WO2009087811A1 - Heat-pump hot-water supply apparatus - Google Patents

Heat-pump hot-water supply apparatus Download PDF

Info

Publication number
WO2009087811A1
WO2009087811A1 PCT/JP2008/070377 JP2008070377W WO2009087811A1 WO 2009087811 A1 WO2009087811 A1 WO 2009087811A1 JP 2008070377 W JP2008070377 W JP 2008070377W WO 2009087811 A1 WO2009087811 A1 WO 2009087811A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
heating capacity
hot water
boiling
water supply
Prior art date
Application number
PCT/JP2008/070377
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Endoh
Yoshikazu Koto
Takayuki Fushiki
Mitsuo Nishikori
Original Assignee
Hitachi Appliances, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances, Inc. filed Critical Hitachi Appliances, Inc.
Priority to CN200880123498.3A priority Critical patent/CN101910747A/en
Publication of WO2009087811A1 publication Critical patent/WO2009087811A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1063Arrangement or mounting of control or safety devices for water heating systems for domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/16Reducing cost using the price of energy, e.g. choosing or switching between different energy sources
    • F24H15/164Reducing cost using the price of energy, e.g. choosing or switching between different energy sources where the price of the electric supply changes with time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps

Definitions

  • the present invention relates to a heat pump water heater that heats water in a hot water storage tank using a heat pump.
  • Patent Document 1 An example of a hot water storage type heat pump water heater that heats up in the midnight hours when electricity charges are cheap is described in Patent Document 1.
  • calculate the required boiling time based on the required amount of heating and the constant heating capacity of the heat pump, and this required boiling from the end time of midnight
  • the time when the time is subtracted is set as the boiling start time, and the boiling operation is shifted to the latter half of the midnight time.
  • Patent Document 2 An example of a heat pump water heater provided with other boiling control means is disclosed in Patent Document 2. This calculates the heating capacity of the inverter heat pump by (necessary amount of heat / hot water storage time), and obtains the corresponding frequency from the graph showing the relationship between the heating capacity and the frequency. Inverter heat pumps are more efficient at low frequency operation than at high frequency operation. Therefore, hot water can be stored more efficiently than when hot water is stored at a constant output.
  • Patent Document 3 describes an example of a heat pump water heater having a small-capacity hot water storage tank. This is mainly to drive the heat pump cycle at night to store hot water in the hot water tank, and to drive the heat pump cycle appropriately during the day to store hot water in the hot water tank. In the case where there is no fear of running out of hot water, priority is given to the operation for increasing the heating capacity. When there is no concern about running out of hot water, the operation is given priority to the operating efficiency of the heat pump cycle to prevent the hot water from running out and increase the operating efficiency.
  • the time zone timer gives priority to the heating capacity to prevent hot water outage during the time when hot water is most needed throughout the day (16: 00-22: 00), and prioritizes operating efficiency in other time zones. ing. JP 2004-347171 A JP-A-9-68369 JP 2005-127588 A
  • the heat pump has a characteristic that the higher the outside air temperature, the higher the COP, which is the ratio of the water heating capacity to the power consumption of the heat pump, so-called energy efficiency.
  • the midnight time zone is, for example, 11:00 pm to 7:00 am
  • the outside air temperature changes substantially from 11:00 pm, which is the midnight time zone start time, to 7:00 am, which is the midnight time zone end time. Therefore, by shifting the boiling operation in the latter half of the midnight time zone, the heat pump is operated in the midnight time zone when the outside air temperature is low, so that there is a problem that energy efficiency (COP) is lowered.
  • the frequency of the heat pump to be operated is determined from a graph showing the relationship between the heating capacity and the frequency calculated by (necessary heat amount / hot water storage time).
  • the COP of the heat pump is operated at a higher frequency when operated at a lower frequency as in the heat pump hot water supply device described in Patent Document 2 if the compressor efficiency is constant or the decrease in the compressor efficiency accompanying a decrease in frequency is small. Is more energy efficient.
  • carbon dioxide is used as a refrigerant in heat pump water heaters that have been commercialized in recent years. Carbon dioxide has a pressure difference of 3 times higher than that of fluorocarbon, 1/3 cylinder volume, and 3 times higher discharge pressure (“Non-Freon Technology” edited by Heat Pump and Thermal Storage Center, p. 50, Ohmsha, Heisei) (Issued February 1, 2016).
  • a compressor using carbon dioxide as a refrigerant has a high differential pressure of three times as high as that of fluorocarbon. Therefore, as the frequency of the compressor decreases, the effect of leakage in the compression chamber increases. As a result, the compressor efficiency decreases greatly.
  • the heat pump hot water supply apparatus using carbon dioxide as a refrigerant does not have higher energy efficiency as the frequency is lower, and there is a frequency at which the energy efficiency is highest. That is, the thing of the patent document 2 does not consider the boiling-up control means when the frequency where energy efficiency becomes the highest exists.
  • An object of the present invention is to obtain a heat pump water heater that can maintain high energy efficiency and can contribute to leveling of electric power demand.
  • the present invention provides a heat pump water heater comprising a heat pump and a hot water storage tank for storing hot water heated by the heat pump, and setting means for setting the heating capacity using the outside air temperature; Control means for preferentially operating the heat pump with a minimum value of the heating capacity set by the setting means during midnight hours, and the control means preferentially operates the heat pump with the minimum value of the heating capacity If the heating cannot be completed in the midnight time alone, the heat pump is controlled to operate with a heating capacity higher than the minimum value of the heating capacity.
  • the priority is given to the control of operating the heat pump with the heating capacity at which the energy efficiency is substantially the highest in the predetermined time zone where the electric power demand is small in the midnight time zone where the electricity rate is low. It is possible to obtain a heat pump hot water supply device that can increase energy efficiency during boiling and contribute to leveling of power demand.
  • Example 1 of the heat pump hot water supply apparatus according to the present invention will be described with reference to the drawings.
  • FIG. 1 is a system diagram of the heat pump water heater 100.
  • the heat pump hot water supply apparatus 100 includes a hot water storage tank unit 1 and a heat pump unit 2.
  • the hot water storage tank unit 1 is connected to a hot water storage tank 11, a hot water discharge pipe 12 connected to the upper part of the hot water storage tank 11, a water supply pipe 13 connected to the lower part of the hot water storage tank 11, and the other of the water supply pipe 13.
  • the water supply fitting 14 connected to the water supply outside the apparatus, the pressure reducing valve 15 for adjusting the water taken in from the water supply fitting 14 to an appropriate water pressure, the hot water from the tap water pipe 12 and the water supply pipe 13 were branched.
  • the hot water storage tank 11 is connected to the lower part of the hot water storage tank 11, the other is connected to the heat pump outlet pipe 21 connected to the heat pump unit 2, the upper part of the hot water storage tank 11, and the other is connected to the heat pump unit 2.
  • a heat pump return pipe 22 is provided, and the hot water in the hot water storage tank 11 can be circulated through the heat pump unit 2.
  • the hot water storage tank control unit 23 communicates with a heat pump control unit 58 and a remote controller (not shown), which will be described later, and controls the hot water storage tank unit 1.
  • the heat pump circuit 3 of the heat pump unit 2 exchanges heat between the compressor 51 that compresses the refrigerant to form a high-temperature refrigerant, and the refrigerant that has been compressed by the compressor 51 and becomes hot and the water supplied from the hot water storage tank unit 1.
  • a water refrigerant heat exchanger 52, an expansion valve 53 for depressurizing the refrigerant that has exited the water refrigerant heat exchanger 52, and an evaporator 54 for evaporating the low-temperature and low-pressure refrigerant that has exited the expansion valve 53 are connected by a refrigerant line.
  • Carbon dioxide is used as a refrigerant, enabling boiling of hot water.
  • the compressor 51 can be controlled in capacity by inverter control, and its rotation speed is variable from low speed to high speed.
  • the evaporator 54 is an air refrigerant heat exchanger, and heat is exchanged between a large amount of outdoor air and the decompressed refrigerant by the outdoor fan 55.
  • the water-refrigerant heat exchanger 52 includes a refrigerant-side heat transfer tube 52a and a water-side heat transfer tube 52b, and the refrigerant flow in the refrigerant-side heat transfer tube 52a and the water flow in the water-side heat transfer tube 52b are opposed to each other. It has become. Then, the high-temperature and high-pressure refrigerant and the low-temperature water exchange heat. That is, when the water having a low temperature passes through the water-side heat transfer pipe 52b at the inlet of the water-refrigerant heat exchanger 52 (below the water-refrigerant heat exchanger 52 in the drawing), the water-refrigerant heat exchange is performed. The temperature is raised to a predetermined temperature set by a heat pump control unit 58 described later at the outlet of the vessel 52 (upper side of the water-refrigerant heat exchanger 52 in the drawing).
  • the inlet side of the water-side heat transfer pipe 52b of the water-refrigerant heat exchanger 52 is connected to the above-described heat pump forward pipe 21, and a tank circulation pump 56, a water-refrigerant heat exchanger, and a water flow sensor 57 capable of capacity control in the middle of the pipe. Is arranged. Further, the outlet side of the water-side heat transfer tube 52b and the heat pump return tube 22 are connected.
  • Compressor discharge temperature sensor 35 provided on the refrigerant pipe on the outlet side of the compressor 51, outside air temperature sensor 36 provided on the air inlet side of the evaporator 54, and water refrigerant heat exchanger water inlet provided on the heat pump forward pipe 21
  • the water refrigerant heat exchanger water outlet temperature sensor 38 provided in the temperature sensor 37 and the heat pump return pipe 22 detects the temperature of each part, and sends the detected temperature information to the heat pump control unit 58.
  • the heat pump control unit 58 is described above.
  • the hot water storage tank control unit 23 and the heat pump unit 2 are controlled.
  • hot water supply terminal (not shown) connected to the hot water supply fitting 20
  • the hot water in the upper part of the hot water storage tank 11 flows into the hot water discharge pipe 12 by the water pressure of the water supply connected to the water supply fitting 14, and the low temperature supply water is supplied.
  • the hot water and the low temperature water flow into the branch pipe 16 and flow out of the hot water supply terminal through the hot water supply mixing valve 17, the hot water supply flow rate sensor 19, and the hot water supply fitting 20.
  • the flow rate sensor 19 detects the water flow, and the hot water storage tank control unit 23 supplies the hot water supply temperature sensor 32 from the hot water discharge pipe 12 so that the temperature detected by the hot water supply temperature sensor 32 becomes a hot water supply temperature set by a remote controller (not shown).
  • the ratio of the high temperature water and the low temperature water from the feed water branch pipe 16 is controlled. Since the hot water at the upper part of the hot water storage tank 11 is used, the low temperature hot water is supplied to the lower part of the hot water storage tank 11.
  • the heat pump control unit 58 controls the operation of the heat pump circuit 3 and the tank circulation pump 56. At this time, as will be described later, the rotational speed control of the compressor 51, the opening degree control of the expansion valve 53, and the rotational speed control of the tank circulation pump 56 are performed. Hot water flowing out from the lower part of the hot water storage tank 11 by the operation of the tank circulation pump 56 flows into the water / refrigerant heat exchanger 52 via the heat pump forward pipe 21 and is heated by the high-temperature refrigerant in the heat pump circuit 3, and passes through the heat pump return pipe 22. The hot water is stored by being returned to the upper part of the hot water storage tank 11.
  • the midnight time zone is a time zone during which the electricity rate is reduced, for example, from 11 pm to 7 am.
  • the hot water storage tank control unit 23 starts the late-night boiling control at 11:00 pm, which is the start time of the late-night time zone (S1).
  • the boiling heat quantity Qa is set (S2).
  • the boiling heat amount Qa is calculated as the sum of the average value, standard deviation, and preliminary heat amount of heat used over the past seven days.
  • Qc Qz1 + Qd ⁇ Qz (Equation 1)
  • Qz1 is the remaining heat amount of the hot water storage tank 11 at 11:00 pm on the previous day
  • Qd is the heating amount of the heat pump unit 2
  • Qz is the remaining heat amount at 11:00 pm on that day.
  • the residual heat amounts Qz1 and Qz are divided in the vertical direction from the temperature difference between the temperature detected by each tank temperature sensor 30 of the hot water storage tank 11 and the temperature detected by the feed water temperature sensor 31 and the hot water storage tank 11 including each tank temperature sensor 30. Calculated as the sum of the product of volume, water density and specific heat.
  • the heating amount Qd is calculated as an integral value of the operation time of a set value (necessary heating capacity) of the heating capacity of the heat pump unit 2 described later.
  • the hot water storage tank control unit 23 stores the amount of heat used for the past seven days, obtains an average value and standard deviation, and considers the amount of boiling heat Qa as the sum of the average value, standard deviation, and preliminary heat amount in consideration of variations in the amount of heat used.
  • the preliminary heat amount is, for example, a heat amount capable of supplying hot water at a hot water supply temperature of 42 ° C. and a hot water supply amount of 100 L.
  • the boiling temperature target value tp is set (S3).
  • the boiling temperature tp is calculated by the following formula.
  • tp Qa / ( ⁇ ⁇ c ⁇ V ⁇ ⁇ ) + twi (Equation 2)
  • Qa is the amount of heating heat
  • is the water density
  • c is the specific heat of water
  • V is the volume of the hot water storage tank 11
  • is the volumetric efficiency
  • twi is the feed water temperature detected by the feed water temperature sensor 31 in FIG. .
  • the volumetric efficiency ⁇ stops boiling when the water inlet temperature of the water-refrigerant heat exchanger 52 is lower than the boiling temperature tp, for example, 55 ° C. This is because the raised temperature tp is not considered.
  • the boiling time Tn is set (S4).
  • the midnight time is 8 hours from 11:00 pm to 7:00 am.
  • the boiling time Tn is set to 5 hours, for example. The five hours are assumed to be from 1:00 am to 6:00 am during the midnight time when the power demand is reduced.
  • This boiling time Tn may be changed according to the season (calendar), for example, in consideration of the power demand for each season.
  • the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 are set (S5).
  • 3A and 3B show the relationship between the outside air temperature and the minimum value Wmin and the maximum value Wmax of the heating capacity when the boiling temperature target value tp is 70 ° C. or higher and lower than 70 ° C., respectively. That is, the minimum value Wmin and the maximum value Wmax of the heating capacity can be determined from the boiling temperature target value tp and the outside air temperature (the detected value of the outside air temperature sensor 36).
  • FIG. 4 shows the relationship between the heating capacity of the heat pump unit 2 and COP (ratio of heating capacity to power consumption) when the boiling temperature target value is less than 70 ° C. and the outside air temperature is ta in FIG. 3B.
  • the heating capacity is changed mainly by changing the rotation speed (frequency) of the compressor 51.
  • the heat pump unit 2 exhibits the characteristic that the COP has the highest value for the heating capacity.
  • the minimum heating capacity of the heat pump unit 2 shown in FIG. 3B is the heating capacity at which the COP shown in FIG.
  • the maximum value of the heating capacity in FIG. 3B is the heating capacity at which boiling is completed at the maximum in 8 hours in the midnight hours when there is no hot water supply in the midnight hours at each outside temperature. Therefore, in FIG. 3B, the COP is higher when operating with a small heating capacity than when operating with a large heating capacity.
  • the required heating capacity W of the heat pump unit 2 is calculated (S6).
  • the required heating capacity W is calculated by the following formula.
  • Equation 3 Qa ⁇ Qz) / (Tn ⁇ ⁇ ) (Equation 3)
  • Qa is the above-mentioned amount of heating
