WO2009088269A2 - The control system of hybrid driving - Google Patents

The control system of hybrid driving Download PDF

Info

Publication number
WO2009088269A2
WO2009088269A2 PCT/KR2009/000156 KR2009000156W WO2009088269A2 WO 2009088269 A2 WO2009088269 A2 WO 2009088269A2 KR 2009000156 W KR2009000156 W KR 2009000156W WO 2009088269 A2 WO2009088269 A2 WO 2009088269A2
Authority
WO
WIPO (PCT)
Prior art keywords
driving
vehicle
control
signal
input
Prior art date
Application number
PCT/KR2009/000156
Other languages
French (fr)
Korean (ko)
Other versions
WO2009088269A3 (en
Inventor
Jae Park Kim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority claimed from KR1020090002159A external-priority patent/KR20090077727A/en
Publication of WO2009088269A2 publication Critical patent/WO2009088269A2/en
Publication of WO2009088269A3 publication Critical patent/WO2009088269A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a hybrid driving control system that achieves high fuel efficiency. More particularly, the present invention relates to a hybrid driving control system that allows a driver to analyze a driver's desired driving speed and road conditions when driving a road, thereby implementing driving according to road conditions. will be.
  • the conventional driving control apparatus implements macroscopic control using an engine load map
  • the driving guidance apparatus also provides a display apparatus and a driving method using the engine load map macroscopically.
  • control device and the driving guidance device have difficulty in obtaining optimal driving results due to a lack of driver understanding and instantaneous loss in moving the engine efficiency map.
  • the present invention has been made to improve the above-mentioned problems, and provides a hybrid driving control system that enables the driver to implement the optimum driving according to the road conditions by analyzing the driving speed and road conditions desired by the driver when driving on the road.
  • the purpose is.
  • the present invention devised to achieve the above object is as follows.
  • Hybrid driving control system of the present invention is an input device for inputting the control variable according to the driving of the vehicle and the driving environment of the vehicle, an output device for outputting the transmission control signal, fuel injection control signal, acceleration control signal for controlling the vehicle;
  • a main control unit for calculating an instantaneous fuel loss amount of the vehicle according to the control variable and the driving environment input from the input device, and outputting a control signal to the output device according to the instantaneous fuel loss amount and the response characteristics of the vehicle; It is characterized by.
  • the input device may include a road environment input unit for inputting congestion and a section average speed of the driving road of the vehicle, a driving information input unit for inputting position information and speed of the vehicle, a sensor unit for inputting a distance between vehicles, and geographic information of the driving road;
  • a key input unit configured to store and input the altitude and position of the driving road, and to switch the driving state to the normal driving state, the slow driving state, the slow acceleration state, and the acceleration driving state; It characterized in that it comprises a Leap control DB for storing the engine speed for each of the use period divided by the number and a control variable input unit for inputting a control variable by the driver's operation when the vehicle is running.
  • the control variable may include a clutch signal, a brake signal, a speed signal, a fuel injection signal, an acceleration signal, and an oxygen sensor signal.
  • the input device may further include an emergency driving control release unit that mechanically bypasses the input of the engine side of the vehicle to the output.
  • the main control unit controls the load variation and the speed change according to the road environment input unit according to the congestion degree of the driving road and the average daily speed, and the main control unit increases and decreases the speed of the vehicle according to the inter-vehicle distance input from the sensor unit.
  • the main control unit applies a Steady Control method when the instantaneous fuel loss amount of the vehicle is less than a reference value, and applies a Leap Control method when improving the response characteristic of the vehicle, and switching the driving state from the key input unit.
  • a command is input and the speed response in the constant speed driving state is later than the reference value
  • the change in the throttle opening of the throttle valve is moved from the current position to the target position using the Leap control D / B by applying the Leap Control method. It is done.
  • the Leap control D / B decomposes the throttle development range of the throttle valve by a predetermined number, and decomposes the engine speed by a predetermined RPM unit so that the in-cylinder mixer filling efficiency cycles when the throttle opening degree is changed from the current position to the target position. It is characterized in that it is built by measuring the characteristic to follow the normal flow in units.
  • the target position of the throttle opening of the throttle valve is data at a point in time at which the air flow in a steady flow state matches at the same throttle opening, and is updated according to an oxygen sensor signal of the control variable.
  • the safety device for bypassing the intrinsic control signal of the vehicle according to the signal input from the input device is divided into a normal operation signal and a normal off signal of the brake abnormality of the brake And a software bypass function and a mechanical hardware bypass to bypass the acceleration signal input from the input device to the output device, in particular to apply the software bypass when the brake is operated. Bypass the mechanical hardware bypass operation time by a predetermined time difference.
  • the apparatus may further include a driver recognition device configured to display a load amount and a fuel loss amount of the vehicle in response to a control signal input from the main controller, wherein the driving recognition device may include a fuel consumption display unit displaying the fuel consumption amount of the vehicle and the vehicle;
  • a load display unit displaying a load amount of the vehicle, an overload display unit displaying an overload of the vehicle, an instantaneous fuel loss display unit displaying an instantaneous fuel loss amount of the vehicle, a driving state display unit displaying a driving state of the vehicle, and displaying a speed of the vehicle It characterized in that it comprises a speed display unit and a distance display unit for displaying the traveling distance of the vehicle.
  • Such a driver recognition device is installed on a vehicle dashboard or a glass window.
  • 1 is a graph showing a hybrid driving pattern according to an embodiment of the present invention.
  • Figure 2 is a block diagram of a controller portion of a hybrid running control system according to an embodiment of the present invention.
  • FIG. 3 is an operation flowchart of a hybrid running control system according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view of a driver recognition apparatus of a hybrid driving control system according to an embodiment of the present invention.
  • control variable input unit 300 road environment input unit
  • driving information input unit 302 sensor unit
  • safety device 350 output device
  • 360 communication module 500: driver recognition control unit
  • Hybrid driving control system includes a main control device and a driver recognition device.
  • the main control unit first receives the congestion degree, section average speed, etc. of the current driving road from a traffic information management center (not shown), and then provides location information, speed, distance between lanes, lane intervals, road altitude (uphill) and road rotation. Enter a gradient, etc.
  • the driving behaviors are classified into smooth driving, general driving and impatient driving by analyzing driver driving behaviors such as the number of stops, acceleration / deceleration frequency based on acceleration, frequency of use of accelerator pedal, average speed and brake frequency from previous driving record. .
  • the high efficiency driving pattern generation unit the above information is collectively generated to generate a hybrid driving pattern.
  • the accelerator pedal is controlled to use less fuel by using a basic ECU control device mounted on the vehicle.
  • the driver controls the fuel injection amount within the range that satisfies the driving stability, quiet driving, and driving response characteristics by using the throttle opening and the shift gear adjustment compared to the normal accelerator pedal input when the accelerator pedal is used.
  • the engine controller cannot properly manage the load when the driver changes the pedal opening by operating the accelerator pedal. Therefore, the display device suggests a high-efficiency operation method and confirms it so that the driver can perform high-efficiency operation. To help.
  • the hybrid driving pattern includes a Steady Control method and a Leap Control method.
  • the Steady Control method operates when the instantaneous fuel loss is below the reference value, for example, in a region where the instantaneous fuel loss is rarely generated, and the Leap Control method is used to improve the response characteristics of the vehicle.
  • Steady Control method uses general PID Control method, and Leap Control method dramatically increases control output value by utilizing pre-built Leap Control D / B.
  • the reason for using the Leap Control D / B is that it is impossible to analyze the flow at the moment when the accelerator pedal is operated. Accordingly, the current position (A) is selected in the Leap Control D / B by the engine speed and the load area. )-Accurately measure and store the finite number of moving sections of the target position (B) for control.
  • Increasing the control output value by using the Leap Control D / B may impair driving stability and quietness.
  • the driver's accelerator pedal can be divided into a predetermined number, for example, about 20 to 30 engines, Disassembling to a predetermined number of revolutions in the region, for example, about 100 RPM can increase the response characteristics without damaging the running stability and quietness of the vehicle.
  • the driver recognition device displays fuel consumption, load, speed, distance, instantaneous fuel loss, overload, and driving state by using various methods such as 4-digit indicator or bar shape, number, and color.
  • FIG. 1 is a graph showing a hybrid driving pattern according to an embodiment of the present invention
  • Figure 2 is a block diagram of a controller portion of a hybrid driving control system according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention
  • FIG. 4 is a flowchart illustrating an operation of a hybrid driving control system according to an embodiment of the present invention.
  • the hybrid travel control system includes a main controller and a driver recognition device.
  • the main controller includes an input device, an output device, and a communication module.
  • the input device includes a road environment input unit 300, a driving information input unit 301 such as GPS, a sensor unit 302 such as an infrared sensor, geographic information D / B 303, a driver command input 310, an emergency driving control release.
  • the control variable input unit 330 for inputting control variables such as the unit 320 and the brake signal BREAK, the clutch signal CLUTCH, the speed signal SPEED, the fuel injection signal INJECTION, the acceleration signal ACCELERATION IN, and the like. ).
  • the output device outputs a control signal, a transmission control signal, a fuel injection signal, and an acceleration control output.
  • the communication module 360 is responsible for communication between the main controller 390 and the driver recognition apparatus.
  • the main control unit 390 outputs the control signal, the transmission control signal, the fuel injection signal, and the acceleration signal output control signal to the output device in response to the signal input from the input device.
  • the controller outputs various control signals to the driver recognition controller 500 through the communication module 360 in response to a signal input from the input device.
  • the driver recognition apparatus includes a driver recognition controller 500, a driver recognition module 520, a key input unit 510, and a remote controller 511.
  • the driver recognition module 520 may include a fuel consumption display unit 521, a load display unit 522, an overload display unit 523, an instantaneous fuel loss display unit 524, a driving state display unit 525, a speed display unit 526, and a distance display unit ( 527).
  • the main controller is disposed under the internal instrument panel of the vehicle, the driver recognition device is attached to the vehicle dashboard or the glass window so that the driver can easily recognize a variety of information displayed through the driver recognition module 520. .
  • the road environment input unit 300 receives road environment information such as congestion degree and section average speed of the current driving road from the traffic information management center.
  • road environment information such as congestion degree and section average speed of the current driving road from the traffic information management center.
  • the driving information input unit 301 receives the speed and the position information of the vehicle and inputs it into the main control unit 390.
  • the sensor unit 302 measures the inter-vehicle distance while driving on the road and inputs it to the main controller 390, and the main controller 390 reduces the speed of the vehicle according to a signal input from the sensor unit 302.
  • the geographic information D / B 303 extracts the altitude (uphill and downhill) and the position of the road and inputs it to the main control unit 390 to recognize the road rotation gradient.
  • the emergency driving control release unit 320 operates when the main controller 390 breaks down or malfunctions.
  • the emergency driving control release unit 320 is configured to mechanically bypass the input of the engine to the output.
  • the control variable input unit 330 inputs a brake signal BREAK, a clutch signal CLUTCH, a speed signal SPEED, a fuel injection signal INJECTION, and an acceleration signal ACCELERATION IN.
  • the brake signal of the control variable input unit 330 is divided into two types of normal on (Normal_On) and normal off (Normal_Off), and the safety device 340 is a malfunction of the brake operation and an input signal malfunction.
  • a bypass function by recognition of the main controller 390 is performed to enhance safety.
  • a predetermined time difference for example, 300mSec to put the input and output (By-Pass) mechanically. That is, the mechanical hardware bypass operation timing is bypassed with a predetermined time difference compared to applying the software bypass during brake operation.
  • the parallax in the physical function is that the driver constantly uses the brake when driving on the road. At this time, the main controller 390 is stopped with a slight parallax to eliminate the incomplete combustion by implementing the control of fuel supply even when using the brake. Because it puts a role.
  • the clutch signal of the control variable input unit 330 recognizes the clutch operation when the manual transmission is operated, thereby bypassing the driving of the vehicle to an idle state or bypassing the accelerator pedal input as an output when the driver accelerator pedal is operated. Perform a function.
  • the speed signal and the fuel injection signal of the control variable input unit 330 allow to determine the driving state of the vehicle and the fuel consumption amount, speed, and the like.
  • the oxygen sensor signal of the control variable input unit 330 is used as a feedback control variable in the operation according to the Steady Control method and the Leap Control method.
  • the Leap Control method is used for the role of learning and correcting the characteristic change according to the vehicle aging and the surrounding environment when calculating the B (target position) from the Leap Control D / B 304. That is, the target position is updated in accordance with the oxygen sensor signal.
  • the acceleration signal of the control variable input unit 330 allows the driver to determine whether the accelerator pedal is being used. If the valve being used is an electronic throttle (ETS, EPC) valve, the electronic signal is directly input input device. In case of mechanical valve, input sensor is installed.
  • ETS electronic throttle
  • EPC electronic throttle
  • the transmission control signal output and the fuel injection control signal output of the output device 350 are for the manufacturer Pre-Market.
  • the acceleration control signal output of the output device 350 receives the signal generated from the main controller 390 and converts the signal into a signal that can be recognized by the vehicle, and directly in the case of an electronic throttle (ETS, EPC) valve. Outputs the signal and, in the case of a mechanical one, uses a stepping motor to adjust the throttle opening.
  • ETS electronic throttle
  • the acceleration signal of the control variable input unit 330 is bypassed to the acceleration signal output of the output device 350.
  • the accelerator pedal is used to satisfy driving stability and driving response characteristics, only the instantaneous fuel loss reduction filter is passed through the output side to be input from the control variable input unit 330 to perform a unique function of the vehicle. The acceleration signal to be bypassed to the acceleration signal output of the output device 350.
  • the main controller 390 includes a computer CPU, a memory, a storage medium, and the like to perform various controls.
  • the communication module 360 is responsible for sending and receiving signals between the main controller 390 and the driver recognition controller 500.
  • the driver recognition controller 500 of the driver recognition apparatus outputs a signal input from the communication module 360 to the driver recognition module 520.
  • the driver recognition module 520 may display information such as fuel consumption, load, overload, instantaneous fuel loss, driving state, speed, and driving distance according to a signal input from the main controller 390 through the communication module 360. Provided in various forms such as (a), (b), (c), (d), (e) so that the driver can recognize it.
  • the driver recognition controller 500 inputs the signals input from the key input unit 510 and the remote controller 511 to the main control unit 390.
  • the key input unit 510 includes various keys to variously set the input of various variables used in the hybrid driving control system and the expression function of the recognition device.
  • the key input unit 510 and the driver command input unit 310 may be integrated into the remote controller 511 so that the driver may remotely use it conveniently.
  • the driver command input unit 310 and the key input unit 511 input the various commands of the driver to the main control unit 390 and are composed of two kinds of acceleration buttons and deceleration buttons, and set normal driving, slow speed acceleration, and acceleration driving,
  • the control operation stop function and the safety device 340 of the main control unit 390 can be released.
  • the safety device release function be operated only when the keys are operated in a certain order (encryption) at the time of starting the vehicle and in order to prevent a driver's mistake or malfunction of a child.
  • the operation process is released after the safety device 340 (encryption release), and when the acceleration key is input, normal driving, in the normal driving state to the slow driving state, and in the slow driving state, the acceleration driving state. Switch to the order of.
  • the vehicle immediately changes to the normal driving state from the slow acceleration state and the acceleration driving state.
  • the main control unit 390 switches to stop the operation.
  • the key recognition function automatically switches to the next driving state when the pressed state is maintained for 200 to 400 mSec in the one-touch function.
  • the driver recognition module 520 displays information such as fuel consumption display, load display, overload display, instantaneous fuel loss display, driving state display, speed display, and mileage display so as to recognize the driver while driving. Its representation is shown in Figure 4 the embodiment.
  • the road condition is divided into flat road (F1), low incline road (M1, M2), high incline road (H1, H2, H3), and flat road (F1), Low Incline road (M1, M2), High Incline road (H1, H2, H3) apply Steady Control method, High Incline road (C0, C1) ) Applies the Leap Control method.
  • the main control unit 390 receives various control variables from the control variable input unit 330 (S10).
  • the main control unit 390 lowers the output proportional value of the acceleration / deceleration output control.
  • the current position is detected from the driving information input unit 301.
  • TASK Interval & Cycle calculation process is to receive the control variable from the control variable input unit 330 a number of times and calculate the average, which is performed until the end of the TASK, which reduces the error of the sensor signal while driving the engine and avoids errors. For sake.
  • step S20 the data input in step S20 is processed to calculate a load required for driving the flat surface of the vehicle from the current speed.
  • the slope of the forward direction at the current position is calculated by using the driving information input unit 301 and the geographic information D / B 303, and the load corresponding to the speed and the tilt of the vehicle is calculated.
  • the GPS 122 and the geographic information D / B 303 functions are not used, the section average load applied to the vehicle is analyzed to calculate the load corresponding thereto.
  • the signals received from the driver command input unit 310 and the remote controller 511 are analyzed to determine whether to drive slowly, accelerate, and accelerate (S60), and based on this, a slow acceleration (S71) and a normal run (S72). And acceleration driving (S73).
  • the main controller is operated, and after that it is determined as a normal driving state. That is, when the driver operates the accelerator pedal, it is bypassed by the safety device 340 and the vehicle is not controlled by the main controller.
  • the load target is directed for a predetermined time in consideration of the ability to perform control of the corresponding output value.
  • speed-oriented Feed Back Control is performed.
  • the speed deviation is calculated based on the speed of the vehicle, and the output value corresponding to the PID Cruise Control System is calculated (S80).
  • the driving speed is controlled by the driving speed for adjusting the distance between the vehicles, and in the state where the driving state command is changed, the feed back control is performed for a predetermined time to increase the load and speed in consideration of the ability to perform control of the corresponding output value. After performing the control, the control returns to the normal driving state (S72).
  • the control when it is determined that the vehicle is accelerated, this means a faster speed increase, and sets the speed increase and the target load value higher in unit time.
  • the control in the state in which the driving state command is changed, the control returns to the normal driving state (S72) after performing Feed Back Control for the load and speed increasing target for a predetermined time in consideration of the ability to perform control of the corresponding output value.
  • the transmission controller and the injection amount controller are controlled according to the control output value transmitted from the above (S90).
  • the speed and load target value is compared with the current speed and load, and if the deviation is small, the operation is controlled by the Steady Control method without control loss (S110), and when the deviation is large, the operation is controlled by the Leap Control method (S120). .
  • the driving state of the vehicle is determined (S160), and when the vehicle is not driven, the vehicle is kept in a slip state to reduce power consumption (S170). If the vehicle is being driven, the control is repeatedly performed ( S180).
  • the driver recognition device displays fuel consumption, load, speed, distance, instantaneous fuel loss, overload, and driving status according to the driver's key operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

