WO2009089752A1 - Dispositif, système et procédé de protection dans un réseau de transmission par paquets - Google Patents

Dispositif, système et procédé de protection dans un réseau de transmission par paquets Download PDF

Info

Publication number
WO2009089752A1
WO2009089752A1 PCT/CN2008/073800 CN2008073800W WO2009089752A1 WO 2009089752 A1 WO2009089752 A1 WO 2009089752A1 CN 2008073800 W CN2008073800 W CN 2008073800W WO 2009089752 A1 WO2009089752 A1 WO 2009089752A1
Authority
WO
WIPO (PCT)
Prior art keywords
service data
data flow
service
flow
protection path
Prior art date
Application number
PCT/CN2008/073800
Other languages
English (en)
French (fr)
Inventor
Jia He
Yang Yang
Yongjun Zhang
Wenjun Xie
Shanguo Huang
Wanyi Gu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08870940A priority Critical patent/EP2224644B1/en
Priority to AT08870940T priority patent/ATE534217T1/de
Priority to ES08870940T priority patent/ES2375326T3/es
Priority to DK08870940.7T priority patent/DK2224644T3/da
Publication of WO2009089752A1 publication Critical patent/WO2009089752A1/zh
Priority to US12/826,298 priority patent/US8565071B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers

Definitions

  • the present invention relates to the field of communications, and in particular, to a protection method using a shared protection ring in a packet transport network, a packet transport network node device, and a packet transport network system.
  • the transmission network In order to improve transmission efficiency and reliability, the transmission network usually adopts a ring network.
  • T-MPLS Shared Protection Ring (TM-SPRing) as an example, a logical adjacency relationship is established between nodes of the ring network, and the establishment of the connection relationship between the corresponding nodes is not controlled by physical devices and media access. (Media Access Control, MAC) Topological restrictions.
  • the connection between adjacent nodes is called a segment, and the segment is a bidirectional connection (either a physical link or a logical connection).
  • the transport channel entity used to transport the traffic data between the nodes on the ring is implemented by a set of LSPs based on T-MPLS.
  • the TM-SPRing adopts a dual-ring structure.
  • the service data flows of the two rings are reversed, including the working ring (working direction) and the protection ring (working in the opposite direction).
  • Each ring can establish multiple LSPs according to the number of services.
  • Service data flows are assigned different LSPs.
  • the protection of TM-SPRing is performed for the segments between adjacent nodes, and is implemented by the OAM function of the segments.
  • a complete protection mechanism needs to be determined to achieve rapid protection of the segment failure and accurate and efficient transmission of the service data flow.
  • switching mechanisms there are two types of switching mechanisms: the active routing (Steering) mode and the loopback (Wrapping) mode, which are commonly used in the protection of the shared protection ring.
  • the biggest difference between the source routing mode and the loopback mode is that after the segment failure occurs, the device initiates
  • the nodes in which the service data flow is switched in the source routing mode are the source nodes of the service data flow, and the node that initiates the service data flow switching in the loopback mode is the adjacent node of the faulty segment.
  • the loopback mode has a short start-up time and fewer corresponding packet loss, but the switched loopback protection path is not the optimal route.
  • the source route protection path of the source route mode is the optimized route, but the switchover startup time is longer, correspondingly More packets are lost.
  • RPR Resilient Packet Ring
  • the neighboring node of the faulty area detects the fault, and immediately performs the switching operation in the loopback mode, so that the first service data flow bypasses the faulty section, and the affected first service data stream is about to be
  • the working direction passes through the traffic data flow of the fault zone) and loops back to another ring for transmission.
  • the adjacent nodes of the fault zone send the protection request message containing the faulty section information bidirectionally.
  • the source node and the destination node of the service data flow perform the switching operation in the source routing manner, so as to transfer the second service data stream subsequent to the first service data stream. Transfer to another ring to bypass the faulty section.
  • the start time of the switching action of this scheme is equivalent to the start time of the switching action in the loopback mode, because the first phase uses the loopback protection scheme, so the first service data stream has little packet loss;
  • the final path through which the second service data flow passes is the same as the source route protection path in the source routing mode, which is an optimized route on another ring. Therefore, network resource utilization can be improved. Avoid introducing unnecessary delays and combine the advantages of both the loopback mode and the source routing mode.
  • the scheme transforms the service data flow path twice.
  • the first time is to switch the first service data flow from the working path to the loopback protection path for transmission, and the second is to The second service data flow is switched by the loopback protection path to the source route protection path for transmission. Since the loopback protection path has more paths than the source route protection path to wrap around the working ring, the second service data stream sent after the second switching may be sent out after the first switching.
  • a service data flow first arrives at the destination node, causing a problem of loss of service data.
  • the packet transmission technology aims to realize a unified bearer platform for multiple services, and needs to transmit TDM services.
  • the TDM services have strict requirements on timing. Summary of the invention
  • the technical problem to be solved by the embodiments of the present invention is to provide a packet transport network protection method, a packet transport network node device, and a packet transport network system, which can solve the problem of applying a loopback mode and a source route manner in a packet transport network.
  • the problem of disorder caused by the protection scheme is to solve the above technical problem.
  • the embodiment of the present invention provides a protection method for a packet transmission network, where the method is to establish a protection path for a service data flow carried on a shared protection ring of the packet transmission network, where the service data flow includes at least The first service data flow and the second service data flow, the protection path includes a loopback protection path and a source route protection path, and the method includes:
  • the first service data flow again completely passes through the service data flow node, and the cached second service data flow is switched from the loopback protection path to the source route protection path.
  • the embodiment of the present invention further provides a protection method for a packet transmission network, where the method is to establish a protection path for a service data flow carried on a shared protection ring of the packet transmission network, where the service data flow includes at least a first service.
  • the data flow, the second service data flow, the protection path includes a loopback protection path and a source route protection path, and the method includes:
  • the service flow source node sends the first service data flow by using the loopback protection path
  • the first service data flow is completely passed through the service flow source node, and the cached second service data flow is switched from the loopback protection path to the source route protection path;
  • the first service data stream completely passes the service flow destination node for the first time, and stops sending the second service data flow to the loopback protection path, and buffers the second service data flow;
  • the first service data flow again completely passes through the service flow destination node, and the cached second service data flow is switched from the loopback protection path to the source route protection path.
  • the embodiment of the present invention further provides a packet transport network node device, where the packet transport network node device is located on the packet protection network shared protection ring, and the shared protection ring has a protection path for carrying the service data flow.
  • the service data flow includes at least a first service data flow and a second service data flow, where the protection path includes a loopback protection path and a source route protection path, including:
  • a suspension unit after transmitting the first service data flow to the loopback protection path, suspending sending the second service data flow subsequent to the first service data flow to the loopback protection path at the node; Caching the second service data stream;
  • a detecting unit detecting whether the service data flow completely passes through the node; And detecting, by the detecting unit, the cached second service data flow from the loopback protection path to the source route protection path, when the detecting unit detects that the first service data stream passes through the node again.
  • the embodiment of the present invention further provides a packet transmission system, in which a packet protection network shared protection ring is applied, and the shared protection ring has a protection path for carrying a service data flow, and the service data flow includes at least a first a service data flow, a second service data flow, the protection path includes a loopback protection path and a source route protection path, where the system includes a service flow source node device and a service flow destination node device on the shared protection ring,
  • the service flow source node device includes:
  • the second service data flow subsequent to the first service data flow is sent to the loopback protection path, and is cached.
  • the second service data flow when the first service data flow passes completely through the service data flow node again, the cached second service data flow is switched from the loopback protection path to the source route protection Path
  • the service flow destination node device is configured to detect whether the service data flow completely passes the service flow destination node; when the second detection unit detects that the first service data flow completely passes the service flow destination node for the first time And sending the second service flow data to the loopback protection path, and buffering the second service flow data; when the second detection unit detects that the first service data flow passes the When the service flows to the destination node, the cached second service data flow is switched from the loopback protection path to the source route protection path.
  • the first service data stream is sent by using the loopback protection path, and then the service data stream node stops sending the subsequent second service data stream to the loopback protection path, and caches the second service data stream.
  • the cached second service data flow is switched from the loopback protection path to the source route protection path, thereby solving the application in the packet transmission network.
  • the problem of out-of-sequence generated by the joint protection scheme of loopback mode and source route mode can better improve the protection mechanism of the packet transport network system and improve the defense capability of the system against faults.
  • FIG. 1 is a schematic flow chart of a method for protecting a packet transport network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frame format of APS information
  • FIG. 3 is a schematic diagram of a protection request content field in APS information
  • FIG. 4 is a schematic diagram of a loopback switching operation performed by the step 404 of the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the operation of the source node switching to the source route protection path in the step 409 of the embodiment of the present invention.
  • FIG. 6 is an operation diagram of a source node and a destination node both switching to a source route protection path according to an embodiment of the present invention
  • Figure ⁇ is a schematic diagram of a protection method of another packet transmission network according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a source node device/destination node device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a packet transmission network system according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a packet transmission network protection method, a packet transmission network node device, and a packet transmission network system, which can be solved when a joint protection scheme of a loopback mode and a source route mode is applied in a packet transport network. Out of order problem.
  • FIG. 1 is a schematic diagram of a method for protecting a packet transport network according to an embodiment of the present invention.