  • Qz is the amount of residual heat at 11:00 pm on the same day
  • Tn is the above-mentioned boiling time
  • is the heating efficiency.
  • the heating efficiency ⁇ is the average heating capacity of the heating pump unit 2 when the heating capacity is less than the required heating capacity W at the start-up or near the completion of the heating, or when the outside air temperature is low. The value is set according to the outside air temperature.
  • the required heating capacity W is less than the minimum heating capacity value Wmin set in step S5 (S7Y)
  • the required heating capacity W is set to the minimum value Wmin (S8)
  • the boiling time Tn is reversed with the changed required heating capacity. Calculate (S9). At this time, the boiling time Tn is calculated by the following formula.
  • the end time shift time Tf is set (S10). At this time, since the boiling end time is shifted from 7:00 am in the midnight time zone to 6:00 am when the amount of power demand is small, the end time shift time Tf is set to 1 hour.
  • the required heating capacity W is not less than the minimum heating capacity Wmin set in step S5 (S7N), and if it is not less than the maximum value Wmax (S11Y), the required heating capacity W is set to the maximum value Wmax (S12) and changed.
  • the boiling time Tn is calculated based on the required heating capacity (S13). At this time, the boiling time Tn is calculated by the same formula as (Equation 4). By this calculation, the boiling time Tn becomes longer than the value set in step S4, 5 hours. Therefore, boiling cannot be completed only from 1 am to 6 am during the midnight hours when power demand is low, and from 6 am to 7 am otherwise. It is necessary to perform boiling operation from 11:00 pm the previous day to 1 am the next day.
  • the end time shift time Tf is set (S14). At this time, the end time shift time Tf is set to 0 hours so that the boiling end time is not shifted and the end time of the midnight time zone is set to 7:00 am.
  • the boiling time Tn remains at the value set in step S4, 5 hours, and the power demand in the midnight time zone. It is possible to complete the boiling between 1 am and 6 am when the amount of water is reduced.
  • the end time shift time Tf is set (S15). In order to shift the boiling end time from 7:00 am in the midnight time zone to 6:00 am in which the amount of power demand is small, the end time shift time Tf is set to 1 hour.
  • the boiling start time Ts is set (S16).
  • the boiling start time Ts is calculated by the following formula.
  • Ts midnight time end time ⁇ Tf ⁇ Tn (Equation 5)
  • Tf is the aforementioned end time shift time
  • Tn is the boiling time.
  • the end time of the midnight time zone is 7:00 am.
  • step S17 it is determined whether the current time has reached the boiling start time Ts (S17).
  • the heat pump is operated (S18).
  • the determination in step S17 is repeated. .
  • the heat pump operation (S18) is performed as follows. At this time, the hot water storage tank control unit 23 issues a heat pump operation command to the heat pump control unit 58, and gives the boiling temperature target value tp and the required heating capacity W.
  • the heat pump control unit 58 controls the rotation speed of the compressor 51 so that the water outlet temperature detected by the water outlet temperature sensor 38 of the water refrigerant heat exchanger 52 becomes the boiling temperature target value tp.
  • the heat pump control unit 58 controls the opening degree of the expansion valve 53 so that the discharge temperature detected by the compressor discharge temperature sensor 35 becomes a target value td0 calculated by the following equation.
  • Td0 f (tp, thwi, ta, W) (Equation 6)
  • tp is the boiling temperature target value
  • thwi is the water inlet temperature detected by the water inlet temperature sensor 37 of the water refrigerant heat exchanger 52
  • ta is the outside air temperature detected by the outside air temperature sensor 36
  • W is the required heating capacity.
  • the target value td0 of the discharge temperature is expressed by these functions f.
  • the target value is set to a discharge temperature at which the COP of the heat pump unit 2 is substantially maximum.
  • the target value is a function of the required heating capacity W, a highly efficient heat pump can be operated in the entire range of the minimum value Wmin and the maximum value Wmax of the heating capacity shown in FIG. 3B.
  • the heat pump control unit 58 controls the rotational speed of the tank circulation pump 56 so that the water flow rate detected by the water flow rate sensor 57 of the water refrigerant heat exchanger 52 becomes the target value Lw0 calculated by the following equation.
  • Lw0 W / (( ⁇ ⁇ c) (tp ⁇ thwi)) (Equation 7)
  • W is the required heating capacity
  • is the water density
  • c is the specific heat of water
  • tp is the boiling temperature target value
  • thwi is the water inlet temperature detected by the water inlet temperature sensor 37 of the water refrigerant heat exchanger 52.
  • the heat pump control unit 58 performs a heating operation with a boiling temperature of tp and a heating capacity of W by controlling the rotation speed control of the compressor 51 and the rotation speed control of the tank circulation pump 56 described above.
  • the hot water storage tank control unit 23 determines whether or not the predetermined tank temperature sensor 30 is equal to or higher than a preset boiling end temperature (S19). If it is not higher than the boiling end temperature (S19N), the determination in step S19 is repeated. If the boiling end temperature is reached (S19Y), the hot water storage tank control unit 23 issues a heat pump stop command to the heat pump control unit 58 (S20), and completes the midnight boiling (S21). In order to calculate the heating amount Qd, the time integration of the required heating capacity W is calculated during the heat pump operation.
  • the midnight boiling operation is divided into three patterns (see FIGS. 5A to 5C). That is, in the first (FIG. 5A), the efficiency of the heat pump is reduced in a predetermined time zone (from 1 am to 6 am) in which the power demand is smaller in the late-night time zone (from 11 pm to 7 am). This is a pattern in which the heat pump is operated at a heating capacity that is substantially the highest. At this time, the time obtained by subtracting the required boiling time from the predetermined time zone end time (6:00 am) is set as the boiling start time, and the boiling operation is shifted to the latter half of the predetermined time zone.
  • the second is a case where boiling cannot be completed in a predetermined time zone only by operation with the heating capacity with the highest efficiency. This is to operate the heat pump with a heating capacity higher than the heating capacity at which the efficiency of the heat pump is substantially maximum so that boiling is completed in a predetermined time period. At this time, the heat pump is operated with a heating capacity in which boiling is completed using substantially the entire time of a predetermined time zone (from 1 am to 6 am).
  • FIG. 5C is a case where boiling cannot be completed within a predetermined time zone even if it is operated at the maximum heating capacity.
  • the heat pump is operated at the maximum heating capacity so that boiling is completed at midnight.
  • a time obtained by subtracting the required boiling time from the midnight time zone end time (7:00 am) is set as a boiling start time, and the heating operation is shifted to the latter half of the midnight time zone.
  • the boiling is completed at the predetermined time zone end time or the midnight time zone end time.
  • the heating of the heat pump is performed so that the boiling is completed with a margin before this time.
  • the capacity may be reset to be slightly larger so that the operation time is slightly shorter.
  • the first operation pattern allows the heat pump to operate at a high efficiency because the heat pump is operated with a heating capacity at which the efficiency of the heat pump is substantially the highest.
  • the heat pump boiling operation start time is advanced, and the operation time in the time zone when the outside air temperature is high in the operation midnight time zone
  • the heat pump can be operated under the condition that the energy efficiency is increased.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the present embodiment differs from the first embodiment in the heat pump operation in step S18 of the midnight boiling control flowchart shown in FIG.
  • the heating capacity of the heat pump is set at regular intervals.
  • the hot water storage tank control unit 23 starts the heating capacity resetting control during the heat pump operation (S30). If the current heating capacity is less than the maximum value Wmax (S31Y), the heating capacity is reset. If the current heating capacity is the maximum value Wmax (S31N), the control is terminated without resetting the heating capacity (S32). That is, when the heat pump operation is performed within a predetermined time period from 1 am to 6 am, the heating capacity is reset.
  • the current heat quantity Qx is calculated (S33).
  • the current amount of heat Qx is the temperature difference between the temperature detected by each tank temperature sensor 30 of the hot water storage tank 11 and the temperature detected by the feed water temperature sensor 31, and the volume of the hot water storage tank 11 including each tank temperature sensor 30 divided vertically. Calculated as the sum of the product of water density and specific heat.
  • the remaining boiling time Tr is calculated (S34).
  • the remaining boiling time Tr is calculated by the following formula.
  • Tr Midnight time end time-Tf-current time (Equation 8)
  • the end time of the midnight time zone is 7:00 am
  • Tf is the end time shift time, which is one hour set in step S10 or S15 in FIG.
  • the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 are set (S35).
  • the setting method is the same as step S5 in FIG.
  • the required heating capacity W of the heat pump unit 2 is calculated (S36).
  • the required heating capacity W is calculated by the following formula.
  • step S40 it is determined whether the calculated required heating capacity W is within the range between the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 set in step S35. Perform (S37 to S40). If the required heating capacity W is less than the minimum heating capacity Wmin set in step S35 (S37Y), the required heating capacity W is set to the minimum value Wmin (S38). If the required heating capacity W is greater than the maximum value Wmax (S39Y), the required heating capacity W is set to the maximum value Wmax (S40). In the case of step S39Y, since the required heating capacity is suppressed at the maximum value Wmax, boiling is not completed by 6 am of the predetermined time zone end time, but the excess time is small and the midnight time zone end time is reached. The boiling is completed by 7 am.
  • the required heating capacity W is reset (S41).
  • the hot water storage tank control unit 23 gives a new value of the required heating capacity W to the heat pump control unit 58.
  • the heat pump control unit controls the operation of the heat pump unit 2 based on the new value of the required heating capacity W.
  • the hot water storage tank control unit 23 performs the above reset control of the heating capacity every time the timer elapses (S42).
  • the heat pump water heater can be made as small as possible within a predetermined time zone from 1:00 am to 6:00 am when the power demand is reduced in the midnight time zone. It is possible to operate with high efficiency by heating capacity. Moreover, boiling can be completed reliably within a predetermined time zone.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • the boiling time Tn is changed from 5 hours to 8 hours in the late-night boiling control of the first embodiment.
  • FIG. 7 the same steps as those in FIG.
  • Steps S1 to S3 are the same as those in the first embodiment.
  • the boiling time Tn in step S4 ′ is set to 8 hours in the midnight time zone (from 11 pm to 7 am).
  • the required heating capacity W is calculated by setting the boiling time Tn to 8 hours.
  • step S7 ′ if the required heating capacity W is less than the minimum heating capacity Wmin set in step S5 (S7′Y), the required heating capacity W is set to the minimum value Wmin (S8), and the changed required heating capacity is Conversely, the boiling time Tn is calculated (S9).
  • the required heating capacity W is within the heating capacity set in step S5, and the value is used as it is.
  • the maximum value Wmax of the heating capacity in FIG. 3 is completed at the maximum of 8 hours in the midnight time zone when there is no hot water supply in the midnight time zone at each external temperature. Since the heating capacity is set, the required heating capacity W is a value equal to or less than the maximum value Wmax.
  • the heat pump water heater can be operated with a smaller heating capacity for the same required boiling heat quantity, and high efficiency can be maintained. Can do.
  • Example 4 of the present invention will be described.
  • the heat pump operation in step S18 in the flowchart of the late-night boiling control shown in FIG. 7 is different from the above-described third embodiment.
  • the heating capacity required for the heat pump multiplied by the coefficient k is used as the heating capacity for operating the heat pump.
  • k 1 + d-2d / Tn * T (Equation 10)
  • d is a shift value
  • Tn is a boiling time of 8 hours
  • T is a heat pump operation time.
  • the coefficient k is a linear function of the operation time T.
  • T Tn
  • k 1 ⁇ d. That is, by multiplying the required heating capacity W by the coefficient k, the heating capacity of the heat pump becomes larger than the required heating capacity W in the first half of the midnight time zone, and becomes smaller than the required heating capacity W in the second half.
  • this control process is performed.
  • the heating capacity of the heat pump is set within the range from the minimum value Wmin to the maximum value Wmax set in FIG.
  • Example 5 of the present invention will be described.
  • the present embodiment is different from the third embodiment in the setting method of the heating capacity minimum value Wmin in step S5 of the flowchart in the late-night boiling control of FIG.
  • the heating capacity minimum value Wmin of the heat pump is set to approximately two thirds of the heating capacity maximum value Wmax.
  • the minimum value Wmin of the heating capacity is set to approximately two thirds (66%) of the maximum value Wmax, which is larger than the minimum value Wmin indicating the heating capacity at which the efficiency of the heat pump shown in FIG. 3A and FIG. ). At this time, in the range of 66% to 100% of the maximum heating capacity of the heat pump, the energy efficiency increases as the heating capacity decreases.
  • the heat pump unit 2 is operated at a boiling rate of 66% to 100% of the maximum heating capacity at midnight, and at least operates at 66% of the maximum heating capacity.
  • the boiling time Tn calculated in step S9 in the flowchart of FIG. 7 is reduced, and therefore the boiling start time Ts calculated in S16 is shifted backward in the midnight time zone.
  • the heating capacity minimum value Wmin of the heat pump is set to approximately two thirds of the heating capacity maximum value Wmax, but the same effect can be obtained when the heating capacity is set to 50% to 80%.
  • the time zone in which the electricity rate is reduced as the midnight time zone is used, but the present invention can be similarly applied to the time zone in which the hot water supply demand or the power demand is small.
  • the rotation speed control of the compressor is performed so that the boiling temperature becomes the target value, and the rotation speed control of the tank circulation pump is controlled so that the water amount becomes the target value.
  • the rotational speed may be set, and the rotational speed of the tank circulation pump may be controlled so that the boiling temperature becomes the target value. Any control method can be used as long as the required heating capacity can be obtained.
  • the systematic diagram of the heat pump hot-water supply apparatus which concerns on Example 1 of this invention.
  • the flowchart which shows the midnight boiling control which concerns on Example 1 of this invention.
  • the diagram which shows the relationship between the external temperature in case the boiling temperature target value in Example 1 of this invention is 70 degreeC or more, and the minimum value and the maximum value of the heating capability of a heat pump unit.
  • the diagram which shows the relationship between the external temperature in case the boiling temperature target value in Example 1 of this invention is less than 70 degreeC, and the minimum value of heating capacity of a heat pump unit, and a maximum value.
  • the diagram which shows the relationship between the minimum value and the maximum value of the outside temperature in case the boiling temperature target value in Example 5 of this invention is 70 degreeC or more, and the heating capability of a heat pump unit.
  • the diagram which shows the relationship between the outside temperature in case the boiling temperature target value in Example 5 of this invention is less than 70 degreeC, and the minimum value and the maximum value of the heating capability of a heat pump unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This aims to provide a heat-pump hot-water supply apparatus for enhancing an energy efficiency at a hot-water tank boiling time for a midnight time period and for leveling a demand for an electric power. The heat-pump hot-water supply apparatus comprises a heat pump and a hot-water tank for reserving the water heated by the heat pump. The heat-pump hot-water supply apparatus further comprises setting means for setting a heating ability by using the ambient temperature, and control means for running the heat pump preferentially at the minimum of the heating ability set for the midnight time period by the setting means. The control means exercises control to run the heat pump with a heating ability higher than the minimum, if the boil cannot be completed for the midnight time period even by the preferential run of the heat pump with the minimum heating ability.

