WO2009084420A1 - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film Download PDF

Info

Publication number
WO2009084420A1
WO2009084420A1 PCT/JP2008/072809 JP2008072809W WO2009084420A1 WO 2009084420 A1 WO2009084420 A1 WO 2009084420A1 JP 2008072809 W JP2008072809 W JP 2008072809W WO 2009084420 A1 WO2009084420 A1 WO 2009084420A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
film
polyester
shrinkage
polyester film
Prior art date
Application number
PCT/JP2008/072809
Other languages
French (fr)
Japanese (ja)
Inventor
Kyoko Inagaki
Masatoshi Hashimoto
Hideki Ito
Masakazu Iwasaki
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007340628A external-priority patent/JP2009160776A/en
Priority claimed from JP2007340629A external-priority patent/JP5564753B2/en
Priority claimed from JP2007340627A external-priority patent/JP2009160775A/en
Priority claimed from JP2008290646A external-priority patent/JP5487596B2/en
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2009084420A1 publication Critical patent/WO2009084420A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • B29C63/423Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a heat-shrinkable polyester film that can be suitably used for label applications.
  • the heat-shrinkable plastic film having the property of shrinking by heating is widely used for applications such as packaging, labels, and cap seals.
  • Stretched films such as polyvinyl chloride films, polystyrene films, and polyester films are known as heat-shrinkable plastic films. These films are used in various containers such as polyethylene terephthalate (PET) containers, polyethylene containers, and glass containers. Used for labels, cap seals, and integrated packaging applications.
  • Polystyrene film has good finish after shrinkage, but has poor solvent resistance. Therefore, when printing on the film surface, special composition ink must be used.
  • the label melts instantly when the label comes into contact with the hot wire of a heating equipment such as a hot warmer used in the bottle storage. There is a problem with.
  • Other problems related to polystyrene films are low transparency that can be required as a good image of products (devitrification is likely to occur when polystyrene films are shrunk with hot air), and the incineration temperature for processing must be increased. There is a lot of black smoke and off-flavor generated during incineration.
  • Polyester films are used for container labels and the like as a film in which the above-mentioned problems such as heat resistance, environmental compatibility and solvent resistance of the polyvinyl chloride film and polystyrene film have been improved (for example, patents) Reference 1).
  • the first property that is desired to be improved is a label (film) when the label is attached to the container by heat shrinkage of the film.
  • whitening tends to occur particularly when the film is heated and shrunk by dry heat such as hot air, and tends to occur in a film having a high heat shrinkage rate.
  • the resulting whitening tends to worsen over time. It may be possible to avoid the whitening of the label by selecting a film with a low heat shrinkage rate.
  • the amount of heat required for film shrinkage increases, in particular, damage is given to a container with low heat resistance, and the container is thermally expanded.
  • the problem is that the adhesion between the label and the container decreases. Due to the reduction in the amount of container raw materials used in recent years due to resource saving, the container is thinned and the heat resistance of the container tends to decrease. A decrease is likely to occur. Therefore, a film having a high heat shrinkage rate and capable of suppressing the occurrence of whitening is desired rather than selecting a film having a low heat shrinkage rate.
  • the label jumps up (when the label is mounted on the container, the label can be moved from an arbitrary mounting position). (Random movement in the upper end direction of the container shaft).
  • the second characteristic and the third characteristic are characteristics that are desired for mounting a good-appearance label on a container. Shrinkage unevenness is particularly likely to occur when the film is heated and shrunk by dry heat such as hot air, and is also likely to occur when the film has characteristics that cause rapid thermal shrinkage.
  • the jumping of the label tends to occur when a film having a high thermal shrinkage rate in a direction orthogonal to the main shrinkage direction is heated and shrunk. Since both affect the appearance of the product at the store, a film that does not cause unevenness or jumping during shrinkage is desired.