  • the method performs handover from a loopback mode to a source route mode by using TM-SPRing as an example, but the present invention can also be applied to, but not limited to, a provider backbone.
  • Provider Backbone Bridging Traffic Engineering (PBB-TE) such as ring network, such as ring network, refer to Figure 1, which mainly includes:
  • the neighboring node of the faulty section detects the fault of the section, and each node on the TM-SPRing listens to the information on the ring network, and discovers the faulty section in the ring network in time.
  • there are generally two types of section faults one is a section.
  • the service data stream cannot be transmitted in the faulty area.
  • the adjacent nodes in the faulty area downstream of the working direction cannot receive the service data stream.
  • the SF can be authenticated by the OAM message.
  • the other is segment signal degradation (Signal Degraded, SD), in the case of SD, the service data stream can be transmitted in the faulty section, but the quality of the service data stream received by the neighboring node of the faulty zone downstream of the working direction is degraded, and the SD can be lost, delayed, etc. by the OAM packet.
  • the function is to detect that each node in the ring network monitors the OAM packet flowing through the node, and determines that the adjacent segment of the node is a normal operation or a fault. When the fault is detected, step 403 is performed;
  • the processing of the two types of faults is the same in the embodiment of the present invention.
  • the double loop fault is taken as an example for description, and the content of the present invention can still be applied when the single loop fault occurs;
  • the service data flows transmitted on the packet protection network shared protection ring are both bidirectional services. Under the double ring failure, the service data flows in both directions are affected. The service data flow in one direction affected by the fault is switched, and the service data flow in the other direction is also switched. Since the processing flow in the two directions is basically the same in the embodiment of the present invention, for the convenience of description, how to protect the service data flow in one direction is protected in the description of the embodiment of the present invention, and the processing flow in the other direction is still The content of the present invention can be applied;
  • the neighboring node of the faulty section sends a protection request message (which can be sent in both directions), where the protection request message is in the form of APS information, and the function is to notify the faulty section information of each node in the TM-SPRing on the one hand, and another
  • the adjacent node of the faulty area communicates, and the loopback mode is switched.
  • the frame format of the APS information is as shown in FIG. 2.
  • the APS information includes a label header field, a function type word, and an APS protocol data unit (PDU).
  • the protection request content field includes a source node ID for identifying the source node, a destination node ID for identifying the destination node, bridge request/status information, and reserved bytes.
  • the embodiment of the present invention can use the 8th bit extension function of the reserved byte of the APS information to complete the function of the identifier provided by the present invention. As shown in FIG. 3, the bit is set to 1 (the APS without function expansion) The information bit value is 0), so that the APS information has an indication function of suspending the transmission of the service data stream;
  • the neighboring node of the faulty area completes the loopback protection switching. Specifically, the first service data flow that is currently carried is switched from the working LSP to the protection LSP.
  • TM-SPRing inherits the data transmission method of MPLS. Each service path corresponds to one LSP, and each segment on the LSP is assigned a label to correctly transmit the service data stream. TM-SPRing labels the switched service data stream. The operation completes the switching.
  • Each node in the TM-SPRing stores the working LSP of each service data stream on the node and the label of the protection LSP on the node.
  • the storage form may be in the form of a database, and each service data stream on each node The working LSP label and the protection LSP label are - corresponding to the implementation of the service The data stream is correctly switched;
  • Each node on TM-SPRing is adjacent to two segments, based on the flow direction of one service data flow, and the segment label between the node and the service data flow to the upstream adjacent node may be referred to as the upstream label of the node, and the node
  • the traffic data flow to the downstream adjacent node segment label may be referred to as the downstream label of the node; the bridging operation is performed between the faulty neighboring nodes, and the labeling needs to operate on the label of the service data flow, including:
  • the adjacent node of the fault zone upstream of the working direction replaces the upstream adjacent zone label of the working LSP on the node with the downstream adjacent zone label of the protection LSP on the node, and uses the protection LSP to be downstream adjacent to the node.
  • the segment label is used to forward the service data flow, so that the carried service data flow is switched from the working LSP to the protection LSP for transmission;
  • the adjacent node of the fault zone downstream of the working direction replaces the upstream adjacent zone label of the protection LSP on the node with the downstream adjacent zone label of the working LSP on the node, and uses the working LSP to be adjacent to the downstream of the node.
  • Zone label to forward the service data stream
  • the labels of the working LSP and the protection LSP overlap can use the same value.
  • the label replacement of the faulty neighboring node the label value does not change.
  • the Mirror mode The steps for label assignment are as follows:
  • the operation is based on a direction of a two-way service data flow, such as a clockwise working direction, and finds a clockwise TM-SPRing single ring for the source node and the destination node of the service data flow according to the shortest path algorithm.
  • the shortest working path as the working LSP (using the working direction);
  • A2 find a shortest protection path on the entire counterclockwise TM-SPRing single ring, as the protection LSP of the working LSP (in the opposite direction of the work, that is, the protection direction);
  • the service data stream and the protection label of the working LSP and the protection LSP overlap segment may have the same value.
  • the loopback protection path adopted by the loopback mode and the source route mode mentioned in the embodiment of the present invention The label of the source route protection path corresponding to each section is generally the same.
  • different labels may be allocated in the specific implementation.
  • the label allocation may be manually allocated, or may be dynamically allocated by the system.
  • the label allocation and the replacement manner in the packet transport network may be one of a plurality of label distribution modes, such as a Mirror mode, a unique allocation mode, a tunnel mode, and a common label distribution mode, which are proposed in the prior art;
  • This step 404 can be referred to as shown in FIG. 4, with Nodel (source node) to Node4 (destination node).
  • Nodel source node
  • Node4 destination node
  • the service data flow is faulty between the Node2 and the Node3.
  • the Node2 replaces the work direction label 20 with the protection LSP label 20, and uses the protection LSP label 20 to forward the service data stream.
  • the protection is performed on the LSP;
  • the node 3 replaces the protection direction label 40 with the working LSP label 40, and switches the service data stream to the working LSP for transmission;
  • each other node on the ring except the faulty neighboring node After receiving the protection request information, each other node on the ring except the faulty neighboring node extracts the source node ID information and the destination node ID information in the protection request information, and obtains the location information of the faulty segment, and determines the ring information.
  • the relationship between the node and the service data flow affected by the faulty segment, if the node is an intermediate node (non-source node and non-destination node) of the service data flow affected by the faulty segment go to step 406;
  • the service data flow affected by the fault segment is generally multiple.
  • the service data flow affected by the node on the TM-SPRing may be different from the different service segments affected by the fault segment.
  • the relationship between the TM-SPRing node may be the intermediate node of the traffic data stream 1 affected by the faulty segment, and may also be the source node of the traffic data stream 2 affected by the faulty segment.
  • the protection operation is implemented based on a service data flow. In the protection process of the service data flow, the relationship between each node on the ring and the service data flow is determined;
  • the node If the node is neither a neighboring node of the faulty section nor a source node or a destination node of the service data flow affected by the faulty section, only the protection request information is forwarded to the downstream node; If the node is not a neighboring node of the faulty zone, even if it is detected that the quality of the service data stream received by the node is inferior or the service data stream cannot be received, the node does not generate the protection request information, thereby avoiding the repetition of the protection request information;
  • the source node/purpose performs the following operations:
  • the source node/destination node sends the first service data flow through the loopback protection path, where the protection path established on the TM-SPRing for protecting the service data flow includes the loopback protection path and the source route protection path.
  • the source node/destination node After receiving the protection request message, the source node/destination node sends the protection request message to the downstream node. After receiving the protection request message, the source node/destination node aborts the path through the loopback protection path. Sending a second service data stream (which may be an inbound data stream) subsequent to the first service data stream, and buffering the second service data stream to the buffer, specifically, the second service data stream may be buffered to the source node In the destination node reverse buffer (Buffer), the second service data stream is used as a subsequent service data stream of the first service data stream sent to the loopback protection path before the source node suspension time.
  • a second service data stream which may be an inbound data stream
  • TM-SPRing sets two dynamic unidirectional Buffers for all nodes on the ring, including forward Buffer and reverse Buffer, where the working direction is called forward direction and the protection direction (working LSP is opposite direction) is called reverse, and dynamic Buffer means that the counter is set at the entrance of the Buffer so that the actual length of the service data stream can be returned during the switching process, thereby adjusting the pointer and realizing the dynamic allocation of the Buffer;
  • the function of receiving the protection request message may be implemented by a receiving unit therein;
  • suspending the function of transmitting the second service data stream on the loopback protection path may be implemented by an abort unit in which the suspension unit receives the protection request message After performing the process of sending the second service data stream by using the loopback protection path;
  • the buffer caches a second service data stream, where the buffer is a cache unit that performs the cache function in the source node/destination node device;
  • the source node/destination node adds an identifier to the last frame of the first service data stream.
  • the received protection request message (APS information) may be extended, and the reserved byte in the APS information is used.