This invention relates to a control system of hybrid driving which adapts to the current road conditions by analyzing the road conditions and to the desirable driving speed of a driver. The control system of hybrid driving is characterized by comprising: an input device that inputs the control variables, which depend on the driving of a vehicle, and the driving conditions of the vehicle; an output device that outputs a transmission control signal, a fuel injection control signal and an acceleration control signal which control the vehicle; and a main controller which calculates the instantaneous fuel quantity loss of the vehicle based on the control variables and the driving conditions inputted from the input device, and outputs a control signal to the output device according to the instantaneous fuel quantity loss and the response properties of the vehicle.

Description

[규칙 제26조에 의한 보정 27.04.2009] 하이브리드 주행제어 시스템[Correction 27.04.2009 by Rule 26] 주행 Hybrid Driving Control System
본 발명은 고연비를 달성하는 하이브리드 주행제어 시스템에 관한 것으로, 더욱 상세하게는 운전자가 도로주행 시 운전자의 희망주행속도와 도로 조건을 분석하여 도로 조건에 맞는 주행을 구현하도록 하는 하이브리드 주행제어 시스템에 관한 것이다.The present invention relates to a hybrid driving control system that achieves high fuel efficiency. More particularly, the present invention relates to a hybrid driving control system that allows a driver to analyze a driver's desired driving speed and road conditions when driving a road, thereby implementing driving according to road conditions. will be.
종래의 기술에서는 엔진 효율 맵을 이용하여 고효율 주행을 할 수 있는 하이브리드 주행방법과 이를 구현하는 주행제어장치 및 주행유도장치가 있었다.In the prior art, there was a hybrid driving method capable of driving high efficiency using an engine efficiency map, a driving control device and a driving induction device implementing the same.
종래의 주행제어장치는 엔진 부하맵을 이용하여 거시적 측면의 제어를 구현하였고, 주행유도장치 또한 거시적으로 엔진 부하맵을 이용한 표시장치와 운전방법을 제공하였다.The conventional driving control apparatus implements macroscopic control using an engine load map, and the driving guidance apparatus also provides a display apparatus and a driving method using the engine load map macroscopically.
전술한 기술은 본 발명의 배경기술의 이해를 위해서 기재한 것이며, 본 발명이 속하는 기술분야에서 널리 알려진 종래기술을 의미하는 것은 아니다.The above-described technology is described for understanding the background of the present invention, and does not mean a conventional technology well known in the art.
종래 기술에서 거론한 거시적 모델에 입각한 제어장치 및 주행 유도장치는 운전자 이해력 부족과 엔진 효율맵 이동시 순간 손실이 발생하여 최적의 주행결과를 얻기가 어려웠다.Based on the macroscopic model discussed in the prior art, the control device and the driving guidance device have difficulty in obtaining optimal driving results due to a lack of driver understanding and instantaneous loss in moving the engine efficiency map.
이론적인 하이브리드 주행법이 현실에서는 구현되지 않는 주된 원인은 연료 차단(FUEL CUT)기간 동안 엔진계통의 냉각으로 인해 연료공급시 연소가 불안정하고 흡기관내 연료분사로 인해 흡기관내 연료흡착(WALL FILM)현상이 발생하여 연료공급이 증가되며, 가속시 실린더내 공연비가 희박한 불완전 연소 및 실화가 일어나기 때문이었다. The main reason that the theoretical hybrid driving method is not realized in reality is that combustion is unstable during fuel supply due to cooling of the engine system during the fuel cut period, and WALL FILM phenomenon due to fuel injection in the intake pipe. This occurs because the fuel supply is increased, and incomplete combustion and misfire occur when the air-fuel ratio in the cylinder is scarce during acceleration.
또한, 연료 차단 또는 감속시 초기에는 관내진공도 형성으로 관내흡착연료(WallFilm) 증발로 공연비가 농후하여 불완전 연소가 일어난다. 이러한 현상을 In addition, at the time of fuel cutoff or deceleration, incomplete combustion occurs due to rich air-fuel ratio due to evaporation of WallFilm due to the formation of vacuum in the tube. This phenomenon
연비저하의 또 다른 원인으로는 엔진 회전수 및 쓰로틀개도 대비 실린더 내부로 유입되는 공기유량 계산에 있어서 Numerical solution of Non-Steady Flow계산법인 특성방정식(Equations by the method of characteristics)은 가속페달 작동구간에 있어서는 적용할 수 없어 이때의 공연비 조절은 불가능하게 된다.Another cause of lower fuel efficiency is the Numerical Solution of Non-Steady Flow, which is calculated by the method of characteristics in calculating the amount of air flow into the cylinder relative to engine speed and throttle. In this case, the air-fuel ratio cannot be adjusted at this time.
또한 엔진 제어 특성이 사이클(Cycle) 단위로 되어 있어 현실적으로 가속페달 작동시에는 정확한 유량예측이 불가능한 실정이다. In addition, since the engine control characteristic is in units of cycles, it is impossible to accurately predict the flow rate when the accelerator pedal is operated.
따라서, 운전자는 다양한 도로환경 예를 들어, 차량주행환경, 주행도로의 오르막, 내리막과 같은 지리적 환경, 차간거리 등에 적응하면서 최적의 주행을 하기는 어려운 실정이며, 또한 운전자가 스스로 도로환경을 분석하여 운전하여야 하는 불편함이 있었다.Therefore, it is difficult for a driver to perform optimal driving while adapting to various road environments, for example, a vehicle driving environment, an uphill road, a downhill road, a geographic environment such as a downhill, and the like. There was an inconvenience to drive.
본 발명은 전술한 문제점을 개선하기 위해 창안된 것으로서, 운전자가 도로 주행시 운전자가 희망하는 주행속도와 도로조건을 분석하여 도로 조건에 맞는 최적의 주행을 구현할 수 있도록 한 하이브리드 주행제어 시스템을 제공하는 데 그 목적이 있다.The present invention has been made to improve the above-mentioned problems, and provides a hybrid driving control system that enables the driver to implement the optimum driving according to the road conditions by analyzing the driving speed and road conditions desired by the driver when driving on the road. The purpose is.
전술한 목적을 달성하기 위해 창안된 본 발명의 구성은 다음과 같다. The present invention devised to achieve the above object is as follows.
본 발명의 하이브리드 주행제어 시스템은 차량의 주행에 따른 제어변수와 상기 차량의 주행 환경을 입력하는 입력장치, 상기 차량을 제어하는 트랜스미션 제어신호, 연료 주입 제어신호, 가속 제어 신호를 출력하는 출력 장치 및 상기 입력장치로부터 입력되는 상기 제어변수와 상기 주행 환경에 따라 상기 차량의 순간연료손실량을 계산하고, 상기 순간연료손실량과 상기 차량의 응답 특성에 따라 상기 출력 장치로 제어신호를 출력하는 주제어부를 포함하는 것을 특징으로 한다.Hybrid driving control system of the present invention is an input device for inputting the control variable according to the driving of the vehicle and the driving environment of the vehicle, an output device for outputting the transmission control signal, fuel injection control signal, acceleration control signal for controlling the vehicle; A main control unit for calculating an instantaneous fuel loss amount of the vehicle according to the control variable and the driving environment input from the input device, and outputting a control signal to the output device according to the instantaneous fuel loss amount and the response characteristics of the vehicle; It is characterized by.
상기 입력장치는 상기 차량의 주행 도로의 혼잡도와 구간평균속도를 입력하는 도로환경 입력부, 상기 차량의 위치정보와 속도를 입력하는 주행정보 입력부, 차간거리를 입력하는 센서부, 주행 도로의 지리 정보를 저장하여 상기 주행 도로의 고도와 위치를 입력하는 지리정보 D/B, 정상주행 상태, 서행가속 상태 및 가속주행 상태로 주행 상태가 상호 전환되도록 하는 키입력부, 상기 차량의 가속 페달의 사용 구간을 소정 개수로 구분하여 상기 각 사용 구간에 대한 엔진회전수를 저장하는 Leap control DB 및 상기 차량 주행시 상기 운전자의 조작에 의한 제어변수를 입력하는 제어변수 입력부를 포함하는 것을 특징으로 한다.The input device may include a road environment input unit for inputting congestion and a section average speed of the driving road of the vehicle, a driving information input unit for inputting position information and speed of the vehicle, a sensor unit for inputting a distance between vehicles, and geographic information of the driving road; A key input unit configured to store and input the altitude and position of the driving road, and to switch the driving state to the normal driving state, the slow driving state, the slow acceleration state, and the acceleration driving state; It characterized in that it comprises a Leap control DB for storing the engine speed for each of the use period divided by the number and a control variable input unit for inputting a control variable by the driver's operation when the vehicle is running.
상기 제어변수는 클러치 신호, 브레이크 신호, 속도 신호, 연료 주입 신호, 가속 신호, 산소 센서 신호를 포함하는 것을 특징으로 한다.The control variable may include a clutch signal, a brake signal, a speed signal, a fuel injection signal, an acceleration signal, and an oxygen sensor signal.
상기 입력장치는 기계적으로 상기 차량의 엔진측의 입력을 출력으로 바이패스(By-Pass)시키는 비상 주행제어해제부를 더 포함하는 것을 특징으로 한다.The input device may further include an emergency driving control release unit that mechanically bypasses the input of the engine side of the vehicle to the output.
상기 주제어부는 상기 도로 환경 입력부로부터 주행도로의 혼잡도, 주간 평균속도에 따라 부하 변동 및 속도 변화를 제어하고, 상기 주제어부는 상기 센서부로부터 입력되는 상기 차간거리에 따라 상기 차량의 속도를 증감시키며, 상기 키입력부가 소정시간 지속적으로 입력될 때마다, 정상주행, 서행가속 상태 및 가속주행 상태를 자동으로 전환하는 것을 특징으로 한다.The main control unit controls the load variation and the speed change according to the road environment input unit according to the congestion degree of the driving road and the average daily speed, and the main control unit increases and decreases the speed of the vehicle according to the inter-vehicle distance input from the sensor unit. Each time the key input unit is continuously input for a predetermined time, it is characterized by automatically switching between the normal driving, the slow acceleration state and the acceleration driving state.
