave passes through the second optical path (b2 to b11 in FIG. 3).
  • the P wave passes through the polarization plane 8b of the polarization beam splitter 8 as it is and is output to the optical path a2 in the straight traveling direction, that is, the Z-axis direction, and the S wave is perpendicular to the polarization plane 8b, that is, Y
  • the light is reflected in the axial direction, passes through the polarization beam splitter 8, and reaches the planar reflecting mirror 9.
  • the first optical path through which the first light component passes is indicated by a broken line
  • the second optical path through which the second light component passes is indicated by a solid line.
  • each light component dispersed by the polarization beam splitter 8 is first reciprocated when reciprocating twice between the laser interference unit 3 and the reflecting mirror 2.
  • the P-wave laser light output to the optical path a2 passes through the quarter-wave plate 7b and becomes circularly polarized laser light.
  • the biprism 6 is refracted at an angle ⁇ with respect to the Z-axis direction by the wedge prism 6b and output to the optical path a3.
  • the circularly polarized laser light which is the first light component in the optical path a3, is input perpendicularly to the plane mirror 4 at the point 4b of the plane mirror 4 of the reflection mirror 2, and is reflected by the optical path a3.
  • the angle of the plane mirror 4 of the reflecting mirror 2 is adjusted by the operator so that the first light component is vertically incident and reflected.
  • the reflected circularly polarized laser beam in the optical path a3 is again refracted in the Z-axis direction by the wedge prism 6b, passes through the quarter-wave plate 7b, becomes S-wave laser light, and is output to the optical path a2. , Returned to the polarization beam splitter 8.
  • the first light component that has traveled straight in the Z-axis direction through the polarization plane 8b sequentially passes through the optical path a2, the quarter-wave plate 7b, the biprism 6, and the optical path a3, and is reflected by the plane mirror 4 of the reflecting mirror 2.
  • the optical path a3, the biprism 6, the quarter wavelength plate 7b, and the optical path a2 which are the same optical path as the forward path sequentially pass through the return path and return to the polarization plane 8b, and the biprism 6 of the laser interference unit 3 and
  • the first light component reciprocates with the reflecting mirror 2.
  • the S-wave laser light which is the light component dispersed by the polarization beam splitter 8 is transmitted by the bi-prism 6 by the planar reflecting mirror 9. The light is reflected in the arranged direction and output to the optical path b2.
  • the S-wave laser light in the optical path b2 passes through the wedge prisms 15a and 15b of the deflection unit 15 and is output to the optical path b3.
  • the deflection unit 15 deflects the S-wave laser light as the second light component. The direction is adjusted.
  • the S-wave laser light that is the second light component reflected by the polarization plane 8b is The optical path deviated from the Y-axis direction is traced.
  • the second light component reflected by the planar reflecting mirror 9 is parallel to the first light component that is shifted from the Z-axis direction and passes through the optical path b2 as in the optical path b3 ′ in the absence of the deflecting unit 15. In other words, the parallelism is extremely low.
  • the first embodiment as shown in FIG.
  • the operator rotates the wedge prisms 15a and 15b of the deflecting unit 15 in the arrow A direction or the arrow B direction.
  • the laser light passing through the deflecting unit 15 can be deflected within a predetermined substantially conical region R, and the second light component output to the optical path b3 is converted into the optical path a2 as shown in FIG. Since the deflection direction can be adjusted to be parallel to the first light component output to the first light component, the parallelism of the second light component passing through the optical path b3 with respect to the first light component passing through the optical path a2 is improved. Can be made.
  • the S-wave laser light which is the second light component adjusted in parallel with the first light component passing through the optical path a2 by the deflecting unit 15 and passed through the optical path b3 in the Z-axis direction, passes through the quarter-wave plate 7a.
  • the laser beam passes through to become circularly polarized laser light, and is refracted at an angle ⁇ with respect to the Z-axis direction by the wedge prism 6b of the biprism 6, and is output to the optical path b4.
  • the circularly polarized laser beam which is the second light component of the optical path b4, is reflected at the point 4a of the plane mirror 4 of the reflecting mirror 2.
  • the second light component passing through the optical path b3 is adjusted by the deflecting unit 15 to be parallel to the first light component passing through the optical path a2
  • the second light component passing through the optical path b4 is Similar to the first light component vertically incident / reflected at the point 4 b of the plane mirror 4, the light is vertically reflected at the point 4 a of the plane mirror 4.
  • the circularly polarized laser beam which is the second light component of the reflected optical path b4, is refracted in the Z-axis direction again by the wedge prism 6b and passes through the quarter-wave plate 7a to become a P-wave laser beam. , And output to the optical path b3.
  • the P-wave laser light in the optical path b3 is adjusted in the deflection direction by the deflecting unit 15 and output to the optical path b2, and is reflected by the planar reflecting mirror 9 toward the polarization plane 8b.
  • the second light component reflected by the polarization plane 8b sequentially passes through the planar reflector 9, the optical path b2, the deflecting unit 15, the optical path b3, the quarter wavelength plate 7a, the biprism 6, and the optical path b4.
  • the optical path b4, the biprism 6, the quarter-wave plate 7a, the optical path b3, the deflecting unit 15, the optical path b2, and the planar reflecting mirror 9 that are reflected by the plane mirror 4 of the reflecting mirror 2 are the same path as the forward path.
  • the laser beam passes through the polarization surface 8b in sequence, and the second light component reciprocates between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3.
  • each light component dispersed by the polarization beam splitter 8 is reciprocated between the laser interference unit 3 and the reflecting mirror 2 for the second time.
  • the laser light that has passed through the optical path b2 and returned to the polarization plane 8b is a P wave, and thus travels straight through the polarization plane 8b. And pass through as it is and output to the optical path b5.
  • the P-wave laser light in the optical path b5 passes through the quarter-wave plate 10 and becomes circularly polarized laser light and is output to the optical path b6.
  • the circularly polarized laser light in the optical path b6 is transmitted by the cube corner prism 11.
  • the optical path b7 is output after being folded back onto the optical path b7 which is parallel to the axial direction of the optical path b6 and is on a different axis in the X-axis direction.
  • the circularly polarized laser light in the optical path b7 passes through the quarter wavelength plate 10 again to become S-wave laser light and is output to the optical path b8.
  • the laser beam in the optical path b8 is an S wave
  • the laser beam is reflected by the polarization plane 8b of the polarization beam splitter 8 to the optical path b9 in the perpendicular direction, that is, the Z-axis direction.
  • the second light component output to the optical path b9 is reflected on the polarization plane 8b at the same angle as the angle at which the second light component that has passed through the optical path b1 is reflected on the polarization plane 8b. Therefore, the first light component is output in parallel with the optical path a2 that has passed during the first round trip.
  • the S-wave laser light in the optical path b9 passes through the quarter-wave plate 7b to become circularly polarized laser light, and is refracted at an angle ⁇ with respect to the Z-axis direction by the wedge prism 6a of the biprism 6, and the optical path is output to b10.
  • the circularly polarized laser light which is the second light component of the optical path b10, is input perpendicularly to the plane mirror 5 at the point 5b of the plane mirror 5 of the reflecting mirror 2 and reflected by the optical path b10.
  • the angle of the plane mirror 5 of the reflecting mirror 2 is adjusted by the operator so that the second light component is vertically incident and reflected.
  • the reflected circularly polarized laser beam in the optical path b10 is refracted in the Z-axis direction again by the wedge prism 6a, passes through the quarter-wave plate 7b, becomes P-wave laser light, and is output to the optical path b9.
  • the Since the laser beam in the optical path b9 is a P wave, it passes through the polarization plane 8b of the polarization beam splitter 8 in the straight traveling direction as it is, and the first optical component in the optical path a1 and the second optical component in the optical path b1 To the parallel optical path b11.
  • the second light component reflected by the polarization plane 8b sequentially passes through the optical path b9, the quarter-wave plate 7b, the biprism 6, and the optical path b10, and is reflected by the plane mirror 5 of the reflecting mirror 2 so as to travel forward.
  • the optical path b10, the biprism 6, the quarter-wave plate 7b, and the optical path b9, which are the same optical path, sequentially pass through the return path and return to the polarization plane 8b, and the biprism 6 and the reflecting mirror 2 of the laser interference unit 3 are returned.
  • the second light component reciprocates between the two.
  • the second light component reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output to the optical path b11 from the input / output surface 8a, and then input to the photoelectric converter of the laser head 12.
  • the laser light returning to the optical path a2 is an S wave, so that the cube corner is formed by the polarization plane 8b of the polarization beam splitter 8.
  • the light is reflected in the direction in which the prism 11 is disposed and output to the optical path a4.
  • the first light component that has returned through the optical path a2 is reflected at the same angle as the reflection angle of the second light component that has passed through the optical path b1 and is reflected by the polarization plane 8b, and the second light component at this time Is output to the optical path a4 in a direction parallel to and opposite to the optical path a4.
  • the S-wave laser light in the optical path a4 passes through the quarter-wave plate 10 and becomes circularly polarized laser light and is output to the optical path a5.
  • the circularly polarized laser light in the optical path a5 is transmitted by the cube corner prism 11.
  • the optical path a6 is output after being folded back onto an optical path a6 that is parallel to the axial direction of the optical path a5 and is on a different axis in the X-axis direction.
  • the circularly polarized laser light in the optical path a6 passes through the quarter wavelength plate 10 again to become P-wave laser light and is output to the optical path a7.
  • the laser beam in the optical path a7 is a P wave
  • the laser beam travels straight through the polarization plane 8b of the polarization beam splitter 8 and is output to the planar reflecting mirror 9.
  • the planar reflecting mirror 9 causes the biprism 6 to The light is reflected in the arranged direction and output to the optical path a8.
  • a second light component reflected by the polarization plane 8b during the first reciprocation and traveling toward the planar reflecting mirror 9, and a first light component returning to the planar reflecting mirror 9 through the optical path b8 by folding the cube corner prism 11 are parallel. Accordingly, the first light component of the optical path a8 is parallel to the second light component of the optical path b2.
  • the P-wave laser light that is the first light component that has passed through the optical path a8 is deflected by the deflecting unit 15 in the same direction as the deflection direction of the second light component that has passed through the optical path b3, and passes through the optical path b9. It is adjusted parallel to the component and output to the optical path a9.
  • the second light component passes through the deflecting unit 15 during the first reciprocation, and the first light component passes through the deflecting unit 15 during the next reciprocation, so that the deflection direction of both light components is adjusted by the deflecting unit 15. It becomes.
  • the P-wave laser light which is the first light component in the optical path a9, passes through the quarter-wave plate 7a to become circularly polarized laser light, and is angled with respect to the Z-axis direction by the wedge prism 6a of the biprism 6.
  • the light is refracted by ⁇ and output to the optical path a10.
  • the circularly polarized laser beam which is the first light component in the optical path a10, is reflected at the point 5a of the plane mirror 5 of the reflecting mirror 2.
  • the P-wave laser light which is the first light component that passes through the optical path a9
  • the first light component that has passed through the optical path a10 is Similarly to the second light component vertically incident / reflected at the point 5 b of the plane mirror 5, the light is vertically reflected at the point 5 a of the plane mirror 5.
  • the circularly polarized laser beam which is the first light component of the reflected optical path a10, is refracted in the Z-axis direction again by the wedge prism 6a and passes through the quarter-wave plate 7a to become an S-wave laser beam. , And output to the optical path a9.
  • the S-wave laser light in the optical path a9 is adjusted in the deflection direction by the deflecting unit 15 and output to the optical path a8, and is reflected by the planar reflecting mirror 9 toward the polarization plane 8b.
  • the polarization plane 8b of the polarization beam splitter 8 Since the laser beam that has returned to the polarization plane 8b of the polarization beam splitter 8 along the same optical path as the forward path is an S wave, the polarization plane 8b of the polarization beam splitter 8 causes the second light component in the optical path b1 to be converted to the polarization plane 8b. Is reflected in the Z-axis direction at the same angle as the reflection angle when reflected at, and is parallel to the first light component of the optical path a1 and the second light component of the optical path b1, and is output from the input / output surface 8a to the optical path a11. .
  • the first light component that has passed through the polarization plane 8b sequentially passes through the planar reflecting mirror 9, the optical path a8, the deflecting unit 15, the optical path a9, the quarter wavelength plate 7a, the biprism 6, and the optical path a10, Reflected by the plane mirror 5 of the reflecting mirror 2, the optical path a 10, the biprism 6, the quarter-wave plate 7 a, the optical path a 9, the deflecting unit 15, the optical path a 8, and the planar reflecting mirror 9 are sequentially returned as the return path. It passes through and returns to the polarization plane 8b, and the first light component reciprocates between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3.
  • the first light component reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path a11 and then input to the photoelectric converter of the laser head 12.
  • the first light component of the optical path a11 and the second light component of the optical path b11 that have reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 are parallel to the input laser light, They are output in parallel with each other.
  • optical paths a1 and b1, optical paths a4 and b5, optical paths a5 and b6, optical paths a6 and b7, optical paths a7 and b8, and optical paths a11 and b11 shown in FIG. 3 are shown as parallel axes for convenience of explanation. However, these optical paths are optical paths on the same axis.
  • the laser light having the first light component and the second light component irradiated from the laser head 12 is input from the input / output surface 8a, is split by the polarization surface 8b, and is reflected by the biprism 6. Since the second light component passes through the deflecting unit 15 during the first reciprocation with the mirror 2, and the first light component passes through the deflecting unit 15 during the next reciprocation, the pair of wedge prisms 15a and 15b of the deflecting unit 15 is used. Can be rotated to adjust the deflection direction of each light component. By the adjustment operation, each light component emitted to the biprism 6 can be made parallel, and each light component can be made perpendicular to the reflecting mirror 2. Can be incident and reflected.
  • each light component can follow the same light path in the forward path and the return path, and each light component output from the input / output surface can be made parallel to each other. Therefore, the parallelism of each light component output from the laser interference unit 3 can be improved.
  • both light components pass through the pair of wedge prisms 15a and 15b, it is not necessary to prepare a pair of wedge prisms for each light component, so the number of parts is reduced and the structure is simple. It becomes.
  • the reflecting mirror 2 moves relative to the laser interference unit 3 in the roll direction, which is the ⁇ direction around the Z axis.
  • the points 4a and 5b and the points 4b and 5a at which the laser beams passing through the first optical path and the second optical path are reflected are the points 4a and 5b on the valley side (that is, the inner side).
  • the mountain side (that is, the outside) the point 4 b and the point 5 a move to the mountain side (that is, the outside) or the valley side (that is, the inside) with respect to the inclination of the plane mirrors 4 and 5.
  • the optical path lengths of the optical path a3 and the optical path a10 are shortened or extended with respect to the optical path lengths of the optical path b4 and b10, and a relative change occurs in the optical path lengths of the first optical path and the second optical path.
  • the S-wave laser light that is the first optical component of the optical path a11 output from the input / output surface 8a and the second light in the optical path b11 A Doppler frequency shift with the component P-wave laser light occurs, and an interference signal is obtained.
  • a change in the optical path length (hereinafter referred to as “detection light length”) can be detected by the photoelectric converter of the laser head 12 to which the interference signal is input.
  • detection light length detection of the Doppler frequency shift by this photoelectric converter is a well-known technique, the description is abbreviate
  • the relationship between the angle ⁇ in the roll direction and the change amount ⁇ of the optical path length does not depend on the distance 2u between the point 4a and the point 5a (the point 4b and the point 5b), that is, the distance between the reflecting mirror 2 and the laser interference unit 3. Has no effect.
  • the relationship of the above formula 1 is that the detected light length (mm) and the generated rolling (square second) Obtained as a relationship.
  • each light component output from the laser interference unit 3 can be made parallel, a good interference signal can be obtained and detected when measuring the positional deviation in the roll direction. Since the error of the change ⁇ in the optical path length is also reduced, the measurement accuracy of the positional deviation in the roll direction is improved.
  • optical path lengths of the optical path b4 and the optical path b10 and the optical path lengths of the optical path a3 and the optical path a10 are not expanded, contracted, or changed, and no relative change occurs between the two optical path lengths.
  • a measuring device 50 including the laser interferometer 1 is installed in the machine tool 20 as shown in FIG.
  • the reflecting mirror 2 of the laser interferometer 1 is fixed on the bed 21 of the machine tool 20, and the laser interference unit 3 is fixed on the table 22.
  • the reflecting mirror 2 and the laser interference unit 3 are accurately aligned in the Z-axis direction, and the angle of the plane mirrors 4 and 5 and the angle of the laser interference unit 3 are accurate with respect to the Z-axis direction.
  • the laser head 12 is installed on the floor 30 so that the input / output head 12a is aligned with the input / output surface 8a of the laser interference unit 3 in the Z-axis direction.
  • the table 22 of the machine tool 20 is moved in the Z-axis direction with respect to the bed 21, and the position deviation in the roll direction ( ⁇ direction) accompanying the movement of the table 22 is measured by the measuring device 50.
  • the input / output surface 8a of the laser interference unit 3 moves in the Z-axis direction, and the input / output head 12a of the laser head 12 is also directed in the Z-axis direction. Even if it moves in the direction, the input / output of the laser beam to the input / output surface 8a does not shift. Further, if the laser interference unit 3 only moves in the Z-axis direction, the optical path lengths of the first optical path and the second optical path only expand and contract, and no relative optical path length difference occurs.
  • the reflecting mirror 2 of the laser interferometer 1 is fixed on the table 22 of the machine tool 20 as shown in FIG. It may be fixed on the bed 21.
  • the laser head 12 is installed on the floor 30 so that the input / output head 12a is aligned with the input / output surface 8a of the laser interference unit 3 in the Z-axis direction.
  • the measurement apparatus 50 of the first embodiment prior to the measurement, it is possible to easily perform the operation of adjusting each light component output from the laser interference unit 3 of the laser interferometer 1 in parallel.
  • a good interference signal can be obtained, and the measurement accuracy of the positional deviation in the roll direction can be improved.
  • FIG. 7 is a schematic perspective view showing a laser interferometer according to the second embodiment.
  • FIG. 8 is a perspective view showing the laser interference unit.
  • FIG. 9 is a cross-sectional view of the laser interference portion taken along line BB in FIG.
  • FIG. 10 is a plan view of the laser interference unit viewed from the direction of arrow C in FIG.
  • the same reference numerals are given to the same parts as those in the first embodiment except for some changed parts, and the description thereof is omitted.
  • a laser interferometer 101 according to the second embodiment includes a reflecting mirror 2 and a laser interference unit 103.
  • the laser interference unit 103 is further added to the configuration of the laser interference unit 3 according to the first embodiment.
  • a cube corner prism (re-input unit) 17 is provided.
  • the cube corner prism 17 is disposed in the vicinity of the input / output surface 8a of the polarization beam splitter 8, and is fixed to the interference part case 3a by a fixing bracket 18. Further, as shown in FIG. 10, the cube corner prism 17 is arranged avoiding the point D1 where the laser beam is input and the point D4 for outputting the laser beam on the input / output surface 8a.
  • the cube corner prism 17 is disposed so as to face a point D2 where the laser beam is output by two reciprocations between the biprism 6 and the reflecting mirror 2 and a point D3 where the laser beam is re-input.
  • the cube corner prism 17 is fixed to the outside of the interference portion case 3a and exposed to the outside. However, the cube corner prism 17 is exposed to the interference portion case 3a. In either case, it is expressed as being stored in the interference part case 3a.
  • Laser light having a P wave and an S wave is output in parallel to the Z-axis direction from the laser oscillator of the laser head, and is input to the input / output surface 8a of the polarization beam splitter 8 via the optical paths c1 and d1 shown in FIG. Is done.
  • the laser beam is input to the point D1 on the input / output surface 8a shown in FIG.
  • the laser beam input to the input / output surface 8a of the polarization beam splitter 8 is split into a first light component (P wave) and a second light component (S wave) by the polarization surface 8b, and the first light component is the first light component.
  • the light passes through the optical path (c2 to c22 in FIG.
  • the second light component passes through the second optical path (d2 to d22 in FIG. 7).
  • the P wave passes through the polarization plane 8b of the polarization beam splitter 8 as it is and is output to the optical path c2 in the straight direction, that is, the Z-axis direction, and the S wave is perpendicular to the polarization plane 8b, that is, Y
  • the light is reflected in the axial direction, passes through the polarization beam splitter 8, and reaches the planar reflecting mirror 9.
  • the first optical path through which the first light component passes is indicated by a broken line
  • the second optical path through which the second light component passes is indicated by a solid line.
  • the first light component passing through the first optical path sequentially passes through the optical path c2, the quarter wavelength plate 7b, the wedge prism 6b of the biprism 6, and the optical path c3.
  • the light enters and reflects perpendicularly to the plane mirror 4, and sequentially passes through the optical path c ⁇ b> 3, the wedge prism 6 b, the quarter wavelength plate 7 b, and the optical path c ⁇ b> 2 and returns to the polarization beam splitter 8.
  • the laser light that has returned to the optical path c2 is an S wave, and is reflected by the polarization surface 8b of the polarization beam splitter 8 in the direction in which the cube corner prism 11 is disposed, and the optical paths c4 and 1/4.
  • the wave plate 10 and the optical path c5 are sequentially passed, and the cube corner prism 11 returns to the optical path c6 which is parallel to the axial direction of the optical path c5 and is on an axis having a different diagonal position in the XZ plane.
  • the first light component sequentially passes through the optical path c6, the quarter wavelength plate 10, and the optical path c7.
  • the laser beam in the optical path c7 is a P wave, and travels straight through the polarization plane 8b of the polarization beam splitter 8 and passes through the planar reflecting mirror 9 and the optical path c8 sequentially.
  • the optical path c9, the quarter-wave plate 7a, the wedge prism 6a of the biprism 6 and the optical path c10 are sequentially passed, and enters and reflects perpendicularly to the plane mirror 5 of the reflecting mirror 2, and the optical path c10, the wedge prism 6a, 1 /
  • the light passes through the four-wavelength plate 7 a, the optical path c 9, the deflecting unit 15, the optical path c 8, and the planar reflection mirror 9 and returns to the polarization plane 8 b of the polarization beam splitter 8.