  • the 8-bit bit value is modified to 1 (originally 0), and is used as an identifier, and the extended APS information is added to the last frame of the first service data stream sent through the loopback protection path;
  • the function of adding an identifier to the last frame of the first service data stream is performed by an identifier adding unit in the detecting unit of the source node/destination node device;
  • the APS information with the suspension of the second service data flow indication function and the APS information (protection request message) initially received by the source node/destination node containing the failure information are only in the 8th bit of the reserved byte. The value is different, the other location data is the same; after receiving the APS information containing the fault information that has not been extended, the source node expands its function to the identifier, which is a function expansion operation, and the source node/destination node will continue downstream. The node in the direction sends the APS information that has not been extended;
  • the automatic protection switching (APS M message function is extended, and the APS information is added with the function of aborting the transmission service data flow indication, but the inherent function is not changed, and other APS information is The operation does not change, it needs to be pointed out that
  • the indication function is an extension of the OAM function, and is not limited to using APS information, but may also use other OAM functions, or extend other message packets;
  • the source node/destination node listens to the information on the TM-SPRing, and determines whether the identifier is received. Because the first service data stream that is transmitted through the loopback protection path passes through the source node/destination node again, the source is The node/destination node will inevitably receive the identifier previously sent by the source node, and when receiving the identifier, go to step 409, otherwise, repeat step 408;
  • the function of determining whether the identifier is received may be completed by a determining unit in the detecting unit of the source node/destination node device;
  • the source node/destination node terminates the identifier, and the loopback protection path is switched to the source route protection path, and the cached second service data stream is sent. Specifically, the cached second service data stream may be sent. Switching from the loopback protection path to the source route protection path, the buffered second service data flow is reversely sent by the reverse Buffer, and the source node/destination node routes the buffered second service data flow along the source route protection path. Transfer. In the handover process, the downstream adjacent zone label of the working LSP on the source node/destination node is replaced with the downstream adjacent zone label of the protection LSP on the source node/destination node to protect the LSP. The section label is forwarded;
  • the function of switching the loopback protection path to the source route protection path and transmitting the buffered second service data stream may be completed by the detection processing unit of the source node/destination node device;
  • the joint implementation step 407, the step 408 and the step 409 can ensure that the source/destination node first arrives when the handover is processed, and the service data loss sequence does not occur.
  • the handover process of the source node and the service data flow transmission path thereof in the embodiment of the present invention are described by taking a failure between the Node2 and the Node3 segments as an example:
  • the path is transmitted to the destination node Node4 via the path of Nodel ⁇ Node2 ⁇ Nodel ⁇ ode6 ⁇ Node5 ⁇ Node4 ⁇ ode3 ⁇ Node4;
  • Nodel receives the identifier sent by the Node3, and modifies the 8th bit of the reserved byte in the APS information to 1 to form an identifier having the function of aborting the transmission service data flow indication;
  • the Nodel suspension (corresponding to the active node suspension time) sends the second service data flow subsequent to the first service data flow to the loopback protection path, and adds the identifier to the loopback After the last frame of the first service data stream sent by the protection path, and sent along the loopback protection path, and simultaneously buffering the suspended second service data stream in the reverse Buffer;
  • the Node1 when the Node1 does not detect that the identifier is received, it indicates that the first service data flow in the protection direction on the loopback protection path of the Node1 has not passed the Nodel ⁇ Node2 ⁇ Nodel path, and Nodel does not perform the action;
  • the last frame of the first service data stream sent along the loopback protection path before the foregoing suspension time has passed the Node1 ⁇ Node2 ⁇ Nodel path, and reaches the downstream position of the protection LSP of the Node1.
  • Nodel performs the switching process of the source route protection mode (corresponding to the active node switching time), and the Nodel exit tag is set to 71 instead of 20, and the Nodel first sends the first service data stream buffered in the reverse Buffer along the protection direction.
  • the subsequent second service data stream is also directly transmitted through the Nodel on the source route protection path.
  • the source node aborts the time to the source node handover time, and the service data stream transmitted on the loopback protection path arrives at the destination through the path of Nodel-Node6 ⁇ Node5 ⁇ Node4 ⁇ Node3 ⁇ Node4 after the source node handover time.
  • the node so that the first traffic data flow first arrives at the destination node, and ensures a correct timing relationship between the first service data flow and the second service data flow.
  • the switching process of the destination node and the service data stream transmission path thereof may also be described with reference to the switching process of the source node and the service data stream transmission path thereof.
  • the source of the embodiment of the present invention as shown in FIG. 6 may be used.
  • the operation diagram of the node and the destination node are all switched to the source route protection path, so that the problem of the out of order of the service data flow is not generated when the destination node is switched;
  • the source node and the destination node complete the switching of the source route protection mode, and the service data flow is switched from the loopback protection path to the source route protection path, and the process of switching from the loopback mode to the source route mode is completed; As shown in FIG. 6, the failure occurs between the Node2 and the Node3 segment. After the protection switching on the destination node is completed, the transmission path of the subsequent service data flow from the source node to the destination node is Node1 ⁇ Node6 ⁇ Node5 ⁇ Node4.
  • the processing of the protection request message and the corresponding handover operation on the destination node may be as follows: in the foregoing process, after the source node processing procedure, the flow performed on the destination node may be replaced by the following Step, the whole process is shown in Figure 7:
  • the destination node After receiving the protection request information, the destination node listens to the information on the TM-SPRing, determines whether the identifier from the source node is received, and the destination node necessarily receives the identifier sent by the source node, and the destination node first receives the identifier. When the identification, go to step 1002, otherwise, repeat step 1001; The destination node receives the identifier for the first time, indicating that the first service data stream transmitted through the loopback protection path completely passes through the destination node, and continues to loop back to the destination node along the loopback protection path;
  • the destination node stops sending the second service data flow to the loopback protection path, and buffers the second service data flow.
  • the second service data flow may be cached in a reverse Buffer, and the destination node Receiving the first service data flow from the loopback protection path;
  • the destination node determines whether the identifier from the source node is received again, and if yes, go to step 1004, otherwise, repeat step 1003;
  • the destination node switches the loopback protection path to the source route protection path, and switches the buffered second service data flow from the loopback protection path to the source route protection path, and then starts receiving the subsequent service data flow of the reverse buffer buffer.
  • the subsequent service data stream is received on the source route protection path, and the source route protection mode is switched.
  • the joint implementation step 1001, the step 1002, the step 1003, and the step 1004 can ensure that the destination node does not generate the service data loss sequence when performing the protection mode switching. As shown in FIG. 6, the failure between the Node2 and the Node3 segments is taken as an example. After the protection switching is completed, the transmission path of the subsequent service data flow from the source node to the destination node is Node 1 ⁇ Node6 ⁇ Node5 ⁇ Node4.
  • the source node device/destination node device may have a functional unit as shown in FIG. 8, including the receiving unit 1101, the aborting unit 1102, the buffer unit 1103, the detecting unit 1104, and the detecting processing unit 1105 of the corresponding function, wherein the detecting unit 1104 may include The identification addition unit 11041 and the determination unit 11042 of the corresponding function. It should be noted that when the destination node device uses the identifier provided by the source node device identifier adding unit to perform the foregoing determination on the service data flow through the destination node, the destination node device does not need to identify the additional unit;
  • the packet transport network system may have a device as shown in FIG. 9, including a faulty zone neighbor node device 1201, a source/destination node device 1202, where the source/destination node device 1202 may include the abort unit 12021 and the cache unit 12022 of the corresponding function described above.
  • the detecting unit 12023 and the detecting processing unit 12024 may have a device as shown in FIG. 9, including a faulty zone neighbor node device 1201, a source/destination node device 1202, where the source/destination node device 1202 may include the abort unit 12021 and the cache unit 12022 of the corresponding function described above.
  • the detecting unit 12023 and the detecting processing unit 12024 may have a device as shown in FIG. 9, including a faulty zone neighbor node device 1201, a source/destination node device 1202, where the source/destination node device 1202 may include the abort unit 12021 and the cache unit 12022 of the corresponding function described above.
  • the source node device/destination node device may further include a receiving unit mentioned in the above method.
  • the method, device, and system of the embodiment of the present invention first send the first service data flow by using the loopback protection path, and then the service data flow node stops sending the first service to the loopback protection path.
  • the loopback protection path is switched to the source route protection path, thereby solving the problem of out-of-order generated when the joint protection scheme of the loopback mode and the source route mode is applied in the packet transport network, thereby better improving the protection mechanism of the packet transport network system and improving
  • the defense capability of the system to the fault it should be noted that the source node of the service flow and the destination node of the service flow are service data flow nodes having the function of transmitting the service data stream, and other nodes having the functions described in the present invention are also in the present invention.