상기 주제어부는 상기 차량의 순간연료손실량이 기준치 이하이면 Steady Control 방식을 적용하고, 상기 차량의 응답 특성을 향상시킬 때에는 Leap Control 방식을 적용하는 것을 특징으로 하고, 상기 키입력부로부터 상기 주행 상태를 전환시키는 명령이 입력되고, 상기 정속주행 상태시 속도응답이 기준치 보다 늦으면, 상기 Leap Control 방식을 적용하여 쓰로틀 밸브의 쓰로틀 개도 변화를 상기 Leap control D/B를 이용하여 현재위치에서 목표위치로 이동하는 것을 특징으로 한다.The main control unit applies a Steady Control method when the instantaneous fuel loss amount of the vehicle is less than a reference value, and applies a Leap Control method when improving the response characteristic of the vehicle, and switching the driving state from the key input unit. When a command is input and the speed response in the constant speed driving state is later than the reference value, the change in the throttle opening of the throttle valve is moved from the current position to the target position using the Leap control D / B by applying the Leap Control method. It is done.
상기 Leap control D/B는 상기 쓰로틀 밸브의 쓰로틀 전개 범위를 소정 갯수로 분해하고, 엔진회전수를 소정 RPM 단위로 분해하여 쓰로틀 개도가 현재위치에서 목표위치로 변화시에 실린더내 혼합기 충진효율이 사이클 단위로 정상유동으로 추종하는 특성을 측정하여 구축되는 것을 특징으로 한다.The Leap control D / B decomposes the throttle development range of the throttle valve by a predetermined number, and decomposes the engine speed by a predetermined RPM unit so that the in-cylinder mixer filling efficiency cycles when the throttle opening degree is changed from the current position to the target position. It is characterized in that it is built by measuring the characteristic to follow the normal flow in units.
상기 쓰로들 밸브의 쓰로틀 개도의 목표위치는 동일 쓰로틀 개도에서 정상유동상태의 공기유량이 일치하는 시점의 데이터이고, 상기 제어변수의 산소 센서 신호에 따라 갱신되는 것을 특징으로 한다.The target position of the throttle opening of the throttle valve is data at a point in time at which the air flow in a steady flow state matches at the same throttle opening, and is updated according to an oxygen sensor signal of the control variable.
한편, 상기 입력장치로부터 입력되는 신호에 따라 상기 차량의 고유 제어신호를 바이패스시키는 안전장치를 더 포함하고, 상기 안전장치는 브레이크의 작동 신호를 노멀 온과 노멀 오프 신호로 구분하여 상기 브레이크의 이상여부를 판단하고, 소프트웨어 바이패스 기능과 기계적인 하드웨어 바이패스로 구성되어 상기 입력장치로부터 입력된 가속 신호를 상기 출력장치로 바이패스시키는 데, 특히 상기 브레이크 작동시 상기 소트트웨어 바이패스를 인가하는 것보다 상기 기계적인 하드웨어 바이패스 작동 시기를 소정 시차를 두고 바이패스시키는 것을 특징으로 한다.On the other hand, the safety device for bypassing the intrinsic control signal of the vehicle according to the signal input from the input device, the safety device is divided into a normal operation signal and a normal off signal of the brake abnormality of the brake And a software bypass function and a mechanical hardware bypass to bypass the acceleration signal input from the input device to the output device, in particular to apply the software bypass when the brake is operated. Bypass the mechanical hardware bypass operation time by a predetermined time difference.
또한, 상기 주제어장치로부터 입력되는 제어신호에 응답하여 상기 차량의 부하량 및 연료 손실량을 표시하는 운전자 인식 장치를 더 포함하고, 상기 운전 인식 장치는 상기 차량의 연료소비량을 표시하는 연료소비 표시부, 상기 차량의 부하량을 표시하는 부하 표시부, 상기 차량의 과부하를 표시하는 과부하 표시부, 상기 차량의 순간연료손실량을 표시하는 순간연료손실 표시부, 상기 차량의 주행상태를 표시하는 주행상태 표시부, 상기 차량의 속도를 표시하는 속도 표시부 및 상기 차량의 주행거리를 표시하는 거리 표시부를 포함하는 것을 특징으로 한다.The apparatus may further include a driver recognition device configured to display a load amount and a fuel loss amount of the vehicle in response to a control signal input from the main controller, wherein the driving recognition device may include a fuel consumption display unit displaying the fuel consumption amount of the vehicle and the vehicle; A load display unit displaying a load amount of the vehicle, an overload display unit displaying an overload of the vehicle, an instantaneous fuel loss display unit displaying an instantaneous fuel loss amount of the vehicle, a driving state display unit displaying a driving state of the vehicle, and displaying a speed of the vehicle It characterized in that it comprises a speed display unit and a distance display unit for displaying the traveling distance of the vehicle.
이러한, 상기 운전자 인식장치는 차량 계기판 또는 유리창에 설치되는 것을 특징으로 한다.Such a driver recognition device is installed on a vehicle dashboard or a glass window.
이와 같이 구성되는 본 발명에 따르면, 안정적이고 정숙하며, 편안한 주행운전을 할 수 있고 차량의 연료절약이 획기적으로 개선되어 에너지 절약 및 대기 환경보호에 기여할 수 있다. According to the present invention configured as described above, stable, quiet, comfortable driving operation can be performed and the fuel saving of the vehicle is dramatically improved, which can contribute to energy saving and atmospheric environmental protection.
도 1 은 본 발명의 실시예에 따른 하이브리드 주행패턴을 도시한 그래프. 1 is a graph showing a hybrid driving pattern according to an embodiment of the present invention.
도 2 는 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 제어기 부분의 블록 구성도.Figure 2 is a block diagram of a controller portion of a hybrid running control system according to an embodiment of the present invention.
도 3 은 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 동작 순서도.3 is an operation flowchart of a hybrid running control system according to an embodiment of the present invention.
도 4 는 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 운전자 인식장치의 예시도.4 is an exemplary view of a driver recognition apparatus of a hybrid driving control system according to an embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
330: 제어변수 입력부 300: 도로환경 입력부330: control variable input unit 300: road environment input unit
301: 주행정보 입력부 302: 센서부301: driving information input unit 302: sensor unit
303: 지리정보 D/B 310: 운전자 명령입력기303: Geographic information D / B 310: Driver command input
320: 비상 주행제어 해제부 390: 주제어부320: emergency driving control release unit 390: main control unit
340: 안전장치 350: 출력장치340: safety device 350: output device
360: 통신모듈 500: 운전자 인식 제어부360: communication module 500: driver recognition control unit
520: 운전자 인식 모듈520: driver recognition module
이하에서는 본 발명의 실시예에 따른 하이브리드 주행제어 시스템을 첨부된 도면들을 참조하여 상세하게 설명한다.Hereinafter, a hybrid driving control system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예에 따른 하이브리드 주행제어 시스템은 주제어장치와 운전자 인식 장치를 구비한다.Hybrid driving control system according to an embodiment of the present invention includes a main control device and a driver recognition device.
주제어장치는 우선, 교통정보 관리 센터(미도시) 등으로부터 현재 주행 도로의 혼잡도, 구간평균속도 등을 입력받고, 위치정보와 속도, 차간거리, 차선 간격, 도로의 고도(오르막 내리막)와 도로 회전구배 등을 입력받는다.The main control unit first receives the congestion degree, section average speed, etc. of the current driving road from a traffic information management center (not shown), and then provides location information, speed, distance between lanes, lane intervals, road altitude (uphill) and road rotation. Enter a gradient, etc.
또한, 이전 운전자 주행기록으로부터 운전자 운전행태 즉, 정지 횟수, 속도기준 가감속빈도, 가속페달 사용 빈도, 평균속도, 브레이크 사용빈도 등을 분석하여 부드러운 운전, 일반적인 운전, 성급한 운전으로 운전행태를 분류한다.In addition, the driving behaviors are classified into smooth driving, general driving and impatient driving by analyzing driver driving behaviors such as the number of stops, acceleration / deceleration frequency based on acceleration, frequency of use of accelerator pedal, average speed and brake frequency from previous driving record. .
이 후, 고효율 운전패턴 생성부분으로써, 상기한 정보를 정리하여 하이브리드 주행패턴을 발생시킨다. Thereafter, as the high efficiency driving pattern generation unit, the above information is collectively generated to generate a hybrid driving pattern.
즉, 차량이 After Market 차량인 경우에는 차량에 기 장착된 기본 ECU제어장치를 사용하여 연료소비가 적도록 가속페달을 제어한다. 한편, Pre Market 차량의 경우에는 운전자가 가속페달 사용시 일반적인 가속페달 입력 대비 쓰로틀개도 전개 방식과 변속기어 조절을 주행안정성과 정숙한 주행, 주행 응답특성이 만족하는 범위 내에서 연료 분사량을 제어한다.That is, when the vehicle is an After Market vehicle, the accelerator pedal is controlled to use less fuel by using a basic ECU control device mounted on the vehicle. On the other hand, in the case of the Pre Market vehicle, the driver controls the fuel injection amount within the range that satisfies the driving stability, quiet driving, and driving response characteristics by using the throttle opening and the shift gear adjustment compared to the normal accelerator pedal input when the accelerator pedal is used.
이 경우, 운전자가 가속페달을 조작하여 쓰도틀 개도 변화가 생길 경우에는 엔진제어장치가 적절히 부하관리를 할 수 없으므로, 운전자가 고효율 운전을 할 수 있도록 표시장치에서 고효율 운전방법을 제시하고 이를 확인 할 수 있도록 한다.In this case, the engine controller cannot properly manage the load when the driver changes the pedal opening by operating the accelerator pedal. Therefore, the display device suggests a high-efficiency operation method and confirms it so that the driver can perform high-efficiency operation. To help.
여기서, 하이브리드 주행패턴은 Steady Control 방식과 Leap Control 방식을 포함한다. Steady Control 방식은 순간연료손실이 기준치 이하인 경우, 예를 들어 순간연료손실의 거의 발생되지 않는 영역에서 동작하고, Leap Control 방식은 차량의 응답특성을 올리기 위하여 사용된다.Here, the hybrid driving pattern includes a Steady Control method and a Leap Control method. The Steady Control method operates when the instantaneous fuel loss is below the reference value, for example, in a region where the instantaneous fuel loss is rarely generated, and the Leap Control method is used to improve the response characteristics of the vehicle.