  • the laser beam that has returned to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected in the Z-axis direction by the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path c11. .
  • the laser beam output to the optical path c11 is output from the point D2 that is positioned diagonally to the point D1 on the XY plane of the input / output surface 8a shown in FIG.
  • the first light component output to the optical path c11 passes through the optical path c12 on the axis parallel to the axis of the optical path c11 and different in the Y-axis direction by the cube corner prism 17, and again.
  • the light is input to the input / output surface 8 a of the polarization beam splitter 8.
  • the laser beam output to the optical path c12 is input to a point D3 that is shifted by a predetermined distance in the Y-axis direction from the point D2 on the input / output surface 8a shown in FIG.
  • the first light component that has passed through the optical path c12 is an S wave
  • it is reflected by the polarization plane 8b, sequentially passes through the planar reflector 9 and the optical path c13, and the deflection direction is adjusted by the deflecting unit 15, and the optical path c14, the quarter-wave plate 7a, the wedge prism 6a of the biprism 6, and the optical path c15 are sequentially entered and reflected perpendicularly to the plane mirror 5 of the reflecting mirror 2, and the optical path c15, the wedge prism 6a, and the quarter-wave plate 7a. Then, the light passes through the optical path c14, the deflecting unit 15, the optical path c13, and the planar reflecting mirror 9 and returns to the polarization plane 8b of the polarization beam splitter 8.
  • the laser light that has returned to the polarization plane 8b of the polarization beam splitter 8 is a P-wave, passes straight through the polarization plane 8b of the polarization beam splitter 8, and passes through the optical path c16, the quarter wavelength plate 10, and the optical path.
  • the light passes through c17 sequentially, and is output by the cube corner prism 11 by folding back to an optical path c18 which is parallel to the axial direction of the optical path c17 and is on an axis having a different diagonal position in the XZ plane.
  • the laser beam in the optical path c18 sequentially passes through the quarter-wave plate 10 and the optical path c19, and returns to the polarization plane 8b of the polarization beam splitter 8 as S-wave laser light.
  • the returned laser light is reflected by the polarization plane 8b and sequentially passes through the optical path c20, the quarter wavelength plate 7b, the wedge prism 6b of the biprism 6, and the optical path c21, and enters the plane mirror 4 of the reflecting mirror 2 perpendicularly.
  • the light passes through the optical path c 21, the wedge prism 6 b, the quarter wavelength plate 7 b, and the optical path c 20, and returns to the polarization plane 8 b of the polarization beam splitter 8.
  • the returned laser light of the first light component is a P wave, passes straight through the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path c22.
  • the laser beam output to the optical path c22 is output from the point D4 that is at the diagonal position of the point D3 on the XY plane of the input / output surface 8a shown in FIG. .
  • the laser beam of the first light component is reciprocated between the biprism 6 and the reflecting mirror 2 and output to the cube corner prism 17, and then returned to the input / output surface 8a by the cube corner prism 17. Furthermore, since the bi-prism 6 and the reflecting mirror 2 are reciprocated twice and output from the input / output surface 8a, the bi-prism 6 and the reflecting mirror 2 are twice as large as the first embodiment. It is output from the input / output surface 8a after four reciprocations.
  • the first light component reciprocating four times with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path c22 and then input to the photoelectric converter of the laser head.
  • the S-wave laser light which is the light component dispersed by the polarization beam splitter 8 sequentially passes through the planar reflector 9 and the optical path d2.
  • the deflection direction is adjusted by the deflecting unit 15, sequentially passes through the optical path d3, the quarter-wave plate 7a, the wedge prism 6b, and the optical path d4, and is vertically incident and reflected by the plane mirror 4 of the reflecting mirror 2, and the optical path d4,
  • the light passes through the wedge prism 6 b, the quarter-wave plate 7 a, the optical path d 3, the deflecting unit 15, the optical path d 2, and the planar reflection mirror 9, and returns to the polarization plane 8 b of the polarization beam splitter 8.
  • the returned laser light of the second light component is a P wave, it travels straight through the polarization plane 8b and passes through the optical path d5, the quarter wavelength plate 10, and the optical path d6 in order, and the cube corner.
  • the prism 11 the light is returned to the optical path d 7 which is parallel to the axial direction of the optical path d 6 and is on an axis having a different diagonal position in the XZ plane.
  • the laser beam in the optical path d7 sequentially passes through the quarter-wave plate 10 and the optical path d8, and returns to the polarization plane 8b of the polarization beam splitter 8 as S-wave laser light.
  • the returned laser light is reflected by the polarization plane 8b, sequentially passes through the optical path d9, the quarter-wave plate 7b, the wedge prism 6a, and the optical path d10, and enters and reflects perpendicularly by the plane mirror 5 of the reflecting mirror 2, and the optical path. It passes through d10, the wedge prism 6a, the quarter wavelength plate 7b, and the optical path d9 in order, and returns to the polarization plane 8b of the polarization beam splitter 8.
  • the returned laser light of the second light component is a P wave, passes through the polarization plane 8b of the polarization beam splitter 8 in the straight traveling direction, and is output from the input / output plane 8a to the optical path d11.
  • the laser beam output to the optical path d11 is output from a point D2 opposite to the cube corner prism 17 at the diagonal position of the point D1 on the XY plane of the input / output surface 8a shown in FIG. .
  • the second light component output to the optical path d11 passes through the optical path d12 on the axis parallel to the axis of the optical path d11 and different in the Y-axis direction by the cube corner prism 17, and again.
  • the light is input to the input / output surface 8 a of the polarization beam splitter 8.
  • the laser beam output to the optical path d12 is input to a point D3 that is shifted by a predetermined distance in the Y-axis direction from the point D2 on the input / output surface 8a shown in FIG.
  • the second light component that has passed through the optical path d12 is a P wave, it passes through the polarization plane 8b as it is, and sequentially passes through the optical path d13, the quarter wavelength plate 7b, the wedge prism 6a, and the optical path d14, and the reflecting mirror. 2 is reflected vertically by the plane mirror 5, passes through the optical path d 14, the wedge prism 6 a, the quarter-wave plate 7 b, and the optical path d 13 in order, and returns to the polarization plane 8 b of the polarization beam splitter 8.
  • the laser beam returning to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected by the polarization plane 8b of the polarization beam splitter 8, and sequentially passes through the optical path d15, the quarter wavelength plate 10, and the optical path d16. Then, the cube corner prism 11 returns the light to the optical path d17 which is parallel to the axial direction of the optical path d16 and is on an axis having a different diagonal position in the XZ plane.
  • the laser beam in the optical path d17 sequentially passes through the quarter-wave plate 10 and the optical path d18, and returns to the polarization plane 8b of the polarization beam splitter 8 as a P-wave laser beam.
  • the returned laser light travels straight through the polarization plane 8b of the polarization beam splitter 8, passes through as it is, sequentially passes through the planar reflector 9 and the optical path d19, the deflection direction is adjusted by the deflecting unit 15, and the optical path d20,
  • the 1 ⁇ 4 wavelength plate 7a, the wedge prism 6b, and the optical path d21 are sequentially passed, and vertically incident and reflected by the plane mirror 5 of the reflecting mirror 2, and the optical path d21, the wedge prism 6b, the 1 ⁇ 4 wavelength plate 7a, the optical path d20, and the deflecting unit. 15, sequentially passes through the optical path d 19 and the planar reflector 9, and returns to the polarization plane 8 b of the polarization beam splitter 8.
  • the laser light that has returned to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected in the Z-axis direction by the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path d22.
  • the laser beam output to the optical path d22 is output from the point D4 that is at the diagonal position of the point D3 on the XY plane of the input / output surface 8a shown in FIG. .
  • the laser light of the second light component is reciprocated between the biprism 6 and the reflecting mirror 2 and output to the cube corner prism 17, and then returned to the input / output surface 8a by the cube corner prism 17. Furthermore, since the bi-prism 6 and the reflecting mirror 2 are reciprocated twice and output from the input / output surface 8a, the bi-prism 6 and the reflecting mirror 2 are twice as large as the first embodiment. It is output from the input / output surface 8a after four reciprocations.
  • the second light component reciprocated four times with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path d22 and then input to the photoelectric converter of the laser head.
  • the laser light outputted by the cube corner prism 17 by reciprocating twice between the biprism 6 and the reflecting mirror 2 is returned to the biprism 6 and the reflecting mirror 2 again. Since the optical path length of each light component is twice that of the first embodiment, and the positional deviation in the roll direction occurs, the amount of change in the optical path length is double. Become. Accordingly, the detection sensitivity is doubled in the photoelectric converter of the laser head 12 that detects the change in the optical path length, and the measurement accuracy of the positional deviation in the roll direction is improved.
  • the laser light having the first light component and the second light component irradiated from the laser head 12 is input from the input / output surface 8a and dispersed by the polarization surface 8b, and the biprism 6 Since the second light component is adjusted in the polarization direction in the deflecting unit 15 during the first round-trip between the mirror 2 and the reflecting mirror 2, and the first light component is adjusted in the polarization direction in the deflecting unit 15 during the next round-trip.
  • Each light component output to the prism 17 can be made parallel.
  • each light component of the parallel laser light input again from the input / output surface 8 a by the cube corner prism 17 is also split by the polarization surface 8 b and is first reciprocated between the biprism 6 and the reflecting mirror 2.
  • the amount of adjustment of the deflecting unit 15 is adjusted when laser light is input again. Even if it does not change, each output light component can be made parallel. Therefore, when measuring the positional deviation in the roll direction, a good interference signal can be obtained, and the measurement accuracy of the positional deviation in the roll direction can be improved.
  • FIG. 11 is a diagram showing roll detection sensitivity measured by the measurement apparatus of the first embodiment
  • FIG. 12 is a diagram showing roll detection sensitivity measured by the measurement apparatus of the second embodiment. is there.
  • the reflection mirror 2 in the laser interferometer 1 of the first embodiment is incident and reflected four times in total including the first light component and the second light component, and the laser interference of the second embodiment.
  • the total reflection of the first light component and the second light component on the reflecting mirror 2 in the total 101 is 8 times.
  • the horizontal axis is an angle (roll) obtained by rotating the reflecting mirror 2 in the roll direction, and the vertical axis is detected using the laser interferometers 1 and 101 with respect to the roll of the reflecting mirror 2.
  • L is the distance between the reflecting mirror 2 and the biprism 6.
  • the plotting position of the data is shifted upward as the value of L increases to make it easy to see. .
  • L 300 (mm)
  • the detection light length is shifted upward by 0.01 (mm) and plotted, but the actual detection light length is 0.01 (mm) from the plot position.
  • the roll detection sensitivity of the measuring apparatus including the laser interferometers 1 and 101 is the slope of the regression line of the measurement data, and the greater the slope of the regression line of the measurement data, the higher the detection sensitivity.
  • the roll detection sensitivity of the measurement apparatus according to the first embodiment shown in FIG. 11 is 0.81 ⁇ 10 ⁇ 5 regardless of the value of L, and is equal to the distance between the reflecting mirror 2 and the biprism 6. It was confirmed that it did not depend.
  • the roll detection sensitivity of the measurement apparatus of the second embodiment shown in FIG. 12 is 1.63 ⁇ 10 ⁇ 5 regardless of the value of L, which also causes It was confirmed that it did not depend on the distance to the prism 6. It was confirmed that the roll detection sensitivity of the measurement apparatus of the second embodiment is twice the roll detection sensitivity of the measurement apparatus of the first embodiment.
  • FIG. 13 is a diagram illustrating a result of detecting a positional deviation in the roll direction of the optical experimental bench.
  • a table was placed on the optical test bench, and the position deviation in the roll direction was detected by moving the table.
  • the detection light length what is obtained from the laser interferometer 101 is the detection light length.
  • the roll detection sensitivity (1.63 ⁇ 10 ⁇ 5 ) shown in FIG. 12 as calibration data.
  • the positional deviation in the roll direction is calculated. Yes. More specifically, the roll shown in FIG. 13, that is, the positional deviation in the roll direction, is obtained by dividing the detection light length obtained from the laser interferometer 101 by the roll detection sensitivity, which is calibration data.
  • FIG. 14 is a schematic perspective view showing a laser interferometer according to the third embodiment.
  • the same reference numerals are given to the same parts as those in the first or second embodiment except for some changed parts, and the description thereof is omitted.
  • the laser interference unit 203 of the laser interferometer 201 separates the polarization beam splitter (spectral unit) 208 and the planar reflector (reflecting unit) 209. And a planar reflecting mirror 209 is arranged in a direction perpendicular to the Z-axis direction of the polarizing beam splitter 208 (Y-axis direction).
  • the deflecting unit 15 is disposed between the planar reflecting mirror 209 and the quarter-wave plate 7a.
  • the deflecting unit 15 it is not necessary to adjust the angle of the planar reflecting mirror 209 when adjusting each light component output from the laser interference unit 203 in parallel, and each of the deflecting units 15 can be adjusted. Since only the wedge prisms 15a and 15b need to be adjusted, the adjustment work is simple.
  • the deflecting unit 15 is disposed between the planar reflector 209 and the quarter-wave plate 7a.
  • the present invention is not limited to this.
  • the deflecting unit 15 may be disposed between the polarizing beam splitter 208 and the planar reflecting mirror 209. This also makes it unnecessary to adjust the angle of the planar reflecting mirror 209 when adjusting the output light components in parallel, and it is only necessary to adjust the wedge prisms 15a and 15b of the deflecting unit 15. Easy to work.
  • the deflecting unit 15 is disposed between the planar reflectors 9 and 209 and the quarter-wave plate 7a. Instead, for example, a broken line in FIG. As shown, the deflecting unit 15 may be disposed between the quarter-wave plate 7 a and the biprism 6. Further, instead of providing the deflecting unit 15 in the optical path passing through the polarizing beam splitters 8 and 208, the reflecting mirrors 9 and 209, the quarter wavelength plate 7a, and the biprism 6, the polarizing beam splitters 8, 208 and quarter wavelength plates are provided.
  • an optical path passing through the biprism 6, that is, the deflecting unit 15 is disposed between the polarization beam splitters 8 and 208 and the quarter wavelength plate 7b, or between the quarter wavelength plate 7b and the biprism 6. You may make it do.
  • the interference part may have an amic prism (not shown) as a reflection part.
  • the laser interferometer 1, 101, 201 is used to measure the positional deviation in the roll direction ( ⁇ direction).
  • 201 can be used in a shape rotated 90 degrees, that is, in a horizontal direction.
  • the measurement device 50 for measuring the machine tool 20 has been described.
  • the measurement device 50 is not limited to the machine tool, and is not limited to the machine tool, but in the axial direction with respect to the support member and the support member.
  • the measurement device 50 is a moving member that can be installed (fixed) to the reflecting mirror 2 and the laser interference units 3, 103, 203, the positional deviation of them can be measured. Is possible.
  • the input / output surfaces of the laser interference units 3, 103, and 203 are positioned on the opposite side in the axial direction of the polarization beam splitters 8 and 208 with respect to the reflecting mirror 2.
  • the present invention is not limited to this, and the input / output surface of the polarization beam splitter is formed in a direction perpendicular to the axial direction so that the laser interference unit inputs and outputs laser light in the direction perpendicular to the axial direction. It may be configured.
  • the laser interference unit 103 includes one cube corner prism 17 as a re-input unit, and the laser beam is reciprocated four times between the biprism 6 and the reflecting mirror 2.
  • the present invention is not limited to this, and the laser interference unit includes a plurality of cube corner prisms (N: N is an integer of 2 or more) as a re-input unit. It may be a case where it is configured to reciprocate 2 ⁇ (N + 1).
  • the laser interferometer and measuring apparatus are used for measuring a positional deviation that occurs when a moving member such as a table of a machine tool moves in an axial direction with respect to a supporting member, and in particular, a positional deviation in a roll direction. Suitable for measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A laser interferometer (1) includes a reflecting mirror (2) having two plane mirrors (4, 5), and a laser interferometry section (3) having a polarizing beam splitter (8) to accept two linear polarized light intersecting orthogonal to each other for dispersion and a biprism (6) to refract each of dispersed optical components to be incident and reflective vertically to/from the plane mirrors (4, 5) to output each optical component after reciprocating each optical component twice between the biprism (6) and the reflecting mirror (2). The laser interferometry section (3) is provided with a deflecting section (15) having a pair of wedge prisms (15a, 15b) that are arranged between the polarizing beam splitter (8) and the biprism (6) such that one optical component is passing when each optical component is reciprocating at the beginning, while the other optical component is passing when each optical component is reciprocating next, and that allow flexible adjustment of a deflecting direction of the passing-through optical component. Such an arrangement ensures simplified deflection adjustment work for each optical component, improved parallelism of each optical component of the outgoing laser beam, and enhanced accuracy in measurement of the positional deviation in the roll direction.

Description

レーザ干渉計、及びそれを用いた測定装置Laser interferometer and measuring apparatus using the same
 本発明は、例えば工作機械のテーブル等の移動部材が支持部材に対して軸方向に移動する際に生じる位置偏差を測定するためのレーザ干渉計に係り、詳しくは、出力される各光成分を平行に調整可能とするレーザ干渉計、及びそれを用いた測定装置に関する。 The present invention relates to a laser interferometer for measuring a positional deviation caused when a moving member such as a table of a machine tool moves in an axial direction with respect to a support member, and more specifically, outputs each light component. The present invention relates to a laser interferometer that can be adjusted in parallel and a measurement apparatus using the same.
 例えば高精度な工作が要求される旋盤、フライス盤、研削盤などの工作機械などにおいては、工場などの床に対して固定されるベッドと、該ベッド上を移動するテーブルとが備えられており、工作の際には、このテーブルに被加工物などを設置して、該テーブルを所定の軸方向に移動させつつ工作を行う。このテーブルの移動においては、軸方向、横方向、縦方向、ピッチ方向、ヨー方向、ロール方向の6つの(つまり6自由度方向の)位置偏差(誤差)が生じる虞があり、機械精度の比較、受渡し、保守などの目的から、これらの位置偏差を測定する必要がある。 For example, in machine tools such as lathes, milling machines, and grinding machines that require high-precision work, a bed that is fixed to a floor in a factory or the like and a table that moves on the bed are provided. At the time of work, a work piece or the like is set on the table, and the work is performed while moving the table in a predetermined axial direction. In moving the table, there is a possibility that six positional deviations (errors) in the axial direction, the horizontal direction, the vertical direction, the pitch direction, the yaw direction, and the roll direction (that is, in the direction of 6 degrees of freedom) may occur. These positional deviations need to be measured for purposes such as delivery and maintenance.
 従来、上記6つの位置偏差を測定するため、レーザ測長機などによって測定を行うものが種々提案されており、軸方向、横方向、縦方向、ピッチ方向、ヨー方向の位置偏差を測定するものは実用化されているものもある。ところが、ロール方向の測定は、精密水準器やダイヤルゲージによって測定するように規定されている(例えば、JISB6336-1、ISO10791-1)。しかしながら、上記工作機械のテーブルを移動させると、該工作機械自体の重心が移動するため、該工作機械全体が傾斜してしまう。そのため、上記水準器などによってロール方向の測定を行うと、該工作機械の傾斜も含めて測定することとなり、正確なロール方向の測定ができなかった。また、鉛直方向に移動するテーブルにおいては、ロール方向が水平方向であるため、上述の水準器ではロール方向の測定が不可能であった。そこで、特にロール方向に対する位置偏差をレーザ干渉計を用いて測定するもの(日本国特開昭62-223604号公報、日本国特開2004-138433公報参照)が提案されている。 Conventionally, in order to measure the above six position deviations, various types of measurement using a laser length measuring machine have been proposed, and the position deviations in the axial direction, horizontal direction, vertical direction, pitch direction, and yaw direction are measured. Some have been put to practical use. However, the measurement in the roll direction is specified to be measured with a precision level or a dial gauge (for example, JIS B 6336-1, ISO 10791-1). However, when the table of the machine tool is moved, the center of gravity of the machine tool itself moves, so that the entire machine tool is inclined. Therefore, when the roll direction is measured with the above-described level or the like, the measurement including the inclination of the machine tool is performed, and the accurate roll direction cannot be measured. Further, in the table moving in the vertical direction, since the roll direction is horizontal, it is impossible to measure the roll direction with the above-described level. In view of this, there has been proposed a technique for measuring a positional deviation with respect to the roll direction using a laser interferometer (see Japanese Patent Laid-Open Nos. 62-223604 and 2004-138433).
 この種のレーザ干渉計は、略V字状となるように所定角度で傾斜した2枚の平面鏡を有する反射手段としての反射鏡と、互いに直交する2つの偏光成分を有するレーザ光を入力し、各光成分を反射鏡に2往復させてから出力するレーザ光路生成手段としてのレーザ干渉部とを備えている。レーザ干渉部は、分光部として偏光面を有する偏光ビームスプリッタと、偏光ビームスプリッタと反射鏡の間に配置される屈折部としてのバイプリズムと、軸方向に対して偏光ビームスプリッタの直角方向に配置されるターニングミラーとを有している。偏光ビームスプリッタは、レーザ光を入力自在とすると共に、反射鏡に2往復させたレーザ光を出力自在とする入出力部を有している。 This type of laser interferometer inputs a reflecting mirror as a reflecting means having two plane mirrors inclined at a predetermined angle so as to be substantially V-shaped, and a laser beam having two polarization components orthogonal to each other. A laser interference unit serving as a laser beam path generating unit that outputs each light component after being reciprocated twice by a reflecting mirror. The laser interference unit is disposed in a direction perpendicular to the polarization beam splitter with respect to the axial direction, a polarization beam splitter having a polarization plane as a spectroscopic unit, a biprism as a refraction unit disposed between the polarization beam splitter and the reflecting mirror And a turning mirror. The polarization beam splitter has an input / output unit that allows laser light to be input and also allows laser light that has been reciprocated twice to and from a reflecting mirror to be output.