Description

ヒートポンプ給湯装置Heat pump water heater
 本発明は、ヒートポンプを用いて貯湯タンクの水を加熱するようにしたヒートポンプ給湯装置に関する。 The present invention relates to a heat pump water heater that heats water in a hot water storage tank using a heat pump.
 電気料金が安い深夜時間帯に沸き上げる貯湯式のヒートポンプ給湯装置の例として特許文献1に記載のものがある。深夜時間帯に沸き上げ、かつ、放熱ロスの低減を図るため、必要沸き上げ熱量とヒートポンプの一定の加熱能力に基づいて、必要沸き上げ時間を算出し、深夜時間帯終了時刻からこの必要沸き上げ時間を引いた時刻を沸き上げ開始時刻に設定し、深夜時間帯の後半に沸き上げ運転をシフトしている。 An example of a hot water storage type heat pump water heater that heats up in the midnight hours when electricity charges are cheap is described in Patent Document 1. In order to boil up at midnight and reduce heat dissipation loss, calculate the required boiling time based on the required amount of heating and the constant heating capacity of the heat pump, and this required boiling from the end time of midnight The time when the time is subtracted is set as the boiling start time, and the boiling operation is shifted to the latter half of the midnight time.
 他の沸き上げ制御手段を備えるヒートポンプ給湯装置の例としては特許文献2に記載のものがある。これは、(必要な熱量/貯湯時間)でインバータヒートポンプの加熱能力を算出し、加熱能力と周波数の関係を示すグラフから、対応する周波数を求める。インバータヒートポンプは低い周波数で運転する方が高い周波数で運転するよりも効率が高い特性がある。したがって、一定の出力で貯湯する場合に比較して、貯湯を高効率に行うことができる。 An example of a heat pump water heater provided with other boiling control means is disclosed in Patent Document 2. This calculates the heating capacity of the inverter heat pump by (necessary amount of heat / hot water storage time), and obtains the corresponding frequency from the graph showing the relationship between the heating capacity and the frequency. Inverter heat pumps are more efficient at low frequency operation than at high frequency operation. Therefore, hot water can be stored more efficiently than when hot water is stored at a constant output.
 また、特許文献3には小容量の貯湯槽をもつヒートポンプ給湯装置の例が記載されている。これは、主に夜間にヒートポンプサイクルを駆動して貯湯槽に湯を貯め、昼間も適宜ヒートポンプサイクルを駆動して貯湯槽に湯を貯めるもので、湯切れの心配がある場合は、ヒートポンプサイクルの加熱能力を高める運転を優先して湯切れを防止し、湯切れの心配がない場合には、ヒートポンプサイクルの運転効率を優先した運転を行い、湯切れを防止すると共に運転効率を高めている。そして、時間帯タイマにより、1日を通じて最も湯を必要とする時間帯(16~22時)には、湯切れを防止するため加熱能力を優先し、その他の時間帯においては運転効率を優先している。
特開2004-347171号公報 特開平9-68369号公報 特開2005-127588号公報
Patent Document 3 describes an example of a heat pump water heater having a small-capacity hot water storage tank. This is mainly to drive the heat pump cycle at night to store hot water in the hot water tank, and to drive the heat pump cycle appropriately during the day to store hot water in the hot water tank. In the case where there is no fear of running out of hot water, priority is given to the operation for increasing the heating capacity. When there is no concern about running out of hot water, the operation is given priority to the operating efficiency of the heat pump cycle to prevent the hot water from running out and increase the operating efficiency. The time zone timer gives priority to the heating capacity to prevent hot water outage during the time when hot water is most needed throughout the day (16: 00-22: 00), and prioritizes operating efficiency in other time zones. ing.
JP 2004-347171 A JP-A-9-68369 JP 2005-127588 A
 上記特許文献1に記載のヒートポンプ給湯装置では、深夜時間帯の外気温度の変化に対するヒートポンプのエネルギ効率の影響は考慮されていない。ヒートポンプは外気温度が高いほど、ヒートポンプの消費電力に対する水加熱能力の比率であるCOP、いわゆるエネルギ効率が高くなる特性がある。深夜時間帯を、例えば午後11時~午前7時とすると、深夜時間帯開始時刻である午後11時から深夜時間帯終了時刻である午前7時にかけて、外気温は略下降する変化を示す。したがって、深夜時間帯の後半に沸き上げ運転をシフトすることにより、外気温度が低くなる深夜時間帯でヒートポンプを運転するため、エネルギ効率(COP)が低くなるという課題があった。 In the heat pump hot water supply device described in Patent Document 1, the influence of the energy efficiency of the heat pump on the change in the outside air temperature during the midnight time zone is not considered. The heat pump has a characteristic that the higher the outside air temperature, the higher the COP, which is the ratio of the water heating capacity to the power consumption of the heat pump, so-called energy efficiency. Assuming that the midnight time zone is, for example, 11:00 pm to 7:00 am, the outside air temperature changes substantially from 11:00 pm, which is the midnight time zone start time, to 7:00 am, which is the midnight time zone end time. Therefore, by shifting the boiling operation in the latter half of the midnight time zone, the heat pump is operated in the midnight time zone when the outside air temperature is low, so that there is a problem that energy efficiency (COP) is lowered.
 また、特許文献2に記載のヒートポンプ給湯装置においては、運転するヒートポンプの周波数は、(必要な熱量/貯湯時間)で算出される加熱能力と周波数との関係を示すグラフから決定されている。ヒートポンプのCOPは、圧縮機効率が一定、又は周波数の低下に伴う圧縮機効率の低下が小さければ、特許文献2に記載のヒートポンプ給湯装置のように低い周波数で運転する方が高い周波数で運転するよりもエネルギ効率は高くなる。 Further, in the heat pump hot water supply apparatus described in Patent Document 2, the frequency of the heat pump to be operated is determined from a graph showing the relationship between the heating capacity and the frequency calculated by (necessary heat amount / hot water storage time). The COP of the heat pump is operated at a higher frequency when operated at a lower frequency as in the heat pump hot water supply device described in Patent Document 2 if the compressor efficiency is constant or the decrease in the compressor efficiency accompanying a decrease in frequency is small. Is more energy efficient.
 ところで、近年商品化されているヒートポンプ給湯装置の冷媒として、二酸化炭素が使用されている。二酸化炭素はフルオロカーボンに対して、高低圧の差圧が3倍、シリンダ容積が1/3、吐出圧が3倍程度になる(ヒートポンプ・蓄熱センター編「ノンフロン技術」p.50、オーム社、平成16年2月1日発行)。このように、冷媒として二酸化炭素を使用する圧縮機は、フルオロカーボンに対して高低圧の差圧が3倍と高いことから、圧縮機の周波数の低下に伴い、圧縮室の漏れの影響が大きくなり、圧縮機効率の低下が大きくなる。したがって、二酸化炭素を冷媒として使用したヒートポンプ給湯装置は、周波数が低いほどエネルギ効率が高くならず、エネルギ効率が最高となる周波数が存在する。即ち、特許文献2のものには、エネルギ効率が最高となる周波数が存在する場合の沸き上げ制御手段について考慮されていない。 Incidentally, carbon dioxide is used as a refrigerant in heat pump water heaters that have been commercialized in recent years. Carbon dioxide has a pressure difference of 3 times higher than that of fluorocarbon, 1/3 cylinder volume, and 3 times higher discharge pressure (“Non-Freon Technology” edited by Heat Pump and Thermal Storage Center, p. 50, Ohmsha, Heisei) (Issued February 1, 2016). As described above, a compressor using carbon dioxide as a refrigerant has a high differential pressure of three times as high as that of fluorocarbon. Therefore, as the frequency of the compressor decreases, the effect of leakage in the compression chamber increases. As a result, the compressor efficiency decreases greatly. Therefore, the heat pump hot water supply apparatus using carbon dioxide as a refrigerant does not have higher energy efficiency as the frequency is lower, and there is a frequency at which the energy efficiency is highest. That is, the thing of the patent document 2 does not consider the boiling-up control means when the frequency where energy efficiency becomes the highest exists.
 また、特許文献3に記載のヒートポンプ給湯装置では、加熱能力を優先した運転と運転効率を優先した運転を切り替えるようにしているが、深夜時間帯における運転の切り替えの制御手段については考慮されていない。 Moreover, in the heat pump hot water supply apparatus described in Patent Document 3, the operation that prioritizes the heating capacity and the operation that prioritizes the operation efficiency are switched, but the control means for switching the operation in the midnight time zone is not considered. .
 本発明の目的は、高いエネルギ効率を維持することができ、且つ電力需要の平準化にも寄与することが可能なヒートポンプ給湯装置を得ることにある。 An object of the present invention is to obtain a heat pump water heater that can maintain high energy efficiency and can contribute to leveling of electric power demand.
 上記目的を達成するために、本発明は、ヒートポンプと、該ヒートポンプで加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、外気温度を用いて加熱能力を設定する設定手段と、深夜時間帯に前記設定手段で設定した加熱能力の最小値で前記ヒートポンプを優先的に運転させる制御手段とを備え、前記制御手段は、前記加熱能力の最小値で前記ヒートポンプを優先的に運転させるだけでは前記深夜時間帯に沸き上げを完了できない場合に、前記加熱能力の最小値より高い加熱能力で前記ヒートポンプを運転させるように制御することを特徴とする。 In order to achieve the above object, the present invention provides a heat pump water heater comprising a heat pump and a hot water storage tank for storing hot water heated by the heat pump, and setting means for setting the heating capacity using the outside air temperature; Control means for preferentially operating the heat pump with a minimum value of the heating capacity set by the setting means during midnight hours, and the control means preferentially operates the heat pump with the minimum value of the heating capacity If the heating cannot be completed in the midnight time alone, the heat pump is controlled to operate with a heating capacity higher than the minimum value of the heating capacity.
 本発明によれば、電気料金の安い深夜時間帯のうち、電力需要量の少ない所定時間帯にエネルギ効率が実質的に最高となる加熱能力でヒートポンプを運転する制御を優先しているので、タンク沸き上げ時のエネルギ効率を高くできると共に、電力需要の平準化に寄与できるヒートポンプ給湯装置を得ることができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, the priority is given to the control of operating the heat pump with the heating capacity at which the energy efficiency is substantially the highest in the predetermined time zone where the electric power demand is small in the midnight time zone where the electricity rate is low. It is possible to obtain a heat pump hot water supply device that can increase energy efficiency during boiling and contribute to leveling of power demand.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
 以下、本発明に係るヒートポンプ給湯装置の実施例1を図面に基づいて説明する。 Hereinafter, Example 1 of the heat pump hot water supply apparatus according to the present invention will be described with reference to the drawings.
 図1は、ヒートポンプ給湯装置100の系統図である。 FIG. 1 is a system diagram of the heat pump water heater 100.
 ヒートポンプ給湯装置100は貯湯タンクユニット1とヒートポンプユニット2とを備えている。貯湯タンクユニット1は、貯湯タンク11と、この貯湯タンク11上部に接続された出湯管12と、貯湯タンク11下部にその一方が接続された給水管13と、この給水管13の他方に接続され、装置外部の上水道と接続される給水金具14と、この給水金具14から取り込んだ上水を適正な水圧に調整する減圧弁15と、出湯管12からの高温水と給水管13から分岐された給水分岐管16からの低温水とを混合する給湯混合弁17と、一方が前記給湯混合弁17の下流に接続され、他方を装置外部の給湯端末と接続される給湯金具20と、その間に給湯流量センサ19を含む給湯管18とを備える。 The heat pump hot water supply apparatus 100 includes a hot water storage tank unit 1 and a heat pump unit 2. The hot water storage tank unit 1 is connected to a hot water storage tank 11, a hot water discharge pipe 12 connected to the upper part of the hot water storage tank 11, a water supply pipe 13 connected to the lower part of the hot water storage tank 11, and the other of the water supply pipe 13. The water supply fitting 14 connected to the water supply outside the apparatus, the pressure reducing valve 15 for adjusting the water taken in from the water supply fitting 14 to an appropriate water pressure, the hot water from the tap water pipe 12 and the water supply pipe 13 were branched. A hot water supply mixing valve 17 for mixing low temperature water from the water supply branch pipe 16, one of the hot water supply mixing valves 17 connected downstream of the hot water supply mixing valve 17 and the other connected to a hot water supply terminal outside the apparatus, and hot water supply therebetween And a hot water supply pipe 18 including a flow rate sensor 19.
 また、貯湯タンク11は、貯湯タンク11下部にその一方を接続され、他方をヒートポンプユニット2と接続されるヒートポンプ往き管21と、貯湯タンク11上部に接続され、他方をヒートポンプユニット2と接続されるヒートポンプ戻り管22とを備え、貯湯タンク11内の湯水をヒートポンプユニット2を介して循環可能に構成している。 The hot water storage tank 11 is connected to the lower part of the hot water storage tank 11, the other is connected to the heat pump outlet pipe 21 connected to the heat pump unit 2, the upper part of the hot water storage tank 11, and the other is connected to the heat pump unit 2. A heat pump return pipe 22 is provided, and the hot water in the hot water storage tank 11 can be circulated through the heat pump unit 2.
 貯湯タンク11側面に設けられた複数のタンク温度センサ30,給水管13に設けられた給水温度センサ31,給湯管18に設けられた給湯温度センサ32は各部の温度を検知し、その温度情報を貯湯タンク制御部23へ送り、貯湯タンク制御部23は後述のヒートポンプ制御部58,リモコン(図示せず)との通信を行うと共に貯湯タンクユニット1の制御を行う。 A plurality of tank temperature sensors 30 provided on the side surface of the hot water storage tank 11, a water supply temperature sensor 31 provided on the water supply pipe 13, and a hot water supply temperature sensor 32 provided on the hot water supply pipe 18 detect the temperature of each part, and the temperature information is obtained. The hot water storage tank control unit 23 communicates with a heat pump control unit 58 and a remote controller (not shown), which will be described later, and controls the hot water storage tank unit 1.
 ヒートポンプユニット2のヒートポンプ回路3は、冷媒を圧縮して高温の冷媒とする圧縮機51、この圧縮機51で圧縮され高温となった冷媒と貯湯タンクユニット1から供給された水とを熱交換する水冷媒熱交換器52、この水冷媒熱交換器52を出た冷媒を減圧する膨張弁53、膨張弁53を出た低温低圧の冷媒を蒸発させる蒸発器54を冷媒管路で接続して構成されている。冷媒を二酸化炭素として、高温の湯の沸き上げを可能としている。 The heat pump circuit 3 of the heat pump unit 2 exchanges heat between the compressor 51 that compresses the refrigerant to form a high-temperature refrigerant, and the refrigerant that has been compressed by the compressor 51 and becomes hot and the water supplied from the hot water storage tank unit 1. A water refrigerant heat exchanger 52, an expansion valve 53 for depressurizing the refrigerant that has exited the water refrigerant heat exchanger 52, and an evaporator 54 for evaporating the low-temperature and low-pressure refrigerant that has exited the expansion valve 53 are connected by a refrigerant line. Has been. Carbon dioxide is used as a refrigerant, enabling boiling of hot water.
 圧縮機51は、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。蒸発器54は空気冷媒熱交換器であり、室外ファン55により室外の大量の空気と減圧された冷媒とを熱交換させる。 The compressor 51 can be controlled in capacity by inverter control, and its rotation speed is variable from low speed to high speed. The evaporator 54 is an air refrigerant heat exchanger, and heat is exchanged between a large amount of outdoor air and the decompressed refrigerant by the outdoor fan 55.
 水冷媒熱交換器52は、冷媒側伝熱管52aと水側伝熱管52bとを有しており、冷媒側伝熱管52aの冷媒の流れと水側伝熱管52bの水の流れとは対向流になっている。そして、高温高圧の冷媒と低温の水とが熱交換する。即ち、水冷媒熱交換器52の入口(図中では水冷媒熱交換器52の下側)で低温であった水が水側伝熱管52bを通過する際に徐々に加熱され、水冷媒熱交換器52の出口(図中では水冷媒熱交換器52の上側)で、後述するヒートポンプ制御部58により設定された所定の温度に昇温される。 The water-refrigerant heat exchanger 52 includes a refrigerant-side heat transfer tube 52a and a water-side heat transfer tube 52b, and the refrigerant flow in the refrigerant-side heat transfer tube 52a and the water flow in the water-side heat transfer tube 52b are opposed to each other. It has become. Then, the high-temperature and high-pressure refrigerant and the low-temperature water exchange heat. That is, when the water having a low temperature passes through the water-side heat transfer pipe 52b at the inlet of the water-refrigerant heat exchanger 52 (below the water-refrigerant heat exchanger 52 in the drawing), the water-refrigerant heat exchange is performed. The temperature is raised to a predetermined temperature set by a heat pump control unit 58 described later at the outlet of the vessel 52 (upper side of the water-refrigerant heat exchanger 52 in the drawing).