Steady Control 방식은 일반적인 PID Control 방식을 사용하며, Leap Control 방식은 기 구축된 Leap Control D/B를 활용하여 제어 출력값을 비약적으로 증가시킨다.Steady Control method uses general PID Control method, and Leap Control method dramatically increases control output value by utilizing pre-built Leap Control D / B.
여기서, Leap Control D/B를 이용하는 이유는 현재 가속페달이 작동되는 순간의 유동해석이 불가능하기 때문이며, 이에 따라 Leap Control D/B에 엔진 회전수, 부하 영역별로 일정 구간을 선택하여 현재위치(A) - 목표위치(B)의 이동하는 구간별 유한 개수를 정밀 계측하여 저장하여 제어한다.Here, the reason for using the Leap Control D / B is that it is impossible to analyze the flow at the moment when the accelerator pedal is operated. Accordingly, the current position (A) is selected in the Leap Control D / B by the engine speed and the load area. )-Accurately measure and store the finite number of moving sections of the target position (B) for control.
Leap Control D/B를 활용하여 제어 출력값을 증가시키면 주행 안정성과 정숙함이 저해될 우려가 있지만 운전자 가속페달을 사용구간을 소정 개수 예를 들어, 20~30개정도로 구분하고, 엔진회전수 또는 주사용 영역에서 소정 회전수 예를 들어, 100 RPM 정도의 단계로 분해하면 차량의 주행 안정성과 정숙함이 손상입지 않고 오히려 응답 특성을 올릴 수 있다.Increasing the control output value by using the Leap Control D / B may impair driving stability and quietness.However, the driver's accelerator pedal can be divided into a predetermined number, for example, about 20 to 30 engines, Disassembling to a predetermined number of revolutions in the region, for example, about 100 RPM can increase the response characteristics without damaging the running stability and quietness of the vehicle.
한편, 운전자 인식장치는 4-Digit 숫자 표시기나 바 형태, 숫자, 색 등 다양한 방식을 이용하여 연료 소비, 부하, 속도, 거리, 순간연료손실량, 과부하, 주행 상태를 표시한다.On the other hand, the driver recognition device displays fuel consumption, load, speed, distance, instantaneous fuel loss, overload, and driving state by using various methods such as 4-digit indicator or bar shape, number, and color.
이하, 상기한 하이브리드 주행제어 시스템의 구성 및 그 동작 과정을 상세하게 설명한다.Hereinafter, the configuration of the hybrid travel control system and its operation process will be described in detail.
도 1 은 본 발명의 실시예에 따른 하이브리드 주행패턴을 도시한 그래프이고, 도 2 는 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 제어기 부분의 블록 구성도이며, 도 3 은 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 동작 순서도이며, 도 4 는 본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 운전자 인식장치의 예시도이다.1 is a graph showing a hybrid driving pattern according to an embodiment of the present invention, Figure 2 is a block diagram of a controller portion of a hybrid driving control system according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention FIG. 4 is a flowchart illustrating an operation of a hybrid driving control system according to an embodiment of the present invention.
본 발명의 실시예에 따른 하이브리드 주행제어 시스템은 주제어장치와 운전자 인식장치를 구비한다.The hybrid travel control system according to the embodiment of the present invention includes a main controller and a driver recognition device.
주제어장치는 도 2 에 도시된 바와 같이, 입력장치와 출력장치 및 통신모듈을 구비한다. As shown in FIG. 2, the main controller includes an input device, an output device, and a communication module.
입력장치는 도로환경 입력부(300), GPS와 같은 주행정보 입력부(301), 적외선 센서와 같은 센서부(302), 지리정보 D/B(303), 운전자 명령입력기(310), 비상 주행제어 해제부(320) 및 브레이크 신호(BREAK), 클러치 신호(CLUTCH), 속도 신호(SPEED), 연료 주입 신호(INJECTION), 가속 신호(ACCELERATION IN), 기타 등의 제어변수를 입력하는 제어변수 입력부(330)를 구비하고 있다. The input device includes a road environment input unit 300, a driving information input unit 301 such as GPS, a sensor unit 302 such as an infrared sensor, geographic information D / B 303, a driver command input 310, an emergency driving control release. The control variable input unit 330 for inputting control variables such as the unit 320 and the brake signal BREAK, the clutch signal CLUTCH, the speed signal SPEED, the fuel injection signal INJECTION, the acceleration signal ACCELERATION IN, and the like. ).
출력장치는 제어신호(Control), 트랜스미션 제어신호(Transmission Control), 연료주입 신호(Injection Control), 가속신호 출력(Acceleration Control)를 출력한다. The output device outputs a control signal, a transmission control signal, a fuel injection signal, and an acceleration control output.
통신모듈(360)은 주제어부(390)와 운전자 인식장치의 통신을 담당한다. The communication module 360 is responsible for communication between the main controller 390 and the driver recognition apparatus.
주제어부(390)는 입력장치로부터 입력되는 신호에 대응하여 출력장치로 상기한 제어신호(Control), 트랜스미션 제어신호(Transmission Control), 연료주입 신호(Injection Control), 가속신호 출력(Acceleration Control) 신호를 출력하며, 입력장치로부터 입력되는 신호에 대응하여 통신모듈(360)을 통해 운전자 인식 제어부(500)로 각종 제어신호를 출력한다.The main control unit 390 outputs the control signal, the transmission control signal, the fuel injection signal, and the acceleration signal output control signal to the output device in response to the signal input from the input device. The controller outputs various control signals to the driver recognition controller 500 through the communication module 360 in response to a signal input from the input device.
운전자 인식장치는 운전자 인식 제어부(500)와 운전자 인식 모듈(520), 키입력부(510) 및 리모컨(511)을 구비한다. The driver recognition apparatus includes a driver recognition controller 500, a driver recognition module 520, a key input unit 510, and a remote controller 511.
운전자 인식 모듈(520)은 연료소비 표시부(521), 부하 표시부(522), 과부하 표시부(523), 순간연료손실 표시부(524), 주행상태 표시부(525), 속도 표시부(526), 거리 표시부(527)를 구비한다.The driver recognition module 520 may include a fuel consumption display unit 521, a load display unit 522, an overload display unit 523, an instantaneous fuel loss display unit 524, a driving state display unit 525, a speed display unit 526, and a distance display unit ( 527).
여기서, 주제어장치는 차량의 내부 계기판 하단에 배치하며, 운전자 인식장치는 차량계기판 또는 유리창에 부착하여 운전자 인식 모듈(520)을 통해 표시되는 각종 정보를 운전자가 용이하게 인식할 수 있도록 하는 것이 바람직하다.Here, the main controller is disposed under the internal instrument panel of the vehicle, the driver recognition device is attached to the vehicle dashboard or the glass window so that the driver can easily recognize a variety of information displayed through the driver recognition module 520. .
다음은 각 구성요소의 상세 기능을 설명한다.The following describes the detailed functions of each component.
도로환경 입력부(300)는 교통정보 관리 센터로부터 현재 주행 도로의 혼잡도, 구간평균속도 등과 같은 도로환경 정보를 받는 부분으로 도로 환경이 복잡하면 주제어부(390)는 가감속 제어시 과격하게 부하가 변동되지 않도록 한다.The road environment input unit 300 receives road environment information such as congestion degree and section average speed of the current driving road from the traffic information management center. When the road environment is complicated, the main control unit 390 radically changes the load during acceleration / deceleration control. Do not
주행정보 입력부(301)는 차량의 속도와 위치정보를 받아 주제어부(390)로 입력한다. The driving information input unit 301 receives the speed and the position information of the vehicle and inputs it into the main control unit 390.
센서부(302)는 도로 주행시 차량간 차간거리를 측정하여 주제어부(390)로 입력하며, 주제어부(390)는 센서부(302)로부터 입력되는 신호에 따라 차량의 속도를 감속시킨다.The sensor unit 302 measures the inter-vehicle distance while driving on the road and inputs it to the main controller 390, and the main controller 390 reduces the speed of the vehicle according to a signal input from the sensor unit 302.
지리정보 D/B(303)는 도로의 고도(오르막 내리막)와 위치를 추출하여 주제어부(390)로 입력함으로써, 도로 회전구배를 인식할 수 있도록 한다.The geographic information D / B 303 extracts the altitude (uphill and downhill) and the position of the road and inputs it to the main control unit 390 to recognize the road rotation gradient.
비상 주행제어 해제부(320)는 주제어부(390)의 고장 및 오작동시에 동작하는 것으로서, 기계적으로 엔진측의 입력이 출력으로 바이패스(By-Pass)되도록 구성된다. The emergency driving control release unit 320 operates when the main controller 390 breaks down or malfunctions. The emergency driving control release unit 320 is configured to mechanically bypass the input of the engine to the output.
제어변수 입력부(330)는 브레이크 신호(BREAK), 클러치 신호(CLUTCH), 속도 신호(SPEED), 연료 주입 신호(INJECTION), 가속 신호(ACCELERATION IN)를 입력한다.The control variable input unit 330 inputs a brake signal BREAK, a clutch signal CLUTCH, a speed signal SPEED, a fuel injection signal INJECTION, and an acceleration signal ACCELERATION IN.
제어변수 입력부(330)의 브레이크 신호를 키온시 노멀 온(Normal_On)과 노멀 오프(Normal_Off)의 2가지로 구분하는 데, 안전장치(340)는 브레이크 작동의 오동작 및 입력신호의 오동작 예를 들어, 브레이크 불량, 브레이크 전원 이상 등을 노멀 온과 노멀 오프의 2가지 신호의 논리 전개로 방지하고, 안전을 강화하기 위하여 주제어부(390)의 인식에 의한 바이패스 기능을 수행한다. The brake signal of the control variable input unit 330 is divided into two types of normal on (Normal_On) and normal off (Normal_Off), and the safety device 340 is a malfunction of the brake operation and an input signal malfunction. In order to prevent brake failure, brake power failure, etc. by logical development of two signals, normal on and normal off, a bypass function by recognition of the main controller 390 is performed to enhance safety.