 このレーザ干渉計では、互いに直交する2つの偏光成分を有するレーザ光がレーザヘッドから出射され、偏光ビームスプリッタの入出力部に入力されると、偏光ビームスプリッタの偏光面にて各光成分に分離される。 In this laser interferometer, when laser light having two polarization components orthogonal to each other is emitted from the laser head and input to the input / output section of the polarization beam splitter, it is separated into each light component at the polarization plane of the polarization beam splitter. Is done.
 偏光ビームスプリッタで分離された一方の光成分は、ターニングミラー、バイプリズムを順次通過し、反射鏡で反射され、バイプリズム、ターニングミラーを順次通過して偏光ビームスプリッタに戻ってくる。その後、一方の光成分は、偏光ビームスプリッタから出射され、バイプリズムを通過し、反射鏡で反射され、バイプリズムを通過して偏光ビームスプリッタに戻ってくる。このようにして偏光ビームスプリッタで分離された一方の光成分はバイプリズムと反射鏡との間を2往復する。 One light component separated by the polarizing beam splitter passes through the turning mirror and the biprism sequentially, is reflected by the reflecting mirror, passes through the biprism and the turning mirror sequentially, and returns to the polarizing beam splitter. Thereafter, one light component is emitted from the polarizing beam splitter, passes through the biprism, is reflected by the reflecting mirror, passes through the biprism, and returns to the polarizing beam splitter. One light component separated in this way by the polarization beam splitter reciprocates twice between the biprism and the reflecting mirror.
 次に、偏光ビームスプリッタで分離された他方の光成分は、バイプリズムを通過し、反射鏡で反射され、バイプリズムを通過して、偏光ビームスプリッタに戻ってくる。その後、他方の光成分は、ターニングミラー、バイプリズムを順次通過し、反射鏡で反射され、バイプリズム、ターニングミラーを順次通過して偏光ビームスプリッタに戻ってくる。このようにして他方の光成分は一方の光成分とは異なる光路でバイプリズムと反射鏡との間を2往復する。 Next, the other light component separated by the polarizing beam splitter passes through the biprism, is reflected by the reflecting mirror, passes through the biprism, and returns to the polarizing beam splitter. Thereafter, the other light component sequentially passes through the turning mirror and the biprism, is reflected by the reflecting mirror, passes through the biprism and the turning mirror in sequence, and returns to the polarizing beam splitter. In this way, the other light component reciprocates twice between the biprism and the reflecting mirror along an optical path different from the one light component.
 そして、バイプリズムと反射鏡との間を2往復したレーザ光の各光成分は、レーザ干渉部より出力される。このレーザ干渉部より出力された各光成分のレーザ光(干渉信号)は光電変換器により受光され、各光成分の波長の位相差に基づく、それら2つの光路長の相対変化を測定することによって、ロール方向の位置偏差を算出することを可能としている。 Then, each optical component of the laser light that has reciprocated between the biprism and the reflecting mirror is output from the laser interference unit. The laser light (interference signal) of each light component output from this laser interference unit is received by a photoelectric converter, and by measuring the relative change of the two optical path lengths based on the phase difference of the wavelength of each light component. The positional deviation in the roll direction can be calculated.
 ところで、ターニングミラーを経由してバイプリズムに向かうレーザ光と、ターニングミラーを経由せずにバイプリズムに向かうレーザ光とが平行であれば、バイプリズムで屈折して出射するレーザ光が反射鏡において垂直に入反射し、レーザ光の復路においても往路と同じ光路を辿ることとなり、レーザ干渉部より出力されるレーザ光の各光成分は平行となるものである。 By the way, if the laser light that goes to the biprism via the turning mirror and the laser light that goes to the biprism without going through the turning mirror are parallel, the laser light refracted by the biprism and emitted is reflected in the reflecting mirror. The light beams are vertically reflected and follow the same optical path as the forward path in the return path of the laser beam, so that each light component of the laser beam output from the laser interference unit is parallel.
 しかしながら、上述したレーザ干渉計では、偏光ビームスプリッタ等の光学部品の製作精度が低いと、レーザ干渉部から出力される2つの光成分の平行度が低下してしまうことがある。 However, in the above-described laser interferometer, if the manufacturing accuracy of an optical component such as a polarization beam splitter is low, the parallelism of the two light components output from the laser interference unit may decrease.
 具体的に説明すると、光学部品としての偏光ビームスプリッタは、2つの45°直角プリズムの斜面間に偏光面を設けて接着剤で接着した立方体状のものが一般的に知られており、この接着剤の乾燥時の収縮により、製作精度が低下してしまうことがある。そして、光学部品の製作精度が低下してしまうと、各光成分の往復過程で光路がずれてしまい、レーザ干渉部から出力される2つ光成分の平行度が低下してしまうことがある。 Specifically, a polarizing beam splitter as an optical component is generally known in the form of a cube in which a polarizing surface is provided between the inclined surfaces of two 45 ° right-angle prisms and bonded with an adhesive. Production accuracy may be reduced due to shrinkage of the agent when it is dried. If the manufacturing accuracy of the optical component is reduced, the optical path may be shifted in the reciprocal process of each light component, and the parallelism of the two light components output from the laser interference unit may be reduced.
 このようにレーザ干渉部から出力される2つ光成分の平行度が低下してしまうと、2つの光成分による干渉信号が微弱になってしまい、良好な干渉信号を検出できず、ロール方向の位置偏差の測定精度が低下してしまうという問題がある。 If the parallelism of the two light components output from the laser interference unit decreases in this way, the interference signal due to the two light components becomes weak, and a good interference signal cannot be detected. There is a problem that the measurement accuracy of the position deviation is lowered.
 この問題を解消するために、ターニングミラーの角度を調整することで、レーザ干渉部から出力される2つの光成分を平行にすることはできるが、その調整作業は非常に難しく、より簡単に調整できるレーザ干渉計が望まれていた。 To solve this problem, the angle of the turning mirror can be adjusted to make the two light components output from the laser interference section parallel, but the adjustment work is very difficult and easier to adjust. A laser interferometer that can be used has been desired.
 そこで本発明は、各光成分の偏向調整作業が簡単で、レーザ光路生成手段から出力されるレーザ光の各光成分の平行度を向上させることができ、ロール方向の位置偏差の測定精度を向上させることができるレーザ干渉計、及びそれを用いた測定装置を提供することを目的とするものである。 Therefore, the present invention makes it easy to adjust the deflection of each light component, improves the parallelism of each light component of the laser light output from the laser light path generation means, and improves the measurement accuracy of the positional deviation in the roll direction. It is an object of the present invention to provide a laser interferometer that can be used, and a measuring apparatus using the same.
 本発明は(例えば、図3、図7、図14参照)、所定角度で傾斜した2枚の平面鏡(4,5)を有する反射手段(2)と、
 偏光面が互いに直交する2つの偏光成分を有するレーザ光を入力して分光する分光部(8,208)、及び前記分光部(8,208)と前記反射手段(2)との間に配置され、前記分光部(8,208)で分光した各光成分を、前記反射手段(2)の平面鏡(4,5)に対して垂直に入反射するように前記所定角度に屈折させる屈折部(6)を有し、前記各光成分を前記屈折部(6)と前記反射手段(2)との間で2往復させてから出力するレーザ光路生成手段(3,103,203)と、を備え、
 前記反射手段(2)と前記レーザ光路生成手段(3,103,203)とを軸方向(例えばZ軸方向)に相対移動させた際に、前記反射手段(2)と前記レーザ光路生成手段(3,103,203)との相対位置関係によって各光成分が通過する光路の距離が相対変化するレーザ干渉計(1,101,201)において、
 前記レーザ光路生成手段(3,103,203)は、
 前記各光成分が最初に往復する際に一方の光成分が通過し、前記各光成分が次に往復する際に他方の光成分が通過するよう、前記分光部(8,208)と前記屈折部(6)との間に配置され、通過する光成分の偏向方向を調整自在とする一対のウェッジプリズム(15a,15b)を有する偏向部(15)を備えたことを特徴とするレーザ干渉計(1,101,201)にある。
The present invention (see, for example, FIG. 3, FIG. 7, FIG. 14) includes a reflecting means (2) having two plane mirrors (4, 5) inclined at a predetermined angle;
A spectroscopic unit (8, 208) that inputs and splits laser light having two polarization components whose polarization planes are orthogonal to each other, and is disposed between the spectroscopic unit (8, 208) and the reflecting means (2). The refracting section (6) refracts each light component dispersed by the spectroscopic section (8, 208) at the predetermined angle so as to enter and reflect perpendicularly to the plane mirror (4, 5) of the reflecting means (2). And laser light path generation means (3, 103, 203) for outputting each light component after reciprocating twice between the refraction part (6) and the reflection means (2),
When the reflecting means (2) and the laser beam path generating means (3, 103, 203) are relatively moved in the axial direction (for example, the Z-axis direction), the reflecting means (2) and the laser beam path generating means ( 3, 103, 203) In a laser interferometer (1, 101, 201) in which the distance of the optical path through which each light component passes is relatively changed by the relative positional relationship with
The laser beam path generation means (3, 103, 203)
The light splitting unit (8, 208) and the refraction so that one light component passes when the light components first reciprocate and the other light component passes when the light components reciprocate next time. A laser interferometer comprising a deflection unit (15) disposed between the unit (6) and having a pair of wedge prisms (15a, 15b) that can adjust a deflection direction of a light component passing therethrough. (1, 101, 201).
 これにより、一対のウェッジプリズムを操作するだけで偏向部を通過する各光成分の偏向方向を簡単に調整することができる。そして、各光成分が反射手段の平面鏡に対して垂直に入反射するよう、偏向部の調整により屈折部に入射する各光成分を平行にすることで、レーザ光路生成手段から出力される各光成分の平行度を向上させることができる。そして、ロール方向の位置偏差の測定時には、良好な干渉信号を得ることができ、ロール方向の位置偏差の測定精度が向上する。 This makes it possible to easily adjust the deflection direction of each light component passing through the deflecting unit simply by operating a pair of wedge prisms. Each light component that is incident on the refracting unit by adjusting the deflecting unit is made parallel so that each light component is incident and reflected perpendicularly to the plane mirror of the reflecting unit. The parallelism of the components can be improved. When measuring the positional deviation in the roll direction, a good interference signal can be obtained, and the measurement accuracy of the positional deviation in the roll direction is improved.
 また、本発明は(例えば、図3、図7、図14参照)、前記レーザ光路生成手段(3,103,203)は、前記分光部(8,208)の前記軸方向(例えばZ軸方向)に対して直角方向(例えばY軸方向)に配置され、前記分光部(8,208)を経て入射したレーザ光を前記屈折部(6)に向けて反射する反射部(9,209)を備え、
 前記偏向部(15)は、前記反射部(9,209)と前記屈折部(6)との間に配置されることを特徴とする。
Further, according to the present invention (see, for example, FIGS. 3, 7, and 14), the laser beam path generation means (3, 103, 203) is configured such that the axial direction (for example, the Z-axis direction) of the spectroscopic unit (8, 208). ) And a reflecting portion (9, 209) that is arranged in a direction perpendicular to the optical axis (for example, the Y-axis direction) and reflects the laser light incident through the spectroscopic portion (8, 208) toward the refracting portion (6). Prepared,
The deflection unit (15) is disposed between the reflection unit (9, 209) and the refraction unit (6).
 これにより、偏向部が反射部と屈折部との間に配置されるので、各光成分の偏光方向を調整する際に反射部を調整する必要がなくなり、調整作業が容易である。 Thereby, since the deflecting unit is disposed between the reflecting unit and the refracting unit, it is not necessary to adjust the reflecting unit when adjusting the polarization direction of each light component, and the adjustment work is easy.
 また、本発明は(例えば図14参照)、前記レーザ光路生成手段(203)は、前記分光部(208)の前記軸方向(例えばZ軸方向)に対して直角方向(例えばY軸方向)に配置され、前記分光部(208)を経て入射したレーザ光を前記屈折部(6)に向けて反射する反射部(209)を備え、
 前記偏向部(15)は、前記分光部(208)と前記反射部(209)との間に配置されることを特徴とする。
Further, according to the present invention (see, for example, FIG. 14), the laser beam path generation unit (203) is perpendicular to the axial direction (eg, Z-axis direction) of the spectroscopic unit (208) (eg, Y-axis direction). A reflection unit (209) that is disposed and reflects the laser beam incident through the spectroscopic unit (208) toward the refraction unit (6);
The deflection unit (15) is disposed between the spectroscopic unit (208) and the reflection unit (209).
 これにより、偏向部が分光部と反射部との間に配置されるので、各光成分の偏光方向を調整する際に反射部を調整する必要がなくなり、調整作業が容易である。 Thereby, since the deflecting unit is disposed between the spectroscopic unit and the reflecting unit, it is not necessary to adjust the reflecting unit when adjusting the polarization direction of each light component, and the adjustment work is easy.
 さらに、本発明は(例えば図4、図5、図8、図9参照)、前記レーザ光路生成手段(3,103)を格納する筐体(3a)を備え、
 前記偏向部(15)は、前記ウェッジプリズム(15a,15b)の外周に形成されたリング状の操作子(16a,16b)を有し、
 前記ウェッジプリズム(15a,15b)は、前記操作子(16a,16b)が前記筐体(3a)から露出するよう前記筐体(3a)内に配設されていることを特徴とする。
Furthermore, the present invention (see, for example, FIG. 4, FIG. 5, FIG. 8, FIG. 9) includes a housing (3a) for storing the laser light path generation means (3, 103),
The deflection unit (15) includes ring-shaped operating elements (16a, 16b) formed on the outer periphery of the wedge prism (15a, 15b),
The wedge prisms (15a, 15b) are arranged in the casing (3a) so that the operating elements (16a, 16b) are exposed from the casing (3a).
 これにより、操作子が筐体から露出しているので、筐体を分解しなくても偏向部を操作することができ、調整作業が容易である。 Thereby, since the operation element is exposed from the casing, the deflecting unit can be operated without disassembling the casing, and adjustment work is easy.
 さらにまた、本発明は(例えば、図7、図9参照)、前記分光部(8)は、レーザ光を入力自在とすると共に、前記反射手段(2)に2往復させたレーザ光を出力自在とする入出力部(8a)を有し、
 前記レーザ光路生成手段(103)は、前記入出力部(8a)から出力されたレーザ光を、折り返し前記入出力部(8a)に入力する再入力部(17)を備えたことを特徴とする。
Furthermore, according to the present invention (see, for example, FIGS. 7 and 9), the spectroscopic unit (8) can freely input laser light and can output laser light reciprocated twice to the reflecting means (2). An input / output unit (8a)
The laser beam path generation means (103) includes a re-input unit (17) for returning the laser beam output from the input / output unit (8a) to the input / output unit (8a). .
 これにより、再入力部により、屈折部と反射手段との間を2往復して出力されたレーザ光が、再び屈折部と反射手段との間を2往復することとなるので、感度が向上し、ロール方向の位置偏差の測定精度が向上する。 As a result, the laser beam output by the re-input unit reciprocating twice between the refracting unit and the reflecting means is reciprocated twice between the refracting unit and the reflecting means, so that the sensitivity is improved. The measurement accuracy of the positional deviation in the roll direction is improved.
 また、本発明は(図1、図2参照)、前記レーザ干渉計(1)と、
 前記レーザ光を照射自在で、かつ前記レーザ光路生成手段(3)より出力された前記各光成分のレーザ光の波長の位相差に基づき、前記各光成分の光路の距離の相対変化を測定し得るレーザ測長手段(12)と、を備え、
 前記反射手段(2)及び前記レーザ光路生成手段(3)のいずれか一方を、基準床(30)に対して支持される支持部材(21)に固定し、
 前記反射手段(2)及び前記レーザ光路生成手段(3)の他方を、前記支持部材(21)に対して軸方向(例えばZ軸方向)に移動自在に支持される移動部材(22)に固定し、
 前記移動部材(22)を前記支持部材(21)に対して前記軸方向(例えばZ軸方向)に移動させた際に、前記支持部材(21)に対する前記移動部材(22)の位置偏差を測定することを特徴とする測定装置(50)にある。
Further, the present invention (see FIGS. 1 and 2), the laser interferometer (1),
Based on the phase difference of the wavelength of the laser light of each light component output from the laser light path generation means (3), the relative change in the distance of the light path of each light component is measured. Laser length measuring means (12) to obtain,
Either one of the reflecting means (2) and the laser beam path generating means (3) is fixed to a support member (21) supported by a reference floor (30);
The other of the reflecting means (2) and the laser beam path generating means (3) is fixed to a moving member (22) supported so as to be movable in the axial direction (for example, the Z-axis direction) with respect to the supporting member (21). And
When the moving member (22) is moved in the axial direction (for example, the Z-axis direction) with respect to the support member (21), a positional deviation of the moving member (22) with respect to the support member (21) is measured. It exists in the measuring apparatus (50) characterized by doing.
 これにより、移動部材の移動による支持部材の傾斜を含むことなく、移動部材と支持部材との相対位置関係の測定が可能であり、良好にロール方向の位置偏差を測定することが可能となる。 Thereby, the relative positional relationship between the moving member and the supporting member can be measured without including the inclination of the supporting member due to the movement of the moving member, and the positional deviation in the roll direction can be measured well.
 尚、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、請求の範囲の構成に何等影響を及ぼすものではない。 In addition, although the code | symbol in the said parenthesis is for contrast with drawing, this is for convenience for making an understanding of an invention easy, and has an influence on the structure of a claim. is not.
レーザ干渉部をテーブルに固定した際の測定装置及び工作機械を示す斜視図。The perspective view which shows the measuring apparatus and machine tool at the time of fixing a laser interference part to a table. 反射鏡をテーブルに固定した際の測定装置及び工作機械を示す斜視図。The perspective view which shows the measuring apparatus and machine tool at the time of fixing a reflective mirror to a table. 第1の実施の形態に係るレーザ干渉計を示す斜視模式図。The perspective schematic diagram which shows the laser interferometer which concerns on 1st Embodiment. レーザ干渉部の斜視図。The perspective view of a laser interference part. 図4中A-A線に沿うレーザ干渉部の断面図。Sectional drawing of the laser interference part which follows the AA line in FIG. 偏向部を通過するレーザ光の光路を示す説明図であり、(a)は、レーザ干渉部において偏向部によりレーザ光の偏向方向を調整した場合の光路を示す説明図、(b)は、偏向部を通過するレーザ光の偏向範囲を示す説明図。It is explanatory drawing which shows the optical path of the laser beam which passes a deflection | deviation part, (a) is explanatory drawing which shows the optical path at the time of adjusting the deflection direction of a laser beam with a deflection | deviation part in a laser interference part, (b) is deflection | deviation. Explanatory drawing which shows the deflection | deviation range of the laser beam which passes a part. 第2の実施の形態に係るレーザ干渉計を示す斜視模式図。The perspective schematic diagram which shows the laser interferometer which concerns on 2nd Embodiment. レーザ干渉部を示す斜視図。The perspective view which shows a laser interference part. 図8中、B-B線に沿うレーザ干渉部の断面図。FIG. 9 is a cross-sectional view of the laser interference section along the line BB in FIG. 8. 図8中、矢印C方向から見たレーザ干渉部の平面図。The top view of the laser interference part seen from the arrow C direction in FIG. 第1の実施の形態の測定装置により計測したロール検出感度を示す図。The figure which shows the roll detection sensitivity measured with the measuring apparatus of 1st Embodiment. 第2の実施の形態の測定装置により計測したロール検出感度を示す図。The figure which shows the roll detection sensitivity measured with the measuring apparatus of 2nd Embodiment. 光学実験台のロール方向の位置偏差を検出した結果を示す図。The figure which shows the result of having detected the position deviation of the roll direction of an optical experiment stand. 第3の実施の形態に係るレーザ干渉計を示す斜視模式図。The perspective schematic diagram which shows the laser interferometer which concerns on 3rd Embodiment.
 <第1の実施の形態>
 以下、本発明に係る第1の実施の形態を図に沿って説明する。図1はレーザ干渉部をテーブルに固定した際の測定装置及び工作機械を示す斜視図、図2は反射鏡をテーブルに固定した際の測定装置及び工作機械を示す斜視図、図3は第1の実施の形態に係るレーザ干渉計を示す斜視模式図である。図4は、レーザ干渉部の斜視図であり、図5は、図4中A-A線に沿うレーザ干渉部の断面図である。図6は、偏向部を通過するレーザ光の光路を示す説明図であり、図6の(a)は、レーザ干渉部において偏向部によりレーザ光の偏向方向を調整した場合の光路を示す説明図であり、図6の(b)は、偏向部を通過するレーザ光の偏向範囲を示す説明図である。
<First Embodiment>
Hereinafter, a first embodiment according to the present invention will be described with reference to the drawings. 1 is a perspective view showing a measuring device and a machine tool when the laser interference unit is fixed to the table, FIG. 2 is a perspective view showing the measuring device and the machine tool when the reflecting mirror is fixed to the table, and FIG. It is a perspective schematic diagram which shows the laser interferometer which concerns on this embodiment. 4 is a perspective view of the laser interference portion, and FIG. 5 is a cross-sectional view of the laser interference portion along the line AA in FIG. FIG. 6 is an explanatory diagram showing the optical path of the laser beam passing through the deflecting unit, and FIG. 6A is an explanatory diagram showing the optical path when the deflection direction of the laser beam is adjusted by the deflecting unit in the laser interference unit. FIG. 6B is an explanatory diagram showing the deflection range of the laser light that passes through the deflecting unit.
 図1に示すように、工作機械20の位置偏差を測定し得る測定装置50は、レーザ干渉計1とレーザヘッド(レーザ測長手段)12とを備えている。該工作機械20は、例えば工場の床30に載置されて支持されているベッド(支持部材)21を有しており、該ベッド21にはガイド部材21aが支持されている。該ガイド部材21aにはテーブル(移動部材)22がZ軸方向(軸方向)に移動自在に支持されており、該テーブル22は、例えば不図示のモータの駆動などによりZ軸方向に移動する。 As shown in FIG. 1, a measuring device 50 that can measure the positional deviation of the machine tool 20 includes a laser interferometer 1 and a laser head (laser length measuring means) 12. The machine tool 20 includes, for example, a bed (support member) 21 that is placed and supported on a floor 30 of a factory, and the bed 21 supports a guide member 21a. A table (moving member) 22 is supported on the guide member 21a so as to be movable in the Z-axis direction (axial direction). The table 22 moves in the Z-axis direction by driving a motor (not shown), for example.