 水冷媒熱交換器52の水側伝熱管52bの入口側と前述のヒートポンプ往き管21とが接続され、管路途中に容量制御が可能なタンク循環ポンプ56,水冷媒熱交換器水流量センサ57が配置されている。また、水側伝熱管52bの出口側と前述のヒートポンプ戻り管22とが接続されている。 The inlet side of the water-side heat transfer pipe 52b of the water-refrigerant heat exchanger 52 is connected to the above-described heat pump forward pipe 21, and a tank circulation pump 56, a water-refrigerant heat exchanger, and a water flow sensor 57 capable of capacity control in the middle of the pipe. Is arranged. Further, the outlet side of the water-side heat transfer tube 52b and the heat pump return tube 22 are connected.
 圧縮機51出口側の冷媒管に設けられた圧縮機吐出温度センサ35,蒸発器54の空気入口側に設けられた外気温度センサ36,ヒートポンプ往き管21に設けられた水冷媒熱交換器水入口温度センサ37、及びヒートポンプ戻り管22に設けられた水冷媒熱交換器水出口温度センサ38は各部の温度を検知し、その検知した温度情報をヒートポンプ制御部58に送り、ヒートポンプ制御部58は前述の貯湯タンク制御部23との通信を行うと共にヒートポンプユニット2の制御を行う。 Compressor discharge temperature sensor 35 provided on the refrigerant pipe on the outlet side of the compressor 51, outside air temperature sensor 36 provided on the air inlet side of the evaporator 54, and water refrigerant heat exchanger water inlet provided on the heat pump forward pipe 21 The water refrigerant heat exchanger water outlet temperature sensor 38 provided in the temperature sensor 37 and the heat pump return pipe 22 detects the temperature of each part, and sends the detected temperature information to the heat pump control unit 58. The heat pump control unit 58 is described above. The hot water storage tank control unit 23 and the heat pump unit 2 are controlled.
 給湯時の動作について、以下に説明する。給湯金具20に接続された図示しない給湯端末を開くと、給水金具14に接続された水道の水圧により、貯湯タンク11上部の高温水が出湯管12内に流入し、かつ、低温の給水が給水分岐管16内に流入し、高温水および低温水は給湯混合弁17,給湯流量センサ19,給湯金具20を経て給湯端末から流出する。その際、流量センサ19が水流を検知し、貯湯タンク制御部23は、給湯温度センサ32の検知する温度がリモコン(図示せず)により設定された給湯温度になるように、出湯管12からの高温水と給水分岐管16からの低温水との比率を制御する。貯湯タンク11上部の高温湯が使用された分、貯湯タンク11下部には低温の給水が供給される。 The operation during hot water supply will be described below. When a hot water supply terminal (not shown) connected to the hot water supply fitting 20 is opened, the hot water in the upper part of the hot water storage tank 11 flows into the hot water discharge pipe 12 by the water pressure of the water supply connected to the water supply fitting 14, and the low temperature supply water is supplied. The hot water and the low temperature water flow into the branch pipe 16 and flow out of the hot water supply terminal through the hot water supply mixing valve 17, the hot water supply flow rate sensor 19, and the hot water supply fitting 20. At that time, the flow rate sensor 19 detects the water flow, and the hot water storage tank control unit 23 supplies the hot water supply temperature sensor 32 from the hot water discharge pipe 12 so that the temperature detected by the hot water supply temperature sensor 32 becomes a hot water supply temperature set by a remote controller (not shown). The ratio of the high temperature water and the low temperature water from the feed water branch pipe 16 is controlled. Since the hot water at the upper part of the hot water storage tank 11 is used, the low temperature hot water is supplied to the lower part of the hot water storage tank 11.
 貯湯時の動作について、以下に説明する。貯湯タンク11内の湯水を沸き上げる時、ヒートポンプ制御部58は、ヒートポンプ回路3を運転制御すると共に、タンク循環ポンプ56を運転制御する。この時、後述するように、圧縮機51の回転速度制御、膨張弁53の開度制御、そして、タンク循環ポンプ56の回転速度制御を行う。タンク循環ポンプ56の運転により貯湯タンク11下部から流出した湯水は、ヒートポンプ往き管21を介して水冷媒熱交換器52に流入し、ヒートポンプ回路3の高温の冷媒に加熱され、ヒートポンプ戻り管22を介して貯湯タンク11上部に戻されることにより高温の湯が貯湯される。 The operation during hot water storage will be described below. When boiling hot water in the hot water storage tank 11, the heat pump control unit 58 controls the operation of the heat pump circuit 3 and the tank circulation pump 56. At this time, as will be described later, the rotational speed control of the compressor 51, the opening degree control of the expansion valve 53, and the rotational speed control of the tank circulation pump 56 are performed. Hot water flowing out from the lower part of the hot water storage tank 11 by the operation of the tank circulation pump 56 flows into the water / refrigerant heat exchanger 52 via the heat pump forward pipe 21 and is heated by the high-temperature refrigerant in the heat pump circuit 3, and passes through the heat pump return pipe 22. The hot water is stored by being returned to the upper part of the hot water storage tank 11.
 次に、深夜沸き上げ制御の動作について、図2~図4を用いて説明する。深夜時間帯は電気料金が安くなる時間帯で、例えば午後11時から午前7時までとする。図2の深夜沸き上げ制御のフローチャートにおいて、貯湯タンク制御部23は、深夜時間帯の開始時刻である午後11時に、深夜沸き上げ制御を開始する(S1)。まず、沸き上げ熱量Qaの設定を行う(S2)。沸き上げ熱量Qaは、過去7日間の使用熱量の平均値と標準偏差と予備熱量の和として算出する。 Next, the operation of midnight boiling control will be described with reference to FIGS. The midnight time zone is a time zone during which the electricity rate is reduced, for example, from 11 pm to 7 am. In the flowchart of the late-night boiling control in FIG. 2, the hot water storage tank control unit 23 starts the late-night boiling control at 11:00 pm, which is the start time of the late-night time zone (S1). First, the boiling heat quantity Qa is set (S2). The boiling heat amount Qa is calculated as the sum of the average value, standard deviation, and preliminary heat amount of heat used over the past seven days.
 1日(前日の午後11時から当日の午後11時まで)の使用熱量Qcを以下の式で算出する。 Calculating the amount of heat used Qc for one day (from 11:00 pm on the previous day to 11:00 pm on the same day) using the following formula.
   Qc=Qz1+Qd-Qz  ………(数1)
 ここで、Qz1は前日の午後11時での貯湯タンク11の残熱量、Qdはヒートポンプユニット2の加熱量、Qzは当日の午後11時での残熱量である。残熱量Qz1,Qzは貯湯タンク11の各タンク温度センサ30で検知した温度と給水温度センサ31で検知した温度との温度差と、各タンク温度センサ30を含む貯湯タンク11を上下方向に区分した容積と水の密度と比熱との積の和で算出される。また、加熱量Qdは後述するヒートポンプユニット2の加熱能力の設定値(必要加熱能力)の運転時間の積分値で算出される。
Qc = Qz1 + Qd−Qz (Equation 1)
Here, Qz1 is the remaining heat amount of the hot water storage tank 11 at 11:00 pm on the previous day, Qd is the heating amount of the heat pump unit 2, and Qz is the remaining heat amount at 11:00 pm on that day. The residual heat amounts Qz1 and Qz are divided in the vertical direction from the temperature difference between the temperature detected by each tank temperature sensor 30 of the hot water storage tank 11 and the temperature detected by the feed water temperature sensor 31 and the hot water storage tank 11 including each tank temperature sensor 30. Calculated as the sum of the product of volume, water density and specific heat. The heating amount Qd is calculated as an integral value of the operation time of a set value (necessary heating capacity) of the heating capacity of the heat pump unit 2 described later.
 貯湯タンク制御部23は、過去7日間の使用熱量を記憶し、平均値および標準偏差を求め、沸き上げ熱量Qaを使用熱量のばらつきを考慮して、平均値と標準偏差と予備熱量の和として設定する。予備熱量は、例えば、給湯温度42℃,給湯量100Lの給湯が可能な熱量とする。 The hot water storage tank control unit 23 stores the amount of heat used for the past seven days, obtains an average value and standard deviation, and considers the amount of boiling heat Qa as the sum of the average value, standard deviation, and preliminary heat amount in consideration of variations in the amount of heat used. Set. The preliminary heat amount is, for example, a heat amount capable of supplying hot water at a hot water supply temperature of 42 ° C. and a hot water supply amount of 100 L.
 次に、沸き上げ温度目標値tpの設定を行う(S3)。沸き上げ温度tpを以下の式で算出する。 Next, the boiling temperature target value tp is set (S3). The boiling temperature tp is calculated by the following formula.
   tp=Qa/(ρ・c・V・α)+twi  ………(数2)
 但し、レジオネラ菌発生防止のため、算出した沸き上げ温度目標値tpが65℃未満の場合は65℃に設定する。ここで、Qaは前述の沸き上げ熱量、ρは水密度、cは水比熱、Vは貯湯タンク11の容積、αは容積効率、twiは図1の給水温度センサ31の検知する給水温度である。容積効率αは、ヒートポンプ回路3保護のため、水冷媒熱交換器52の水入口温度が沸き上げ温度tpより低い温度、例えば55℃で沸き上げを停止するため、貯湯タンク11下部の温度が沸き上げ温度tpとならないことを考慮したものである。
tp = Qa / (ρ · c · V · α) + twi (Equation 2)
However, in order to prevent Legionella bacteria generation, when the calculated boiling temperature target value tp is less than 65 ° C, the temperature is set to 65 ° C. Here, Qa is the amount of heating heat, ρ is the water density, c is the specific heat of water, V is the volume of the hot water storage tank 11, α is the volumetric efficiency, and twi is the feed water temperature detected by the feed water temperature sensor 31 in FIG. . In order to protect the heat pump circuit 3, the volumetric efficiency α stops boiling when the water inlet temperature of the water-refrigerant heat exchanger 52 is lower than the boiling temperature tp, for example, 55 ° C. This is because the raised temperature tp is not considered.
 次に、沸き上げ時間Tnの設定を行う(S4)。前述の通り深夜時間帯を午後11時から午前7時までの8時間としている。沸き上げ時間Tnを例えば5時間に設定する。この5時間は深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの時間とする。この沸き上げ時間Tnは例えば、季節毎の電力需要量を考慮して、季節(カレンダー)により変更するようにしてもよい。 Next, the boiling time Tn is set (S4). As mentioned above, the midnight time is 8 hours from 11:00 pm to 7:00 am. The boiling time Tn is set to 5 hours, for example. The five hours are assumed to be from 1:00 am to 6:00 am during the midnight time when the power demand is reduced. This boiling time Tn may be changed according to the season (calendar), for example, in consideration of the power demand for each season.
 次に、ヒートポンプユニット2の加熱能力の最小値Wminと最大値Wmaxの設定を行う(S5)。図3A、図3Bは沸き上げ温度目標値tpが70℃以上と70℃未満とでそれぞれ、外気温度と加熱能力の最小値Wminおよび最大値Wmaxとの関係を示したものである。すなわち、沸き上げ温度目標値tpと外気温度(外気温度センサ36の検出値)から、加熱能力の最小値Wminと最大値Wmaxを決定できる。図3Bで沸き上げ温度目標値が70℃未満で外気温度がtaの時、ヒートポンプユニット2の加熱能力とCOP(消費電力に対する加熱能力の比率)との関係を図4に示す。主に圧縮機51の回転速度(周波数)を変更することにより、加熱能力を変更している。ヒートポンプユニット2はCOPが加熱能力に対して最高値をもつ特性を示す。そして、図3Bに示すヒートポンプユニット2の加熱能力の最小値を図4に示すCOPが略最高となる加熱能力としている。また、図3Bの加熱能力の最大値は、各外気温で、深夜時間帯に給湯がない場合、最大でも深夜時間帯の8時間で沸き上げが完了する加熱能力としている。したがって、図3Bにおいては、小さい加熱能力で運転する方が大きい加熱能力で運転するよりもCOPが高くなる。 Next, the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 are set (S5). 3A and 3B show the relationship between the outside air temperature and the minimum value Wmin and the maximum value Wmax of the heating capacity when the boiling temperature target value tp is 70 ° C. or higher and lower than 70 ° C., respectively. That is, the minimum value Wmin and the maximum value Wmax of the heating capacity can be determined from the boiling temperature target value tp and the outside air temperature (the detected value of the outside air temperature sensor 36). FIG. 4 shows the relationship between the heating capacity of the heat pump unit 2 and COP (ratio of heating capacity to power consumption) when the boiling temperature target value is less than 70 ° C. and the outside air temperature is ta in FIG. 3B. The heating capacity is changed mainly by changing the rotation speed (frequency) of the compressor 51. The heat pump unit 2 exhibits the characteristic that the COP has the highest value for the heating capacity. The minimum heating capacity of the heat pump unit 2 shown in FIG. 3B is the heating capacity at which the COP shown in FIG. In addition, the maximum value of the heating capacity in FIG. 3B is the heating capacity at which boiling is completed at the maximum in 8 hours in the midnight hours when there is no hot water supply in the midnight hours at each outside temperature. Therefore, in FIG. 3B, the COP is higher when operating with a small heating capacity than when operating with a large heating capacity.
 次に、ヒートポンプユニット2の必要加熱能力Wの計算を行う(S6)。必要加熱能力Wを以下の式で算出する。 Next, the required heating capacity W of the heat pump unit 2 is calculated (S6). The required heating capacity W is calculated by the following formula.
   W=(Qa-Qz)/(Tn・β)  ………(数3)
 ここで、Qaは前述の沸き上げ熱量、Qzは前述の当日午後11時での残熱量、Tnは前述の沸き上げ時間、βは加熱効率である。加熱効率βは、ヒートポンプユニット2の沸き上げ運転の際、立ち上り時や沸き上げ完了近くにおいて加熱能力が必要加熱能力Wに満たない場合や、外気温度が低い時の除霜運転による平均加熱能力の低下を考慮したものであり、外気温度によって値が設定される。
W = (Qa−Qz) / (Tn · β) (Equation 3)
Here, Qa is the above-mentioned amount of heating, Qz is the amount of residual heat at 11:00 pm on the same day, Tn is the above-mentioned boiling time, and β is the heating efficiency. The heating efficiency β is the average heating capacity of the heating pump unit 2 when the heating capacity is less than the required heating capacity W at the start-up or near the completion of the heating, or when the outside air temperature is low. The value is set according to the outside air temperature.
 次に、計算された必要加熱能力WがステップS5で設定したヒートポンプユニット2の加熱能力の最小値Wminと最大値Wmaxとの範囲内にあるかを判定し、それぞれの場合に対し必要な処理を行う(S7~S15)。 Next, it is determined whether the calculated required heating capacity W is within the range between the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 set in step S5, and necessary processing is performed for each case. Perform (S7 to S15).
 必要加熱能力WがステップS5で設定した加熱能力の最小値Wmin未満の場合(S7Y)、必要加熱能力Wを最小値Wminとし(S8)、変更された必要加熱能力で逆に沸き上げ時間Tnを算出する(S9)。この時、沸き上げ時間Tnを以下の式で算出する。 If the required heating capacity W is less than the minimum heating capacity value Wmin set in step S5 (S7Y), the required heating capacity W is set to the minimum value Wmin (S8), and the boiling time Tn is reversed with the changed required heating capacity. Calculate (S9). At this time, the boiling time Tn is calculated by the following formula.
   Tn=(Qa-Qz)/(W・β)  ………(数4)
 この計算により、沸き上げ時間TnはステップS4で設定した値、5時間より短くなる。したがって、深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの間で沸き上げを完了することが可能である。
Tn = (Qa−Qz) / (W · β) (Equation 4)
By this calculation, the boiling time Tn becomes shorter than the value set in step S4, 5 hours. Therefore, it is possible to complete the boiling between 1:00 am and 6:00 am when the power demand is reduced in the midnight time zone.
 次に、終了時刻シフト時間Tfの設定を行う(S10)。この時、沸き上げ終了時刻を深夜時間帯の終了時刻午前7時から電力需要量が少ない午前6時にシフトするため、終了時刻シフト時間Tfを1時間と設定する。 Next, the end time shift time Tf is set (S10). At this time, since the boiling end time is shifted from 7:00 am in the midnight time zone to 6:00 am when the amount of power demand is small, the end time shift time Tf is set to 1 hour.