또한, 안전장치(340) 자체의 하드웨어적 기능으로 소정의 시차 예를 들어, 300mSec를 두어 기계적으로 입출력을 바이패스(By-Pass)시킨다. 즉, 브레이크 작동시 소프트웨어 바이패스를 인가하는 것에 비해 기계적인 하드웨어 바이패스 작동 시기를 소정 시차를 두고 바이패스시킨다. 여기서, 물리적인 기능에 시차를 두는 것은 운전자가 도로 주행시 브레이크 사용은 상시 있는 일로써 이때 약간의 시차를 두고 주제어부(390)를 정지시키는 것은 브레이크 사용시에도 연료공급의 제어를 구현하여 불완전 연소를 없애는 역할을 두기 때문이다.In addition, by a hardware function of the safety device 340 itself, a predetermined time difference, for example, 300mSec to put the input and output (By-Pass) mechanically. That is, the mechanical hardware bypass operation timing is bypassed with a predetermined time difference compared to applying the software bypass during brake operation. Here, the parallax in the physical function is that the driver constantly uses the brake when driving on the road. At this time, the main controller 390 is stopped with a slight parallax to eliminate the incomplete combustion by implementing the control of fuel supply even when using the brake. Because it puts a role.
제어변수 입력부(330)의 클러치 신호는 운전자가 수동변속기 운전시 클러치 작동을 인식하여 차량의 운전을 아이들(IDLE) 상태 또는 운전자 가속페달 작동시 가속페달 입력을 출력으로 바이패스(By-Pass)하는 기능을 수행하도록 한다.The clutch signal of the control variable input unit 330 recognizes the clutch operation when the manual transmission is operated, thereby bypassing the driving of the vehicle to an idle state or bypassing the accelerator pedal input as an output when the driver accelerator pedal is operated. Perform a function.
제어변수 입력부(330)의 속도 신호 및 연료주입 신호는 차량의 주행상태 파악 및 연료 소비량, 속도등을 파악할 수 있도록 한다.The speed signal and the fuel injection signal of the control variable input unit 330 allow to determine the driving state of the vehicle and the fuel consumption amount, speed, and the like.
제어변수 입력부(330)의 산소 센서 신호는 Steady Control 방식과 Leap Control 방식에 따른 동작시 피드백 제어변수로 사용된다. 특히 Leap Control 방식은 Leap Control D/B(304)로부터 B(목표위치)의 산정시 차량노화, 주변환경에 따라 특성이 변화하는 것을 학습보정하는 역할에 사용된다. 즉, 목표위치는 산소 센서 신호에 따라 갱신된다.The oxygen sensor signal of the control variable input unit 330 is used as a feedback control variable in the operation according to the Steady Control method and the Leap Control method. In particular, the Leap Control method is used for the role of learning and correcting the characteristic change according to the vehicle aging and the surrounding environment when calculating the B (target position) from the Leap Control D / B 304. That is, the target position is updated in accordance with the oxygen sensor signal.
제어변수 입력부(330)의 가속신호는 운전자가 가속페달을 사용하고 있는지 여부를 판단하도록 하며, 현재 사용하고 있는 밸브가 전자쓰로틀(ETS, EPC) 밸브인 경우에는 직접 전자신호를 입력변환장치를 사용하여 받고 기계식 밸브인 경우에는 입력감지기를 설치하여 구성한다. The acceleration signal of the control variable input unit 330 allows the driver to determine whether the accelerator pedal is being used. If the valve being used is an electronic throttle (ETS, EPC) valve, the electronic signal is directly input input device. In case of mechanical valve, input sensor is installed.
출력장치(350)의 트랜스미션 제어신호 출력(Transmission Control out), 연료주입제어 신호 출력(Injection Control out)은 제조사 Pre-Market용임으로 다음에 상세한 기능을 거론한다.The transmission control signal output and the fuel injection control signal output of the output device 350 are for the manufacturer Pre-Market.
출력장치(350)의 가속 제어신호 출력(Acceleration Control out)은 주제어장치(390)에서 발생하는 신호를 받아서 차량이 인식할 수 있는 신호로 변환하여 전자쓰로틀(ETS, EPC) 밸브인 경우에는 직접 전자신호를 출력하고, 기계식인 경우에는 스테핑 모터를 사용하여 쓰로틀 개도를 조절한다. The acceleration control signal output of the output device 350 receives the signal generated from the main controller 390 and converts the signal into a signal that can be recognized by the vehicle, and directly in the case of an electronic throttle (ETS, EPC) valve. Outputs the signal and, in the case of a mechanical one, uses a stepping motor to adjust the throttle opening.
안전장치(340) 작동시 및 주제어부(390) 미동작시에는 제어변수 입력부(330)의 가속 신호를 출력장치(350)의 가속 신호 출력으로 바이패스시킨다. 또한 주행 안정성 및 주행 응답특성를 만족시키기 위하여 가속페달 사용시에는 차량이 가지고 있는 고유의 기능을 수행할 수 있도록 출력측에 순간연료손실 감소 필터(Trancient Loss Reduction Filter)만 통과하여 제어변수 입력부(330)로부터 입력되는 가속 신호를 출력장치(350)의 가속 신호 출력으로 바이패스시킨다.When the safety device 340 is operated and the main controller 390 is not operated, the acceleration signal of the control variable input unit 330 is bypassed to the acceleration signal output of the output device 350. In addition, when the accelerator pedal is used to satisfy driving stability and driving response characteristics, only the instantaneous fuel loss reduction filter is passed through the output side to be input from the control variable input unit 330 to perform a unique function of the vehicle. The acceleration signal to be bypassed to the acceleration signal output of the output device 350.
주제어부(390)는 컴퓨터 CPU, Memory, 저장매체 등을 구비하여 각종 제어를 수행한다.The main controller 390 includes a computer CPU, a memory, a storage medium, and the like to perform various controls.
통신모듈(360)은 주제어장치(390)와 운전자 인식 제어부(500) 상호간에 신호를 주고 받는 기능을 담당하고 있다.The communication module 360 is responsible for sending and receiving signals between the main controller 390 and the driver recognition controller 500.
운전자 인식장치의 운전자 인식 제어부(500)는 통신모듈(360)로부터 입력된 신호를 운전자 인식 모듈(520)로 출력한다. 운전자 인식 모듈(520)은 주제어부(390)로부터 통신모듈(360)을 통해 입력되는 신호에 따라서 연료소비, 부하, 과부하, 순간연료손실, 주행 상태, 속도 및 주행거리 등의 정보를 도 4 의 (a),(b),(c),(d),(e)와 같이 다양한 형태로 제공하여 운전자가 이를 인식할 수 있도록 한다. 또한, 운전자 인식 제어부(500)는 키입력부(510)와 리모컨(511)로부터 입력된 신호를 주제어부(390)로 입력한다.The driver recognition controller 500 of the driver recognition apparatus outputs a signal input from the communication module 360 to the driver recognition module 520. The driver recognition module 520 may display information such as fuel consumption, load, overload, instantaneous fuel loss, driving state, speed, and driving distance according to a signal input from the main controller 390 through the communication module 360. Provided in various forms such as (a), (b), (c), (d), (e) so that the driver can recognize it. In addition, the driver recognition controller 500 inputs the signals input from the key input unit 510 and the remote controller 511 to the main control unit 390.
키입력부(510)는 하이브리드 주행제어 시스템에서 사용하는 각종 변수들의 입력과 인식장치의 표현기능을 다양하게 설정할 수 있도록 다양한 키를 구비한다.The key input unit 510 includes various keys to variously set the input of various variables used in the hybrid driving control system and the expression function of the recognition device.
키입력부(510)와 운전자 명령입력기(310)를 리모콘(511)으로 통합하여 원격으로 운전자가 편리하게 사용할 수 있도록 구현하는 것이 바람직하다.The key input unit 510 and the driver command input unit 310 may be integrated into the remote controller 511 so that the driver may remotely use it conveniently.
운전자 명령입력기(310)와 키입력부(511)은 주제어부(390)로 운전자의 각종 명령을 입력하는 것으로 가속 버튼과 감속 버튼 2가지로 구성되고, 정상 주행, 서행가속, 가속주행을 설정하거나, 주제어부(390)의 제어 동작 정지 기능 및 안전 장치(340)를 해제할 수 있도록 한다. The driver command input unit 310 and the key input unit 511 input the various commands of the driver to the main control unit 390 and are composed of two kinds of acceleration buttons and deceleration buttons, and set normal driving, slow speed acceleration, and acceleration driving, The control operation stop function and the safety device 340 of the main control unit 390 can be released.
이 경우, 안전 장치 해제기능은 차량 시동시 및 운전자실수, 어린아이의 오작동등을 방지하기 위해 일정 순서(암호화)에 의해 키를 조작하였을 때만 동작되도록 하는 것이 바람직하다. In this case, it is preferable that the safety device release function be operated only when the keys are operated in a certain order (encryption) at the time of starting the vehicle and in order to prevent a driver's mistake or malfunction of a child.
운전자 명령입력기(310)를 통한 키조작시 동작 과정은 안전장치(340) 해제(암호화 해제) 후, 가속키 입력시에는 정상 주행, 정상 주행상태에서 서행 가속상태로, 서행 가속상태에서 가속주행상태의 순서로 전환한다. When operating the key through the driver command input device 310, the operation process is released after the safety device 340 (encryption release), and when the acceleration key is input, normal driving, in the normal driving state to the slow driving state, and in the slow driving state, the acceleration driving state. Switch to the order of.
한편, 감속시에는 서행가속상태 및 가속주행 상태에서 바로 정상주행 상태로 전환한다. 특히, 정상주행 상태에서 감속키 입력시에는 주제어부(390)의 동작을 정지시키도록 전환한다. 또한 키인식기능은 원터치 기능에서 누른상태를 200~400mSec 지속하였을시에는 자동으로 다음 주행 상태로 전환하도록 하는 것이 바람직하다.On the other hand, at the time of deceleration, the vehicle immediately changes to the normal driving state from the slow acceleration state and the acceleration driving state. In particular, when the deceleration key is input in the normal driving state, the main control unit 390 switches to stop the operation. In addition, it is preferable that the key recognition function automatically switches to the next driving state when the pressed state is maintained for 200 to 400 mSec in the one-touch function.
운전자 인식 모듈(520)은 연료 소비 표시, 부하 표시, 과부하 표시, 순간연료손실 표시, 주행 상태 표시, 속도 표시, 주행거리 표시 등의 정보를 표시하여 운전자가 주행중에 이를 인지 있도록 한다. 이의 표현 방법은 도4에서 실시예를 보이고 있다.The driver recognition module 520 displays information such as fuel consumption display, load display, overload display, instantaneous fuel loss display, driving state display, speed display, and mileage display so as to recognize the driver while driving. Its representation is shown in Figure 4 the embodiment.
이하에서는 하이브리드 주행제어 시스템의 Steady Control 방식과 Leap Control 방식의 적용 일예를 도 1 에 도시된 하이브리드 주행패턴에 의거하여 설명한다. Hereinafter, an example of applying the Steady Control method and the Leap Control method of the hybrid driving control system will be described based on the hybrid driving pattern shown in FIG. 1.