  • the peripheral surface of the container is covered with a heat-shrinkable film (heat-shrinkable label) that is processed into a cylindrical shape after being subjected to printing as necessary, and then the film is heat-shrinked to thereby surround the container.
  • the method of covering the surface with a label is often used as a method for attaching a label to a container.
  • a solvent is applied to one surface of the film, and this coated surface is applied.
  • One means is to bond both surfaces of the film by contacting one surface of the film opposite to the other surface.
  • the adhesiveness at both ends of the film may be insufficient.
  • an object of the present invention is to provide a heat-shrinkable polyester film having at least a high heat shrinkage rate and capable of suppressing the occurrence of whitening due to heat shrinkage.
  • a heat-shrinkable polyester film that can suppress the occurrence of trouble due to static electricity or a heat-shrinkable polyester film that suppresses the occurrence of blocking at high temperatures is provided, and heat suitable for labeling containers.
  • An object is to provide a shrinkable polyester film.
  • the heat-shrinkable polyester film according to the present invention has the following configuration. 1.
  • the heat shrinkage rate in the main shrinkage direction when immersed in warm water of 95 ⁇ 0.5 ° C. for 10 seconds is 30 to 60%
  • the length in the direction perpendicular to the main contraction direction is extended when immersed for 10 seconds in warm water at any temperature corresponding to 59.5 to 90.5 ° C and [constant temperature ⁇ 0.5 ° C].
  • a heat-shrinkable polyester film. The heat-shrinkable polyester film according to the first aspect, wherein the anionic antistatic agent is present on at least one side. 3.
  • the heat-shrinkable polyester according to the first aspect wherein a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film. Film. 5).
  • a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film, and the anionic antistatic agent is provided with the anti-blocking property.
  • the thermal shrinkage rate in the main shrinkage direction when immersed in warm water of 80 ⁇ 0.5 ° C. for 10 seconds is any one of the first, second, fourth, and sixth, which is less than 40%.
  • Heat shrinkable polyester film 10. 60 ⁇ 0.5 ° C, 65 ⁇ 0.5 ° C, 70 ⁇ 0.5 ° C, 75 ⁇ 0.5 ° C, 80 ⁇ 0.5 ° C, 85 ⁇ 0.5 ° C, 90 ⁇ 0.5 ° C, and Thermal contraction in the main contraction direction begins with immersion in any warm water when immersed in warm water of 95 ⁇ 0.5 ° C. for 10 seconds, [(Thermal shrinkage rate in the main shrinkage direction + 10 ° C.
  • the heat-shrinkable polyester film according to the present invention has a heat shrinkage ratio of 30 to 60% in the main shrinkage direction when immersed in warm water of 95 ⁇ 0.5 ° C. for 10 seconds, and 59.5 to 90.5. It is preferable that the length in the direction perpendicular to the main contraction direction is extended when immersed in warm water at 10 ° C. and any temperature corresponding to [constant temperature ⁇ 0.5 ° C.] for 10 seconds.
  • the thermal shrinkage rate in the main shrinkage direction is preferably less than 40% when immersed in warm water of 80 ⁇ 0.5 ° C. for 10 seconds.
  • the “main shrinkage direction” means the most contracted direction of the sample film.
  • the vertical direction or the horizontal direction of the square is the shrink direction.
  • Thermal shrinkage means that after immersing a sample film in warm water under no load condition, it is pulled up by immersing it in 25 ° C. water for 10 seconds before being immersed in warm water (before shrinkage) and in 25 ° C. water. This is a value calculated by applying the dimension of the sample film after immersion (after shrinkage) to the following formula (1). Further, “any temperature corresponding to 59.5 to 90.5 ° C.