 また、工作機械20のベッド21には、刃物台23が設けられており、該刃物台23に設けられたアーム24にチャック25を有している。工作機械20により工作を行う際は、該チャック25にバイトなどの工具を取付けると共にテーブル22に被工作物を設置・固定し、該テーブル22を移動させて被工作物と工具とを接触させつつ工作を行う。尚、図1に示す工作機械20は、説明の便宜上、簡単に示した模式的なものであり、Z軸方向に移動するものを一例として説明しているが、実際には更に複雑な形状、動作を行うものである。 Further, a tool post 23 is provided on the bed 21 of the machine tool 20, and an arm 24 provided on the tool post 23 has a chuck 25. When working with the machine tool 20, a tool such as a tool is attached to the chuck 25, a work piece is set and fixed on the table 22, and the work piece and the tool are brought into contact with each other by moving the table 22. Do the work. Note that the machine tool 20 shown in FIG. 1 is a schematic diagram that is simply shown for convenience of explanation, and has been described as an example that moves in the Z-axis direction. The operation is performed.
 レーザヘッド12は、例えば三脚12bなどで床30に配置されており、該レーザヘッド12内には、互いに直交する2つの偏光成分を有するレーザ光、具体的には直線偏光であるP波(例えば縦波)と該P波に対して偏光面が直交し、周波数が異なる直線偏光であるS波(例えば横波)とを有するレーザ光を照射自在なレーザ発振器と、入力されるレーザ光のP波とS波との波長に基づき詳しくは後述する光路長の変化量を測定し得る光電変換器とが備えられている。また、レーザヘッド12には、レーザ発振器のレーザ光の照射と光電変換器へのレーザ光の入力とを同軸方向に行う入出力ヘッド12aが備えられており、該レーザヘッド12は、該入出力ヘッド12aが後述するレーザ干渉計1のレーザ干渉部3の入出力部8aに対して向けられ、かつレーザ光の入出力をZ軸方向に行うように配置される。 The laser head 12 is arranged on the floor 30 with, for example, a tripod 12b, and the laser head 12 has laser light having two polarization components orthogonal to each other, specifically, P waves (for example, linearly polarized light) (Longitudinal wave) and a laser oscillator capable of irradiating a laser beam having an S wave (for example, a transverse wave) that is a linearly polarized light having a plane of polarization orthogonal to the P wave and a different frequency, and the P wave of the input laser beam And a photoelectric converter capable of measuring the amount of change in the optical path length, which will be described in detail later, based on the wavelengths of the S wave and the S wave. In addition, the laser head 12 is provided with an input / output head 12a that coaxially performs the irradiation of the laser light of the laser oscillator and the input of the laser light to the photoelectric converter. The head 12a is directed to the input / output unit 8a of the laser interference unit 3 of the laser interferometer 1 to be described later, and is arranged so as to input / output laser light in the Z-axis direction.
 尚、上記工作機械20のベッドやテーブルには、その形状や役割によって種々の名称があり、例えば主軸頭、刃物台、コラム、ステージなどの名称があるが、説明の便宜上、本明細書中においては、床30に対して支持されている支持部材をベッド21、該ベッド21に対して移動する移動部材をテーブル22とする。また、レーザヘッド12がレーザ発振器と光電変換器とを一体に備えるようにしたが、別体に備えるようにしてもよい。 The bed and table of the machine tool 20 have various names depending on their shapes and roles. For example, there are names such as a spindle head, a tool post, a column, and a stage. The bed 21 is a support member supported by the floor 30, and the table 22 is a moving member that moves relative to the bed 21. Further, the laser head 12 is integrally provided with the laser oscillator and the photoelectric converter, but may be provided separately.
 本発明の要部となるレーザ干渉計1は、反射鏡(反射手段)2とレーザ干渉部(レーザ光路生成手段)3とを備えて構成されており、該反射鏡2は、図3に示すように、略V字状となるようにレーザ干渉部3に対して略対称な所定角度に傾斜した2つの平面鏡4、5を有している。該反射鏡2は、図1に示すように、略直方体形状の反射鏡ケース2aを有しており、それら平面鏡4,5は、該本体ケース2a内に格納されている。また、本体ケース2aのレーザ干渉部3と対向する面には、レーザ光が通過するためのスリット状の孔2bが形成されている。 A laser interferometer 1 which is a main part of the present invention includes a reflecting mirror (reflecting means) 2 and a laser interfering section (laser optical path generating means) 3, and the reflecting mirror 2 is shown in FIG. As described above, the two plane mirrors 4 and 5 are inclined at a predetermined angle substantially symmetrical with respect to the laser interference unit 3 so as to be substantially V-shaped. As shown in FIG. 1, the reflecting mirror 2 has a substantially rectangular parallelepiped reflecting mirror case 2a, and the plane mirrors 4 and 5 are stored in the main body case 2a. In addition, a slit-like hole 2b through which laser light passes is formed on the surface of the main body case 2a that faces the laser interference portion 3.
 レーザ干渉部3は、図3~図5に示すように、2つの楔プリズム6a,6bを有するバイプリズム(屈折部)6、1/4波長板(第2の波長板)7a,7b、偏光ビームスプリッタ(分光部)8、平面型反射鏡(反射部)9、1/4波長板(第1の波長板)10、キューブコーナプリズム(光路軸変更部)11及び偏向部15を有して構成されており、略直方体形状の干渉部ケース(筐体)3aに格納されている。尚、図4及び図5において、バイプリズム6及びキューブコーナプリズム11は、干渉部ケース3aに取付けられて露出しているが、各光学部品が干渉部ケース3a内部に配置されていてもよく、本第1の実施の形態では、いずれの場合も干渉部ケース3aに格納されていると表現する。該干渉部ケース3aには、上記レーザヘッド12に対するレーザ光が通過する孔3bと、上記反射鏡2に対するレーザ光が通過する孔3c、3dとが、それぞれ形成されている。 As shown in FIGS. 3 to 5, the laser interference unit 3 includes a biprism (refractive unit) 6 having two wedge prisms 6a and 6b, quarter wavelength plates (second wavelength plates) 7a and 7b, polarization It has a beam splitter (spectral part) 8, a planar reflector (reflecting part) 9, a quarter wavelength plate (first wavelength plate) 10, a cube corner prism (optical path axis changing part) 11, and a deflecting part 15. It is comprised and is stored in the interference part case (casing) 3a of a substantially rectangular parallelepiped shape. 4 and 5, the biprism 6 and the cube corner prism 11 are attached to the interference part case 3a and exposed, but each optical component may be arranged inside the interference part case 3a. In the first embodiment, in any case, it is expressed as being stored in the interference unit case 3a. The interference case 3a is formed with holes 3b through which the laser beam for the laser head 12 passes and holes 3c and 3d through which the laser beam for the reflecting mirror 2 passes.
 図3~図5に示すように、偏光ビームスプリッタ8は、Z軸方向に対して略45°の角度で傾斜する偏光面8bと、レーザ光を入出力する入出力面(入出力部)8aと、を有しており、該入出力面8aは、反射鏡2に対して偏光ビームスプリッタ8におけるZ軸方向の反対側に位置し、即ち上記レーザヘッド12の入出力ヘッド12aにZ軸方向において対向するように位置している。 As shown in FIGS. 3 to 5, the polarization beam splitter 8 includes a polarization plane 8b inclined at an angle of about 45 ° with respect to the Z-axis direction, and an input / output plane (input / output section) 8a for inputting and outputting laser light. The input / output surface 8a is located on the opposite side of the Z-axis direction of the polarizing beam splitter 8 with respect to the reflecting mirror 2, that is, the input / output head 12a of the laser head 12 is in the Z-axis direction. Are positioned so as to face each other.
 また、平面型反射鏡9は、該偏光ビームスプリッタ8のZ軸方向に対して直角方向(Y軸方向)に配置されており、偏光ビームスプリッタ8のZ軸方向に対して略45°の角度に傾斜する傾斜面に一体に形成されている。 The planar reflector 9 is disposed in a direction perpendicular to the Z-axis direction of the polarizing beam splitter 8 (Y-axis direction), and has an angle of approximately 45 ° with respect to the Z-axis direction of the polarizing beam splitter 8. It is integrally formed on an inclined surface that is inclined in the direction.
 上記偏光ビームスプリッタ8及び平面型反射鏡9と反射鏡2との間のZ軸方向上には、上記バイプリズム6と1/4波長板7a,7bとがそれぞれ配置されている。更に、キューブコーナプリズム11は、上記平面型反射鏡9に対して偏光ビームスプリッタ8の反対側に配置されており、該キューブコーナプリズム11と偏光ビームスプリッタ8との間には、1/4波長板10が配置されている。 The biprism 6 and quarter- wave plates 7a and 7b are disposed on the Z-axis direction between the polarizing beam splitter 8 and the planar reflector 9 and the reflector 2, respectively. Further, the cube corner prism 11 is disposed on the opposite side of the polarizing beam splitter 8 with respect to the planar reflector 9, and a quarter wavelength is provided between the cube corner prism 11 and the polarizing beam splitter 8. A plate 10 is arranged.
 尚、バイプリズム6と1/4波長板7a,7bとのZ軸方向における位置は、図3に示すように、反射鏡2、バイプリズム6、1/4波長板7a,7b、偏光ビームスプリッタ8及び平面型反射鏡9の順が好ましいが、反射鏡2、1/4波長板7a,7b、バイプリズム6、偏光ビームスプリッタ8及び平面型反射鏡9の順に配置されていてもよい。また、1/4波長板7a,7bは別体であるが、一体的なものであってもよい。 As shown in FIG. 3, the positions of the biprism 6 and the quarter wavelength plates 7a and 7b in the Z-axis direction are as follows: the reflecting mirror 2, the biprism 6, the quarter wavelength plates 7a and 7b, and the polarization beam splitter. 8 and the planar reflector 9 are preferable, but the reflector 2, the quarter- wave plates 7a and 7b, the biprism 6, the polarization beam splitter 8, and the planar reflector 9 may be disposed in this order. Moreover, although the quarter wave plates 7a and 7b are separate bodies, they may be integrated.
 また、1/4波長板とは、結晶軸に対して正確にスライスした結晶片を用いたものであり、1/4波長板7a,7bはX-Y軸平面において結晶軸を45°に傾斜させ、1/4波長板10はX-Z軸平面において結晶軸を45°に傾斜させて用いている。 The quarter-wave plate is a crystal piece sliced accurately with respect to the crystal axis. The quarter- wave plates 7a and 7b are tilted at 45 ° on the crystal axis in the XY plane. The quarter-wave plate 10 is used with the crystal axis inclined at 45 ° in the XZ axis plane.
 本第1の実施の形態において、偏向部15は、通過するレーザ光の偏向方向を調整自在とする一対(2つ)のウェッジプリズム15a,15bと、ウェッジプリズム15a,15bの外周に形成されウェッジプリズム15a,15bを保持するリング状のホルダ16a,16bとを有しており、偏光ビームスプリッタ8とバイプリズム6との間、より具体的には、平面型反射鏡9及びバイプリズム6の間に配置される1/4波長板7aと、平面型反射鏡9との間に配置されている。 In the first embodiment, the deflecting unit 15 is formed on the outer periphery of a pair (two) of wedge prisms 15a and 15b that can adjust the deflection direction of the passing laser beam and the wedge prisms 15a and 15b. Ring-shaped holders 16a and 16b for holding the prisms 15a and 15b, and more specifically between the polarizing beam splitter 8 and the biprism 6, more specifically between the planar reflector 9 and the biprism 6. Are disposed between the quarter-wave plate 7 a and the flat reflector 9.
 ウェッジプリズム15a,15bは、両端面が平面に形成された円盤形状であり、一方の平面が他方の平面(X-Y平面)に対して所定角度θ(図6の(a)参照)だけ傾斜する傾斜面に形成された楔形状のプリズムである。 Each of the wedge prisms 15a and 15b has a disk shape in which both end surfaces are formed as planes, and one plane is a predetermined angle θ w with respect to the other plane (XY plane) (see FIG. 6A). It is a wedge-shaped prism formed on an inclined surface that is inclined.
 そして、図5に示すように、各ウェッジプリズム15a,15bの平面同士が対向するよう近接して配置され、各ウェッジプリズム15a,15bのホルダ16a,16bが、ウェッジプリズム15a,15bの中心軸を中心として回動自在に干渉部ケース3a内に支持されている。 Then, as shown in FIG. 5, the wedge prisms 15a and 15b are arranged close to each other so that the planes of the wedge prisms 15a and 15b face each other, and the holders 16a and 16b of the wedge prisms 15a and 15b are aligned with the central axes of the wedge prisms 15a and 15b. It is supported in the interference part case 3a so as to be rotatable about the center.
 ホルダ16a,16bは、そのホルダ16a,16bの外周が干渉部ケース3aの外部に露出するように干渉部ケース3a内に支持されており、操作者が各ウェッジプリズム15a,15bを操作するときは、この露出したホルダ16a,16bを操作すればよく、干渉部ケース3aを分解しなくても済むので、各ウェッジプリズム15a,15bの調整操作が簡単である。 The holders 16a and 16b are supported in the interference part case 3a so that the outer circumferences of the holders 16a and 16b are exposed to the outside of the interference part case 3a. When the operator operates the wedge prisms 15a and 15b, The exposed holders 16a and 16b may be operated, and it is not necessary to disassemble the interference case 3a. Therefore, the adjustment operation of the wedge prisms 15a and 15b is simple.
 そして、図6の(a)ように、ウェッジプリズム15a,15bの中心軸を中心に矢印A方向(時計回り)或いは矢印B方向(反時計回り)にウェッジプリズム15a,15bを回動させることにより、通過するレーザ光の偏向方向を調整することができる。 Then, as shown in FIG. 6A, the wedge prisms 15a and 15b are rotated about the central axes of the wedge prisms 15a and 15b in the direction of arrow A (clockwise) or in the direction of arrow B (counterclockwise). The deflection direction of the passing laser beam can be adjusted.
 具体的に説明すると、一対のウェッジプリズム15a,15b同士を近接して対向するように配置しているので、図6(b)に示すように、各ウェッジプリズム15a,15bを矢印A方向或いは矢印B方向に回動させることにより、ウェッジプリズム15aに入射してウェッジプリズム15bから出射されるレーザ光は、ウェッジプリズム15a,15bの傾斜面の傾斜角度θに対応する所定の略円錐領域R内を通過する任意の方向に偏向される。従って、各ウェッジプリズム15a,15bを矢印A方向又は矢印B方向に回動操作することにより、レーザ光の偏向方向を調整することができる。 Specifically, since the pair of wedge prisms 15a and 15b are arranged so as to face each other in close proximity, as shown in FIG. 6B, each wedge prism 15a and 15b is moved in the direction of arrow A or the arrow. by rotating in the direction B, the laser beam emitted from the wedge prism 15b enters the wedge prism 15a is wedge prism 15a, 15b of the inclined surface of the inclined angle θ predetermined substantially conical region R corresponding to w Is deflected in any direction that passes through. Therefore, the deflection direction of the laser beam can be adjusted by rotating the wedge prisms 15a and 15b in the direction of arrow A or arrow B.
 本第1の実施の形態のレーザ干渉計1は、S波とP波を有するレーザ光を偏光ビームスプリッタ8の入出力面8aから入力し、偏光ビームスプリッタ8で分光された各光成分を、レーザ干渉部3のバイプリズム6と反射鏡2との間で2往復させて偏光ビームスプリッタ8の入出力面8aから出力するよう構成されており、レーザヘッド12から2つの光成分を有するレーザ光をレーザ干渉計1のレーザ干渉部3に入力し、レーザ干渉部3の出力である2つの光成分による干渉信号に基づいてロール方向の位置偏差を測定するものである。この測定作業に先立って、レーザヘッド12から2つの光成分を有するレーザ光を照射し、レーザ干渉部3から出力される各光成分が平行となるよう、反射鏡2及びレーザ干渉部3の偏向部15を調整操作する必要がある。 The laser interferometer 1 of the first embodiment inputs laser light having S wave and P wave from the input / output surface 8a of the polarization beam splitter 8, and each light component dispersed by the polarization beam splitter 8 is A laser beam having two light components from the laser head 12 is configured to reciprocate twice between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3 and output from the input / output surface 8a of the polarization beam splitter 8. Is input to the laser interferometer 3 of the laser interferometer 1 and the positional deviation in the roll direction is measured based on the interference signals generated by the two light components that are the outputs of the laser interferometer 3. Prior to this measurement operation, the laser head 12 emits laser light having two light components, and the reflecting mirror 2 and the laser interference unit 3 are deflected so that the respective light components output from the laser interference unit 3 are parallel to each other. It is necessary to adjust the part 15.
 以下、レーザ干渉計1にレーザ光を照射した場合について詳細に説明する。 Hereinafter, a case where the laser interferometer 1 is irradiated with laser light will be described in detail.
 上記レーザヘッド12のレーザ発振器よりP波とS波とを有するレーザ光がZ軸方向に対して平行に出力され、図3に示す光路a1,b1を介して偏光ビームスプリッタ8の入出力面8aに入力される。この偏光ビームスプリッタ8の入出力面8aに入力されたレーザ光は、偏光面8bにより第1光成分(P波)と第2光成分(S波)に分光され、P波が第1光路(図3中、a2~a11)を通過し、S波が第2光路(図3中、b2~b11)を通過する。詳述すると、P波は該偏光ビームスプリッタ8の偏光面8bをそのまま通過して直進方向、即ちZ軸方向の光路a2に出力されると共に、S波は該偏光面8bにより直角方向、即ちY軸方向に反射されて偏光ビームスプリッタ8内を通過し、平面型反射鏡9に到達する。ここで、図3には、第1光成分が通過する第1光路を破線で示し、第2光成分が通過する第2光路を実線で示している。 Laser light having P and S waves is output in parallel to the Z-axis direction from the laser oscillator of the laser head 12 and is input / output surface 8a of the polarization beam splitter 8 via optical paths a1 and b1 shown in FIG. Is input. The laser beam input to the input / output surface 8a of the polarization beam splitter 8 is split into a first light component (P wave) and a second light component (S wave) by the polarization surface 8b, and the P wave is transmitted to the first optical path ( 3 passes through a2 to a11), and the S wave passes through the second optical path (b2 to b11 in FIG. 3). More specifically, the P wave passes through the polarization plane 8b of the polarization beam splitter 8 as it is and is output to the optical path a2 in the straight traveling direction, that is, the Z-axis direction, and the S wave is perpendicular to the polarization plane 8b, that is, Y The light is reflected in the axial direction, passes through the polarization beam splitter 8, and reaches the planar reflecting mirror 9. Here, in FIG. 3, the first optical path through which the first light component passes is indicated by a broken line, and the second optical path through which the second light component passes is indicated by a solid line.
 まず、偏光ビームスプリッタ8で分光された各光成分を、レーザ干渉部3と反射鏡2との間で2往復させる際に最初に往復させる場合について説明する。 First, a description will be given of a case where each light component dispersed by the polarization beam splitter 8 is first reciprocated when reciprocating twice between the laser interference unit 3 and the reflecting mirror 2.
 第1光路(図3中、破線)を通過する第1光成分として、光路a2に出力されたP波のレーザ光は、1/4波長板7bを通過して円偏光のレーザ光になると共に、バイプリズム6の楔プリズム6bによってZ軸方向に対して角度φに屈折され、光路a3に出力される。該光路a3の第1光成分である円偏光のレーザ光は、反射鏡2の平面鏡4の点4bにおいて該平面鏡4に垂直に入力され、該光路a3に反射される。言い換えれば、反射鏡2の平面鏡4は、第1光成分が垂直に入反射するようにその角度が操作者によって調整される。反射された光路a3の円偏光のレーザ光は、再び楔プリズム6bによりZ軸方向に屈折されると共に、1/4波長板7bを通過してS波のレーザ光になり、光路a2に出力され、偏光ビームスプリッタ8に戻される。 As a first light component passing through the first optical path (broken line in FIG. 3), the P-wave laser light output to the optical path a2 passes through the quarter-wave plate 7b and becomes circularly polarized laser light. The biprism 6 is refracted at an angle φ with respect to the Z-axis direction by the wedge prism 6b and output to the optical path a3. The circularly polarized laser light, which is the first light component in the optical path a3, is input perpendicularly to the plane mirror 4 at the point 4b of the plane mirror 4 of the reflection mirror 2, and is reflected by the optical path a3. In other words, the angle of the plane mirror 4 of the reflecting mirror 2 is adjusted by the operator so that the first light component is vertically incident and reflected. The reflected circularly polarized laser beam in the optical path a3 is again refracted in the Z-axis direction by the wedge prism 6b, passes through the quarter-wave plate 7b, becomes S-wave laser light, and is output to the optical path a2. , Returned to the polarization beam splitter 8.
 つまり、偏光面8bをZ軸方向に直進した第1光成分は、光路a2、1/4波長板7b、バイプリズム6、光路a3を往路として順次通過し、反射鏡2の平面鏡4で反射されて、往路と同一光路である光路a3、バイプリズム6、1/4波長板7b、光路a2を復路として順次通過し、偏光面8bに戻ってくることとなり、レーザ干渉部3のバイプリズム6と反射鏡2との間で第1光成分が往復したこととなる。 That is, the first light component that has traveled straight in the Z-axis direction through the polarization plane 8b sequentially passes through the optical path a2, the quarter-wave plate 7b, the biprism 6, and the optical path a3, and is reflected by the plane mirror 4 of the reflecting mirror 2. Thus, the optical path a3, the biprism 6, the quarter wavelength plate 7b, and the optical path a2 which are the same optical path as the forward path sequentially pass through the return path and return to the polarization plane 8b, and the biprism 6 of the laser interference unit 3 and The first light component reciprocates with the reflecting mirror 2.