 必要加熱能力WがステップS5で設定した加熱能力の最小値Wmin以上の場合で(S7N)、さらに最大値Wmax以上の場合(S11Y)、必要加熱能力Wを最大値Wmaxとし(S12)、変更された必要加熱能力で逆に沸き上げ時間Tnを算出する(S13)。この時、沸き上げ時間Tnを(数4)と同じ式で算出する。この計算により、沸き上げ時間TnはステップS4で設定した値、5時間より長くなる。したがって、深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの間だけでは沸き上げを完了することができず、それ以外の午前6時から午前7時までの間と前日の午後11時から次の日の午前1時までの間も沸き上げ運転を行う必要がある。 If the required heating capacity W is not less than the minimum heating capacity Wmin set in step S5 (S7N), and if it is not less than the maximum value Wmax (S11Y), the required heating capacity W is set to the maximum value Wmax (S12) and changed. On the contrary, the boiling time Tn is calculated based on the required heating capacity (S13). At this time, the boiling time Tn is calculated by the same formula as (Equation 4). By this calculation, the boiling time Tn becomes longer than the value set in step S4, 5 hours. Therefore, boiling cannot be completed only from 1 am to 6 am during the midnight hours when power demand is low, and from 6 am to 7 am otherwise. It is necessary to perform boiling operation from 11:00 pm the previous day to 1 am the next day.
 次に、終了時刻シフト時間Tfの設定を行う(S14)。この時、沸き上げ終了時刻をシフトせず、深夜時間帯の終了時刻午前7時とするため、終了時刻シフト時間Tfを0時間と設定する。 Next, the end time shift time Tf is set (S14). At this time, the end time shift time Tf is set to 0 hours so that the boiling end time is not shifted and the end time of the midnight time zone is set to 7:00 am.
 必要加熱能力WがステップS5で設定した加熱能力の範囲内にある場合(S11N)、沸き上げ時間TnはステップS4で設定した値、5時間のままであり、深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの間で沸き上げを完了することが可能である。 When the required heating capacity W is within the range of the heating capacity set in step S5 (S11N), the boiling time Tn remains at the value set in step S4, 5 hours, and the power demand in the midnight time zone. It is possible to complete the boiling between 1 am and 6 am when the amount of water is reduced.
 この時、終了時刻シフト時間Tfの設定を行う(S15)。沸き上げ終了時刻を深夜時間帯の終了時刻午前7時から電力需要量が少ない午前6時にシフトするため、終了時刻シフト時間Tfを1時間と設定する。 At this time, the end time shift time Tf is set (S15). In order to shift the boiling end time from 7:00 am in the midnight time zone to 6:00 am in which the amount of power demand is small, the end time shift time Tf is set to 1 hour.
 以上のようにステップS7~S15で、沸き上げ時間Tnと必要加熱能力Wが決定された後、沸き上げ開始時刻Tsを設定する(S16)。沸き上げ開始時刻Tsを以下の式で算出する。 As described above, after the boiling time Tn and the required heating capacity W are determined in steps S7 to S15, the boiling start time Ts is set (S16). The boiling start time Ts is calculated by the following formula.
   Ts=深夜時間帯終了時刻-Tf-Tn  ………(数5)
 ここで、Tfは前述の終了時刻シフト時間、Tnは沸き上げ時間である。また、深夜時間帯終了時刻は午前7時である。
Ts = midnight time end time−Tf−Tn (Equation 5)
Here, Tf is the aforementioned end time shift time, and Tn is the boiling time. The end time of the midnight time zone is 7:00 am.
 次に、現在時刻が沸き上げ開始時刻Tsになったかの判定を行う(S17)。現在時刻が沸き上げ開始時刻Tsになった場合は(S17Y)、ヒートポンプの運転を行い(S18)、現在時刻が沸き上げ開始時刻Tsになっていない場合は(S17N)、ステップS17の判定を繰り返す。 Next, it is determined whether the current time has reached the boiling start time Ts (S17). When the current time reaches the boiling start time Ts (S17Y), the heat pump is operated (S18). When the current time does not reach the boiling start time Ts (S17N), the determination in step S17 is repeated. .
 ヒートポンプ運転(S18)は、以下のように行われる。この時、貯湯タンク制御部23は、ヒートポンプ制御部58にヒートポンプ運転指令を出すと共に、沸き上げ温度目標値tp、必要加熱能力Wの値を与える。ヒートポンプ制御部58は水冷媒熱交換器52の水出口温度センサ38で検知した水出口温度が沸き上げ温度目標値tpとなるように圧縮機51の回転速度制御を行う。 The heat pump operation (S18) is performed as follows. At this time, the hot water storage tank control unit 23 issues a heat pump operation command to the heat pump control unit 58, and gives the boiling temperature target value tp and the required heating capacity W. The heat pump control unit 58 controls the rotation speed of the compressor 51 so that the water outlet temperature detected by the water outlet temperature sensor 38 of the water refrigerant heat exchanger 52 becomes the boiling temperature target value tp.
 また、ヒートポンプ制御部58は圧縮機吐出温度センサ35で検知した吐出温度が以下の式で算出される目標値td0となるように膨張弁53の開度制御を行う。 Further, the heat pump control unit 58 controls the opening degree of the expansion valve 53 so that the discharge temperature detected by the compressor discharge temperature sensor 35 becomes a target value td0 calculated by the following equation.
   Td0=f(tp,thwi,ta,W)  ………(数6)
 ここで、tpは沸き上げ温度目標値、thwiは水冷媒熱交換器52の水入口温度センサ37で検知した水入口温度、taは外気温センサ36で検知した外気温度、Wは必要加熱能力で、吐出温度の目標値td0はこれらの関数fで表される。目標値はヒートポンプユニット2のCOPが略最高となる吐出温度に設定されている。ここでは、目標値を必要加熱能力Wの関数としたので、図3Bに示す加熱能力の最小値Wminと最大値Wmaxの全範囲で、高効率なヒートポンプの運転が可能である。
Td0 = f (tp, thwi, ta, W) (Equation 6)
Here, tp is the boiling temperature target value, thwi is the water inlet temperature detected by the water inlet temperature sensor 37 of the water refrigerant heat exchanger 52, ta is the outside air temperature detected by the outside air temperature sensor 36, and W is the required heating capacity. The target value td0 of the discharge temperature is expressed by these functions f. The target value is set to a discharge temperature at which the COP of the heat pump unit 2 is substantially maximum. Here, since the target value is a function of the required heating capacity W, a highly efficient heat pump can be operated in the entire range of the minimum value Wmin and the maximum value Wmax of the heating capacity shown in FIG. 3B.
 また、ヒートポンプ制御部58は水冷媒熱交換器52の水流量センサ57で検知した水流量が以下の式で算出される目標値Lw0となるようにタンク循環ポンプ56の回転速度制御を行う。 Further, the heat pump control unit 58 controls the rotational speed of the tank circulation pump 56 so that the water flow rate detected by the water flow rate sensor 57 of the water refrigerant heat exchanger 52 becomes the target value Lw0 calculated by the following equation.
   Lw0=W/((ρ・c)(tp-thwi))  ………(数7)
 ここで、Wは必要加熱能力、ρは水密度、cは水比熱、tpは沸き上げ温度目標値、thwiは水冷媒熱交換器52の水入口温度センサ37で検知した水入口温度である。
Lw0 = W / ((ρ · c) (tp−thwi)) (Equation 7)
Here, W is the required heating capacity, ρ is the water density, c is the specific heat of water, tp is the boiling temperature target value, and thwi is the water inlet temperature detected by the water inlet temperature sensor 37 of the water refrigerant heat exchanger 52.
 ヒートポンプ制御部58は、以上の圧縮機51の回転速度制御およびタンク循環ポンプ56の回転数速度制御により、沸き上げ温度がtp、加熱能力がWの沸き上げ運転を行う。 The heat pump control unit 58 performs a heating operation with a boiling temperature of tp and a heating capacity of W by controlling the rotation speed control of the compressor 51 and the rotation speed control of the tank circulation pump 56 described above.
 ヒートポンプ運転中、貯湯タンク制御部23は、所定のタンク温度センサ30が予め設定された沸き上げ終了温度以上になったかどうかの判定を行う(S19)。沸き上げ終了温度以上になっていない場合は(S19N)、ステップS19の判定を繰り返す。沸き上げ終了温度以上になった場合は(S19Y)、貯湯タンク制御部23は、ヒートポンプ制御部58にヒートポンプ停止指令を出し(S20)、深夜沸き上げを完了する(S21)。なお、前述の加熱量Qd算出のため、ヒートポンプ運転中、必要加熱能力Wの時間積分の計算を行う。 During the heat pump operation, the hot water storage tank control unit 23 determines whether or not the predetermined tank temperature sensor 30 is equal to or higher than a preset boiling end temperature (S19). If it is not higher than the boiling end temperature (S19N), the determination in step S19 is repeated. If the boiling end temperature is reached (S19Y), the hot water storage tank control unit 23 issues a heat pump stop command to the heat pump control unit 58 (S20), and completes the midnight boiling (S21). In order to calculate the heating amount Qd, the time integration of the required heating capacity W is calculated during the heat pump operation.
 以上詳述したように、深夜沸き上げ運転は3パターンに区分される(図5A-図5C参照)。すなわち、1番目(図5A)は、深夜時間帯(午後11時から午前7時まで)のうち、さらに電力需要量の少ない所定時間帯(午前1時から午前6時まで)にヒートポンプの効率が略最高となる加熱能力でヒートポンプを運転するパターンである。この時、所定時間帯終了時刻(午前6時)から必要沸き上げ時間を引いた時刻を沸き上げ開始時刻に設定し、所定時間帯の後半に沸き上げ運転をシフトしている。 As described in detail above, the midnight boiling operation is divided into three patterns (see FIGS. 5A to 5C). That is, in the first (FIG. 5A), the efficiency of the heat pump is reduced in a predetermined time zone (from 1 am to 6 am) in which the power demand is smaller in the late-night time zone (from 11 pm to 7 am). This is a pattern in which the heat pump is operated at a heating capacity that is substantially the highest. At this time, the time obtained by subtracting the required boiling time from the predetermined time zone end time (6:00 am) is set as the boiling start time, and the boiling operation is shifted to the latter half of the predetermined time zone.
 2番目(図5B)は、略最高効率の加熱能力での運転だけでは所定時間帯に沸き上げを完了できない場合である。これは、所定時間帯に沸き上げが完了するように、ヒートポンプの効率が略最高となる加熱能力より高い加熱能力でヒートポンプを運転するものである。この時、所定時間帯(午前1時から午前6時まで)の略全時間を使って沸き上げが完了する加熱能力でヒートポンプを運転する。 The second (FIG. 5B) is a case where boiling cannot be completed in a predetermined time zone only by operation with the heating capacity with the highest efficiency. This is to operate the heat pump with a heating capacity higher than the heating capacity at which the efficiency of the heat pump is substantially maximum so that boiling is completed in a predetermined time period. At this time, the heat pump is operated with a heating capacity in which boiling is completed using substantially the entire time of a predetermined time zone (from 1 am to 6 am).
 3番目(図5C)は、最大加熱能力で運転しても所定時間帯に沸き上げを完了できない場合である。深夜時間帯に沸き上げが完了するように、最大加熱能力でヒートポンプを運転する。この時、深夜時間帯終了時刻(午前7時)から必要沸き上げ時間を引いた時刻を沸き上げ開始時刻に設定し、深夜時間帯の後半に沸き上げ運転をシフトしている。 3rd (FIG. 5C) is a case where boiling cannot be completed within a predetermined time zone even if it is operated at the maximum heating capacity. The heat pump is operated at the maximum heating capacity so that boiling is completed at midnight. At this time, a time obtained by subtracting the required boiling time from the midnight time zone end time (7:00 am) is set as a boiling start time, and the heating operation is shifted to the latter half of the midnight time zone.
 なお、本実施例では、所定時間帯終了時刻または深夜時間帯終了時刻に沸き上げが完了するように説明したが、この時刻より前に余裕をもって沸き上げが完了するように、例えば、ヒートポンプの加熱能力を若干大きめに再設定して、運転時間が若干短くなるようにしても良い。 In the present embodiment, it has been described that the boiling is completed at the predetermined time zone end time or the midnight time zone end time. However, for example, the heating of the heat pump is performed so that the boiling is completed with a margin before this time. The capacity may be reset to be slightly larger so that the operation time is slightly shorter.
 1番目の運転パターンにより、ヒートポンプの効率が略最高となる加熱能力でヒートポンプを運転するため、ヒートポンプ給湯装置を高い効率で運転することができる。 The first operation pattern allows the heat pump to operate at a high efficiency because the heat pump is operated with a heating capacity at which the efficiency of the heat pump is substantially the highest.
 また、1番目および2番目の運転パターンにより、小さい加熱能力でヒートポンプを長時間運転するため、ヒートポンプの沸き上げ運転開始時刻が早まり、運転深夜時間帯の外気温度が高い時間帯での運転時間が増加し、ヒートポンプがエネルギ効率が高くなる条件で運転できる。 In addition, since the heat pump is operated for a long time with a small heating capacity according to the first and second operation patterns, the heat pump boiling operation start time is advanced, and the operation time in the time zone when the outside air temperature is high in the operation midnight time zone The heat pump can be operated under the condition that the energy efficiency is increased.
 また、1番目および2番目の運転パターンにより、深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの所定時間帯内でヒートポンプ運転を行っているので、電力需要の平準化に寄与できる。 In addition, since the heat pump operation is performed within a predetermined time period from 1 am to 6 am in which the power demand is reduced in the midnight time zone according to the first and second operation patterns, Can contribute to
 また、3番目の運転パターンにより、沸き上げ熱量が多い場合でも深夜時間帯に確実に沸き上げを完了することができる。 Also, with the third operation pattern, boiling can be completed reliably in the midnight hours even when the amount of boiling heat is large.
 本発明の実施例2を図6を参照して説明する。本実施例は、図2に示す深夜沸き上げ制御フローチャートのステップS18におけるヒートポンプ運転が実施例1と異なる。本実施例では、ヒートポンプの加熱能力を一定時間毎に設定する。 Embodiment 2 of the present invention will be described with reference to FIG. The present embodiment differs from the first embodiment in the heat pump operation in step S18 of the midnight boiling control flowchart shown in FIG. In this embodiment, the heating capacity of the heat pump is set at regular intervals.
 貯湯タンク制御部23は、ヒートポンプ運転時、加熱能力の再設定制御を開始する(S30)。現在の加熱能力が最大値Wmax未満の場合(S31Y)、加熱能力の再設定を行い、最大値Wmaxの場合(S31N)、加熱能力の再設定を行わず制御を終了する(S32)。すなわち、午前1時から午前6時までの所定時間帯内でヒートポンプ運転を行っている場合、加熱能力の再設定を行う。 The hot water storage tank control unit 23 starts the heating capacity resetting control during the heat pump operation (S30). If the current heating capacity is less than the maximum value Wmax (S31Y), the heating capacity is reset. If the current heating capacity is the maximum value Wmax (S31N), the control is terminated without resetting the heating capacity (S32). That is, when the heat pump operation is performed within a predetermined time period from 1 am to 6 am, the heating capacity is reset.
 加熱能力の再設定は、まず、現在熱量Qxの計算を行う(S33)。現在熱量Qxは貯湯タンク11の各タンク温度センサ30で検知した温度と給水温度センサ31で検知した温度との温度差と、各タンク温度センサ30を含む貯湯タンク11を上下方向に区分した容積と水の密度と比熱との積の和で算出される。 To reset the heating capacity, first, the current heat quantity Qx is calculated (S33). The current amount of heat Qx is the temperature difference between the temperature detected by each tank temperature sensor 30 of the hot water storage tank 11 and the temperature detected by the feed water temperature sensor 31, and the volume of the hot water storage tank 11 including each tank temperature sensor 30 divided vertically. Calculated as the sum of the product of water density and specific heat.
 次に、沸き上げ残時間Trの計算を行う(S34)。沸き上げ残時間Trを以下の式で算出する。 Next, the remaining boiling time Tr is calculated (S34). The remaining boiling time Tr is calculated by the following formula.
   Tr=深夜時間帯終了時刻-Tf-現在時刻  ………(数8)
 ここで、深夜時間帯終了時刻は午前7時、Tfは終了時刻シフト時間で、図2のステップS10またはS15で設定した1時間である。
Tr = Midnight time end time-Tf-current time (Equation 8)
Here, the end time of the midnight time zone is 7:00 am, and Tf is the end time shift time, which is one hour set in step S10 or S15 in FIG.
 次に、ヒートポンプユニット2の加熱能力の最小値Wminと最大値Wmaxの設定を行う(S35)。設定の方法は、図2のステップS5と同じである。 Next, the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 are set (S35). The setting method is the same as step S5 in FIG.
 次に、ヒートポンプユニット2の必要加熱能力Wの計算を行う(S36)。必要加熱能力Wを以下の式で算出する。 Next, the required heating capacity W of the heat pump unit 2 is calculated (S36). The required heating capacity W is calculated by the following formula.