  • the process may be performed by a program to instruct related hardware, and the program may be stored in a computer readable storage medium, and when executed, the program may include a flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种分组传送网的保护方法和系统及其设备 本申请要求于 2007 年 12 月 29 日提交中国专利局、 申请号为 200710033044.4、 发明名称为 "一种分组传送网的保护方法" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种分组传送网中利用共享保护环的保护 方法、 分组传送网节点设备及分组传送网系统。 背景技术
为了提高传输效率和可靠性, 传送网络通常采取环状网络。 以 T-MPLS共享 保护环 (T-MPLS Shared Protection Ring, TM-SPRing ) 为例, 环网各节点间建 立逻辑邻接关系, 相应各节点之间的连接关系的建立不受物理设备、 介质访问 控制 ( Media Access Control, MAC )拓朴的限制。 相邻节点之间的连接称为区 段, 区段为双向连接(可以为物理链路, 也可以是逻辑连接) 。 环上各节点间 用于传送业务数据流的传送通道实体由基于 T-MPLS的一组 LSP实现。
TM-SPRing采用双环结构, 两个环的业务数据流流向相反, 包括工作环(工作方 向) 和保护环 (工作反方向) , 每个环可以根据业务数量需要, 建立多条 LSP, 从而为不同业务数据流分配不同的 LSP。 TM-SPRing的保护是针对相邻节点之间 的区段进行的, 通过区段的 OAM功能实现。
在区段发生故障的情况下, 为了防止相邻节点之间区段失效, 需要确定一 个完整的保护机制, 以实现对区段故障的快速保护、 业务数据流准确有效地传 送。 目前, 常用的利用共享保护环进行保护的机制有源路由 (Steering ) 方式和 环回 (Wrapping ) 方式两种倒换机制, 源路由方式与环回方式最大的不同在于 区段的故障发生后, 发起业务数据流倒换的节点不同, 源路由方式中发起业务 数据流倒换的节点是业务数据流的源节点, 而环回方式中发起业务数据流倒换 的节点是故障区段相邻节点。 环回方式的倒换启动时间短, 相应的丟包较少, 但是倒换的环回保护路径不是最优化路由; 源路由方式的源路由保护路径是最 优化路由, 但是倒换启动时间较长, 相应的丢包较多。 在现有的弹性分组环( Resilient Packet Ring , RPR ) 网中采用了一种环回方 式和源路由方式联合保护的方案, 这种方案的实施按照以下步骤进行:
首先, 发生故障后, 故障区段相邻节点检测到故障, 马上进行上述环回方 式中的倒换操作, 从而使第一业务数据流绕开故障区段, 即将受影响的第一业 务数据流(即将从工作方向通过该故障区段的业务数据流) 环回到另外一个环 上进行传输, 同时, 故障区段相邻节点双向的发送包含了故障区段信息的保护 请求消息。
其次, 所述业务数据流的源节点、 目的节点在收到保护请求消息的情况下, 进行上述源路由方式中的倒换操作, 从而将所述第一业务数据流后续的第二业 务数据流转移到另外一个环上进行传输, 绕开故障区段。
这种方案的倒换动作开始时间等同于其中采用环回方式中倒换动作的开始 时间, 因为它第一阶段使用的是环回保护方案, 因此所述第一业务数据流丢包 很少; 另外, 采用源路由方式中的倒换动作后, 所述第二业务数据流通过的最 终路径和源路由方式中源路由保护路径一样, 是另外一个环上的最优化路由, 因此, 可以提高网络资源利用率, 避免引入不必要的时延, 综合了环回方式和 源路由方式两种方案的优点。
发明人在发明过程中发现如下问题:
根据上面两个步骤的描述, 该方案变换了两次业务数据流路径, 第一次是 将所述第一业务数据流由工作路径倒换到环回保护路径上进行传送, 第二次是 将所述第二业务数据流由环回保护路径切换到源路由保护路径进行传送。 由于 环回保护路径比源路由保护路径多出了在工作环上进行回绕的路径, 就可能出 现第二次倒换后发出的所述第二业务数据流比第一次倒换后发出的所述第一业 务数据流先到达目的节点, 引起业务数据流失序问题。
分组传送技术旨在实现一个多业务的统一承载平台, 需要传送 TDM业务, TDM业务对时序有严格要求。 发明内容
本发明实施例所要解决的技术问题在于, 提供了一种分组传送网的保护方 法以及分组传送网节点设备、 分组传送网系统, 可解决在分组传送网中应用环 回方式和源路由方式的联合保护方案时产生的失序问题。 为了解决上述技术问题, 本发明实施例提出了一种分组传送网的保护方法, 所述方法为所述分组传送网共享保护环上承载的业务数据流建立保护路径, 所 述业务数据流至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括 环回保护路径和源路由保护路径, 所述方法包括:
将所述第一业务数据流通过所述环回保护路径进行发送;
业务数据流节点中止向所述环回保护路径发送所述第一业务数据流后续的 第二业务数据流, 并缓存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务数据流节点, 将所述緩存的第 二业务数据流从所述环回保护路径倒换到所述源路由保护路径。
另外, 本发明实施例还提供了一种分组传送网的保护方法, 所述方法为所 述分组传送网共享保护环上承载的业务数据流建立保护路径, 所述业务数据流 至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括环回保护路径 和源路由保护路径, 所述方法包括:
业务流源节点通过所述环回保护路径发送第一业务数据流;
所述业务流源节点中止向所述环回保护路径发送所述第一业务数据流后续 的第二业务数据流, 并緩存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务流源节点, 将所述緩存的第二 业务数据流从所述环回保护路径倒换到所述源路由保护路径;
所述第一业务数据流首次完全通过业务流目的节点, 中止向所述环回保护 路径发送所述第二业务数据流, 并緩存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务流目的节点, 将所述緩存的第 二业务数据流从所述环回保护路径倒换到所述源路由保护路径。
相应地, 本发明实施例还提供了一种分組传送网节点设备, 所述分組传送 网节点设备位于所述分组传送网共享保护环上, 所述共享保护环上有承载业务 数据流的保护路径, 所述业务数据流至少包括第一业务数据流、 第二业务数据 流, 所述保护路径包括环回保护路径和源路由保护路径, 包括:
中止单元, 向所述环回保护路径在该节点发送第一业务数据流后, 中止向 所述环回保护路径在该节点发送所述第一业务数据流后续的第二业务数据流; 緩存单元, 緩存所述第二业务数据流;
检测单元, 检测所述业务数据流是否完全通过所述节点; 检测处理单元, 当所述检测单元检测到所述第一业务数据流再次完全通过 所述节点时, 将所述緩存的第二业务数据流从所述环回保护路径倒换到源路由 保护路径。
本发明实施例还提供了一种分组传送系统, 所述系统中应用了分组传送网 共享保护环, 所述共享保护环上有承载业务数据流的保护路径, 所述业务数据 流至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括环回保护路 径和源路由保护路径, 所述系统包括所述共享保护环上的业务流源节点设备、 业务流目的节点设备, 所述业务流源节点设备包括:
所述业务流源节点设备用于向所述环回保护路径发送第一业务数据流后, 中止向所述环回保护路径发送所述第一业务数据流后续的第二业务数据流, 并 緩存所述第二业务数据流; 当所述第一业务数据流再次完全通过所述业务数据 流节点 , 将所述緩存的第二业务数据流从所述环回保护路径切换到所述源路由 保护路径;
所述业务流目的节点设备用于检测所述业务数据流是否完全通过所述业务 流目的节点; 当所述第二检测单元检测到所述第一业务数据流首次完全通过所 述业务流目的节点时, 中止向所述环回保护路径发送所述第二业务流数据, 并 緩存所述第二业务流数据; 当所述第二检测单元检测到所述第一业务数据流再 次完全通过所述业务流目的节点时, 将所述緩存的第二业务数据流从所述环回 保护路径切换到所述源路由保护路径。
本发明实施例通过首先通过环回保护路径发送第一业务数据流, 然后业务 数据流节点中止向所述环回保护路径发送后续的第二业务数据流, 并緩存该第 二业务数据流, 当所述第一业务数据流再次完全通过所述业务数据流节点时, 将所述緩存的第二业务数据流从所述环回保护路径倒换到源路由保护路径, 从 而解决分组传送网网中应用环回方式和源路由方式的联合保护方案时产生的失 序问题, 能更好地完善分组传送网系统的保护机制, 提高系统对故障的防御能 力。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的分组传送网的保护方法流程示意图;
图 2是 APS信息的帧格式示意图;
图 3是 APS信息中保护请求内容域示意图;
图 4是本发明实施例 404步骤进行环回倒换操作示意图;
图 5是本发明实施例 409步骤进行源节点切换到源路由保护路径的操作示 意图;
图 6是本发明实施例源节点、 目的节点均切换到源路由保护路径的操作示 意图;