 一方、第2光路(図3中、実線)を通過する第2光成分として、偏光ビームスプリッタ8により分光された光成分であるS波のレーザ光は、平面型反射鏡9によりバイプリズム6が配設されている方向に反射され、光路b2に出力される。 On the other hand, as the second light component passing through the second optical path (solid line in FIG. 3), the S-wave laser light, which is the light component dispersed by the polarization beam splitter 8, is transmitted by the bi-prism 6 by the planar reflecting mirror 9. The light is reflected in the arranged direction and output to the optical path b2.
 該光路b2のS波レーザ光は、偏向部15の各ウェッジプリズム15a,15bを通過して、光路b3に出力されるが、この偏向部15で第2光成分であるS波レーザ光の偏向方向が調整される。 The S-wave laser light in the optical path b2 passes through the wedge prisms 15a and 15b of the deflection unit 15 and is output to the optical path b3. The deflection unit 15 deflects the S-wave laser light as the second light component. The direction is adjusted.
 具体的に説明すると、図6の(a)に示すように、光学部品である偏光ビームスプリッタ8の製造精度が低い場合、偏光面8bで反射された第2光成分であるS波レーザ光は、Y軸方向からずれた光路を辿ることとなる。平面型反射鏡9により反射された第2光成分は、仮に偏向部15が無い状態では光路b3’の如く、Z軸方向からずれて光路b2を通過する第1光成分に対して平行とはならず、平行度が極めて低いものとなってしまう。これに対し、本第1の実施の形態では、図6の(b)に示すように、操作者が偏向部15の各ウェッジプリズム15a,15bを矢印A方向又は矢印B方向に回動操作することにより、偏向部15を通過するレーザ光を所定の略円錐領域R内で偏向可能であり、図6の(a)に示すように、光路b3に出力される第2光成分を、光路a2に出力される第1光成分に対して平行となるように偏向方向を調整することができるので、光路a2を通過する第1光成分に対する光路b3を通過する第2光成分の平行度を向上させることができる。 More specifically, as shown in FIG. 6A, when the manufacturing accuracy of the polarization beam splitter 8 that is an optical component is low, the S-wave laser light that is the second light component reflected by the polarization plane 8b is The optical path deviated from the Y-axis direction is traced. The second light component reflected by the planar reflecting mirror 9 is parallel to the first light component that is shifted from the Z-axis direction and passes through the optical path b2 as in the optical path b3 ′ in the absence of the deflecting unit 15. In other words, the parallelism is extremely low. On the other hand, in the first embodiment, as shown in FIG. 6B, the operator rotates the wedge prisms 15a and 15b of the deflecting unit 15 in the arrow A direction or the arrow B direction. Thus, the laser light passing through the deflecting unit 15 can be deflected within a predetermined substantially conical region R, and the second light component output to the optical path b3 is converted into the optical path a2 as shown in FIG. Since the deflection direction can be adjusted to be parallel to the first light component output to the first light component, the parallelism of the second light component passing through the optical path b3 with respect to the first light component passing through the optical path a2 is improved. Can be made.
 このように偏向部15で光路a2を通過する第1光成分に平行に調整されてZ軸方向の光路b3を通過した第2光成分であるS波レーザ光は、1/4波長板7aを通過して円偏光のレーザ光になると共に、バイプリズム6の楔プリズム6bによってZ軸方向に対して角度φに屈折され、光路b4に出力される。該光路b4の第2光成分である円偏光のレーザ光は、反射鏡2の平面鏡4の点4aにおいて反射される。 In this way, the S-wave laser light, which is the second light component adjusted in parallel with the first light component passing through the optical path a2 by the deflecting unit 15 and passed through the optical path b3 in the Z-axis direction, passes through the quarter-wave plate 7a. The laser beam passes through to become circularly polarized laser light, and is refracted at an angle φ with respect to the Z-axis direction by the wedge prism 6b of the biprism 6, and is output to the optical path b4. The circularly polarized laser beam, which is the second light component of the optical path b4, is reflected at the point 4a of the plane mirror 4 of the reflecting mirror 2.
 ここで、光路b3を通過する第2光成分は、偏向部15にて光路a2を通過する第1光成分に平行になるよう調整されているので、光路b4を通過した第2光成分は、平面鏡4の点4bで垂直に入反射される第1光成分と同様に、平面鏡4の点4aにおいて垂直に入反射される。 Here, since the second light component passing through the optical path b3 is adjusted by the deflecting unit 15 to be parallel to the first light component passing through the optical path a2, the second light component passing through the optical path b4 is Similar to the first light component vertically incident / reflected at the point 4 b of the plane mirror 4, the light is vertically reflected at the point 4 a of the plane mirror 4.
 反射された光路b4の第2光成分である円偏光のレーザ光は、再び楔プリズム6bによりZ軸方向に屈折されると共に、1/4波長板7aを通過してP波のレーザ光になり、光路b3に出力される。そして、光路b3のP波のレーザ光は、偏向部15で偏向方向が調整されて光路b2に出力され、平面型反射鏡9により偏光面8bに向けて反射される。 The circularly polarized laser beam, which is the second light component of the reflected optical path b4, is refracted in the Z-axis direction again by the wedge prism 6b and passes through the quarter-wave plate 7a to become a P-wave laser beam. , And output to the optical path b3. The P-wave laser light in the optical path b3 is adjusted in the deflection direction by the deflecting unit 15 and output to the optical path b2, and is reflected by the planar reflecting mirror 9 toward the polarization plane 8b.
 つまり、偏光面8bで反射された第2光成分は、平面型反射鏡9、光路b2、偏向部15、光路b3、1/4波長板7a、バイプリズム6、光路b4を往路として順次通過し、反射鏡2の平面鏡4で反射されて、往路と同一光路である光路b4、バイプリズム6、1/4波長板7a、光路b3、偏向部15、光路b2、平面型反射鏡9を復路として順次通過し、偏光面8bに戻ってくることとなり、レーザ干渉部3のバイプリズム6と反射鏡2との間で第2光成分が往復したこととなる。 That is, the second light component reflected by the polarization plane 8b sequentially passes through the planar reflector 9, the optical path b2, the deflecting unit 15, the optical path b3, the quarter wavelength plate 7a, the biprism 6, and the optical path b4. The optical path b4, the biprism 6, the quarter-wave plate 7a, the optical path b3, the deflecting unit 15, the optical path b2, and the planar reflecting mirror 9 that are reflected by the plane mirror 4 of the reflecting mirror 2 are the same path as the forward path. The laser beam passes through the polarization surface 8b in sequence, and the second light component reciprocates between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3.
 次に、偏光ビームスプリッタ8で分光された各光成分を、レーザ干渉部3と反射鏡2との間で2回目を往復させる場合について説明する。 Next, a description will be given of a case where each light component dispersed by the polarization beam splitter 8 is reciprocated between the laser interference unit 3 and the reflecting mirror 2 for the second time.
 第2光路(図3中、実線)を通過する第2光成分として、光路b2を通過して偏光面8bに戻ってきたレーザ光は、P波になっているため、偏光面8bを直進してそのまま通過し、光路b5に出力される。該光路b5のP波のレーザ光は1/4波長板10を通過して円偏光のレーザ光になって光路b6に出力され、該光路b6の円偏光のレーザ光は、キューブコーナプリズム11により、該光路b6の軸方向に対して平行でX軸方向に異なる軸上である光路b7に折り返して出力される。該光路b7の円偏光のレーザ光は、再び1/4波長板10を通過してS波のレーザ光となり、光路b8に出力される。 As the second light component that passes through the second optical path (solid line in FIG. 3), the laser light that has passed through the optical path b2 and returned to the polarization plane 8b is a P wave, and thus travels straight through the polarization plane 8b. And pass through as it is and output to the optical path b5. The P-wave laser light in the optical path b5 passes through the quarter-wave plate 10 and becomes circularly polarized laser light and is output to the optical path b6. The circularly polarized laser light in the optical path b6 is transmitted by the cube corner prism 11. The optical path b7 is output after being folded back onto the optical path b7 which is parallel to the axial direction of the optical path b6 and is on a different axis in the X-axis direction. The circularly polarized laser light in the optical path b7 passes through the quarter wavelength plate 10 again to become S-wave laser light and is output to the optical path b8.
 光路b8のレーザ光は、S波になっているため、偏光ビームスプリッタ8の偏光面8bにより直角方向、即ちZ軸方向の光路b9に反射される。ここで、光路b9に出力される第2光成分は、図6に示すように、光路b1を通過した第2光成分が偏光面8bで反射される角度と同一角度で偏光面8bに反射されるので、第1光成分が最初の往復時に通過した光路a2と平行に出力される。 Since the laser beam in the optical path b8 is an S wave, the laser beam is reflected by the polarization plane 8b of the polarization beam splitter 8 to the optical path b9 in the perpendicular direction, that is, the Z-axis direction. Here, as shown in FIG. 6, the second light component output to the optical path b9 is reflected on the polarization plane 8b at the same angle as the angle at which the second light component that has passed through the optical path b1 is reflected on the polarization plane 8b. Therefore, the first light component is output in parallel with the optical path a2 that has passed during the first round trip.
 光路b9のS波のレーザ光は、1/4波長板7bを通過して円偏光のレーザ光になると共に、バイプリズム6の楔プリズム6aによってZ軸方向に対して角度φに屈折され、光路b10に出力される。該光路b10の第2光成分である円偏光のレーザ光は、反射鏡2の平面鏡5の点5bにおいて該平面鏡5に垂直に入力され、該光路b10に反射される。言い換えれば、反射鏡2の平面鏡5は、第2光成分が垂直に入反射するようにその角度が操作者によって調整される。反射された光路b10の円偏光のレーザ光は、再び楔プリズム6aによりZ軸方向に屈折されると共に、1/4波長板7bを通過してP波のレーザ光になり、光路b9に出力される。そして、光路b9のレーザ光は、P波になっているため、偏光ビームスプリッタ8の偏光面8bをそのまま直進方向に通過し、光路a1の第1光成分及び光路b1の第2光成分に対して平行な光路b11に出力される。 The S-wave laser light in the optical path b9 passes through the quarter-wave plate 7b to become circularly polarized laser light, and is refracted at an angle φ with respect to the Z-axis direction by the wedge prism 6a of the biprism 6, and the optical path is output to b10. The circularly polarized laser light, which is the second light component of the optical path b10, is input perpendicularly to the plane mirror 5 at the point 5b of the plane mirror 5 of the reflecting mirror 2 and reflected by the optical path b10. In other words, the angle of the plane mirror 5 of the reflecting mirror 2 is adjusted by the operator so that the second light component is vertically incident and reflected. The reflected circularly polarized laser beam in the optical path b10 is refracted in the Z-axis direction again by the wedge prism 6a, passes through the quarter-wave plate 7b, becomes P-wave laser light, and is output to the optical path b9. The Since the laser beam in the optical path b9 is a P wave, it passes through the polarization plane 8b of the polarization beam splitter 8 in the straight traveling direction as it is, and the first optical component in the optical path a1 and the second optical component in the optical path b1 To the parallel optical path b11.
 つまり、偏光面8bで反射された第2光成分は、光路b9、1/4波長板7b、バイプリズム6、光路b10を往路として順次通過し、反射鏡2の平面鏡5で反射されて、往路と同一光路である光路b10、バイプリズム6、1/4波長板7b、光路b9を復路として順次通過し、偏光面8bに戻ってくることとなり、レーザ干渉部3のバイプリズム6と反射鏡2との間で第2光成分が往復したこととなる。 That is, the second light component reflected by the polarization plane 8b sequentially passes through the optical path b9, the quarter-wave plate 7b, the biprism 6, and the optical path b10, and is reflected by the plane mirror 5 of the reflecting mirror 2 so as to travel forward. The optical path b10, the biprism 6, the quarter-wave plate 7b, and the optical path b9, which are the same optical path, sequentially pass through the return path and return to the polarization plane 8b, and the biprism 6 and the reflecting mirror 2 of the laser interference unit 3 are returned. The second light component reciprocates between the two.
 そして、反射鏡2の平面鏡4,5に対して2往復した第2光成分は、入出力面8aより光路b11に出力された後、上記レーザヘッド12の光電変換器に入力される。 Then, the second light component reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output to the optical path b11 from the input / output surface 8a, and then input to the photoelectric converter of the laser head 12.
 一方、第1光路(図3中、破線)を通過する第1光成分として、光路a2に戻ってきたレーザ光は、S波になっているため、偏光ビームスプリッタ8の偏光面8bによりキューブコーナプリズム11が配設されている方向に反射され、光路a4に出力される。 On the other hand, as the first light component passing through the first optical path (broken line in FIG. 3), the laser light returning to the optical path a2 is an S wave, so that the cube corner is formed by the polarization plane 8b of the polarization beam splitter 8. The light is reflected in the direction in which the prism 11 is disposed and output to the optical path a4.
 詳述すると、光路a2を戻ってきた第1光成分は、光路b1を通過して偏光面8bで反射された第2光成分の反射角度と同一角度で反射され、このときの第2光成分と平行且つ反対方向の光路a4に出力される。 Specifically, the first light component that has returned through the optical path a2 is reflected at the same angle as the reflection angle of the second light component that has passed through the optical path b1 and is reflected by the polarization plane 8b, and the second light component at this time Is output to the optical path a4 in a direction parallel to and opposite to the optical path a4.
 該光路a4のS波のレーザ光は1/4波長板10を通過して円偏光のレーザ光になって光路a5に出力され、該光路a5の円偏光のレーザ光は、キューブコーナプリズム11により、該光路a5の軸方向に対して平行でX軸方向に異なる軸上である光路a6に折り返して出力される。該光路a6の円偏光のレーザ光は、再び1/4波長板10を通過してP波のレーザ光となり、光路a7に出力される。 The S-wave laser light in the optical path a4 passes through the quarter-wave plate 10 and becomes circularly polarized laser light and is output to the optical path a5. The circularly polarized laser light in the optical path a5 is transmitted by the cube corner prism 11. The optical path a6 is output after being folded back onto an optical path a6 that is parallel to the axial direction of the optical path a5 and is on a different axis in the X-axis direction. The circularly polarized laser light in the optical path a6 passes through the quarter wavelength plate 10 again to become P-wave laser light and is output to the optical path a7.
 光路a7のレーザ光は、P波になっているため、偏光ビームスプリッタ8の偏光面8bを直進してそのまま通過し、平面型反射鏡9に出力され、平面型反射鏡9によりバイプリズム6が配設されている方向に反射され、光路a8に出力される。 Since the laser beam in the optical path a7 is a P wave, the laser beam travels straight through the polarization plane 8b of the polarization beam splitter 8 and is output to the planar reflecting mirror 9. The planar reflecting mirror 9 causes the biprism 6 to The light is reflected in the arranged direction and output to the optical path a8.
 ここで、最初の往復時に偏光面8bで反射され平面型反射鏡9に向かう第2光成分と、キューブコーナプリズム11を折り返して光路b8を通過し平面型反射鏡9に向かう第1光成分とは平行である。従って、光路a8の第1光成分は、光路b2の第2光成分と平行である。 Here, a second light component reflected by the polarization plane 8b during the first reciprocation and traveling toward the planar reflecting mirror 9, and a first light component returning to the planar reflecting mirror 9 through the optical path b8 by folding the cube corner prism 11 Are parallel. Accordingly, the first light component of the optical path a8 is parallel to the second light component of the optical path b2.
 そして、光路a8を通過した第1光成分であるP波レーザ光は、光路b3を通過した第2光成分の偏向方向と同一方向に偏向部15で偏向され、光路b9を通過する第2光成分に平行に調整されて光路a9に出力される。 The P-wave laser light that is the first light component that has passed through the optical path a8 is deflected by the deflecting unit 15 in the same direction as the deflection direction of the second light component that has passed through the optical path b3, and passes through the optical path b9. It is adjusted parallel to the component and output to the optical path a9.
 つまり、最初の往復時に第2光成分が偏向部15を通過し、次の往復時に第1光成分が偏向部15を通過するので、両光成分の偏向方向が偏向部15で調整されたこととなる。 That is, the second light component passes through the deflecting unit 15 during the first reciprocation, and the first light component passes through the deflecting unit 15 during the next reciprocation, so that the deflection direction of both light components is adjusted by the deflecting unit 15. It becomes.
 該光路a9の第1光成分であるP波レーザ光は、1/4波長板7aを通過して円偏光のレーザ光になると共に、バイプリズム6の楔プリズム6aによってZ軸方向に対して角度φに屈折され、光路a10に出力される。該光路a10の第1光成分である円偏光のレーザ光は、反射鏡2の平面鏡5の点5aにおいて反射される。 The P-wave laser light, which is the first light component in the optical path a9, passes through the quarter-wave plate 7a to become circularly polarized laser light, and is angled with respect to the Z-axis direction by the wedge prism 6a of the biprism 6. The light is refracted by φ and output to the optical path a10. The circularly polarized laser beam, which is the first light component in the optical path a10, is reflected at the point 5a of the plane mirror 5 of the reflecting mirror 2.
 ここで、光路a9を通過する第1光成分であるP波レーザ光は、光路b9を通過する第2光成分に平行になるよう調整されているので、光路a10を通過した第1光成分は、平面鏡5の点5bで垂直に入反射される第2光成分と同様に、平面鏡5の点5aにおいて垂直に入反射される。 Here, since the P-wave laser light, which is the first light component that passes through the optical path a9, is adjusted to be parallel to the second light component that passes through the optical path b9, the first light component that has passed through the optical path a10 is Similarly to the second light component vertically incident / reflected at the point 5 b of the plane mirror 5, the light is vertically reflected at the point 5 a of the plane mirror 5.
 反射された光路a10の第1光成分である円偏光のレーザ光は、再び楔プリズム6aによりZ軸方向に屈折されると共に、1/4波長板7aを通過してS波のレーザ光になり、光路a9に出力される。そして、光路a9のS波のレーザ光は、偏向部15で偏向方向が調整されて光路a8に出力され、平面型反射鏡9により偏光面8bに向けて反射される。偏光ビームスプリッタ8の偏光面8bに往路と同じ光路で戻ってきたレーザ光は、S波になっているため、偏光ビームスプリッタ8の偏光面8bにより、光路b1の第2光成分が偏光面8bで反射したときの反射角度と同一角度でZ軸方向に反射され、光路a1の第1光成分及び光路b1の第2光成分に対して平行となり、入出力面8aより光路a11に出力される。 The circularly polarized laser beam, which is the first light component of the reflected optical path a10, is refracted in the Z-axis direction again by the wedge prism 6a and passes through the quarter-wave plate 7a to become an S-wave laser beam. , And output to the optical path a9. The S-wave laser light in the optical path a9 is adjusted in the deflection direction by the deflecting unit 15 and output to the optical path a8, and is reflected by the planar reflecting mirror 9 toward the polarization plane 8b. Since the laser beam that has returned to the polarization plane 8b of the polarization beam splitter 8 along the same optical path as the forward path is an S wave, the polarization plane 8b of the polarization beam splitter 8 causes the second light component in the optical path b1 to be converted to the polarization plane 8b. Is reflected in the Z-axis direction at the same angle as the reflection angle when reflected at, and is parallel to the first light component of the optical path a1 and the second light component of the optical path b1, and is output from the input / output surface 8a to the optical path a11. .
 つまり、偏光面8bを通過した第1光成分は、平面型反射鏡9、光路a8、偏向部15、光路a9、1/4波長板7a、バイプリズム6、光路a10を往路として順次通過し、反射鏡2の平面鏡5で反射されて、往路と同一光路である光路a10、バイプリズム6、1/4波長板7a、光路a9、偏向部15、光路a8、平面型反射鏡9を復路として順次通過し、偏光面8bに戻ってくることとなり、レーザ干渉部3のバイプリズム6と反射鏡2との間で第1光成分が往復したこととなる。 That is, the first light component that has passed through the polarization plane 8b sequentially passes through the planar reflecting mirror 9, the optical path a8, the deflecting unit 15, the optical path a9, the quarter wavelength plate 7a, the biprism 6, and the optical path a10, Reflected by the plane mirror 5 of the reflecting mirror 2, the optical path a 10, the biprism 6, the quarter-wave plate 7 a, the optical path a 9, the deflecting unit 15, the optical path a 8, and the planar reflecting mirror 9 are sequentially returned as the return path. It passes through and returns to the polarization plane 8b, and the first light component reciprocates between the biprism 6 and the reflecting mirror 2 of the laser interference unit 3.
 そして、反射鏡2の平面鏡4,5に対して2往復した第1光成分は、入出力面8aより光路a11に出力された後、上記レーザヘッド12の光電変換器に入力される。 The first light component reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path a11 and then input to the photoelectric converter of the laser head 12.
 以上、反射鏡2の平面鏡4,5に対して2往復した光路a11の第1光成分と光路b11の第2光成分は、入力されるレーザ光に平行しているので、入出力面8aより互いに平行に出力されることとなる。 As described above, since the first light component of the optical path a11 and the second light component of the optical path b11 that have reciprocated twice with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 are parallel to the input laser light, They are output in parallel with each other.
 尚、図3に示した光路a1,b1、光路a4,b5、光路a5,b6、光路a6,b7、光路a7,b8、及び光路a11,b11は、説明の便宜上、平行な軸線として示しているが、これらの光路は、それぞれ同一軸上の光路である。 The optical paths a1 and b1, optical paths a4 and b5, optical paths a5 and b6, optical paths a6 and b7, optical paths a7 and b8, and optical paths a11 and b11 shown in FIG. 3 are shown as parallel axes for convenience of explanation. However, these optical paths are optical paths on the same axis.