먼저, 도로 상태를 평지(Flat Road)(F1), 저경사로(Low Incline road)(M1, M2), 고경사로(High Incline road)(H1,H2,H3)로 구분하고, 평지(Flat Road)(F1), 저경사로(Low Incline road)(M1, M2), 고경사로(High Incline road)(H1,H2,H3)에서는 Steady Control 방식을 적용하며, 고경사로(High Incline road)(C0,C1)에서는 Leap Control 방식을 적용한다. First, the road condition is divided into flat road (F1), low incline road (M1, M2), high incline road (H1, H2, H3), and flat road (F1), Low Incline road (M1, M2), High Incline road (H1, H2, H3) apply Steady Control method, High Incline road (C0, C1) ) Applies the Leap Control method.
본 발명의 실시예에 따른 하이브리드 주행제어 시스템의 동작 과정을 도 3 을 참조하여 상세하게 설명하면, 주제어부(390)가 제어변수 입력부(330)로부터 각종 제어 변수를 입력받는다(S10).Referring to FIG. 3 in detail, the main control unit 390 receives various control variables from the control variable input unit 330 (S10).
이 후, 도로환경 입력부(300)로부터 현재 주행 도로의 혼잡도, 구간평균속도 등을 입력받아(S20) 도로 환경이 복잡한 것으로 판단되면 주제어부(390)는 가감속 출력 제어의 출력비례치를 하향시키고, 주행정보 입력부(301)로부터 현재위치를 파악한다. Subsequently, when the road environment is determined to be complicated by receiving the congestion degree, section average speed, etc. of the current driving road from the road environment input unit 300 (S20), the main control unit 390 lowers the output proportional value of the acceleration / deceleration output control. The current position is detected from the driving information input unit 301.
이 후, TASK Interval&Cycle 계산과정(S30)을 수행한다. TASK Interval&Cycle 계산과정은 제어변수 입력부(330)로부터 제어변수를 다수회 입력받아 그 평균을 산출하는 것으로서, TASK가 끝날 때까지 수행하게 되는데 이는 엔진 주행중 센서 신호(Sensor Signal)의 오차를 줄이고 에러를 피하기 위함이다.After that, the TASK Interval & Cycle calculation process (S30) is performed. TASK Interval & Cycle calculation process is to receive the control variable from the control variable input unit 330 a number of times and calculate the average, which is performed until the end of the TASK, which reduces the error of the sensor signal while driving the engine and avoids errors. For sake.
다음으로, 현재 표시된 출력 값이 정상으로 출력되고 있는지 판단(S40)하는데, 3회이상 에러 판정시에는 시스템 이상으로 판단하여 출력을 안전장치(340)를 통해 입출력을 바이패스시키도록 한다.Next, it is determined whether the currently displayed output value is normally output (S40). When an error is determined more than three times, it is determined that the system is abnormal and the output is bypassed through the safety device 340.
이 후, 상기한 단계(S20)에서 입력된 데이터를 가공하여 현재 속도로부터 차량이 평지 구동에 필요한 부하를 산출한다. 여기서, 주행정보 입력부(301)와 지리정보 D/B(303)를 이용하여 현재 위치에서의 진향 방향의 기울기를 산출하고, 속도와 차량기울기를 가미하여 이에 대응하는 부하량을 산출한다. 한편, GPS(122)와 지리정보 D/B(303)기능을 이용하지 않을 경우, 이전에 차량에 인가된 구간 평균 부하량을 분석하여 이에 대응하는 부하량을 산출한다.Thereafter, the data input in step S20 is processed to calculate a load required for driving the flat surface of the vehicle from the current speed. Here, the slope of the forward direction at the current position is calculated by using the driving information input unit 301 and the geographic information D / B 303, and the load corresponding to the speed and the tilt of the vehicle is calculated. Meanwhile, when the GPS 122 and the geographic information D / B 303 functions are not used, the section average load applied to the vehicle is analyzed to calculate the load corresponding thereto.
이 후, 운전자 명령입력기(310)와 리모컨(511)으로부터 받은 신호를 분석하여 서행가속, 정상주행, 가속 주행할 것인 지를 판단(S60)하여 이를 바탕으로 서행가속(S71), 정상주행(S72) 및 가속 주행(S73) 중 어느 하나를 수행한다. Thereafter, the signals received from the driver command input unit 310 and the remote controller 511 are analyzed to determine whether to drive slowly, accelerate, and accelerate (S60), and based on this, a slow acceleration (S71) and a normal run (S72). And acceleration driving (S73).
한편, 운전자가 가속페달 사용 후 가속페달을 조작하지 않으면, 주제어장치가 동작하고, 이 후 정상주행상태로 판단한다. 즉, 운전자가 가속페달을 조작할 경우에는 안전장치(340)에 의해 바이패스되어 주제어장치에 의해 차량이 제어되지 않는다.On the other hand, if the driver does not operate the accelerator pedal after using the accelerator pedal, the main controller is operated, and after that it is determined as a normal driving state. That is, when the driver operates the accelerator pedal, it is bypassed by the safety device 340 and the vehicle is not controlled by the main controller.
이 경우, 정상주행으로 판단되면 정속주행 상태로 주행하도록 하며, 주제어부(390) 동작 제어를 일시 정지하거나 주행 상태 명령이 바뀐 상태에서는 대응하는 출력값의 제어 수행 능력을 고려하여 일정 시간동안 부하 목표 지향으로 Open Loop control을 수행한후 속도 지향 Feed Back Control을 수행한다. In this case, when it is determined that the vehicle is in normal driving, the vehicle is driven in the constant speed driving state, and when the main control unit 390 stops the operation control or the driving state command is changed, the load target is directed for a predetermined time in consideration of the ability to perform control of the corresponding output value. After performing Open Loop control, speed-oriented Feed Back Control is performed.
속도 지향 Feed Back Control에서는 차량의 속도기준으로 속도편차를 구하고 PID Cruise Control System 대응하는 출력 값을 산출(S80)한다. In the speed-oriented feed back control, the speed deviation is calculated based on the speed of the vehicle, and the output value corresponding to the PID Cruise Control System is calculated (S80).
한편, 서행가속으로 판단되면, 차간 거리조절을 위한 서행가속으로 제어하며, 주행 상태 명령이 바뀐 상태에서는 대응하는 출력값의 제어 수행 능력을 고려하여 일정 시간동안 부하 및 속도증가 목표 지향으로 Feed Back Control을 수행한후 정상주행(S72)상태로 제어를 복귀시킨다. On the other hand, if it is determined that the driving speed is slow, the driving speed is controlled by the driving speed for adjusting the distance between the vehicles, and in the state where the driving state command is changed, the feed back control is performed for a predetermined time to increase the load and speed in consideration of the ability to perform control of the corresponding output value. After performing the control, the control returns to the normal driving state (S72).
또한, 가속 주행으로 판단되면 이는 점더 신속한 속도 증가를 의미하는 것으로서, 단위 시간내 속도 증가와 목표 부하값을 좀더 높게 설정한다. 이또한 주행 상태 명령이 바뀐 상태에서는 대응하는 출력값의 제어 수행 능력을 고려하여 일정 시간동안 부하 및 속도증가 목표 지향으로 Feed Back Control을 수행한 후 정상주행 상태(S72)로 제어를 복귀시킨다. In addition, when it is determined that the vehicle is accelerated, this means a faster speed increase, and sets the speed increase and the target load value higher in unit time. In addition, in the state in which the driving state command is changed, the control returns to the normal driving state (S72) after performing Feed Back Control for the load and speed increasing target for a predetermined time in consideration of the ability to perform control of the corresponding output value.
여기서, Pre Market용일 경우, 상기에서 전해받은 제어 출력값에 따라 변속기 제어기, 분사량제어기를 제어한다(S90).Here, in the case of Pre Market, the transmission controller and the injection amount controller are controlled according to the control output value transmitted from the above (S90).
이 후, 속도 및 부하량 목표값과 현재 속도 및 부하량을 비교하여 편차가 적으면 제어손실이 없는 Steady Control 방식으로 동작을 제어하고(S110), 편차가 크면 Leap Control 방식으로 동작을 제어한다(S120).Thereafter, the speed and load target value is compared with the current speed and load, and if the deviation is small, the operation is controlled by the Steady Control method without control loss (S110), and when the deviation is large, the operation is controlled by the Leap Control method (S120). .
이 후, 안전장치(340)를 확인(S130)하는 데, 브레이크 동작, 클러치 동작, 가속페달의 동작, 안전장치 해제여부, 제어신호 출력 오프 및 적외선 센서의 동작을 확인하여(S140) 정상제어 상태이면 제어신호를 출력하며(S150), 안전장치(340)가 작동하면 차량의 고유 제어신호를 출력장치(350)측으로 바이패스시킨다(S41).Thereafter, to check the safety device (340) (S130), check the brake operation, clutch operation, the operation of the accelerator pedal, whether the safety device is released, the control signal output off and the operation of the infrared sensor (S140) normal control state When the control signal is output (S150) and the safety device 340 is operated, the unique control signal of the vehicle is bypassed to the output device 350 (S41).
이 후, 차량의 주행 상태를 파악하여(S160) 차량이 구동되고 있지 않으면 전력소비를 줄이기 위해 슬립(slip)상태로 유지하며(S170), 차량이 구동되고 있으면 계속해서 제어를 반복하여 수행시킨다(S180).Thereafter, the driving state of the vehicle is determined (S160), and when the vehicle is not driven, the vehicle is kept in a slip state to reduce power consumption (S170). If the vehicle is being driven, the control is repeatedly performed ( S180).
이 경우, 운전자 인식장치는 운전자가 키조작에 따라 4-Digit 숫자 표시기에서는 연료 소비, 부하, 속도, 거리, 순간연료손실량, 과부하, 주행 상태를 표시한다.In this case, the driver recognition device displays fuel consumption, load, speed, distance, instantaneous fuel loss, overload, and driving status according to the driver's key operation.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 특허청구범위에 의하여 정해져야할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is only an example, and those skilled in the art to which the art belongs may have various modifications and equivalent other embodiments. I will understand. Therefore, the true technical protection scope of the present invention will be defined by the claims.