图 Ί是本发明实施例的另一分组传送网的保护方法示意图;
图 8是本发明实施例的源节点设备 /目的节点设备的结构示意图;
图 9是本发明实施例的分组传送网系统的结构示意图。 具体实施方式
本发明实施例提供了一种分组传送网的保护方法, 一种分组传送网节点设 备以及分组传送网系统, 可解决在分组传送网中应用环回方式和源路由方式的 联合保护方案时产生的失序问题。
下面结合附图, 对本发明实施例的方法、 设备、 系统进行详细说明。
图 1是本发明实施例的分组传送网的保护方法示意图,该方法以 TM-SPRing 为例完成了从环回方式到源路由方式的切换, 但本发明还可以应用于但不仅限 于提供者骨干桥接-流量工程 ( Provider Backbone Bridging Traffic Engineering, PBB-TE ) 环网等分組传送网系统, 参照图 1 , 该方法主要包括:
401 , TM-SPRing中某区段故障, TM-SPRing的保护是针对相邻节点之间的 区段故障进行的;
402, 故障区段相邻节点检测到区段故障, TM-SPRing上各节点监听环网上 的信息, 及时发现环网中的故障区段, 其中, 区段故障类型一般有两种, 一种 是区段信号故障 (Signal False, SF ), 在 SF情况下, 业务数据流无法在故障区 段传送, 工作方向下游的故障区段相邻节点接收不到业务数据流, SF 可以由 OAM报文的联通校验功能来检测; 另一种是区段信号劣化 ( Signal Degraded, SD ), 在 SD情况下, 业务数据流可以在故障区段传送, 但工作方向下游的故障 区段相邻节点接收到的业务数据流质量变差, SD可以由 OAM报文的丟包、 延 时等功能来检测, 环网中各个节点通过监听流经该节点的 OAM报文, 判断该节 点相邻区段是正常工作或故障, 当检测到该区段故障时, 执行步骤 403;
在实际应用中, 有如下两点需要说明:
第一, 所述区段故障又分为单环故障和双环故障, 本发明实施例在相关节 点在倒换操作方面对这两类型故障的处理是相同的, 在本发明实施例的说明中, 以双环故障为例进行说明, 单环故障时仍可适用本发明内容;
第二, 分组传送网共享保护环上进行传输的业务数据流都是双向业务, 双 环故障下, 两个方向的业务数据流都会受到影响。 对受故障影响的一个方向的 业务数据流进行倒换, 也要对另一个方向的业务数据流进行倒换。 由于本发明 实施例在两个方向上的处理流程基本一致的, 为了描述的方便, 在本发明实施 例的说明中说明如何对一个方向上的业务数据流进行保护, 另一方向上的处理 流程仍可适用本发明内容;
403 , 故障区段相邻节点发送保护请求消息 (可双向发送), 该保护请求消 息为 APS信息形式,其作用一方面是向 TM-SPRing中各节点通告故障区段信息, 另一方面是与另一故障区段相邻节点通信, 完成环回方式的倒换, 其中, APS 信息的帧格式如图 2所示, 该 APS信息包括标签头字段、 功能类型字、 APS协 议数据单元(PDU )等。 保护请求内容域包括用于识别指示源节点的源节点 ID、 用于识别指示目的节点的目的节点 ID、 桥接清求 /状态信息、 预留字节。 本发明 实施例可利用 APS信息的预留字节的第 8位比特扩展功能, 完成本发明所提的 标识的功能, 如图 3所示, 将该位比特置 1 (未进行功能扩展的 APS信息该位 比特值为 0 ), 使得 APS信息具有中止发送业务数据流的指示功能;
404, 故障区段相邻节点完成环回保护倒换, 具体地, 可通过将当前承载的 第一业务数据流从工作 LSP倒换到保护 LSP上。 TM-SPRing继承了 MPLS的数 据传送方法, 每一条业务路径对应一条 LSP, 而 LSP上每个区段均分配有一个 标签以正确传送业务数据流, TM-SPRing 通过对倒换的业务数据流的标签进行 操作完成倒换, TM-SPRing 中每个节点上存储有该节点上各个业务数据流的工 作 LSP和保护 LSP在该节点的标签, 存储形式可以是数据库形式, 每个节点上 各个业务数据流的工作 LSP标签和保护 LSP标签是——对应的, 以实现对业务 数据流进行正确的倒换;
TM-SPRing上每个节点与两个区段相邻, 以一路业务数据流的流向为基准, 该节点与业务数据流流向上游相邻节点间区段标签可称为该节点的上游标签, 该节点与业务数据流流向下游相邻节点间区段标签可称为该节点的下游标签; 桥接操作在故障相邻节点间进行, 桥接时需要对业务数据流的标签进行操 作, 具体包括:
工作方向上游的故障区段相邻节点, 将工作 LSP在该节点上的上游相邻区 段标签替换为保护 LSP在该节点上的下游相邻区段标签, 使用保护 LSP在该节 点上的下游相邻区段标签来转发业务数据流, 从而将承载的业务数据流从工作 LSP倒换到保护 LSP进行传送;
工作方向下游的故障区段相邻节点, 将保护 LSP在该节点上的上游相邻区 段标签替换为工作 LSP在该节点上的下游相邻区段标签, 使用工作 LSP在该节 点上的下游相邻区段标签来转发业务数据流;
由于使用镜像 ( Mirror ) 方式进行标签分配与替换, 工作 LSP与保护 LSP 重合部分的标签可以使用相同值, 则在故障相邻节点的标签替换中, 标签值不 变, 在具体实现时, Mirror方式进行标签分配的操作步骤如下述:
Al、 操作基于一路双向业务数据流的某个方向, 比如顺时针的工作方向, 并根据最短路径算法为业务数据流的源节点和目的节点在顺时针方向的 TM-SPRing单环上找出一条最短的工作路径, 作为工作 LSP (采用工作方向 );
A2、 将整个逆时针的 TM-SPRing单环上找出一条最短的保护路径, 作为所 述工作 LSP的保护 LSP (采用工作反方向, 即保护方向);
A3、 为所述工作 LSP和保护 LSP上各区段分配标签。 为了简化操作, 业务 数据流在工作 LSP和保护 LSP 重合区段的工作标签与保护标签可以采用相同 值, 本发明实施例中提到的环回方式、 源路由方式分别采用的环回保护路径、 源路由保护路径对应各区段的标签一般对应相同, 当然在具体实现时, 也可以 分配不同的标签; 另外, 标签的分配可以手动分配, 也可以系统动态分配; 另外, 本发明实施例所涉及的分组传送网中的标签分配、 替换方式可以是 现有技术中提出的 Mirror方式、 唯一分配方式、 隧道(Tunnel ) 方式、 普通标 签分配方式等多种标签分配方式中的一种;
该步骤 404可参照如图 4所示, 以 Nodel (源节点) 到 Node4 (目的节点) 业务数据流在 Node2到 Node3间区段发生故障为例进行说明, Node2将工作方 向标签 20进行替换操作, 替换为保护 LSP标签 20, 并使用该保护 LSP标签 20 进行转发, 将业务数据流倒换到保护 LSP上进行传送; Node3将保护方向标签 40进行替换操作, 替换为工作 LSP标签 40, 将业务数据流倒换到工作 LSP上 进行传送;
405 , 除故障相邻节点外的环上各个其他节点, 接收到保护请求信息后, 将 提取保护请求信息中的源节点 ID信息、 目的节点 ID信息, 获取故障区段的位置 信息, 判断环上节点与受故障区段影响的业务数据流之间的关系, 如果本节点 是受故障区段影响的业务数据流的中间节点 (非源节点也非目的节点) , 转到 步骤 406;
如果本节点是受故障区段影响的业务数据流的源节点 /目的节点, 转到步骤
407;
通过一条区段的业务数据流可能有多个, 受故障区段影响的业务数据流一 般也是多个, 例如, TM-SPRing 上节点与不同的受故障区段影响的业务数据流 间可能有不同的关系, TM-SPRing上节点可能是受故障区段影响的业务数据流 1 的中间节点, 同时也可能是受故障区段影响的业务数据流 2 的源节点。 在具体 的实施上, 保护操作是基于一路业务数据流实施的, 在业务数据流的保护流程 中, 环上各个节点与业务数据流之间的关系是确定的;
406, 如果本节点既不是故障区段相邻节点, 也不是受故障区段影响的业务 数据流的源节点或目的节点, 那么仅仅将保护请求信息向下游节点进行转发; 根据故障区段信息, 判断本节点不是故障区段相邻节点, 则即使检测到本 节点收到的业务数据流质量低劣或无法接收到业务数据流, 本节点也不会产生 保护请求信息, 从而避免了保护请求信息的重复产生;
407, 如果本节点是受故障区段影响的业务数据流的源节点 /目的, 则该源节 点 /目的进行以下操作:
源节点 /目的节点通过环回保护路径发送第一业务数据流, 这里 TM-SPRing 上有为保护业务数据流建立的保护路径, 该保护路径包括了环回保护路径和源 路由保护路径;
源节点 /目的节点接收到保护请求消息后,将保护请求消息发送到下游节点; 源节点 /目的节点接收到所述保护请求消息后, 中止通过环回保护路径上发 送所述第一业务数据流后续的第二业务数据流(可以是入环数据流) , 并向緩 存器緩存第二业务数据流, 具体地, 可将该第二业务数据流緩存到源节点 /目的 节点反向緩存器(Buffer ) 中, 其中, 所述第二业务数据流作为该源节点中止时 刻前向所述环回保护路径发送的第一业务数据流的后续业务数据流。 TM-SPRing 为环上所有节点设置了两个动态单向 Buffer,包括正向 Buffer和反向 Buffer,其中, 工作方向称为正向, 保护方向 (工作 LSP反方向) 称为反向, 而动态 Buffer是指 通过在 Buffer入口处设置计数器, 以便在倒换处理时可以返回业务数据流的实际 长度, 从而调整指针, 实现 Buffer的动态分配;
在源节点 /目的节点设备中, 所述接收保护请求消息的功能, 可由其中的接 收单元实现;