 本第1の実施の形態では、レーザヘッド12より照射された第1光成分及び第2光成分を有するレーザ光が入出力面8aより入力して偏光面8bで分光され、バイプリズム6と反射鏡2との間の最初の往復時に第2光成分が偏向部15を通過し、次の往復時に第1光成分が偏向部15を通過するので、偏向部15の一対のウェッジプリズム15a,15bを回動操作して各光成分の偏向方向を調整でき、その調整作業によりバイプリズム6に出射される各光成分を平行にすることができ、各光成分を反射鏡2に対して垂直に入反射させることができる。そして、反射鏡2にて垂直に入反射されるので、各光成分は往路と復路で同一光路を辿ることができ、入出力面から出力される各光成分を互いに平行にすることができる。従って、レーザ干渉部3から出力される各光成分の平行度を向上させることができる。 In the first embodiment, the laser light having the first light component and the second light component irradiated from the laser head 12 is input from the input / output surface 8a, is split by the polarization surface 8b, and is reflected by the biprism 6. Since the second light component passes through the deflecting unit 15 during the first reciprocation with the mirror 2, and the first light component passes through the deflecting unit 15 during the next reciprocation, the pair of wedge prisms 15a and 15b of the deflecting unit 15 is used. Can be rotated to adjust the deflection direction of each light component. By the adjustment operation, each light component emitted to the biprism 6 can be made parallel, and each light component can be made perpendicular to the reflecting mirror 2. Can be incident and reflected. Since the light is vertically incident and reflected by the reflecting mirror 2, each light component can follow the same light path in the forward path and the return path, and each light component output from the input / output surface can be made parallel to each other. Therefore, the parallelism of each light component output from the laser interference unit 3 can be improved.
 しかも、各光成分の偏向方向を調整するために、偏光ビームスプリッタ8に一体に形成されている平面型反射鏡9の角度を調整する必要がなく、偏向部15の一対のウェッジプリズム15a,15bを回動操作するだけでよいので、その調整作業は非常に簡単である。 In addition, in order to adjust the deflection direction of each light component, it is not necessary to adjust the angle of the planar reflecting mirror 9 formed integrally with the polarizing beam splitter 8, and the pair of wedge prisms 15 a and 15 b of the deflecting unit 15. The adjustment work is very simple because it is only necessary to rotate the.
 また、両光成分が一対のウェッジプリズム15a,15bを通過するよう構成されているので、各光成分毎に一対のウェッジプリズムを用意しなくてもよいので、部品点数が少なく済み、構造も簡単となる。 Further, since both light components pass through the pair of wedge prisms 15a and 15b, it is not necessary to prepare a pair of wedge prisms for each light component, so the number of parts is reduced and the structure is simple. It becomes.
 次に、例えば反射鏡2がレーザ干渉部3に対してZ軸周りのγ方向であるロール方向に相対移動したとする。すると、第1光路と第2光路とをそれぞれ通過するレーザ光が反射する点4a,5b及び点4b,5aは、点4a及び点5bが平面鏡4,5の傾斜に対して谷側(つまり内側)又は山側(つまり外側)に、点4b及び点5aが平面鏡4,5の傾斜に対して山側(つまり外側)又は谷側(つまり内側)に移動する形となる。即ち、光路b4及び光路b10の光路長に対して光路a3及び光路a10の光路長が縮まる、又は伸びることになり、第1光路と第2光路との光路長に相対的な変化が生じる。 Next, for example, it is assumed that the reflecting mirror 2 moves relative to the laser interference unit 3 in the roll direction, which is the γ direction around the Z axis. Then, the points 4a and 5b and the points 4b and 5a at which the laser beams passing through the first optical path and the second optical path are reflected are the points 4a and 5b on the valley side (that is, the inner side). ) Or the mountain side (that is, the outside), the point 4 b and the point 5 a move to the mountain side (that is, the outside) or the valley side (that is, the inside) with respect to the inclination of the plane mirrors 4 and 5. That is, the optical path lengths of the optical path a3 and the optical path a10 are shortened or extended with respect to the optical path lengths of the optical path b4 and b10, and a relative change occurs in the optical path lengths of the first optical path and the second optical path.
 第1光路と第2光路との光路長に相対的な変化が生じると、入出力面8aから出力される光路a11の第1光成分であるS波のレーザ光と、光路b11の第2光成分であるP波のレーザ光とのドップラー周波数偏移が生じ、干渉信号が得られる。この干渉信号を入力したレーザヘッド12の光電変換器により光路長の変化(以下、「検出光長」とする。)を検出することができるものである。尚、この光電変換器によるドップラー周波数偏移の検出は、公知の技術であるので、その説明を省略する。 When a relative change occurs in the optical path length between the first optical path and the second optical path, the S-wave laser light that is the first optical component of the optical path a11 output from the input / output surface 8a and the second light in the optical path b11 A Doppler frequency shift with the component P-wave laser light occurs, and an interference signal is obtained. A change in the optical path length (hereinafter referred to as “detection light length”) can be detected by the photoelectric converter of the laser head 12 to which the interference signal is input. In addition, since detection of the Doppler frequency shift by this photoelectric converter is a well-known technique, the description is abbreviate | omitted.
 また、点4aと点4b(点5aと点5b)の距離を2vとし、上記ロール方向の角度θγと光路長の変化量Δとを式で示すと、
  θγ=tan-1(Δ/(8v・sinφ))・・・・・・式1
となる。それらロール方向の角度θと光路長の変化量Δとの関係は、点4aと点5a(点4bと点5b)の距離2uに依存せず、つまり反射鏡2とレーザ干渉部3との距離はなんら影響がない。
Further, when the distance between the point 4a and the point 4b (the point 5a and the point 5b) is 2v, the angle θ γ in the roll direction and the change amount Δ of the optical path length are expressed by an equation:
θ γ = tan−1 (Δ / (8v · sinφ))...
It becomes. The relationship between the angle θ in the roll direction and the change amount Δ of the optical path length does not depend on the distance 2u between the point 4a and the point 5a (the point 4b and the point 5b), that is, the distance between the reflecting mirror 2 and the laser interference unit 3. Has no effect.
 上記式1の関係は、点4aと点4b(点5aと点5b)の距離2vが一定で、かつ角度φも一定であるため、検出光長(mm)と発生ローリング(角秒)との関係として得られる。この発生ローリングを累積演算することで、反射鏡2とレーザ干渉部3とのロール方向の位置偏差を算出することが可能であり、つまり検出光長に基づいてロール方向の位置偏差を算出することが可能である。 Since the distance 2v between the point 4a and the point 4b (the point 5a and the point 5b) is constant and the angle φ is also constant, the relationship of the above formula 1 is that the detected light length (mm) and the generated rolling (square second) Obtained as a relationship. By accumulating the generated rolling, it is possible to calculate the positional deviation in the roll direction between the reflecting mirror 2 and the laser interference unit 3, that is, calculating the positional deviation in the roll direction based on the detected light length. Is possible.
 従って、本第1の実施の形態では、レーザ干渉部3から出力される各光成分を平行にできるので、ロール方向の位置偏差の測定時には、良好な干渉信号を得ることができ、検出される光路長の変化量Δの誤差も小さくなるので、ロール方向の位置偏差の測定精度が向上する。 Therefore, in the first embodiment, since each light component output from the laser interference unit 3 can be made parallel, a good interference signal can be obtained and detected when measuring the positional deviation in the roll direction. Since the error of the change Δ in the optical path length is also reduced, the measurement accuracy of the positional deviation in the roll direction is improved.
 尚、従来の技術と同様に、横方向(X方向)、縦方向(Y方向)、軸方向(Z方向)、ピッチ方向(α方向)、ヨー方向(β方向)に対して変位があった場合は、光路b4及び光路b10の光路長と、光路a3及び光路a10の光路長とが共に伸縮、或いは変化せずに、その2つの光路長に相対的な変化が生じない。 As in the prior art, there were displacements in the horizontal direction (X direction), vertical direction (Y direction), axial direction (Z direction), pitch direction (α direction), and yaw direction (β direction). In this case, the optical path lengths of the optical path b4 and the optical path b10 and the optical path lengths of the optical path a3 and the optical path a10 are not expanded, contracted, or changed, and no relative change occurs between the two optical path lengths.
 レーザ干渉計1を用いて工作機械20を測定する際は、図1に示すように、該工作機械20に、レーザ干渉計1を備えた測定装置50を設置する。まず、レーザ干渉計1の反射鏡2を工作機械20のベッド21上に固定し、レーザ干渉部3をテーブル22上に固定する。この固定の際は、反射鏡2とレーザ干渉部3とがZ軸方向において正確に一直線上になるように、かつ平面鏡4,5の角度とレーザ干渉部3の角度がZ軸方向に対する正確な位置になるように固定することが好ましいが、僅かなずれがあっても第1光路(特に光路a3及び光路a10)と第2光路(特に光路b4及び光路b10)との光路長に差が生じないので、特に問題はない。また、レーザヘッド12を、レーザ干渉部3の入出力面8aに対して入出力ヘッド12aがZ軸方向において一直線上になるように床30上に設置する。 When measuring the machine tool 20 using the laser interferometer 1, a measuring device 50 including the laser interferometer 1 is installed in the machine tool 20 as shown in FIG. First, the reflecting mirror 2 of the laser interferometer 1 is fixed on the bed 21 of the machine tool 20, and the laser interference unit 3 is fixed on the table 22. At the time of fixing, the reflecting mirror 2 and the laser interference unit 3 are accurately aligned in the Z-axis direction, and the angle of the plane mirrors 4 and 5 and the angle of the laser interference unit 3 are accurate with respect to the Z-axis direction. It is preferable to fix the optical path so that the optical path length between the first optical path (especially the optical path a3 and the optical path a10) and the second optical path (especially the optical path b4 and the optical path b10) is different even if there is a slight deviation. Since there is no, there is no particular problem. Further, the laser head 12 is installed on the floor 30 so that the input / output head 12a is aligned with the input / output surface 8a of the laser interference unit 3 in the Z-axis direction.
 その後、レーザヘッド12のレーザ発振器よりレーザ光を照射すると共に、光電変換器により第1光路と第2光路との光路長の相対変化の測定を開始する。そして、工作機械20のテーブル22をベッド21に対してZ軸方向に移動させ、測定装置50によって、テーブル22の移動に伴うロール方向(γ方向)の位置偏差を測定する。この際、レーザ干渉部3の入出力面8aはZ軸方向に移動し、またレーザヘッド12の入出力ヘッド12aもZ軸方向に向けられているので、レーザ干渉部3をテーブル22によりZ軸方向に移動しても、入出力面8aに対するレーザ光の入出力がずれることはない。また、レーザ干渉部3がZ軸方向に移動するだけであれば、第1光路と第2光路との光路長が共に伸縮するだけであって、相対的な光路長の差は生じない。 Thereafter, laser light is emitted from the laser oscillator of the laser head 12, and measurement of the relative change in the optical path length between the first optical path and the second optical path is started by the photoelectric converter. Then, the table 22 of the machine tool 20 is moved in the Z-axis direction with respect to the bed 21, and the position deviation in the roll direction (γ direction) accompanying the movement of the table 22 is measured by the measuring device 50. At this time, the input / output surface 8a of the laser interference unit 3 moves in the Z-axis direction, and the input / output head 12a of the laser head 12 is also directed in the Z-axis direction. Even if it moves in the direction, the input / output of the laser beam to the input / output surface 8a does not shift. Further, if the laser interference unit 3 only moves in the Z-axis direction, the optical path lengths of the first optical path and the second optical path only expand and contract, and no relative optical path length difference occurs.
 また、レーザ干渉計1を用いて工作機械20を測定する際は、図2に示すように、レーザ干渉計1の反射鏡2を工作機械20のテーブル22上に固定し、レーザ干渉部3をベッド21上に固定してもよい。この際も同様に、レーザヘッド12を、レーザ干渉部3の入出力面8aに対して入出力ヘッド12aがZ軸方向において一直線上になるように床30上に設置する。 Further, when measuring the machine tool 20 using the laser interferometer 1, the reflecting mirror 2 of the laser interferometer 1 is fixed on the table 22 of the machine tool 20 as shown in FIG. It may be fixed on the bed 21. Similarly, the laser head 12 is installed on the floor 30 so that the input / output head 12a is aligned with the input / output surface 8a of the laser interference unit 3 in the Z-axis direction.
 その後、レーザヘッド12のレーザ発振器よりレーザ光を照射すると共に、光電変換器により第1光路と第2光路との光路長の相対変化の測定を開始し、工作機械20のテーブル22をベッド21に対してZ軸方向に移動させ、測定装置50によって、テーブル22の移動に伴うロール方向(γ方向)の位置偏差を測定する。この際、入出力面8aに対するレーザヘッド12からのレーザ光の入出力がずれることなく、また、反射鏡2がZ軸方向に移動するだけであれば、第1光路と第2光路との光路長が共に伸縮するだけであって、相対的な光路長の差は生じない。
 以上、本第1の実施の形態の測定装置50によれば、測定に先立って、レーザ干渉計1のレーザ干渉部3より出力される各光成分を平行に調整する作業を簡単に行うことができ、ロール方向の位置偏差の測定時には、良好な干渉信号を得ることができ、ロール方向の位置偏差の測定精度を向上させることができる。
Thereafter, laser light is emitted from the laser oscillator of the laser head 12 and measurement of the relative change in the optical path length between the first optical path and the second optical path is started by the photoelectric converter, and the table 22 of the machine tool 20 is placed on the bed 21. On the other hand, it is moved in the Z-axis direction, and the position deviation in the roll direction (γ direction) accompanying the movement of the table 22 is measured by the measuring device 50. At this time, if the input / output of the laser light from the laser head 12 to the input / output surface 8a is not shifted and the reflecting mirror 2 only moves in the Z-axis direction, the optical path between the first optical path and the second optical path. The lengths only expand and contract together, and there is no relative optical path length difference.
As described above, according to the measurement apparatus 50 of the first embodiment, prior to the measurement, it is possible to easily perform the operation of adjusting each light component output from the laser interference unit 3 of the laser interferometer 1 in parallel. In addition, when measuring the positional deviation in the roll direction, a good interference signal can be obtained, and the measurement accuracy of the positional deviation in the roll direction can be improved.
 <第2の実施の形態>
 ついで、以下に本発明に係る第2の実施の形態を図に沿って説明する。図7は第2の実施の形態に係るレーザ干渉計を示す斜視模式図である。図8は、レーザ干渉部を示す斜視図である。図9は、図8中、B-B線に沿うレーザ干渉部の断面図である。図10は、図8中、矢印C方向から見たレーザ干渉部の平面図である。尚、第2の実施の形態においては、一部の変更部分を除き、第1の実施の形態と同様な部分に同符号を付して、その説明を省略する。
<Second Embodiment>
Next, a second embodiment according to the present invention will be described with reference to the drawings. FIG. 7 is a schematic perspective view showing a laser interferometer according to the second embodiment. FIG. 8 is a perspective view showing the laser interference unit. FIG. 9 is a cross-sectional view of the laser interference portion taken along line BB in FIG. FIG. 10 is a plan view of the laser interference unit viewed from the direction of arrow C in FIG. In the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment except for some changed parts, and the description thereof is omitted.
 本第2の実施の形態のレーザ干渉計101は、反射鏡2とレーザ干渉部103とを備えており、レーザ干渉部103は、上記第1の実施の形態のレーザ干渉部3の構成に更にキューブコーナプリズム(再入力部)17を備えたものである。 A laser interferometer 101 according to the second embodiment includes a reflecting mirror 2 and a laser interference unit 103. The laser interference unit 103 is further added to the configuration of the laser interference unit 3 according to the first embodiment. A cube corner prism (re-input unit) 17 is provided.
 このキューブコーナプリズム17は、偏光ビームスプリッタ8の入出力面8aに近接して配置されており、干渉部ケース3aに対して固定金具18で固定されている。更に、キューブコーナプリズム17は、図10に示すように、入出力面8aにおいてレーザ光が入力される点D1及びレーザ光を出力するための点D4を避けて配置されている。そして、キューブコーナプリズム17は、バイプリズム6と反射鏡2との間を2往復してレーザ光が出力される点D2とレーザ光を再入力する点D3に対向して配置されている。 The cube corner prism 17 is disposed in the vicinity of the input / output surface 8a of the polarization beam splitter 8, and is fixed to the interference part case 3a by a fixing bracket 18. Further, as shown in FIG. 10, the cube corner prism 17 is arranged avoiding the point D1 where the laser beam is input and the point D4 for outputting the laser beam on the input / output surface 8a. The cube corner prism 17 is disposed so as to face a point D2 where the laser beam is output by two reciprocations between the biprism 6 and the reflecting mirror 2 and a point D3 where the laser beam is re-input.
 尚、本第2の実施の形態では、図10に示すように、キューブコーナプリズム17が干渉部ケース3aの外側に固定されて外部に露出しているが、キューブコーナプリズム17が干渉部ケース3aに覆われていてもよく、いずれの場合も干渉部ケース3aに格納されていると表現する。 In the second embodiment, as shown in FIG. 10, the cube corner prism 17 is fixed to the outside of the interference portion case 3a and exposed to the outside. However, the cube corner prism 17 is exposed to the interference portion case 3a. In either case, it is expressed as being stored in the interference part case 3a.
 以下、レーザ干渉計101にレーザ光を照射した場合について説明する。 Hereinafter, the case where the laser beam is irradiated to the laser interferometer 101 will be described.
 レーザヘッドのレーザ発振器よりP波とS波とを有するレーザ光がZ軸方向に対して平行に出力され、図7に示す光路c1,d1を介して偏光ビームスプリッタ8の入出力面8aに入力される。このとき、図10に示す入出力面8aの点D1にレーザ光が入力される。この偏光ビームスプリッタ8の入出力面8aに入力されたレーザ光は、偏光面8bにより第1光成分(P波)と第2光成分(S波)に分光され、第1光成分が第1光路(図7中、c2~c22)を通過し、第2光成分が第2光路(図7中、d2~d22)を通過する。詳述すると、P波は該偏光ビームスプリッタ8の偏光面8bをそのまま通過して直進方向、即ちZ軸方向の光路c2に出力されると共に、S波は該偏光面8bにより直角方向、即ちY軸方向に反射されて偏光ビームスプリッタ8内を通過し、平面型反射鏡9に到達する。ここで、図7には、第1光成分が通過する第1光路を破線で示し、第2光成分が通過する第2光路を実線で示している。 Laser light having a P wave and an S wave is output in parallel to the Z-axis direction from the laser oscillator of the laser head, and is input to the input / output surface 8a of the polarization beam splitter 8 via the optical paths c1 and d1 shown in FIG. Is done. At this time, the laser beam is input to the point D1 on the input / output surface 8a shown in FIG. The laser beam input to the input / output surface 8a of the polarization beam splitter 8 is split into a first light component (P wave) and a second light component (S wave) by the polarization surface 8b, and the first light component is the first light component. The light passes through the optical path (c2 to c22 in FIG. 7), and the second light component passes through the second optical path (d2 to d22 in FIG. 7). More specifically, the P wave passes through the polarization plane 8b of the polarization beam splitter 8 as it is and is output to the optical path c2 in the straight direction, that is, the Z-axis direction, and the S wave is perpendicular to the polarization plane 8b, that is, Y The light is reflected in the axial direction, passes through the polarization beam splitter 8, and reaches the planar reflecting mirror 9. Here, in FIG. 7, the first optical path through which the first light component passes is indicated by a broken line, and the second optical path through which the second light component passes is indicated by a solid line.
 まず第1光路(図7中、破線)を通過する第1光成分は、光路c2、1/4波長板7b、バイプリズム6の楔プリズム6b、光路c3を順次通過して、反射鏡2の平面鏡4に垂直に入反射し、光路c3、楔プリズム6b、1/4波長板7b、光路c2を順次通過して偏光ビームスプリッタ8に戻ってくる。 First, the first light component passing through the first optical path (broken line in FIG. 7) sequentially passes through the optical path c2, the quarter wavelength plate 7b, the wedge prism 6b of the biprism 6, and the optical path c3. The light enters and reflects perpendicularly to the plane mirror 4, and sequentially passes through the optical path c <b> 3, the wedge prism 6 b, the quarter wavelength plate 7 b, and the optical path c <b> 2 and returns to the polarization beam splitter 8.
 次に、光路c2に戻ってきたレーザ光は、S波となっており、偏光ビームスプリッタ8の偏光面8bによりキューブコーナプリズム11が配設されている方向に反射され、光路c4、1/4波長板10、光路c5を順次通過し、キューブコーナプリズム11により、光路c5の軸方向に対して平行でX-Z平面において対角の位置の異なる軸上である光路c6に折り返して出力される。次いで第1光成分は、光路c6、1/4波長板10、光路c7を順次通過する。 Next, the laser light that has returned to the optical path c2 is an S wave, and is reflected by the polarization surface 8b of the polarization beam splitter 8 in the direction in which the cube corner prism 11 is disposed, and the optical paths c4 and 1/4. The wave plate 10 and the optical path c5 are sequentially passed, and the cube corner prism 11 returns to the optical path c6 which is parallel to the axial direction of the optical path c5 and is on an axis having a different diagonal position in the XZ plane. . Next, the first light component sequentially passes through the optical path c6, the quarter wavelength plate 10, and the optical path c7.
 光路c7のレーザ光は、P波になっており、偏光ビームスプリッタ8の偏光面8bを直進してそのまま通過し、平面型反射鏡9、光路c8を順次通過し、偏向部15で偏向方向が調整され、光路c9、1/4波長板7a、バイプリズム6の楔プリズム6a、光路c10を順次通過し、反射鏡2の平面鏡5に垂直に入反射し、光路c10、楔プリズム6a、1/4波長板7a、光路c9、偏向部15、光路c8、平面型反射鏡9を順次通過して偏光ビームスプリッタ8の偏光面8bに戻ってくる。 The laser beam in the optical path c7 is a P wave, and travels straight through the polarization plane 8b of the polarization beam splitter 8 and passes through the planar reflecting mirror 9 and the optical path c8 sequentially. The optical path c9, the quarter-wave plate 7a, the wedge prism 6a of the biprism 6 and the optical path c10 are sequentially passed, and enters and reflects perpendicularly to the plane mirror 5 of the reflecting mirror 2, and the optical path c10, the wedge prism 6a, 1 / The light passes through the four-wavelength plate 7 a, the optical path c 9, the deflecting unit 15, the optical path c 8, and the planar reflection mirror 9 and returns to the polarization plane 8 b of the polarization beam splitter 8.