   W=(Qa-Qx)/(Tr・β)  ………(数9)
 ここで、Qaは実施例1で述べた沸き上げ熱量、Qxは前述の現在熱量、Trは前述の沸き上げ残時間、βは実施例1で説明した加熱効率である。
W = (Qa−Qx) / (Tr · β) (Equation 9)
Here, Qa is the amount of heating heat described in the first embodiment, Qx is the above-described current heat amount, Tr is the above-described remaining heating time, and β is the heating efficiency described in the first embodiment.
 次に、計算された必要加熱能力WがステップS35で設定したヒートポンプユニット2の加熱能力の最小値Wminと最大値Wmaxとの範囲内にあるかを判定し、範囲外の場合は必要な処理を行う(S37~S40)。必要加熱能力WがステップS35で設定した加熱能力の最小値Wmin未満の場合(S37Y)、必要加熱能力Wを最小値Wminとする(S38)。また、必要加熱能力Wが最大値Wmaxより大きい場合(S39Y)、必要加熱能力Wを最大値Wmaxとする(S40)。なお、ステップS39Yの場合、必要加熱能力を最大値Wmaxで抑えられているため、所定時間帯終了時刻の午前6時までに沸き上げが完了しないが、その時間超過分は小さく深夜時間帯終了時刻の午前7時までには沸き上げが完了する。 Next, it is determined whether the calculated required heating capacity W is within the range between the minimum value Wmin and the maximum value Wmax of the heating capacity of the heat pump unit 2 set in step S35. Perform (S37 to S40). If the required heating capacity W is less than the minimum heating capacity Wmin set in step S35 (S37Y), the required heating capacity W is set to the minimum value Wmin (S38). If the required heating capacity W is greater than the maximum value Wmax (S39Y), the required heating capacity W is set to the maximum value Wmax (S40). In the case of step S39Y, since the required heating capacity is suppressed at the maximum value Wmax, boiling is not completed by 6 am of the predetermined time zone end time, but the excess time is small and the midnight time zone end time is reached. The boiling is completed by 7 am.
 次に、必要加熱能力Wの再設定を行う(S41)。この時、貯湯タンク制御部23は、ヒートポンプ制御部58に新しい必要加熱能力Wの値を与える。ヒートポンプ制御部は、新しい必要加熱能力Wの値に基づきヒートポンプユニット2の運転制御を行う。 Next, the required heating capacity W is reset (S41). At this time, the hot water storage tank control unit 23 gives a new value of the required heating capacity W to the heat pump control unit 58. The heat pump control unit controls the operation of the heat pump unit 2 based on the new value of the required heating capacity W.
 貯湯タンク制御部23は、タイマが所定時間経過毎に(S42)、以上の加熱能力の再設定制御を行う。 The hot water storage tank control unit 23 performs the above reset control of the heating capacity every time the timer elapses (S42).
 以上、ヒートポンプの加熱能力を一定時間毎にきめ細かく設定することにより、深夜時間帯のうちで電力需要量が少なくなる午前1時から午前6時までの所定時間帯内でヒートポンプ給湯装置を出来るだけ小さい加熱能力で高い効率で運転することができる。また、所定時間帯内で確実に沸き上げを完了することができる。 As described above, by finely setting the heating capacity of the heat pump at regular intervals, the heat pump water heater can be made as small as possible within a predetermined time zone from 1:00 am to 6:00 am when the power demand is reduced in the midnight time zone. It is possible to operate with high efficiency by heating capacity. Moreover, boiling can be completed reliably within a predetermined time zone.
 本発明の実施例3を図7を参照して説明する。本実施例は、実施例1の深夜沸き上げ制御において、沸き上げ時間Tnを5時間から8時間に変更したものである。図7において、図2と同一ステップは同一符号で示し、説明を省略する。 Embodiment 3 of the present invention will be described with reference to FIG. In the present embodiment, the boiling time Tn is changed from 5 hours to 8 hours in the late-night boiling control of the first embodiment. In FIG. 7, the same steps as those in FIG.
 ステップS1~S3は実施例1と同じである。ステップS4′の沸き上げ時間Tnを深夜時間帯(午後11時から午前7時まで)の8時間に設定する。ステップS6では、沸き上げ時間Tnを8時間として、必要加熱能力Wの計算を行う。 Steps S1 to S3 are the same as those in the first embodiment. The boiling time Tn in step S4 ′ is set to 8 hours in the midnight time zone (from 11 pm to 7 am). In step S6, the required heating capacity W is calculated by setting the boiling time Tn to 8 hours.
 ステップS7′において、必要加熱能力WがステップS5で設定した加熱能力の最小値Wmin未満の場合(S7′Y)、必要加熱能力Wを最小値Wminとし(S8)、変更された必要加熱能力で逆に沸き上げ時間Tnを算出する(S9)。 In step S7 ′, if the required heating capacity W is less than the minimum heating capacity Wmin set in step S5 (S7′Y), the required heating capacity W is set to the minimum value Wmin (S8), and the changed required heating capacity is Conversely, the boiling time Tn is calculated (S9).
 その他の場合(S7′N)、必要加熱能力WがステップS5で設定した加熱能力の範囲内にあるとし、そのままの値を使用する。なお、実施例1で述べたように、図3の加熱能力の最大値Wmaxは、各外気温で、深夜時間帯に給湯がない場合、最大でも深夜時間帯の8時間で沸き上げが完了する加熱能力としているため、必要加熱能力Wは最大値Wmax以下の値となる。 In other cases (S7′N), it is assumed that the required heating capacity W is within the heating capacity set in step S5, and the value is used as it is. In addition, as described in Example 1, the maximum value Wmax of the heating capacity in FIG. 3 is completed at the maximum of 8 hours in the midnight time zone when there is no hot water supply in the midnight time zone at each external temperature. Since the heating capacity is set, the required heating capacity W is a value equal to or less than the maximum value Wmax.
 その後のステップS16~S21は、実施例1と同じである。 The subsequent steps S16 to S21 are the same as those in the first embodiment.
 以上、ヒートポンプの沸き上げ時間を5時間より長い8時間に設定したことにより、同一の必要沸き上げ熱量に対し、ヒートポンプ給湯装置をより小さい加熱能力で運転することができ、高い効率を維持することができる。 As described above, by setting the heating time of the heat pump to 8 hours longer than 5 hours, the heat pump water heater can be operated with a smaller heating capacity for the same required boiling heat quantity, and high efficiency can be maintained. Can do.
 本発明の実施例4を説明する。本実施例は、図7に示す深夜沸き上げ制御のフローチャートのステップS18におけるヒートポンプ運転が、前述した実施例3と異なる点である。本実施例では、ヒートポンプの必要加熱能力Wに係数kを掛けたものをヒートポンプの運転する加熱能力としている。 Example 4 of the present invention will be described. In the present embodiment, the heat pump operation in step S18 in the flowchart of the late-night boiling control shown in FIG. 7 is different from the above-described third embodiment. In this embodiment, the heating capacity required for the heat pump multiplied by the coefficient k is used as the heating capacity for operating the heat pump.
 係数kを以下の式で算出する。 Calculate the coefficient k using the following formula.
   k=1+d-2d/Tn*T  ………(数10)
 ここで、dはシフト値、Tnは沸き上げ時間で8時間、Tはヒートポンプ運転時間である。係数kは運転時間Tの1次関数でT=0の時、k=1+d、T=Tnの時、k=1-dである。すなわち、係数kを必要加熱能力Wに掛けることにより、ヒートポンプの加熱能力が深夜時間帯の前半部で必要加熱能力Wより大きくなり、後半部で必要加熱能力Wより小さくなる。なお、8時間で沸き上げを行う場合(図7のステップS7′Nの場合)、本制御処理は行われる。また、ヒートポンプの加熱能力は、図3で設定した最小値Wminから最大値Wmaxまでの範囲内とする。
k = 1 + d-2d / Tn * T (Equation 10)
Here, d is a shift value, Tn is a boiling time of 8 hours, and T is a heat pump operation time. The coefficient k is a linear function of the operation time T. When T = 0, k = 1 + d, and when T = Tn, k = 1−d. That is, by multiplying the required heating capacity W by the coefficient k, the heating capacity of the heat pump becomes larger than the required heating capacity W in the first half of the midnight time zone, and becomes smaller than the required heating capacity W in the second half. In addition, when boiling is performed in 8 hours (in the case of step S7′N in FIG. 7), this control process is performed. The heating capacity of the heat pump is set within the range from the minimum value Wmin to the maximum value Wmax set in FIG.
 以上の本制御により、深夜時間帯の前半部で、深夜沸き上げ熱量の半分以上を沸き上げるので、深夜時間帯のうち外気温度が高い前半部のエネルギ効率が高くなる条件で運転することができ、高い効率を維持することができる。 With the above control, more than half of the late-night boiling heat quantity is boiled in the first half of the midnight time zone, so that it can be operated under the condition that the energy efficiency of the first half in which the outside air temperature is high in the midnight time zone is high. High efficiency can be maintained.
 本発明の実施例5を説明する。本実施例は、図7の深夜沸き上げ制御におけるフローチャートのステップS5での加熱能力最小値Wminの設定方法が、実施例3と異なる。本実施例では、ヒートポンプの加熱能力最小値Wminを加熱能力最大値Wmaxの略3分の2としている。 Example 5 of the present invention will be described. The present embodiment is different from the third embodiment in the setting method of the heating capacity minimum value Wmin in step S5 of the flowchart in the late-night boiling control of FIG. In the present embodiment, the heating capacity minimum value Wmin of the heat pump is set to approximately two thirds of the heating capacity maximum value Wmax.
 図8A,図8Bに本実施例における沸き上げ温度目標値がそれぞれ70℃以上と70℃未満の場合の外気温度とヒートポンプユニット2の加熱能力の最小値と最大値との関係を示す。加熱能力の最小値Wminを、実施例1の図3A,図3Bに示したヒートポンプの効率が略最高となる加熱能力を表す最小値Wminより大きい、最大値Wmaxの略3分の2(66%)とする。この時、ヒートポンプの最大加熱能力の66%から100%の範囲で、加熱能力が小さいほどエネルギ効率は高くなる。 8A and 8B show the relationship between the outside air temperature and the minimum value and the maximum value of the heating capacity of the heat pump unit 2 when the boiling temperature target value in this embodiment is 70 ° C. or higher and lower than 70 ° C., respectively. The minimum value Wmin of the heating capacity is set to approximately two thirds (66%) of the maximum value Wmax, which is larger than the minimum value Wmin indicating the heating capacity at which the efficiency of the heat pump shown in FIG. 3A and FIG. ). At this time, in the range of 66% to 100% of the maximum heating capacity of the heat pump, the energy efficiency increases as the heating capacity decreases.
 本制御処理により、ヒートポンプユニット2は深夜時間帯に最大加熱能力の66%から100%で沸き上げ運転することになり、最小でも最大加熱能力の66%で運転し、実施例3に比較して、図7のフローチャートのステップS9で計算される沸き上げ時間Tnが小さくなり、したがって、S16で計算される沸き上げ開始時刻Tsが深夜時間帯の後方にシフトされる。 With this control process, the heat pump unit 2 is operated at a boiling rate of 66% to 100% of the maximum heating capacity at midnight, and at least operates at 66% of the maximum heating capacity. The boiling time Tn calculated in step S9 in the flowchart of FIG. 7 is reduced, and therefore the boiling start time Ts calculated in S16 is shifted backward in the midnight time zone.
 以上の本制御により、高いエネルギ効率を維持するとともに、深夜時間帯のうち電力需要の高い前半部の電力量の増加を抑制できる。 With the above control, it is possible to maintain high energy efficiency and to suppress an increase in the amount of power in the first half where the power demand is high during midnight hours.
 本実施例では、ヒートポンプの加熱能力最小値Wminを加熱能力最大値Wmaxの略3分の2としているが、50%乃至80%とした場合も同様の効果が得られる。 In this embodiment, the heating capacity minimum value Wmin of the heat pump is set to approximately two thirds of the heating capacity maximum value Wmax, but the same effect can be obtained when the heating capacity is set to 50% to 80%.
 上記実施例では、深夜時間帯として電気料金が安くなる時間帯としたが、給湯需要または電力需要の小さい時間帯に対しても、本発明は同様に実施できる。 In the above-mentioned embodiment, the time zone in which the electricity rate is reduced as the midnight time zone is used, but the present invention can be similarly applied to the time zone in which the hot water supply demand or the power demand is small.
 また、上記実施例では、必要加熱能力を得るために、沸き上げ温度が目標値となるように圧縮機の回転速度制御を行い、水量が目標値となるようにタンク循環ポンプの回転速度制御を行っているが、加熱能力と圧縮機回転速度との関係から、回転速度を設定し、沸き上げ温度が目標値となるように、タンク循環ポンプの回転速度を制御するようにしてもよく、概略の必要加熱能力が得られる制御方法ならば良い。 Further, in the above embodiment, in order to obtain the required heating capacity, the rotation speed control of the compressor is performed so that the boiling temperature becomes the target value, and the rotation speed control of the tank circulation pump is controlled so that the water amount becomes the target value. However, from the relationship between the heating capacity and the compressor rotational speed, the rotational speed may be set, and the rotational speed of the tank circulation pump may be controlled so that the boiling temperature becomes the target value. Any control method can be used as long as the required heating capacity can be obtained.
 本発明により、所定時間帯にエネルギ効率が略最高となる加熱能力でヒートポンプを運転する制御を優先したので、ヒートポンプ給湯装置のタンク沸き上げ運転時のエネルギ効率が高くなる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。
According to the present invention, priority is given to the control of operating the heat pump with the heating capacity at which the energy efficiency is substantially the highest in the predetermined time zone, so the energy efficiency during the tank boiling operation of the heat pump water heater increases.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
本発明の実施例1に係るヒートポンプ給湯装置の系統図。The systematic diagram of the heat pump hot-water supply apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る深夜沸き上げ制御を示すフローチャート。The flowchart which shows the midnight boiling control which concerns on Example 1 of this invention. 本発明の実施例1における沸き上げ温度目標値が70℃以上の場合の外気温度とヒートポンプユニットの加熱能力の最小値と最大値との関係を示す線図。The diagram which shows the relationship between the external temperature in case the boiling temperature target value in Example 1 of this invention is 70 degreeC or more, and the minimum value and the maximum value of the heating capability of a heat pump unit. 本発明の実施例1における沸き上げ温度目標値が70℃未満の場合の外気温度とヒートポンプユニットの加熱能力の最小値と最大値との関係を示す線図。The diagram which shows the relationship between the external temperature in case the boiling temperature target value in Example 1 of this invention is less than 70 degreeC, and the minimum value of heating capacity of a heat pump unit, and a maximum value. 本発明の実施例1におけるヒートポンプユニットの加熱能力とCOPとの関係を示す線図。The diagram which shows the relationship between the heating capability of the heat pump unit in Example 1 of this invention, and COP. 本発明の実施例1におけるヒートポンプ運転の時刻を示す図。The figure which shows the time of the heat pump driving | operation in Example 1 of this invention. 本発明の実施例1におけるヒートポンプ運転の時刻を示す図。The figure which shows the time of the heat pump driving | operation in Example 1 of this invention. 本発明の実施例1におけるヒートポンプ運転の時刻を示す図。The figure which shows the time of the heat pump driving | operation in Example 1 of this invention. 本発明の実施例2におけるヒートポンプユニットの加熱能力再設定制御を示すフローチャート。The flowchart which shows the heating capability reset control of the heat pump unit in Example 2 of this invention. 本発明の実施例3における深夜沸き上げ制御を示すフローチャート。The flowchart which shows the midnight boiling control in Example 3 of this invention. 本発明の実施例5における沸き上げ温度目標値が70℃以上の場合の外気温度とヒートポンプユニットの加熱能力の最小値と最大値との関係を示す線図。The diagram which shows the relationship between the minimum value and the maximum value of the outside temperature in case the boiling temperature target value in Example 5 of this invention is 70 degreeC or more, and the heating capability of a heat pump unit. 本発明の実施例5における沸き上げ温度目標値が70℃未満の場合の外気温度とヒートポンプユニットの加熱能力の最小値と最大値との関係を示す線図。The diagram which shows the relationship between the outside temperature in case the boiling temperature target value in Example 5 of this invention is less than 70 degreeC, and the minimum value and the maximum value of the heating capability of a heat pump unit.