Claims (18)

  1. 차량의 주행에 따른 제어변수와 상기 차량의 주행 환경을 입력하는 입력장치;An input device for inputting a control variable according to the driving of the vehicle and the driving environment of the vehicle;
    상기 차량을 제어하는 트랜스미션 제어신호, 연료 주입 제어신호, 가속 제어 신호를 출력하는 출력 장치; 및An output device for outputting a transmission control signal, a fuel injection control signal, and an acceleration control signal for controlling the vehicle; And
    상기 입력장치로부터 입력되는 상기 제어변수와 상기 주행 환경에 따라 상기 차량의 순간연료손실량을 계산하고, 상기 순간연료손실량과 상기 차량의 응답 특성에 따라 상기 출력 장치로 제어신호를 출력하는 주제어부를 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.A main control unit for calculating an instantaneous fuel loss amount of the vehicle according to the control variable and the driving environment input from the input device, and outputting a control signal to the output device according to the instantaneous fuel loss amount and the response characteristics of the vehicle; Hybrid running control system, characterized in that.
  2. 제 1 항에 있어서, 상기 입력장치는 The method of claim 1, wherein the input device
    상기 차량의 주행 도로의 혼잡도와 구간평균속도를 입력하는 도로환경 입력부; A road environment input unit configured to input a congestion degree and a section average speed of the driving road of the vehicle;
    상기 차량의 위치정보와 속도를 입력하는 주행정보 입력부; A driving information input unit which inputs position information and speed of the vehicle;
    차간거리를 입력하는 센서부; A sensor unit for inputting a distance between vehicles;
    주행 도로의 지리 정보를 저장하여 상기 주행 도로의 고도와 위치를 입력하는 지리정보 D/B; Geographic information D / B for storing geographic information of a driving road and inputting an altitude and a location of the driving road;
    정상주행 상태, 서행가속 상태 및 가속주행 상태로 주행 상태가 상호 전환되도록 하는 키입력부; A key input unit configured to switch driving states to a normal driving state, a slow acceleration state, and an acceleration driving state;
    상기 차량의 가속 페달의 사용 구간을 소정 개수로 구분하여 상기 각 사용 구간에 대한 엔진회전수를 저장하는 Leap control DB; 및A Leap control DB storing engine speeds for each of the use sections by dividing the use sections of the accelerator pedal of the vehicle by a predetermined number; And
    상기 차량 주행시 상기 운전자의 조작에 의한 제어변수를 입력하는 제어변수 입력부를 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.And a control variable input unit configured to input a control variable by the driver's operation when the vehicle is driven.
  3. 제 2 항에 있어서, 상기 제어변수는 클러치 신호, 브레이크 신호, 속도 신호, 연료 주입 신호, 가속 신호, 산소 센서 신호를 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system of claim 2, wherein the control variable includes a clutch signal, a brake signal, a speed signal, a fuel injection signal, an acceleration signal, and an oxygen sensor signal.
  4. 제 3 항에 있어서, 상기 입력장치는 기계적으로 상기 차량의 엔진측의 입력을 출력으로 바이패스(By-Pass)시키는 비상 주행제어해제부를 더 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.4. The hybrid travel control system according to claim 3, wherein the input device further comprises an emergency travel control release unit which mechanically bypasses the input of the engine side of the vehicle to the output.
  5. 제 3 항에 있어서, 상기 주제어부는 상기 도로 환경 입력부로부터 주행도로의 혼잡도, 주간 평균속도에 따라 부하 변동 및 속도 변화를 제어하는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system of claim 3, wherein the main controller controls a load variation and a speed change according to a congestion degree of the driving road and an average weekly speed from the road environment input unit.
  6. 제 3 항에 있어서, 상기 주제어부는 상기 센서부로부터 입력되는 상기 차간거리에 따라 상기 차량의 속도를 증감시키는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system of claim 3, wherein the main controller increases or decreases the speed of the vehicle according to the inter-vehicle distance input from the sensor unit.
  7. 제 6 항에 있어서, 상기 주제어부는 상기 키입력부가 소정시간 지속적으로 입력될 때마다, 정상주행, 서행가속 상태 및 가속주행 상태를 자동으로 전환하는 것을 특징으로 하는 하이브리드 주행제어 시스템. The hybrid driving control system of claim 6, wherein the main control unit automatically switches between the normal driving, the slow acceleration state, and the acceleration driving state whenever the key input unit is continuously input for a predetermined time.
  8. 제 3 항에 있어서, 상기 주제어부는 상기 차량의 순간연료손실량이 기준치 이하이면 Steady Control 방식을 적용하고, 상기 차량의 응답 특성을 향상시킬 때에는 Leap Control 방식을 적용하는 것을 특징으로 하는 하이브리드 주행 제어 시스템.The hybrid driving control system of claim 3, wherein the main control unit applies a steady control method when the instantaneous fuel loss of the vehicle is less than a reference value, and applies a leap control method when improving the response characteristics of the vehicle.
  9. 제 8 항에 있어서, 상기 주제어부는 상기 키입력부로부터 상기 주행 상태를 전환시키는 명령이 입력되고, 상기 정속주행 상태시 속도응답이 기준치 보다 늦으면, 상기 Leap Control 방식을 적용하여 쓰로틀 밸브의 쓰로틀 개도 변화를 상기 Leap control D/B를 이용하여 현재위치에서 목표위치로 이동하는 것을 특징으로 하는 하이브리드 주행 제어 시스템.The throttle opening degree change of the throttle valve according to claim 8, wherein the main control unit receives a command for switching the driving state from the key input unit and the speed response is lower than a reference value in the constant speed driving state. Hybrid driving control system using the Leap control D / B to move from the current position to the target position.
  10. 제 9 항에 있어서, 상기 Leap control D/B는 상기 쓰로틀 밸브의 쓰로틀 전개 범위를 소정 갯수로 분해하고, 엔진회전수를 소정 RPM 단위로 분해하여 쓰로틀 개도가 현재위치에서 목표위치로 변화시에 실린더내 혼합기 충진효율이 사이클 단위로 정상유동으로 추종하는 특성을 측정하여 구축되는 것을 특징으로 하는 하이브리드 주행제어 시스템.10. The method of claim 9, wherein the Leap control D / B decomposes the throttle development range of the throttle valve by a predetermined number, and decomposes the engine speed by a predetermined RPM unit to change the cylinder from the current position to the target position. Hybrid run control system, characterized in that the filling efficiency is built by measuring the characteristics that follow the normal flow in cycle units.
  11. 제 10 항에 있어서, 상기 쓰로들 밸브의 쓰로틀 개도의 목표위치는 동일 쓰로틀 개도에서 정상유동상태의 공기유량이 일치하는 시점의 데이터인 것을 특징으로 하는 하이브리드 주행제어 시스템.11. The hybrid running control system according to claim 10, wherein the target position of the throttle opening of the throttle valve is data at a time when the air flow in a steady flow state coincides at the same throttle opening.
  12. 제 11 항에 있어서, 상기 목표위치는 상기 제어변수의 산소 센서 신호에 따라 갱신되는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system of claim 11, wherein the target position is updated according to an oxygen sensor signal of the control variable.
  13. 제 2 항에 있어서, 상기 입력장치로부터 입력되는 신호에 따라 상기 차량의 고유 제어신호를 바이패스시키는 안전장치를 더 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system according to claim 2, further comprising a safety device for bypassing the intrinsic control signal of the vehicle according to the signal input from the input device.
  14. 제 13 항에 있어서, 상기 안전장치는 브레이크의 작동 신호를 노멀 온과 노멀 오프 신호로 구분하여 상기 브레이크의 이상여부를 판단하고, 소프트웨어 바이패스 기능과 기계적인 하드웨어 바이패스로 구성되어 상기 입력장치로부터 입력된 가속 신호를 상기 출력장치로 바이패스시키는 것을 특징으로 하는 하이브리드 주행제어 시스템.The apparatus of claim 13, wherein the safety device divides an operation signal of the brake into a normal on signal and a normal off signal to determine whether the brake is in an abnormal state, and comprises a software bypass function and a mechanical hardware bypass. And hybridize the input acceleration signal to the output device.
  15. 제 14 항에 있어서, 상기 안전장치는 상기 브레이크 작동시 상기 소트트웨어 바이패스를 인가하는 것보다 상기 기계적인 하드웨어 바이패스 작동 시기를 소정 시차를 두고 바이패스시키는 것을 특징으로 하는 하이브리드 주행제어 시스템.15. The hybrid driving control system according to claim 14, wherein the safety device bypasses the mechanical hardware bypass operation timing by a predetermined time rather than applying the software bypass during the brake operation.
  16. 제 1 항에 있어서, 상기 주제어장치로부터 입력되는 제어신호에 응답하여 상기 차량의 부하량 및 연료 손실량을 표시하는 운전자 인식 장치를 더 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.The hybrid driving control system of claim 1, further comprising a driver recognition device that displays a load amount and a fuel loss amount of the vehicle in response to a control signal input from the main controller.
  17. 제 16 항에 있어서, 상기 운전자 인식장치는 The method of claim 16, wherein the driver recognition device
    상기 차량의 연료소비량을 표시하는 연료소비 표시부; A fuel consumption display unit displaying a fuel consumption amount of the vehicle;
    상기 차량의 부하량을 표시하는 부하 표시부; A load display unit for displaying a load of the vehicle;
    상기 차량의 과부하를 표시하는 과부하 표시부;An overload display unit for displaying an overload of the vehicle;
    상기 차량의 순간연료손실량을 표시하는 순간연료손실 표시부;An instantaneous fuel loss display unit displaying an instantaneous fuel loss amount of the vehicle;
    상기 차량의 주행상태를 표시하는 주행상태 표시부;A driving state display unit displaying a driving state of the vehicle;
    상기 차량의 속도를 표시하는 속도 표시부; 및A speed display unit displaying a speed of the vehicle; And
    상기 차량의 주행거리를 표시하는 거리 표시부를 포함하는 것을 특징으로 하는 하이브리드 주행제어 시스템.Hybrid driving control system comprising a distance display for displaying the driving distance of the vehicle.
  18. 제 16 항에 있어서, 상기 운전자 인식장치는 차량 계기판 또는 유리창에 설치되는 것을 특징으로 하는 하이브리드 주행제어 시스템.17. The hybrid driving control system according to claim 16, wherein the driver recognition device is installed in a vehicle dashboard or a glass window.
PCT/KR2009/000156 2008-01-11 2009-01-12 The control system of hybrid driving WO2009088269A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0003362 2008-01-11
KR20080003362 2008-01-11
KR10-2009-0002159 2009-01-12
KR1020090002159A KR20090077727A (en) 2008-01-11 2009-01-12 The control system of hybryde driving