 偏光ビームスプリッタ8の偏光面8bに戻ってきたレーザ光は、S波になっており、偏光ビームスプリッタ8の偏光面8bによりZ軸方向に反射され、入出力面8aより光路c11に出力される。このとき、光路c11に出力されたレーザ光は、図10に示す入出力面8aのX-Y平面で点D1の対角に位置し、キューブコーナプリズム17に対向する点D2より出力される。 The laser beam that has returned to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected in the Z-axis direction by the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path c11. . At this time, the laser beam output to the optical path c11 is output from the point D2 that is positioned diagonally to the point D1 on the XY plane of the input / output surface 8a shown in FIG.
 本第2の実施の形態では、この光路c11に出力された第1光成分が、キューブコーナプリズム17により、光路c11の軸に平行でY軸方向に異なる軸上の光路c12を通過し、再び偏光ビームスプリッタ8の入出力面8aに入力される。このとき、光路c12に出力されたレーザ光は、図10に示す入出力面8aの点D2よりY軸方向に所定距離ずれた点D3に入力される。 In the second embodiment, the first light component output to the optical path c11 passes through the optical path c12 on the axis parallel to the axis of the optical path c11 and different in the Y-axis direction by the cube corner prism 17, and again. The light is input to the input / output surface 8 a of the polarization beam splitter 8. At this time, the laser beam output to the optical path c12 is input to a point D3 that is shifted by a predetermined distance in the Y-axis direction from the point D2 on the input / output surface 8a shown in FIG.
 光路c12を通過した第1光成分は、S波になっているので、偏光面8bにより反射され、平面型反射鏡9、光路c13を順次通過し、偏向部15で偏向方向が調整され、光路c14、1/4波長板7a、バイプリズム6の楔プリズム6a、光路c15を順次通過し、反射鏡2の平面鏡5に垂直に入反射し、光路c15、楔プリズム6a、1/4波長板7a、光路c14、偏向部15、光路c13、平面型反射鏡9を順次通過して偏光ビームスプリッタ8の偏光面8bに戻ってくる。 Since the first light component that has passed through the optical path c12 is an S wave, it is reflected by the polarization plane 8b, sequentially passes through the planar reflector 9 and the optical path c13, and the deflection direction is adjusted by the deflecting unit 15, and the optical path c14, the quarter-wave plate 7a, the wedge prism 6a of the biprism 6, and the optical path c15 are sequentially entered and reflected perpendicularly to the plane mirror 5 of the reflecting mirror 2, and the optical path c15, the wedge prism 6a, and the quarter-wave plate 7a. Then, the light passes through the optical path c14, the deflecting unit 15, the optical path c13, and the planar reflecting mirror 9 and returns to the polarization plane 8b of the polarization beam splitter 8.
 偏光ビームスプリッタ8の偏光面8bに戻ってきたレーザ光は、P波になっており、偏光ビームスプリッタ8の偏光面8bを直進してそのまま通過し、光路c16、1/4波長板10、光路c17を順次通過し、キューブコーナプリズム11により、該光路c17の軸方向に対して平行でX-Z平面において対角の位置の異なる軸上である光路c18に折り返して出力される。該光路c18のレーザ光は、1/4波長板10、光路c19を順次通過し、S波のレーザ光として偏光ビームスプリッタ8の偏光面8bに戻る。この戻ってきたレーザ光は、偏光面8bで反射され、光路c20、1/4波長板7b、バイプリズム6の楔プリズム6b、光路c21を順次通過し、反射鏡2の平面鏡4に垂直に入反射し、光路c21、楔プリズム6b、1/4波長板7b、光路c20を順次通過して、偏光ビームスプリッタ8の偏光面8bに戻ってくる。この戻ってきた第1光成分のレーザ光はP波であり、偏光ビームスプリッタ8の偏光面8bを直進してそのまま通過し、入出力面8aから光路c22に出力される。このとき、光路c22に出力されたレーザ光は、図10に示す入出力面8aのX-Y平面で点D3の対角の位置であり、キューブコーナプリズム17を避けた点D4より出力される。 The laser light that has returned to the polarization plane 8b of the polarization beam splitter 8 is a P-wave, passes straight through the polarization plane 8b of the polarization beam splitter 8, and passes through the optical path c16, the quarter wavelength plate 10, and the optical path. The light passes through c17 sequentially, and is output by the cube corner prism 11 by folding back to an optical path c18 which is parallel to the axial direction of the optical path c17 and is on an axis having a different diagonal position in the XZ plane. The laser beam in the optical path c18 sequentially passes through the quarter-wave plate 10 and the optical path c19, and returns to the polarization plane 8b of the polarization beam splitter 8 as S-wave laser light. The returned laser light is reflected by the polarization plane 8b and sequentially passes through the optical path c20, the quarter wavelength plate 7b, the wedge prism 6b of the biprism 6, and the optical path c21, and enters the plane mirror 4 of the reflecting mirror 2 perpendicularly. The light passes through the optical path c 21, the wedge prism 6 b, the quarter wavelength plate 7 b, and the optical path c 20, and returns to the polarization plane 8 b of the polarization beam splitter 8. The returned laser light of the first light component is a P wave, passes straight through the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path c22. At this time, the laser beam output to the optical path c22 is output from the point D4 that is at the diagonal position of the point D3 on the XY plane of the input / output surface 8a shown in FIG. .
 つまり、第1光成分のレーザ光は、バイプリズム6と反射鏡2との間を2往復してキューブコーナプリズム17に出力された後、キューブコーナプリズム17により入出力面8aに戻されて、更にバイプリズム6と反射鏡2との間を2往復して入出力面8aから出力されるので、バイプリズム6と反射鏡2との間を、上記第1の実施の形態の2倍である4往復して入出力面8aから出力されることとなる。 That is, the laser beam of the first light component is reciprocated between the biprism 6 and the reflecting mirror 2 and output to the cube corner prism 17, and then returned to the input / output surface 8a by the cube corner prism 17. Furthermore, since the bi-prism 6 and the reflecting mirror 2 are reciprocated twice and output from the input / output surface 8a, the bi-prism 6 and the reflecting mirror 2 are twice as large as the first embodiment. It is output from the input / output surface 8a after four reciprocations.
 そして、反射鏡2の平面鏡4,5に対して4往復した第1光成分は、入出力面8aより光路c22に出力された後、レーザヘッドの光電変換器に入力される。 The first light component reciprocating four times with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path c22 and then input to the photoelectric converter of the laser head.
 一方、第2光路(図7中、実線)を通過する第2光成分として、偏光ビームスプリッタ8により分光された光成分であるS波のレーザ光は、平面型反射鏡9、光路d2を順次通過し、偏向部15で偏向方向が調整され、光路d3、1/4波長板7a、楔プリズム6b、光路d4を順次通過し、反射鏡2の平面鏡4において垂直に入反射し、光路d4、楔プリズム6b、1/4波長板7a、光路d3、偏向部15、光路d2、平面型反射鏡9を順次通過して、偏光ビームスプリッタ8の偏光面8bに戻ってくる。 On the other hand, as the second light component passing through the second optical path (solid line in FIG. 7), the S-wave laser light, which is the light component dispersed by the polarization beam splitter 8, sequentially passes through the planar reflector 9 and the optical path d2. And the deflection direction is adjusted by the deflecting unit 15, sequentially passes through the optical path d3, the quarter-wave plate 7a, the wedge prism 6b, and the optical path d4, and is vertically incident and reflected by the plane mirror 4 of the reflecting mirror 2, and the optical path d4, The light passes through the wedge prism 6 b, the quarter-wave plate 7 a, the optical path d 3, the deflecting unit 15, the optical path d 2, and the planar reflection mirror 9, and returns to the polarization plane 8 b of the polarization beam splitter 8.
 この戻ってきた第2光成分のレーザ光はP波となっているため、偏光面8bを直進してそのまま通過し、光路d5、1/4波長板10、光路d6を順次通過し、キューブコーナプリズム11により、該光路d6の軸方向に対して平行でX-Z平面において対角の位置の異なる軸上である光路d7に折り返して出力される。該光路d7のレーザ光は、1/4波長板10、光路d8を順次通過し、S波のレーザ光として偏光ビームスプリッタ8の偏光面8bに戻る。この戻ってきたレーザ光は、偏光面8bで反射され、光路d9、1/4波長板7b、楔プリズム6a、光路d10を順次通過し、反射鏡2の平面鏡5で垂直に入反射し、光路d10、楔プリズム6a、1/4波長板7b、光路d9を順次通過して、偏光ビームスプリッタ8の偏光面8bに戻ってくる。 Since the returned laser light of the second light component is a P wave, it travels straight through the polarization plane 8b and passes through the optical path d5, the quarter wavelength plate 10, and the optical path d6 in order, and the cube corner. By the prism 11, the light is returned to the optical path d 7 which is parallel to the axial direction of the optical path d 6 and is on an axis having a different diagonal position in the XZ plane. The laser beam in the optical path d7 sequentially passes through the quarter-wave plate 10 and the optical path d8, and returns to the polarization plane 8b of the polarization beam splitter 8 as S-wave laser light. The returned laser light is reflected by the polarization plane 8b, sequentially passes through the optical path d9, the quarter-wave plate 7b, the wedge prism 6a, and the optical path d10, and enters and reflects perpendicularly by the plane mirror 5 of the reflecting mirror 2, and the optical path. It passes through d10, the wedge prism 6a, the quarter wavelength plate 7b, and the optical path d9 in order, and returns to the polarization plane 8b of the polarization beam splitter 8.
 この戻ってきた第2光成分のレーザ光はP波であり、偏光ビームスプリッタ8の偏光面8bをそのまま直進方向に通過し、入出力面8aから光路d11に出力される。このとき、光路d11に出力されたレーザ光は、図10に示す入出力面8aのX-Y平面で点D1の対角の位置であり、キューブコーナプリズム17に対向する点D2より出力される。 The returned laser light of the second light component is a P wave, passes through the polarization plane 8b of the polarization beam splitter 8 in the straight traveling direction, and is output from the input / output plane 8a to the optical path d11. At this time, the laser beam output to the optical path d11 is output from a point D2 opposite to the cube corner prism 17 at the diagonal position of the point D1 on the XY plane of the input / output surface 8a shown in FIG. .
 本第2の実施の形態では、この光路d11に出力された第2光成分が、キューブコーナプリズム17により、光路d11の軸に平行でY軸方向に異なる軸上の光路d12を通過し、再び偏光ビームスプリッタ8の入出力面8aに入力される。このとき、光路d12に出力されたレーザ光は、図10に示す入出力面8aの点D2よりY軸方向に所定距離ずれた点D3に入力される。 In the second embodiment, the second light component output to the optical path d11 passes through the optical path d12 on the axis parallel to the axis of the optical path d11 and different in the Y-axis direction by the cube corner prism 17, and again. The light is input to the input / output surface 8 a of the polarization beam splitter 8. At this time, the laser beam output to the optical path d12 is input to a point D3 that is shifted by a predetermined distance in the Y-axis direction from the point D2 on the input / output surface 8a shown in FIG.
 光路d12を通過した第2光成分は、P波になっているので、偏光面8bをそのまま通過し、光路d13、1/4波長板7b、楔プリズム6a、光路d14を順次通過し、反射鏡2の平面鏡5で垂直に入反射し、光路d14、楔プリズム6a、1/4波長板7b、光路d13を順次通過し、偏光ビームスプリッタ8の偏光面8bに戻ってくる。 Since the second light component that has passed through the optical path d12 is a P wave, it passes through the polarization plane 8b as it is, and sequentially passes through the optical path d13, the quarter wavelength plate 7b, the wedge prism 6a, and the optical path d14, and the reflecting mirror. 2 is reflected vertically by the plane mirror 5, passes through the optical path d 14, the wedge prism 6 a, the quarter-wave plate 7 b, and the optical path d 13 in order, and returns to the polarization plane 8 b of the polarization beam splitter 8.
 偏光ビームスプリッタ8の偏光面8bに戻ってきたレーザ光は、S波になっており、偏光ビームスプリッタ8の偏光面8bで反射され、光路d15、1/4波長板10、光路d16を順次通過し、キューブコーナプリズム11により、該光路d16の軸方向に対して平行でX-Z平面において対角の位置の異なる軸上である光路d17に折り返して出力される。該光路d17のレーザ光は、1/4波長板10、光路d18を順次通過し、P波のレーザ光として偏光ビームスプリッタ8の偏光面8bに戻る。この戻ってきたレーザ光は、偏光ビームスプリッタ8の偏光面8bを直進してそのまま通過し、平面型反射鏡9、光路d19を順次通過し、偏向部15で偏向方向が調整され、光路d20、1/4波長板7a、楔プリズム6b、光路d21を順次通過し、反射鏡2の平面鏡5で垂直に入反射し、光路d21、楔プリズム6b、1/4波長板7a、光路d20、偏向部15、光路d19、平面型反射鏡9を順次通過し、偏光ビームスプリッタ8の偏光面8bに戻る。 The laser beam returning to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected by the polarization plane 8b of the polarization beam splitter 8, and sequentially passes through the optical path d15, the quarter wavelength plate 10, and the optical path d16. Then, the cube corner prism 11 returns the light to the optical path d17 which is parallel to the axial direction of the optical path d16 and is on an axis having a different diagonal position in the XZ plane. The laser beam in the optical path d17 sequentially passes through the quarter-wave plate 10 and the optical path d18, and returns to the polarization plane 8b of the polarization beam splitter 8 as a P-wave laser beam. The returned laser light travels straight through the polarization plane 8b of the polarization beam splitter 8, passes through as it is, sequentially passes through the planar reflector 9 and the optical path d19, the deflection direction is adjusted by the deflecting unit 15, and the optical path d20, The ¼ wavelength plate 7a, the wedge prism 6b, and the optical path d21 are sequentially passed, and vertically incident and reflected by the plane mirror 5 of the reflecting mirror 2, and the optical path d21, the wedge prism 6b, the ¼ wavelength plate 7a, the optical path d20, and the deflecting unit. 15, sequentially passes through the optical path d 19 and the planar reflector 9, and returns to the polarization plane 8 b of the polarization beam splitter 8.
 偏光ビームスプリッタ8の偏光面8bに戻ってきたレーザ光は、S波になっており、偏光ビームスプリッタ8の偏光面8bによりZ軸方向に反射され、入出力面8aより光路d22に出力される。このとき、光路d22に出力されたレーザ光は、図10に示す入出力面8aのX-Y平面で点D3の対角の位置であり、キューブコーナプリズム17を避けた点D4より出力される。 The laser light that has returned to the polarization plane 8b of the polarization beam splitter 8 is an S wave, is reflected in the Z-axis direction by the polarization plane 8b of the polarization beam splitter 8, and is output from the input / output plane 8a to the optical path d22. . At this time, the laser beam output to the optical path d22 is output from the point D4 that is at the diagonal position of the point D3 on the XY plane of the input / output surface 8a shown in FIG. .
 つまり、第2光成分のレーザ光は、バイプリズム6と反射鏡2との間を2往復してキューブコーナプリズム17に出力された後、キューブコーナプリズム17により入出力面8aに戻されて、更にバイプリズム6と反射鏡2との間を2往復して入出力面8aから出力されるので、バイプリズム6と反射鏡2との間を、上記第1の実施の形態の2倍である4往復して入出力面8aから出力されることとなる。 That is, the laser light of the second light component is reciprocated between the biprism 6 and the reflecting mirror 2 and output to the cube corner prism 17, and then returned to the input / output surface 8a by the cube corner prism 17. Furthermore, since the bi-prism 6 and the reflecting mirror 2 are reciprocated twice and output from the input / output surface 8a, the bi-prism 6 and the reflecting mirror 2 are twice as large as the first embodiment. It is output from the input / output surface 8a after four reciprocations.
 そして、反射鏡2の平面鏡4,5に対して4往復した第2光成分は、入出力面8aより光路d22に出力された後、レーザヘッドの光電変換器に入力される。 Then, the second light component reciprocated four times with respect to the plane mirrors 4 and 5 of the reflecting mirror 2 is output from the input / output surface 8a to the optical path d22 and then input to the photoelectric converter of the laser head.
 このように、本第2の実施の形態では、キューブコーナプリズム17により、バイプリズム6と反射鏡2との間を2往復して出力されたレーザ光が、再びバイプリズム6と反射鏡2との間を2往復して出力されるので、各光成分は光路長が上記第1の実施の形態の2倍となり、ロール方向の位置偏差が生じた場合、光路長の変化量が2倍となる。従って、光路長の変化を検出するレーザヘッド12の光電変換器において検出感度が2倍になり、ロール方向の位置偏差の測定精度が向上する。 As described above, in the second embodiment, the laser light outputted by the cube corner prism 17 by reciprocating twice between the biprism 6 and the reflecting mirror 2 is returned to the biprism 6 and the reflecting mirror 2 again. Since the optical path length of each light component is twice that of the first embodiment, and the positional deviation in the roll direction occurs, the amount of change in the optical path length is double. Become. Accordingly, the detection sensitivity is doubled in the photoelectric converter of the laser head 12 that detects the change in the optical path length, and the measurement accuracy of the positional deviation in the roll direction is improved.
 また、本第2の実施の形態では、レーザヘッド12より照射された第1光成分及び第2光成分を有するレーザ光が入出力面8aより入力して偏光面8bで分光され、バイプリズム6と反射鏡2との間の最初の往復時に第2光成分が偏向部15において偏光方向を調整され、次の往復時に第1光成分が偏向部15において偏光方向を調整されるので、キューブコーナプリズム17に出力される各光成分を平行にすることができる。更に、キューブコーナプリズム17により入出力面8aから再度入力された互いに平行なレーザ光の各光成分も、偏光面8bで分光され、バイプリズム6と反射鏡2との間の最初の往復時に第1光成分が偏向部15において偏光方向を調整され、次の往復時に第2光成分が偏向部15において偏光方向を調整されるので、レーザ光を再入力した場合に偏向部15の調整量を変更しなくても出力される各光成分を平行にすることができる。従って、ロール方向の位置偏差の測定時には、良好な干渉信号を得ることができ、ロール方向の位置偏差の測定精度を向上させることができる。 In the second embodiment, the laser light having the first light component and the second light component irradiated from the laser head 12 is input from the input / output surface 8a and dispersed by the polarization surface 8b, and the biprism 6 Since the second light component is adjusted in the polarization direction in the deflecting unit 15 during the first round-trip between the mirror 2 and the reflecting mirror 2, and the first light component is adjusted in the polarization direction in the deflecting unit 15 during the next round-trip. Each light component output to the prism 17 can be made parallel. Furthermore, each light component of the parallel laser light input again from the input / output surface 8 a by the cube corner prism 17 is also split by the polarization surface 8 b and is first reciprocated between the biprism 6 and the reflecting mirror 2. Since the polarization direction of one light component is adjusted in the deflecting unit 15 and the polarization direction of the second light component is adjusted in the deflecting unit 15 at the next reciprocation, the amount of adjustment of the deflecting unit 15 is adjusted when laser light is input again. Even if it does not change, each output light component can be made parallel. Therefore, when measuring the positional deviation in the roll direction, a good interference signal can be obtained, and the measurement accuracy of the positional deviation in the roll direction can be improved.
 次に、上記第1の実施の形態のレーザ干渉計1を備えた測定装置のロール検出感度と、本第2の実施の形態のレーザ干渉計101を備えた測定装置のロール検出感度とを比較した実験結果について説明する。図11は、上記第1の実施の形態の測定装置により計測したロール検出感度を示す図であり、図12は、本第2の実施の形態の測定装置により計測したロール検出感度を示す図である。尚、上記第1の実施の形態のレーザ干渉計1における反射鏡2には、第1光成分と第2光成分とを合せて4回入反射し、本第2の実施の形態のレーザ干渉計101における反射鏡2には、第1光成分と第2光成分とを合せて8回入反射することとなる。 Next, the roll detection sensitivity of the measurement apparatus including the laser interferometer 1 according to the first embodiment is compared with the roll detection sensitivity of the measurement apparatus including the laser interferometer 101 according to the second embodiment. The experimental results will be described. FIG. 11 is a diagram showing roll detection sensitivity measured by the measurement apparatus of the first embodiment, and FIG. 12 is a diagram showing roll detection sensitivity measured by the measurement apparatus of the second embodiment. is there. Incidentally, the reflection mirror 2 in the laser interferometer 1 of the first embodiment is incident and reflected four times in total including the first light component and the second light component, and the laser interference of the second embodiment. The total reflection of the first light component and the second light component on the reflecting mirror 2 in the total 101 is 8 times.
 図11及び図12において、横軸は、反射鏡2をロール方向に回転させた角度(ロール)であり、縦軸は、反射鏡2のロールに対してレーザ干渉計1,101を用いて検出された検出光長である。なお、図11及び図12中、Lは、反射鏡2とバイプリズム6との距離であり、作図上、データのプロット位置を、Lの値が大きくなるに従って上方にシフトさせて見易くしている。例えば、L=300(mm)の場合は、検出光長を0.01(mm)だけ上方にシフトしてプロットしているが、実際の検出光長は、プロット位置よりも0.01(mm)だけ低い値である。 11 and 12, the horizontal axis is an angle (roll) obtained by rotating the reflecting mirror 2 in the roll direction, and the vertical axis is detected using the laser interferometers 1 and 101 with respect to the roll of the reflecting mirror 2. Is the detected light length. 11 and 12, L is the distance between the reflecting mirror 2 and the biprism 6. In the drawing, the plotting position of the data is shifted upward as the value of L increases to make it easy to see. . For example, when L = 300 (mm), the detection light length is shifted upward by 0.01 (mm) and plotted, but the actual detection light length is 0.01 (mm) from the plot position. ) Is a low value.
 ここで、レーザ干渉計1,101を備えた測定装置のロール検出感度は、測定データの回帰直線の傾きであり、測定データの回帰直線の傾きが大きいほど、検出感度が高いものである。図11に示す上記第1の実施の形態の測定装置のロール検出感度は、Lの値がいずれの場合でも、0.81×10-5であり、反射鏡2とバイプリズム6との距離に依存しないことが確認できた。 Here, the roll detection sensitivity of the measuring apparatus including the laser interferometers 1 and 101 is the slope of the regression line of the measurement data, and the greater the slope of the regression line of the measurement data, the higher the detection sensitivity. The roll detection sensitivity of the measurement apparatus according to the first embodiment shown in FIG. 11 is 0.81 × 10 −5 regardless of the value of L, and is equal to the distance between the reflecting mirror 2 and the biprism 6. It was confirmed that it did not depend.