Claims (12)

  1.  ヒートポンプと、
     該ヒートポンプで加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、
     外気温度を用いて加熱能力を設定する設定手段と、深夜時間帯に前記ヒートポンプのエネルギ効率が実質的に最高となる加熱能力で前記ヒートポンプを優先的に運転させる制御手段とを備え、
     前記制御手段は、前記ヒートポンプのエネルギ効率が実質的に最高となる加熱能力で前記ヒートポンプを優先的に運転させるだけでは前記深夜時間帯に沸き上げを完了できない場合に、前記エネルギ効率が実質的に最高となる加熱能力より高い加熱能力で前記ヒートポンプを運転させるように制御することを特徴とするヒートポンプ給湯装置。
    A heat pump,
    In a heat pump water heater comprising a hot water storage tank for storing hot water heated by the heat pump,
    Setting means for setting the heating capacity using the outside air temperature, and control means for preferentially operating the heat pump with the heating capacity at which the energy efficiency of the heat pump is substantially maximized in the midnight hours,
    When the heating means is not able to complete boiling in the midnight time zone only by preferentially operating the heat pump with a heating capacity at which the energy efficiency of the heat pump is substantially maximized, the energy efficiency is substantially reduced. A heat pump hot water supply apparatus, wherein the heat pump is controlled to operate with a heating capacity higher than a maximum heating capacity.
  2.  ヒートポンプと、
     該ヒートポンプで加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、
     外気温度を用いて加熱能力を設定する設定手段と、
     深夜時間帯に前記設定手段で設定した加熱能力の最小値で前記ヒートポンプを優先的に運転させる制御手段とを備え、
     前記制御手段は、前記加熱能力の最小値で前記ヒートポンプを優先的に運転させるだけでは前記深夜時間帯に沸き上げを完了できない場合に、前記加熱能力の最小値より高い加熱能力で前記ヒートポンプを運転させるように制御することを特徴とするヒートポンプ給湯装置。
    A heat pump,
    In a heat pump water heater comprising a hot water storage tank for storing hot water heated by the heat pump,
    Setting means for setting the heating capacity using the outside air temperature;
    Control means for preferentially operating the heat pump at the minimum value of the heating capacity set by the setting means during midnight hours,
    The control means operates the heat pump with a heating capacity higher than the minimum heating capacity when the heating pump cannot be completed in the midnight time zone simply by operating the heat pump preferentially with the minimum heating capacity. The heat pump hot water supply apparatus characterized by controlling so that it may be made.
  3.  請求項2において、前記制御手段は、前記加熱能力の最小値を前記エネルギ効率が実質的に最高となる加熱能力に設定する設定手段を備えることを特徴とするヒートポンプ給湯装置。 3. The heat pump hot water supply apparatus according to claim 2, wherein the control means includes setting means for setting a minimum value of the heating capacity to a heating capacity at which the energy efficiency is substantially maximized.
  4.  請求項2において、前記制御手段は、前記加熱能力の最小値を前記エネルギ効率が実質的に最高となる加熱能力より大きい加熱能力に設定する設定手段を備えることを特徴とするヒートポンプ給湯装置。 3. The heat pump hot water supply apparatus according to claim 2, wherein the control means includes setting means for setting the minimum value of the heating capacity to a heating capacity larger than the heating capacity at which the energy efficiency is substantially maximum.
  5.  請求項2において、前記加熱能力の最小値は前記加熱能力の最大値の50~80%に設定されていることを特徴とするヒートポンプ給湯装置。 3. The heat pump hot water supply apparatus according to claim 2, wherein the minimum value of the heating capacity is set to 50 to 80% of the maximum value of the heating capacity.
  6.  請求項2において、前記制御装置は、深夜時間帯の前半部で、深夜時間帯の全沸き上げ熱量の半分以上を沸き上げるように制御することを特徴とするヒートポンプ給湯装置。 3. The heat pump hot water supply apparatus according to claim 2, wherein the control device performs control so as to boil more than half of the total amount of heating heat in the midnight time zone in the first half of the midnight time zone.
  7.  ヒートポンプと、
     該ヒートポンプで加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、
     外気温度を用いて加熱能力を設定する設定手段と、
     深夜時間帯のうちの所定時間帯に前記ヒートポンプのエネルギ効率が実質的に最高となる加熱能力で前記ヒートポンプを優先的に運転させる制御手段と、
     前記ヒートポンプのエネルギ効率が実質的に最高となる運転だけでは前記所定時間帯に沸き上げを完了できない場合に、エネルギ効率が実質的に最高となる加熱能力よりも高い加熱能力で前記ヒートポンプを運転させる制御手段と、
     前記設定手段で設定した加熱能力の最大値で運転しても前記所定時間帯に沸き上げを完了できない場合に、前記深夜時間帯にも前記ヒートポンプを運転させる制御手段とを備えることを特徴とするヒートポンプ給湯装置。
    A heat pump,
    In a heat pump water heater comprising a hot water storage tank for storing hot water heated by the heat pump,
    Setting means for setting the heating capacity using the outside air temperature;
    Control means for preferentially operating the heat pump with a heating capacity at which the energy efficiency of the heat pump is substantially maximized in a predetermined time zone of a midnight time zone;
    When the heating cannot be completed in the predetermined time period only by the operation at which the energy efficiency of the heat pump is substantially highest, the heat pump is operated with a heating capability higher than the heating capability at which the energy efficiency is substantially highest. Control means;
    Control means for operating the heat pump also in the midnight time zone when the heating cannot be completed in the predetermined time zone even when the operation is performed with the maximum value of the heating capacity set by the setting means. Heat pump water heater.
  8.  請求項7において、前記所定時間帯に沸き上げを完了できない場合に、前記深夜時間帯に、エネルギ効率が実質的に最高となる前記加熱能力よりも大きな加熱能力で前記ヒートポンプを運転させる制御手段を備えることを特徴とするヒートポンプ給湯装置。 The control means according to claim 7, wherein when the boiling cannot be completed in the predetermined time period, the heat pump is operated with a heating capacity larger than the heating capacity at which the energy efficiency is substantially highest in the midnight time period. A heat pump hot water supply apparatus comprising:
  9.  請求項7において、前記所定時間帯に沸き上げを完了できない場合に、前記深夜時間帯に、最大加熱能力で前記ヒートポンプを運転させる制御手段を備えることを特徴とするヒートポンプ給湯装置。 8. The heat pump hot water supply apparatus according to claim 7, further comprising control means for operating the heat pump at a maximum heating capacity in the midnight time zone when boiling cannot be completed in the predetermined time zone.
  10.  請求項1において、前記ヒートポンプの加熱能力を深夜時間帯内の一定時間毎に設定する設定手段を備えることを特徴とするヒートポンプ給湯装置。 2. The heat pump hot water supply apparatus according to claim 1, further comprising setting means for setting the heating capacity of the heat pump at regular intervals within a midnight time zone.
  11.  請求項1において、貯湯タンク制御部と、該貯湯タンク制御部から加熱能力の指令が送信されるヒートポンプ制御部とを備えることを特徴とするヒートポンプ給湯装置。 2. A heat pump hot water supply apparatus according to claim 1, comprising a hot water storage tank control section and a heat pump control section to which a command for heating capacity is transmitted from the hot water storage tank control section.
  12.  請求項1において、前記ヒートポンプの冷媒に二酸化炭素を使用したことを特徴とするヒートポンプ給湯装置。 2. The heat pump water heater according to claim 1, wherein carbon dioxide is used as a refrigerant of the heat pump.
PCT/JP2008/070377 2008-01-10 2008-11-10 Heat-pump hot-water supply apparatus WO2009087811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200880123498.3A CN101910747A (en) 2008-01-10 2008-11-10 Heat-pump hot-water supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008002705A JP2009162458A (en) 2008-01-10 2008-01-10 Heat pump hot water supply system
JP2008-002705 2008-01-10