Publications (2)

Publication Number Publication Date
WO2009088269A2 true WO2009088269A2 (en) 2009-07-16
WO2009088269A3 WO2009088269A3 (en) 2009-10-29

Family

ID=40853635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000156 WO2009088269A2 (en) 2008-01-11 2009-01-12 The control system of hybrid driving

Country Status (1)

Country Link
WO (1) WO2009088269A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028739A (en) * 2000-10-09 2002-04-17 김병철 Device for driving at a fixed speed
KR20030026570A (en) * 2001-09-26 2003-04-03 현대자동차주식회사 Method for controlling of moving mode on hybrid electric vehicle
JP2007055436A (en) * 2005-08-24 2007-03-08 Toyota Motor Corp Traveling mode setting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028739A (en) * 2000-10-09 2002-04-17 김병철 Device for driving at a fixed speed
KR20030026570A (en) * 2001-09-26 2003-04-03 현대자동차주식회사 Method for controlling of moving mode on hybrid electric vehicle
JP2007055436A (en) * 2005-08-24 2007-03-08 Toyota Motor Corp Traveling mode setting device

Also Published As

Publication number Publication date
WO2009088269A3 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5608180B2 (en) Idle stop device
CN104385919B (en) Automobile cruise control system and method
KR20120060637A (en) Method and system for controllng acceleration torque of hybrid vehicle
CN101487424B (en) Use of torque model at virtual engine conditions
KR870001386A (en) Vehicle internal combustion engine controller
EP2375039A1 (en) Engine controlling apparatus for motorcycle
JPH06241105A (en) Method and equipment for controlling internal combustion engine
JP2000314343A (en) Learning method of throttle opening sensor output characteristics
CN105667342A (en) Start control method and start control system of electric learner-driven vehicle and electric learner-driven vehicle
US10384599B2 (en) Vehicle having sound controller
KR100792892B1 (en) Method for detection and control engine full load of hev
WO2009088269A2 (en) The control system of hybrid driving
CN206681853U (en) Electronic automobile accelerator master control borad assembly
CN103921648B (en) Vehicle air conditioner control setup
KR102339680B1 (en) System for controlling multipurpose four-wheel electric vehicle
US5419186A (en) Method and arrangement for checking the operation of an actuator in a motor vehicle
KR20090077727A (en) The control system of hybryde driving
KR20030046695A (en) Hybrid electric vehicle of engine control system
JP2844918B2 (en) Throttle valve opening control device for internal combustion engine
CN107415935B (en) A kind of control method and its control system for dynamical system
CN104074612B (en) Engine stop control method and system
WO2018147683A1 (en) Vehicle angle and accelerator depth information display system
KR100624546B1 (en) Limphome mode control method
KR100250530B1 (en) Auto-cruise control method of a vehicle
KR100354003B1 (en) Device and method for controlling an engine idle stop of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701038

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09701038

Country of ref document: EP

Kind code of ref document: A2