 また、図12に示す本第2の実施の形態の測定装置のロール検出感度は、Lの値がいずれの場合でも、1.63×10-5であり、これによっても、反射鏡2とバイプリズム6との距離に依存しないことが確認できた。そして、本第2の実施の形態の測定装置のロール検出感度は、上記第1の実施の形態の測定装置のロール検出感度の2倍となるのが確認できた。 In addition, the roll detection sensitivity of the measurement apparatus of the second embodiment shown in FIG. 12 is 1.63 × 10 −5 regardless of the value of L, which also causes It was confirmed that it did not depend on the distance to the prism 6. It was confirmed that the roll detection sensitivity of the measurement apparatus of the second embodiment is twice the roll detection sensitivity of the measurement apparatus of the first embodiment.
 次に、本第2の実施の形態のレーザ干渉計101を備えた測定装置を用いて、実際に光学実験台のロール方向の位置偏差を検出した場合について説明する。図13は、光学実験台のロール方向の位置偏差を検出した結果を示す図である。この実験では、光学実験台上にテーブルを載置し、テーブルを移動させてロール方向の位置偏差を検出した。 Next, a case where the positional deviation in the roll direction of the optical test bench is actually detected using the measurement apparatus including the laser interferometer 101 according to the second embodiment will be described. FIG. 13 is a diagram illustrating a result of detecting a positional deviation in the roll direction of the optical experimental bench. In this experiment, a table was placed on the optical test bench, and the position deviation in the roll direction was detected by moving the table.
 ここで、レーザ干渉計101より得られるのは、検出光長であり、図12に示すロール検出感度(1.63×10-5)を校正データとして用いてロール方向の位置偏差を算出している。具体的に説明すると、図13に示すロール、つまりロール方向の位置偏差は、レーザ干渉計101より得られた検出光長を、校正データであるロール検出感度で除算することにより求められる。 Here, what is obtained from the laser interferometer 101 is the detection light length. By using the roll detection sensitivity (1.63 × 10 −5 ) shown in FIG. 12 as calibration data, the positional deviation in the roll direction is calculated. Yes. More specifically, the roll shown in FIG. 13, that is, the positional deviation in the roll direction, is obtained by dividing the detection light length obtained from the laser interferometer 101 by the roll detection sensitivity, which is calibration data.
 図13に示すように、ロール方向の位置偏差の測定を5回行ったが、ロール検出感度が倍増したので、測定結果のばらつきはほとんどない。従って、ロール方向の位置偏差の測定精度が向上したことが確認された。 As shown in FIG. 13, the measurement of the positional deviation in the roll direction was performed five times. However, since the roll detection sensitivity was doubled, there was almost no variation in the measurement results. Therefore, it was confirmed that the measurement accuracy of the positional deviation in the roll direction was improved.
 <第3の実施の形態>
 ついで、以下に本発明に係る第3の実施の形態を図に沿って説明する。図14は第3の実施の形態に係るレーザ干渉計を示す斜視模式図である。尚、第3の実施の形態においては、一部の変更部分を除き、第1或いは第2の実施の形態と同様な部分に同符号を付して、その説明を省略する。
<Third Embodiment>
Next, a third embodiment according to the present invention will be described with reference to the drawings. FIG. 14 is a schematic perspective view showing a laser interferometer according to the third embodiment. In the third embodiment, the same reference numerals are given to the same parts as those in the first or second embodiment except for some changed parts, and the description thereof is omitted.
 本第3の実施の形態では、図14に示すように、レーザ干渉計201のレーザ干渉部203が、偏光ビームスプリッタ(分光部)208と平面型反射鏡(反射部)209とを別体に有し、平面型反射鏡209が、偏光ビームスプリッタ208のZ軸方向に対して直角方向(Y軸方向)に配置されて構成される。 In the third embodiment, as shown in FIG. 14, the laser interference unit 203 of the laser interferometer 201 separates the polarization beam splitter (spectral unit) 208 and the planar reflector (reflecting unit) 209. And a planar reflecting mirror 209 is arranged in a direction perpendicular to the Z-axis direction of the polarizing beam splitter 208 (Y-axis direction).
 本第3の実施の形態でも、偏向部15は、平面型反射鏡209と1/4波長板7aとの間に配置されている。これにより本第3の実施の形態によれば、レーザ干渉部203から出力される各光成分を平行に調整する際に平面型反射鏡209の角度を調整する必要はなく、偏向部15の各ウェッジプリズム15a,15bを調整するだけでよいので、調整作業が簡単である。 Also in the third embodiment, the deflecting unit 15 is disposed between the planar reflecting mirror 209 and the quarter-wave plate 7a. Thus, according to the third embodiment, it is not necessary to adjust the angle of the planar reflecting mirror 209 when adjusting each light component output from the laser interference unit 203 in parallel, and each of the deflecting units 15 can be adjusted. Since only the wedge prisms 15a and 15b need to be adjusted, the adjustment work is simple.
 尚、上記第3の実施の形態では、偏向部15が、平面型反射鏡209と1/4波長板7aとの間に配置される場合について説明したが、これに限るものではなく、図14の破線で示すように、偏向部15を偏光ビームスプリッタ208と平面型反射鏡209との間に配置してもよい。これによっても、出力される各光成分を平行に調整する際に平面型反射鏡209の角度を調整する必要はなく、偏向部15の各ウェッジプリズム15a,15bを調整するだけでよいので、調整作業が簡単である。 In the third embodiment, the case where the deflecting unit 15 is disposed between the planar reflector 209 and the quarter-wave plate 7a has been described. However, the present invention is not limited to this. As indicated by a broken line, the deflecting unit 15 may be disposed between the polarizing beam splitter 208 and the planar reflecting mirror 209. This also makes it unnecessary to adjust the angle of the planar reflecting mirror 209 when adjusting the output light components in parallel, and it is only necessary to adjust the wedge prisms 15a and 15b of the deflecting unit 15. Easy to work.
 また、上記第1~第3の実施の形態では、偏向部15を平面型反射鏡9,209と1/4波長板7aとの間に配置したが、その代わりに、例えば図14の破線で示すように、偏向部15を1/4波長板7aとバイプリズム6との間に配置してもよい。また、偏向部15を偏光ビームスプリッタ8,208、反射鏡9,209、1/4波長板7a、バイプリズム6を通過する光路に設ける代わりに、偏光ビームスプリッタ8,208、1/4波長板7b、バイプリズム6を通過する光路、即ち、偏向部15を偏光ビームスプリッタ8,208と1/4波長板7bとの間、或いは、1/4波長板7bとバイプリズム6との間に配置するようにしてもよい。 In the first to third embodiments, the deflecting unit 15 is disposed between the planar reflectors 9 and 209 and the quarter-wave plate 7a. Instead, for example, a broken line in FIG. As shown, the deflecting unit 15 may be disposed between the quarter-wave plate 7 a and the biprism 6. Further, instead of providing the deflecting unit 15 in the optical path passing through the polarizing beam splitters 8 and 208, the reflecting mirrors 9 and 209, the quarter wavelength plate 7a, and the biprism 6, the polarizing beam splitters 8, 208 and quarter wavelength plates are provided. 7b, an optical path passing through the biprism 6, that is, the deflecting unit 15 is disposed between the polarization beam splitters 8 and 208 and the quarter wavelength plate 7b, or between the quarter wavelength plate 7b and the biprism 6. You may make it do.
 また、上記第1~第3の実施の形態では、レーザ干渉部3,103,203が、反射部として平面型反射鏡9,209を有する場合について説明したが、これに限るものではなく、レーザ干渉部が反射部としてアミチプリズム(不図示)を有する場合であってもよい。 In the first to third embodiments, the case where the laser interference units 3, 103, and 203 have the planar reflecting mirrors 9 and 209 as the reflection units has been described. However, the present invention is not limited to this. The interference part may have an amic prism (not shown) as a reflection part.
 また、上記第1~第3の実施の形態では、レーザ干渉計1,101,201を用いてロール方向(γ方向)の位置偏差を測定するものを説明したが、該レーザ干渉計1,101,201全体を90度回転させた形、つまり横向きで用いることも可能である。 In the first to third embodiments, the laser interferometer 1, 101, 201 is used to measure the positional deviation in the roll direction (γ direction). , 201 can be used in a shape rotated 90 degrees, that is, in a horizontal direction.
 また、上記第1の実施の形態では、工作機械20を測定する測定装置50について説明したが、該測定装置50は、特に工作機械に限らず、支持部材と該支持部材に対して軸方向に移動する移動部材とであり、反射鏡2とレーザ干渉部3,103,203とが設置(固定)可能なものであれば、どのようなものであってもそれらの位置偏差を測定することが可能である。 In the first embodiment, the measurement device 50 for measuring the machine tool 20 has been described. However, the measurement device 50 is not limited to the machine tool, and is not limited to the machine tool, but in the axial direction with respect to the support member and the support member. As long as it is a moving member that can be installed (fixed) to the reflecting mirror 2 and the laser interference units 3, 103, 203, the positional deviation of them can be measured. Is possible.
 また、上記第1~第3の実施の形態では、レーザ干渉部3,103,203の入出力面が反射鏡2に対して偏光ビームスプリッタ8,208における軸方向の反対側に位置する場合について説明したが、これに限るものではなく、偏光ビームスプリッタの入出力面が、軸方向に対して直角方向に形成され、レーザ干渉部がレーザ光を軸方向に対して直角方向に入出力するよう構成されたものであってもよい。 In the first to third embodiments, the input / output surfaces of the laser interference units 3, 103, and 203 are positioned on the opposite side in the axial direction of the polarization beam splitters 8 and 208 with respect to the reflecting mirror 2. Although described above, the present invention is not limited to this, and the input / output surface of the polarization beam splitter is formed in a direction perpendicular to the axial direction so that the laser interference unit inputs and outputs laser light in the direction perpendicular to the axial direction. It may be configured.
 また、上記第2の実施の形態では、レーザ干渉部103が再入力部として1個のキューブコーナプリズム17を備え、レーザ光をバイプリズム6と反射鏡2との間で4往復させる場合について説明したが、これに限るものではなく、レーザ干渉部が再入力部として複数個(N個:Nは2以上の整数)のキューブコーナプリズムを備え、レーザ光をバイプリズム6と反射鏡2との間で2×(N+1)往復させるよう構成された場合であってもよい。 In the second embodiment, the laser interference unit 103 includes one cube corner prism 17 as a re-input unit, and the laser beam is reciprocated four times between the biprism 6 and the reflecting mirror 2. However, the present invention is not limited to this, and the laser interference unit includes a plurality of cube corner prisms (N: N is an integer of 2 or more) as a re-input unit. It may be a case where it is configured to reciprocate 2 × (N + 1).
 本発明に係るレーザ干渉計及び測定装置は、工作機械のテーブル等の移動部材が支持部材に対して軸方向に移動する際に生じる位置偏差の測定に利用され、特に、ロール方向の位置偏差の測定に用いて好適である。 The laser interferometer and measuring apparatus according to the present invention are used for measuring a positional deviation that occurs when a moving member such as a table of a machine tool moves in an axial direction with respect to a supporting member, and in particular, a positional deviation in a roll direction. Suitable for measurement.

Claims (6)

  1.  所定角度で傾斜した2枚の平面鏡を有する反射手段と、
     偏光面が互いに直交する2つの偏光成分を有するレーザ光を入力して分光する分光部、及び前記分光部と前記反射手段との間に配置され、前記分光部で分光した各光成分を、前記反射手段の平面鏡に対して垂直に入反射するように前記所定角度に屈折させる屈折部を有し、前記各光成分を前記屈折部と前記反射手段との間で2往復させてから出力するレーザ光路生成手段と、を備え、
     前記反射手段と前記レーザ光路生成手段とを軸方向に相対移動させた際に、前記反射手段と前記レーザ光路生成手段との相対位置関係によって各光成分が通過する光路の距離が相対変化するレーザ干渉計において、
     前記レーザ光路生成手段は、
     前記各光成分が最初に往復する際に一方の光成分が通過し、前記各光成分が次に往復する際に他方の光成分が通過するよう、前記分光部と前記屈折部との間に配置され、通過する光成分の偏向方向を調整自在とする一対のウェッジプリズムを有する偏向部を備えたことを特徴とするレーザ干渉計。
    Reflecting means having two plane mirrors inclined at a predetermined angle;
    A spectroscopic unit that inputs and splits laser light having two polarization components whose polarization planes are orthogonal to each other, and each light component that is disposed between the spectroscopic unit and the reflection unit and is spectrally separated by the spectroscopic unit, A laser having a refracting portion that refracts at the predetermined angle so as to enter and reflect perpendicularly to the plane mirror of the reflecting means, and outputs each light component after reciprocating twice between the refracting portion and the reflecting means. An optical path generating means,
    Laser in which the distance of the optical path through which each light component passes is relatively changed by the relative positional relationship between the reflecting means and the laser light path generating means when the reflecting means and the laser light path generating means are relatively moved in the axial direction. In the interferometer,
    The laser beam path generation means includes
    One light component passes when each light component first reciprocates, and the other light component passes when each light component reciprocates next time. A laser interferometer, comprising: a deflecting unit that includes a pair of wedge prisms that are arranged and allow the deflection direction of a light component passing therethrough to be adjustable.
  2.  前記レーザ光路生成手段は、
     前記分光部の前記軸方向に対して直角方向に配置され、前記分光部を経て入射したレーザ光を前記屈折部に向けて反射する反射部を備え、
     前記偏向部は、前記反射部と前記屈折部との間に配置されることを特徴とする請求項1に記載のレーザ干渉計。
    The laser beam path generation means includes
    A reflection unit that is arranged in a direction perpendicular to the axial direction of the spectroscopic unit and reflects the laser light incident through the spectroscopic unit toward the refractive unit;
    The laser interferometer according to claim 1, wherein the deflection unit is disposed between the reflection unit and the refraction unit.
  3.  前記レーザ光路生成手段は、
     前記分光部の前記軸方向に対して直角方向に配置され、前記分光部を経て入射したレーザ光を前記屈折部に向けて反射する反射部を備え、
     前記偏向部は、前記分光部と前記反射部との間に配置されることを特徴とする請求項1に記載のレーザ干渉計。
    The laser beam path generation means includes
    A reflection unit that is arranged in a direction perpendicular to the axial direction of the spectroscopic unit and reflects the laser light incident through the spectroscopic unit toward the refractive unit;
    The laser interferometer according to claim 1, wherein the deflecting unit is disposed between the spectroscopic unit and the reflecting unit.
  4.  前記レーザ光路生成手段を格納する筐体を備え、
     前記偏向部は、前記ウェッジプリズムの外周に形成されたリング状の操作子を有し、
     前記ウェッジプリズムは、前記操作子が前記筐体から露出するよう前記筐体内に配設されていることを特徴とする請求項1乃至3のいずれか1項に記載のレーザ干渉計。
    A housing for storing the laser beam path generation means;
    The deflection unit has a ring-shaped operation element formed on the outer periphery of the wedge prism,
    4. The laser interferometer according to claim 1, wherein the wedge prism is disposed in the casing so that the operation element is exposed from the casing. 5.
  5.  前記分光部は、レーザ光を入力自在とすると共に、前記反射手段に2往復させたレーザ光を出力自在とする入出力部を有し、
     前記レーザ光路生成手段は、前記入出力部から出力されたレーザ光を、折り返し前記入出力部に入力する再入力部を備えたことを特徴とする請求項1乃至4のいずれか1項に記載のレーザ干渉計。
    The spectroscopic section has an input / output section that allows laser light to be input and output laser light that has been reciprocated twice to the reflecting means,
    5. The laser light path generation unit according to claim 1, further comprising a re-input unit configured to input the laser beam output from the input / output unit to the input / output unit. Laser interferometer.
  6.  請求項1乃至5のいずれか1項に記載の前記レーザ干渉計と、
     前記レーザ光を照射自在で、かつ前記レーザ光路生成手段より出力された前記各光成分のレーザ光の波長の位相差に基づき、前記各光成分の光路の距離の相対変化を測定し得るレーザ測長手段と、を備え、
     前記反射手段及び前記レーザ光路生成手段のいずれか一方を、基準床に対して支持される支持部材に固定し、
     前記反射手段及び前記レーザ光路生成手段の他方を、前記支持部材に対して軸方向に移動自在に支持される移動部材に固定し、
     前記移動部材を前記支持部材に対して前記軸方向に移動させた際に、前記支持部材に対する前記移動部材の位置偏差を測定することを特徴とする測定装置。
    The laser interferometer according to any one of claims 1 to 5,
    Laser measurement capable of measuring the relative change in the optical path distance of each light component based on the phase difference of the wavelength of the laser light of each light component output from the laser light path generation means. A long means,
    Either one of the reflecting means and the laser beam path generating means is fixed to a support member supported with respect to a reference floor;
    The other of the reflecting means and the laser beam path generating means is fixed to a moving member that is supported so as to be movable in the axial direction with respect to the supporting member,
    A measuring apparatus for measuring a positional deviation of the moving member with respect to the supporting member when the moving member is moved in the axial direction with respect to the supporting member.
PCT/JP2008/064150 2008-01-18 2008-08-06 Laser interferometer and measuring instrument using the same WO2009090771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008801248420A CN101918788A (en) 2008-01-18 2008-08-06 Laser interferometer and measuring instrument using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009032A JP2009168709A (en) 2008-01-18 2008-01-18 Laser interferometer and measuring instrument using the same
JP2008-009032 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009090771A1 true WO2009090771A1 (en) 2009-07-23

Family

ID=40885178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064150 WO2009090771A1 (en) 2008-01-18 2008-08-06 Laser interferometer and measuring instrument using the same

Country Status (3)

Country Link
JP (1) JP2009168709A (en)
CN (1) CN101918788A (en)
WO (1) WO2009090771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042804B (en) * 2009-10-13 2012-12-12 上海微电子装备有限公司 Measuring device and method of laser interferometer
CN114264255A (en) * 2021-12-28 2022-04-01 中国科学院上海天文台 Roll angle measuring system and method based on interferometric displacement measuring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665645B1 (en) * 2015-01-09 2016-10-13 한국산업기술대학교산학협력단 Multiple Line Laser System
CN113101072B (en) * 2021-04-07 2022-03-25 刘新艳 Wheelchair for medical care with deck chair function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297010A (en) * 1989-05-12 1990-12-07 Futaba Corp Length measuring device
JPH05231816A (en) * 1992-02-25 1993-09-07 Nikon Corp Interferometer
JP2000314609A (en) * 1999-05-06 2000-11-14 Nikon Corp Laser interferometric measuring device
JP2004138433A (en) * 2002-10-16 2004-05-13 Ishikawa Pref Gov Laser interferometer and measuring apparatus using the same
WO2007020738A1 (en) * 2005-08-16 2007-02-22 Tokyo Seimitsu Co., Ltd. Laser length measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297010A (en) * 1989-05-12 1990-12-07 Futaba Corp Length measuring device
JPH05231816A (en) * 1992-02-25 1993-09-07 Nikon Corp Interferometer
JP2000314609A (en) * 1999-05-06 2000-11-14 Nikon Corp Laser interferometric measuring device
JP2004138433A (en) * 2002-10-16 2004-05-13 Ishikawa Pref Gov Laser interferometer and measuring apparatus using the same
WO2007020738A1 (en) * 2005-08-16 2007-02-22 Tokyo Seimitsu Co., Ltd. Laser length measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042804B (en) * 2009-10-13 2012-12-12 上海微电子装备有限公司 Measuring device and method of laser interferometer
CN114264255A (en) * 2021-12-28 2022-04-01 中国科学院上海天文台 Roll angle measuring system and method based on interferometric displacement measuring system
CN114264255B (en) * 2021-12-28 2023-06-13 中国科学院上海天文台 Rolling angle measurement system and method based on interferometric displacement measurement system

Also Published As

Publication number Publication date
CN101918788A (en) 2010-12-15
JP2009168709A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
EP2150770B1 (en) Optical distance sensor
WO2016123812A1 (en) Laser heterodyne interference linearity measuring apparatus and method having six-degrees-of-freedom detection
EP2163906B1 (en) Method of detecting a movement of a measuring probe and measuring instrument
WO2016033766A1 (en) System for simultaneously measuring six-degree-of-freedom errors in way that double-frequency lasers are coupled by single optical fiber
JP2579226B2 (en) Optical device for interferometer
JP3751928B2 (en) Laser interferometer and measuring apparatus using the same
WO2013013346A1 (en) Interferometer with four axes and 4 subdivisions
JP5541713B2 (en) Laser interferometer, processing apparatus using the same, and method of manufacturing parts
CN101105390A (en) Synthetic wave interference nano surface tri-dimensional on-line measuring system and method
US9115973B2 (en) Profile measuring instrument
JP5216465B2 (en) Displacement measuring device and displacement measuring method
US4538911A (en) Three-dimensional interferometric length-measuring apparatus
WO2009090771A1 (en) Laser interferometer and measuring instrument using the same
CN115371587A (en) Surface topography measuring device and method and object surface height calculating method
JP2023171867A (en) Multiaxis laser interference length measurer
Xu et al. Development and verification of a high-precision laser measurement system for straightness and parallelism measurement
JP2014098619A (en) Linear encoder and method for processing workpiece
JPH04351905A (en) Xy stage possessing laser length measuring device
JP3045567B2 (en) Moving object position measurement device
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
JP5149085B2 (en) Displacement meter
JP2007285967A (en) Laser length measuring machine
JP4994991B2 (en) Fine shape measuring device
JP5135183B2 (en) 3D shape measuring device
TW202348960A (en) Three-dimensional collimation system for flatness calibration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124842.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792257

Country of ref document: EP

Kind code of ref document: A1