在源节点 /目的节点设备中, 中止通过所述环回保护路径上发送第二业务数 据流的功能, 可由其中的中止单元来实现, 该中止单元在所述接收单元接收到 所述保护请求消息后, 进行所述中止通过环回保护路径上发送所述第二业务数 据流的处理;
在源节点 /目的节点设备中, 所述向緩存器緩存第二业务数据流, 该緩存器 即源节点 /目的节点设备中执行所述緩存功能的緩存单元;
源节点 /目的节点在所述第一业务数据流最后一帧附加标识, 具体地, 可将 接收到的保护请求消息(APS信息)进行功能的扩展, 将 APS信息中的预留字节 中第 8位 bit数值修改为 1 (原来为 0 ) , 作为标识, 并将该经扩展处理后的 APS信 息追加于通过所述环回保护路径发送的第一业务数据流最后一帧;
在源节点 /目的节点设备中, 所述在所述第一业务数据流最后一帧附加标识 的功能, 由源节点 /目的节点设备中检测单元中的标识追加单元完成;
需要指出,具有中止发送所述第二业务数据流指示功能的 APS信息与源节点 /目的节点起初接收到的包含故障信息的 APS信息 (保护请求消息)仅仅在预留 字节中第 8位 bit数值不同, 其他位置数据相同; 源节点接收到未经扩展处理的包 含故障信息的 APS信息后, 将其功能扩展为所述标识, 是一个功能扩展的操作, 源节点 /目的节点将继续向下游方向的节点发送未经扩展处理的 APS信息;
另外, 本发明实施例中对自动保护倒换 (Automatic Protection Switching, APS M言息功能进行扩展,对 APS信息增加了具有中止发送业务数据流指示功能, 但并不改变其固有功能, 其他关于 APS信息的操作也不做改变, 需要指出的是, 所述指示功能是一种 OAM功能的扩展, 不仅仅限于使用 APS信息, 也可以使用 其他 OAM功能, 或者对其他消息报文进行扩展;
408, 源节点 /目的节点监听 TM-SPRing上信息, 判断是否接收到所述标识, 由于所述通过环回保护路径传送的第一业务数据流会再次经过该源节点 /目的节 点, 因此, 源节点 /目的节点必然会接收到之前由源节点发出的所述标识, 当接 收到该标识时, 转到步骤 409, 否则, 重复步骤 408;
在源节点 /目的节点设备中, 所述判断是否接收到所述标识的功能, 可由源 节点 /目的节点设备中检测单元中的判断单元完成;
409, 源节点 /目的节点终结所述标识, 将所述环回保护路径倒换到源路由保 护路径, 发送所緩存的第二业务数据流, 具体地, 可将所述緩存的第二业务数 据流从环回保护路径切换到源路由保护路径上, 通过反向 Buffer反向发送所緩 存的第二业务数据流, 此时源节点 /目的节点将所緩存的第二业务数据流沿源路 由保护路径进行传送。 在切换过程中, 需要将工作 LSP在该源节点 /目的节点上 的下游相邻区段标签, 替换为保护 LSP在该源节点 /目的节点上的下游相邻区段 标签, 以保护 LSP上的区段标签进行转发;
在源节点 /目的节点设备中, 所述将所述环回保护路径倒换到源路由保护路 径, 发送所緩存的第二业务数据流的功能, 可由源节点 /目的节点设备的检测处 理单元完成;
联合实施步骤 407, 步骤 408和步骤 409可以保证源节点 /目的节点在处理 所述切换时, 先发送的业务数据流先到达, 不会产生业务数据流失序问题。
如图 5所示, 以 Node2到 Node3间区段发生故障为例, 对本发明实施例的 源节点的所述切换处理及其中业务数据流传送路径进行说明:
B1、 所述第一业务数据流在环回保护路径上进行传送的路径:
从发送第一业务数据流的源节点 Nodel开始,经过 Nodel→ Node2→ Nodel → ode6→ Node5→ Node4→ ode3→ Node4的路径传送到目的节点 Node4;
B2、 具体处理流程:
首先, Nodel接收到 Node3发出的所述标识, 将 APS信息中预留字节的第 8位 bit修改为 1 , 形成具有中止发送业务数据流指示功能的标识;
其次, Nodel中止(对应有源节点中止时刻)向所述环回保护路径上发送所 述第一业务数据流后续的第二业务数据流, 将所述标识追加在经过所述环回保 护路径发送的第一业务数据流最后一帧之后, 并将其沿环回保护路径发送, 同 时, 将所述中止的第二业务数据流緩存在反向 Buffer中;
然后, 当 Nodel没有检测到接收到所述标识时, 说明通过 Nodel的所述环 回保护路径上保护方向的第一业务数据流还没有通过 Nodel→Node2→ Nodel 路径, Nodel 不进行动作; 当 Nodel检测到接收到所述标识时, 说明通过上述 中止时刻前发出沿环回保护路径传送的第一业务数据流的最后一帧都已经通过 Nodel→ Node2→ Nodel路径,到达了 Nodel的保护 LSP下游位置,此刻, Nodel 进行源路由保护方式的切换处理(对应有源节点切换时刻 ) , Nodel出口标签设 置为 71 , 而不是 20, Nodel先将反向 Buffer中緩存的第一业务数据流沿保护方 向发送, 后续的第二业务数据流也直接通过 Nodel在源路由保护路径上进行传 送。 由于目的节点未进行切换, 源节点中止时刻到源节点切换时刻, 在环回保 护路径上传送的业务数据流在源节点切换时刻后通过 Nodel—Node6→Node5→ Node4→ Node3→ Node4的路径到达目的节点, 这样所述先发的第一业务数据流 先到达目的节点, 保证了所述第一业务数据流与第二业务数据流之间的正确时 序关系。
另外, 目的节点的所述切换处理及其中业务数据流传送路径也可参照上述 源节点的所述切换处理及其中业务数据流传送路径进行说明, 具体可如图 6所 示的本发明实施例源节点、 目的节点均切换到源路由保护路径的操作示意图, 这样就可以保证目的节点切换时不会产生业务数据流的失序问题;
410, 源节点和目的节点都完成源路由保护方式的切换, 将业务数据流从环 回保护路径切换到源路由保护路径上进行传送, 完成了环回方式到源路由方式 的切换过程; 如图 6所示, 以 Node2到 Node3间区段发生故障为例进行说明, 在目的节点上的保护切换完成后, 后续业务数据流在源节点到目的节点的传送 路径为 Nodel→ Node6→ Node5→ Node4。
作为一种实施方式, 目的节点上对保护请求消息的处理和相应的切换操作 方面可有如下方式, 即上述流程中, 在上述源节点处理流程之后, 在目的节点 上进行的流程可替换为如下步骤, 整个流程如图 7所示:
1001 , 目的节点接收到保护请求信息后, 监听 TM-SPRing上信息, 判断是 否接收到所述来自源节点的标识, 目的节点必然会接收到由源节点发出的所述 标识, 目的节点首次接收到所述标识时, 转到步骤 1002, 否则, 重复步驟 1001; 目的节点首次接收到所述标识, 说明通过所述环回保护路径传送的第一业 务数据流完全通过该目的节点, 并沿环回保护路径继续环回向目的节点传送;
1002, 目的节点中止向所述环回保护通路发送所述第二业务数据流, 緩存 所述第二业务数据流, 具体地, 可在反向 Buffer缓存该第二业务数据流, 同时, 目的节点从所述环回保护路径上接收所述第一业务数据流;
1003 , 目的节点判断是否再次接收到来自源节点的标识, 若是, 转到步骤 1004, 否则, 重复步骤 1003;
1004, 目的节点将环回保护路径倒换到源路由保护路径, 将所緩存的第二 业务数据流从环回保护路径切换到源路由保护路径上,随后开始接收反向 Buffer 緩存的后续业务数据流, 后续业务数据流在源路由保护路径上接收, 完成源路 由保护方式的切换。
联合实施步骤 1001 , 步骤 1002, 步骤 1003 , 步骤 1004可以保证目的节点 在进行保护方式切换时不会产生业务数据流失序问题。仍如图 6所示, 以 Node2 到 Node3 间区段发生故障为例进行说明, 保护切换完成后, 后续业务数据流在 源节点到目的节点的传送路径是 Node 1→ Node6→ Node5→ Node4。
综合上述方法中提及的具有一定功能的单元, 可得到本发明实施例中的相 关设备、 系统:
源节点设备 /目的节点设备可具有如图 8所示的功能单元, 包括上述对应功 能的接收单元 1101、 中止单元 1102、 緩存单元 1103、 检测单元 1104、 检测处 理单元 1105, 其中检测单元 1104可包括上述对应功能的标识追加单元 11041、 判断单元 11042。需要说明的是当目的节点设备使用由源节点设备标识追加单元 提供的标识来实现对通过目的节点的业务数据流进行所述判断时, 该目的节点 设备上不需要标识追加单元;
而分组传送网系统可具有如图 9 所示的设备, 包括故障区段相邻节点设备 1201、 源 /目的节点设备 1202, 其中源 /目的节点设备 1202可包括上述对应功能 的中止单元 12021、 緩存单元 12022、 检测单元 12023、 检测处理单元 12024。
作为一种实施方式, 所述源节点设备 /目的节点设备还可以包括上述方法中 提及的接收单元。
本发明实施例的方法、 设备、 系统, 首先通过所述环回保护路径发送第一 业务数据流, 然后业务数据流节点中止向所述环回保护路径发送所述第一业务 数据流后续的第二业务数据流, 并緩存该第二业务数据流, 当所述第一业务数 据流再次完全通过所述业务数据流节点时, 将所述緩存的第二业务数据流从所 述环回保护路径切换到源路由保护路径, 从而解决分组传送网网中应用环回方 式和源路由方式的联合保护方案时产生的失序问题, 更好地完善分组传送网系 统的保护机制, 提高系统对故障的防御能力, 需要说明的是, 上述业务流的源 节点、 业务流的目的节点均为具有业务数据流发送功能的业务数据流节点, 其 他具有本发明描述功能的节点也在本发明保护范围之内。 流程, 是可以通过程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中 , 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Radom Access Memory, RAM )等。