Publications (1)

Publication Number Publication Date
WO2009087811A1 true WO2009087811A1 (en) 2009-07-16

Family

ID=40852935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070377 WO2009087811A1 (en) 2008-01-10 2008-11-10 Heat-pump hot-water supply apparatus

Country Status (4)

Country Link
JP (1) JP2009162458A (en)
KR (1) KR20100114022A (en)
CN (1) CN101910747A (en)
WO (1) WO2009087811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610558A3 (en) * 2011-12-29 2015-10-14 Mitsubishi Electric Corporation Heat pump apparatus and control method of heat pump system
EP3477218A4 (en) * 2016-06-28 2019-06-12 GD Midea Heating & Ventilating Equipment Co., Ltd. Water heater and water temperature setting method and device therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP5389257B2 (en) 2010-04-15 2014-01-15 三菱電機株式会社 Hot water system controller, hot water system control program, and hot water system operation method
CN103574910B (en) * 2012-08-09 2016-03-16 珠海格力电器股份有限公司 The water pump control method of heat pump water-heating machine and device and heat pump water-heating machine
JP6045395B2 (en) * 2013-02-27 2016-12-14 株式会社コロナ Hot water system
JP6106510B2 (en) * 2013-04-25 2017-04-05 リンナイ株式会社 Hot water supply system
JP6098557B2 (en) * 2014-03-25 2017-03-22 株式会社富士通ゼネラル Heat pump type hot water heater
JP6340971B2 (en) * 2014-07-16 2018-06-13 三菱電機株式会社 Hot water storage water heater
JP6381362B2 (en) * 2014-08-21 2018-08-29 株式会社コロナ Solar power generator linked heat pump hot water storage hot water supply system
JP2016044849A (en) * 2014-08-21 2016-04-04 株式会社コロナ Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP6375792B2 (en) * 2014-09-02 2018-08-22 株式会社デンソー Heat pump water heater
JP6164241B2 (en) * 2015-04-02 2017-07-19 ダイキン工業株式会社 Water heater
JP6837855B2 (en) * 2017-02-03 2021-03-03 株式会社コロナ Hot water storage type water heater
JP7226062B2 (en) * 2019-04-22 2023-02-21 三菱電機株式会社 heat pump water heater
JP7140276B2 (en) * 2019-05-10 2022-09-21 三菱電機株式会社 heat storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231716A (en) * 1992-02-24 1993-09-07 Daikin Ind Ltd Hot water supplying apparatus
JPH07120180A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Operation method of thermal energy supply plant
JP2004218873A (en) * 2003-01-10 2004-08-05 Denso Corp Hot water storage-type hot water supply device
JP2006292215A (en) * 2005-04-07 2006-10-26 Chugoku Electric Power Co Inc:The Watt-hour meter, electric water heater and electric water heater system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327727A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231716A (en) * 1992-02-24 1993-09-07 Daikin Ind Ltd Hot water supplying apparatus
JPH07120180A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Operation method of thermal energy supply plant
JP2004218873A (en) * 2003-01-10 2004-08-05 Denso Corp Hot water storage-type hot water supply device
JP2006292215A (en) * 2005-04-07 2006-10-26 Chugoku Electric Power Co Inc:The Watt-hour meter, electric water heater and electric water heater system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610558A3 (en) * 2011-12-29 2015-10-14 Mitsubishi Electric Corporation Heat pump apparatus and control method of heat pump system
EP3477218A4 (en) * 2016-06-28 2019-06-12 GD Midea Heating & Ventilating Equipment Co., Ltd. Water heater and water temperature setting method and device therefor

Also Published As

Publication number Publication date
KR20100114022A (en) 2010-10-22
CN101910747A (en) 2010-12-08
JP2009162458A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2009087811A1 (en) Heat-pump hot-water supply apparatus
KR101222331B1 (en) Heat-pump hot water apparatus
JP2008002776A (en) Heat pump hot water supply system
JP5797998B2 (en) Heat pump type water heater
JP7295779B2 (en) Heat pump hot water heating system
JP2007078200A (en) Heat pump water heater
JP2012063101A (en) Liquid heating supply device
JP2005140439A (en) Heat pump water heater
JP2010169294A (en) Method of determining heating-up target temperature of heat pump type water heater
JP2015227766A (en) Heat pump water heater
JP7315434B2 (en) Heat pump hot water heating system
JP7319890B2 (en) Heat pump hot water heating system
JP4950004B2 (en) Heat pump type water heater
JP5694845B2 (en) Heat pump bath water heater
JP6174482B2 (en) Hot water storage type heat pump water heater
JP5580244B2 (en) Hot water storage water heater
JP4955375B2 (en) Hot water storage water heater
JP2010054145A (en) Heat pump water heater
JP2010054108A (en) Heat pump water heater
JP2003156254A (en) Heat pump type water heater
JP7466356B2 (en) Water heater and operation control method
JP7232746B2 (en) Heat pump hot water heating system
JP6734450B2 (en) Heat pump water heater
JP2009162415A (en) Hot water storage type water heater
JP7370138B2 (en) water heater

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123498.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107015154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870343

Country of ref document: EP

Kind code of ref document: A1