以上所述是本发明的具体实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种分组传送网的保护方法, 所述方法为所述分组传送网共享保护环上 承载的业务数据流建立保护路径, 所述业务数据流至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括环回保护路径和源路由保护路径, 其特征 在于, 所述方法包括:
将所述第一业务数据流通过所述环回保护路径进行发送;
业务数据流节点中止向所述环回保护路径发送所述第一业务数据流后续的 第二业务数据流, 并缓存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务数据流节点, 将所述緩存的第 二业务数据流从所述环回保护路径切换到所述源路由保护路径。
2、 如权利要求 1所述的分组传送网的保护方法, 其特征在于, 所述第一业 务数据流通过所述环回保护路径进行发送之后还包括:
在所述第一业务数据流后追加标识,
所述第一业务数据流再次完全通过所述业务数据流节点具体为:
所述业务数据流节点接收到所述标识。
3、 如权利要求 2所述的分组传送网的保护方法, 其特征在于, 所述方法还 包括:
所述业务数据流节点接收到用于指示对所述业务数据流进行保护的保护请 求消息,
所述业务数据流节点中止向所述环回保护路径发送后续的第二业务数据流 具体为:
所述业务数据流节点根据所述保护请求消息, 中止向所述环回保护路径发 送所述第二业务数据流。
4、 一种分组传送网的保护方法, 所述方法为所述分组传送网共享保护环上 承载的业务数据流建立保护路径, 所述业务数据流至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括环回保护路径和源路由保护路径, 其特征 在于, 所述方法包括:
业务流源节点通过所述环回保护路径发送第一业务数据流;
所述业务流源节点中止向所述环回保护路径发送所述第一业务数据流后续 的第二业务数据流, 并缓存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务流源节点, 将所述緩存的第二 业务数据流从所述环回保护路径切换到所述源路由保护路径;
所述第一业务数据流首次完全通过业务流目的节点, 中止向所述环回保护 路径发送所述第二业务数据流, 并緩存所述第二业务数据流;
所述第一业务数据流再次完全通过所述业务流目的节点, 将所述緩存的第 二业务数据流从所述环回保护路径切换到所述源路由保护路径。
5、 如权利要求 4所述的分组传送网的保护方法, 其特征在于, 所述业务流 源节点通过所述环回保护路径发送第一业务数据流之后还包括:
所述业务流源节点在所述第一业务数据流后追加标识,
所述第一业务数据流再次完全通过所述业务流源节点具体为:
所述业务流源节点接收到所述标识,
所述第一业务数据流首次完全通过业务流目的节点具体为:
所述业务流目的节点首次接收到所述标识,
所述第一业务数据流再次完全通过所述业务流目的节点为:
所述业务流目的节点再次接收到所述标识。
6、 如权利要求 5所述的分组传送网的保护方法, 其特征在于, 所述方法还 包括:
所述业务流源节点接收到用于指示对所述业务数据流进行保护的保护请求 消息,
所述业务流源节点中止向所述环回保护路径发送所述第一业务数据流后续 的第二业务数据流具体为:
所述业务流源节点根据所述保护请求消息, 中止向所述环回保护路径发送
Ί、 一种分组传送网节点设备, 所述分组传送网节点设备位于所述分组传送 网共享保护环上, 所述共享保护环上有承载业务数据流的保护路径, 所述业务 数据流至少包括第一业务数据流、 第二业务数据流, 所述保护路径包括环回保 护路径和源路由保护路径, 其特征在于, 包括:
中止单元, 向所述环回保护路径发送第一业务数据流后, 中止向所述环回 保护路径发送所述第一业务数据流后续的第二业务数据流;
緩存单元, 緩存所述第二业务数据流;
检测单元, 检测所述业务数据流是否完全通过所述节点;
检测处理单元, 当所述检测单元检测到所述第一业务数据流再次完全通过 所述节点时, 将所述緩存的第二业务数据流从所述环回保护路径切换到所述源 路由保护路径。
8、 如权利要求 7所述的分组传送网节点设备, 其特征在于, 所述检测单元 包括:
标识追加单元, 在所述业务数据流后追加标识;
判断单元, 判断是否接收到所述标识, 若是, 则确定所述业务数据流完全 通过所述节点。
9、 如权利要求 8所述的分组传送网节点设备, 其特征在于, 所述分组传送 网节点设备还包括:
接收单元, 接收到用于指示对所述业务数据流进行保护的保护请求消息后, 触发所述中止单元中止通过所述环回保护路径发送所述第二业务数据流。
10、 如权利要求 7至 9中任一项所述的分组传送网节点设备, 其特征在于, 所述分组传送网节点设备为业务流源节点设备或业务流目的节点设备。
11、 一种分组传送网系统, 所述系统中应用了分组传送网共享保护环, 所 述共享保护环上有承载业务数据流的保护路径, 所述业务数据流至少包括第一 业务数据流、 第二业务数据流, 所述保护路径包括环回保护路径和源路由保护 路径, 所述系统包括所述共享保护环上的业务流源节点设备、 业务流目的节点 设备, 其特征在于,
所述业务流源节点设备用于向所述环回保护路径发送第一业务数据流后, 中止向所述环回保护路径发送所述第一业务数据流后续的第二业务数据流, 并 緩存所述第二业务数据流; 当所述第一业务数据流再次完全通过所述业务数据 流节点, 将所述緩存的第二业务数据流从所述环回保护路径切换到所述源路由 保护路径;
所述业务流目的节点设备用于检测所述业务数据流是否完全通过所述业务 流目的节点; 当所述第二检测单元检测到所述第一业务数据流首次完全通过所 述业务流目的节点时, 中止向所述环回保护路径发送所述第二业务流数据, 并 緩存所述第二业务流数据; 当所述第二检测单元检测到所述第一业务数据流再 次完全通过所述业务流目的节点时, 将所述緩存的第二业务数据流从所述环回 保护路径切换到所述源路由保护路径。
12、 如权利要求 11所述的分组传输网系统, 其特征在于, 所述业务流源节 点设备包括:
第一中止单元, 在向所述环回保护路径发送第一业务数据流后, 中止向所 述环回保护路径发送所述第一业务数据流后续的第二业务数据流;
第一緩存单元, 緩存所述第二业务数据流;
第一检测单元, 检测所述业务数据流是否完全通过所述业务流源节点; 第一检测处理单元, 当所述第一检测单元检测到所述第一业务数据流再次 完全通过所述业务流源节点时, 将所述緩存的第二业务数据流从所述环回保护 路径切换到所述源路由保护路径,
所述业务流目的节点设备包括:
第二检测单元, 检测所述业务数据流是否完全通过所述业务流目的节点; 第二中止单元, 当所述第二检测单元检测到所述第一业务数据流首次完全 通过所述业务流目的节点时, 中止向所述环回保护路径发送所述第二业务流数 据;
第二緩存单元, 緩存所述第二业务流数据;
第二检测处理单元, 当所述第二检测单元检测到所述第一业务数据流再次 完全通过所述业务流目的节点时, 将所述緩存的第二业务数据流从所述环回保 护路径切换到所述源路由保护路径。
13、 如权利要求 12所述的分组传送网系统, 其特征在于, 所述第一检测单 元包括:
标识追加单元, 在所述第一业务数据流后追加标识;
判断单元, 判断是否接收到所述标识, 若是, 则确定所述第一业务数据流 完全通过所述业务流源节点,
则所述第二检测单元用于判断是否接收到所述标识, 若是, 则确定所述第 一业务数据流完全通过所述业务流目的节点。
14、 如权利要求 13所述的分组传送网系统, 其特征在于, 所述业务流源节 点设备还包括:
接收单元, 接收到用于指示对所述业务数据流进行保护的保护请求消息后, 触发所述中止单元中止通过所述环回保护路径发送所述第二业务数据流。
PCT/CN2008/073800 2007-12-29 2008-12-27 Dispositif, système et procédé de protection dans un réseau de transmission par paquets WO2009089752A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08870940A EP2224644B1 (en) 2007-12-29 2008-12-27 A protection method, system and device in the packet transport network
AT08870940T ATE534217T1 (de) 2007-12-29 2008-12-27 Schutzverfahren, -system und -vorrichtung in einem paketübertragungsnetzwerk
ES08870940T ES2375326T3 (es) 2007-12-29 2008-12-27 Método, sistema y dispositivo de protección en una red de transporte de paquetes.
DK08870940.7T DK2224644T3 (da) 2007-12-29 2008-12-27 Beskyttelsesfremgangsmåde, -system og -anordning i et pakketransportnet
US12/826,298 US8565071B2 (en) 2007-12-29 2010-06-29 Protection method, system, and device in packet transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100330444A CN101471849B (zh) 2007-12-29 2007-12-29 一种分组传送网的保护方法
CN200710033044.4 2007-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/826,298 Continuation US8565071B2 (en) 2007-12-29 2010-06-29 Protection method, system, and device in packet transport network

Publications (1)

Publication Number Publication Date
WO2009089752A1 true WO2009089752A1 (fr) 2009-07-23

Family

ID=40828986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073800 WO2009089752A1 (fr) 2007-12-29 2008-12-27 Dispositif, système et procédé de protection dans un réseau de transmission par paquets

Country Status (7)

Country Link
US (1) US8565071B2 (zh)
EP (1) EP2224644B1 (zh)
CN (1) CN101471849B (zh)
AT (1) ATE534217T1 (zh)
DK (1) DK2224644T3 (zh)
ES (1) ES2375326T3 (zh)
WO (1) WO2009089752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006218A (zh) * 2009-09-03 2011-04-06 中兴通讯股份有限公司 隧道保护方法及装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471849B (zh) 2007-12-29 2011-04-06 华为技术有限公司 一种分组传送网的保护方法
CN102142976B (zh) * 2010-02-01 2015-04-01 中兴通讯股份有限公司 一种网状网保护域的共享保护方法及系统
CN102006214A (zh) * 2010-07-19 2011-04-06 南京邮电大学 一种基于路径绑定的mpls-tp的抄近保护方法
US8615006B2 (en) * 2011-04-28 2013-12-24 Fujitsu Limited Systems and methods for reconfiguration of a circuit switched ring to a packet switched ring
CN102291310B (zh) * 2011-08-24 2017-04-26 中兴通讯股份有限公司 一种提高t‑mpls链路环网保护切换性能的方法及装置
CN103036756B (zh) * 2011-10-08 2017-12-26 湖南磐云数据有限公司 一种基于共享通道的混合环网保护方法及系统
CN102387070B (zh) * 2011-10-11 2014-05-21 浙江大学 T-mpls共享保护环故障恢复前的数据保护方法
CN103179013B (zh) * 2011-12-21 2019-03-12 中兴通讯股份有限公司 一种环网保护的实现方法及系统
JP5803696B2 (ja) * 2012-01-25 2015-11-04 富士通株式会社 ネットワークシステム,オフロード装置及びオフロード装置の利用者識別情報取得方法
WO2013131554A1 (en) * 2012-03-05 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) The handling of data transfers in a network with a ring topology
CN102946330B (zh) * 2012-09-29 2017-03-15 华为技术有限公司 网络丢包测量方法、装置和系统
CN103812772B (zh) * 2012-11-13 2017-10-27 新华三技术有限公司 用于实现mpls te快速重路由的方法和装置
US9444675B2 (en) * 2013-06-07 2016-09-13 Cisco Technology, Inc. Determining the operations performed along a service path/service chain
KR102088298B1 (ko) * 2013-07-11 2020-03-12 한국전자통신연구원 패킷 전달 시스템에서의 보호 절체 방법 및 장치
CN103490998B (zh) * 2013-09-09 2017-09-05 新华三技术有限公司 保护隧道建立方法及装置,流量切换方法及装置
CN105227479B (zh) * 2014-06-03 2018-10-09 新华三技术有限公司 快速重路由处理方法及装置
CN105471599B (zh) * 2014-08-15 2020-08-11 中兴通讯股份有限公司 一种保护倒换方法及网络设备
US9819573B2 (en) 2014-09-11 2017-11-14 Microsoft Technology Licensing, Llc Method for scalable computer network partitioning
US9544225B2 (en) 2014-09-16 2017-01-10 Microsoft Technology Licensing, Llc Method for end point identification in computer networks
CN105141493B (zh) * 2015-07-27 2019-04-12 浙江宇视科技有限公司 环网故障时的业务帧处理方法及系统
JP6601232B2 (ja) * 2016-01-21 2019-11-06 富士通株式会社 分析方法、分析装置、及び分析プログラム
CN107342809B (zh) * 2016-05-03 2020-11-06 中国移动通信集团四川有限公司 一种业务性能监测与故障定位方法及装置
CN107666437A (zh) * 2016-07-27 2018-02-06 中兴通讯股份有限公司 一种静态隧道恢复方法、装置及网络节点
CN107026691B (zh) * 2017-04-14 2020-02-11 云南电网有限责任公司电力科学研究院 一种自动隔离配电光纤环网故障的方法及系统
CN109728874B (zh) * 2017-10-31 2021-08-31 华为技术有限公司 一种比特块处理方法及节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138788A (zh) * 1994-12-15 1996-12-25 Abb专利有限公司 高可靠和一致的报文传输方法
US20050207337A1 (en) * 2004-03-22 2005-09-22 Masaya Oda Method and apparatus for setting up backup path
CN1992652A (zh) * 2005-12-29 2007-07-04 华为技术有限公司 无连接报文交换网络中报文乱序及重复的检测方法
CN101309230A (zh) * 2008-06-27 2008-11-19 迈普(四川)通信技术有限公司 多协议标签交换网络传输路径切换报文秩序控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1573985A1 (en) 2002-12-12 2005-09-14 Koninklijke Philips Electronics N.V. A system and method using a circular buffer for detecting packet loss in streaming applications
JP2006510010A (ja) * 2002-12-12 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 等色関数を概算する変換機構
CN1264317C (zh) * 2003-12-09 2006-07-12 上海交通大学 弹性分组环网的多环互连传输方法
WO2005109013A2 (en) 2004-05-06 2005-11-17 Alcatel Optical Networks Israel Ltd. Efficient protection mechanisms in a ring topology network utilizing label switching protocols
WO2006030435A2 (en) 2004-09-16 2006-03-23 Alcatel Optical Networks Israel Ltd. Efficient protection mechanisms for protecting multicast traffic in a ring topology network utilizing label switching protocols
CN100334857C (zh) * 2004-09-27 2007-08-29 华为技术有限公司 一种环网及其业务实现方法
CN100389577C (zh) * 2005-05-30 2008-05-21 华为技术有限公司 在弹性分组环上实现广播或组播的方法及装置
CN101471849B (zh) 2007-12-29 2011-04-06 华为技术有限公司 一种分组传送网的保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138788A (zh) * 1994-12-15 1996-12-25 Abb专利有限公司 高可靠和一致的报文传输方法
US20050207337A1 (en) * 2004-03-22 2005-09-22 Masaya Oda Method and apparatus for setting up backup path
CN1992652A (zh) * 2005-12-29 2007-07-04 华为技术有限公司 无连接报文交换网络中报文乱序及重复的检测方法
CN101309230A (zh) * 2008-06-27 2008-11-19 迈普(四川)通信技术有限公司 多协议标签交换网络传输路径切换报文秩序控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU S. ET AL.: "Study on message drop and disorder in MPLS fault restoration", COMPUTER ENGINEERING AND DESIGN, vol. 28, no. 1, 28 January 2007 (2007-01-28), pages 87 - 89,99 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006218A (zh) * 2009-09-03 2011-04-06 中兴通讯股份有限公司 隧道保护方法及装置
CN102006218B (zh) * 2009-09-03 2014-07-16 中兴通讯股份有限公司 隧道保护方法及装置

Also Published As

Publication number Publication date
CN101471849A (zh) 2009-07-01
CN101471849B (zh) 2011-04-06
US20100278040A1 (en) 2010-11-04
EP2224644A4 (en) 2010-12-15
US8565071B2 (en) 2013-10-22
EP2224644A1 (en) 2010-09-01
ATE534217T1 (de) 2011-12-15
DK2224644T3 (da) 2012-02-06
ES2375326T3 (es) 2012-02-28
EP2224644B1 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2009089752A1 (fr) Dispositif, système et procédé de protection dans un réseau de transmission par paquets
JP4899959B2 (ja) Vpn装置
JP5484590B2 (ja) 擬似ワイヤに基づいてサービストラヒックを処理するための方法、デバイスおよびシステム
JP3762749B2 (ja) リストレーション・プロテクション方法及び装置
US8144601B2 (en) Fault detection method, communication system and label switching router
ES2363410T3 (es) Método, dispositivo y sistema para la conmutación de tráfico en ingeniería de tráfico de conmutación multiprotocolo por etiqueta.
EP2624590B1 (en) Method, apparatus and system for interconnected ring protection
JP4167072B2 (ja) リング・トポロジーに対する選択的保護
US8902729B2 (en) Method for fast-re-routing (FRR) in communication networks
KR101750844B1 (ko) 링형 네트워크 보호에 있어서 레이블을 자동적으로 분배하는 방법 및 시스템
US20100189115A1 (en) Edge node redundant system in label switching network
US8611211B2 (en) Fast reroute protection of logical paths in communication networks
WO2010124557A1 (zh) 环网保护方法、网络节点及环网络
WO2006079292A1 (fr) Procede pour la creation d'un trajet pour l'etiquette retour dans un systeme de commutation d'etiquettes multiprotocole
JP4297636B2 (ja) 伝送システム
CA2762924A1 (en) Method, apparatus and system for two-node cluster hot backup
JP4948320B2 (ja) マルチリングrprノード装置
JP2016171403A (ja) 伝送装置及び伝送方法
KR100369936B1 (ko) Mpls망에서의 대역폭 공유에 의한 효율적인 경로 복구방법
WO2005119980A1 (en) Method and apparatus for routing traffic through a communications network
WO2010012212A1 (zh) 保护隧道带宽的方法和装置
WO2011050665A1 (zh) 一种实现端口快速重路由的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008870940

Country of ref document: EP