  • the film according to the present invention is 60 ⁇ 0.5 ° C., 65 ⁇ 0.5 ° C., 70 ⁇ 0.5 ° C., 75 ⁇ 0.5 ° C., 80 ⁇ 0.5 ° C., 85 ⁇ 0.5 ° C., Thermal contraction in the main contraction direction starts with immersion in warm water at 90 ⁇ 0.5 ° C. and 95 ⁇ 0.5 ° C. for 10 seconds. Thermal contraction rate in the main contraction direction at a temperature exceeding 10% + 10 ° C.] to [The thermal contraction rate in the main contraction direction at a temperature ⁇ 5 ° C. where the thermal contraction rate in the main contraction direction exceeds 0%]]
  • the value obtained by subtracting is preferably less than 20%.
  • the film according to the present invention preferably has a haze after heat shrinkage of 10% or less.
  • the haze after the heat shrinkage is determined as follows. Using a heat-shrinkable polyester film stored for 4 weeks in an atmosphere at a temperature of 30 ° C. and a relative humidity of 85%, the following method using a tubular film having a diameter of 11 cm prepared so that the main shrinkage direction is the radial direction, The haze after the heat shrinkage is required. A cylindrical glass bottle (diameter 6.6 cm) having a temperature of 40 ° C. is placed in the tube-shaped film, hot air at 150 ° C.
  • the heat-shrinkable polyester film according to the present invention may be used as a cylindrical heat-shrinkable label used for labels of containers such as beverages.
  • the film according to the present invention can be bonded with a non-chlorine organic solvent.
  • an anionic antistatic agent is preferably present on at least one side of the film.
  • the anionic antistatic agent preferably has an alkyl group and has 10 to 20 carbon atoms.
  • the heat-shrinkable polyester film of the present invention has a blocking resistance improving layer containing a polyester graft copolymer obtained by grafting at least one radical polymerizable monomer on a hydrophobic copolymer polyester on at least one side of the film.
  • the provided aspect is also preferable.
  • the radical polymerizable monomer contains at least maleic anhydride and styrene.
  • the heat-shrinkable polyester film of the present invention can be suitably used for applications such as labels and packaging, and has excellent heat resistance not only when shrinking with water vapor but also when shrinking with hot air. It has shrinkage characteristics and can suppress the occurrence of whitening when the heat shrink treatment is performed. Furthermore, wrinkles due to heat shrinkage, folding of edges, and jumping up can be suppressed.
  • the surface resistivity of the film is kept low because it is not kneaded inside the film, and troubles due to static electricity are suppressed. Is possible.
  • a heat-shrinkable polyester film in which occurrence of blocking at high temperature was suppressed could be obtained.
  • An anionic antistatic agent can also be included in the anti-blocking layer, and both effects can be combined.
  • the heat-shrinkable polyester film according to the present invention preferably has a heat shrinkage ratio in the main shrinkage direction of 30 to 60% when immersed in warm water of 95 ⁇ 0.5 ° C. for 10 seconds.
  • the heat shrinkage rate is preferably 35 to 57%, more preferably 40 to 55%.
  • the film having a heat shrinkage rate of less than 30% is insufficient in heat shrinkage rate. Therefore, when this film is used as a label, for example, the label is not tightly fixed to the container. Even if a film having a shrinkage rate of less than 30% is shrunk by applying a high amount of heat, the container may be thermally damaged, and label loosening due to thermal deformation of the container tends to occur.
  • a film having a heat shrinkage ratio exceeding 60% tends to cause whitening due to heat shrinkage, shrinkage unevenness due to rapid shrinkage, distortion of a printed pattern when printed, and uneven finish on the label.
  • the thermal contraction rate in the main contraction direction when the film according to the present invention is immersed in warm water of 80 ⁇ 0.5 ° C. is preferably less than 40%. If the thermal shrinkage rate exceeds 40%, rapid shrinkage tends to occur, and the transparency of the film may be lowered due to occurrence of shrinkage unevenness or whitening.
  • the heat-shrinkable polyester film according to the present invention comprises hot water having a temperature corresponding to 59.5 to 90.5 ° C. and [constant temperature ⁇ 0.5 ° C.] together with the heat shrinkage rate in the main shrinkage direction. It is also characterized in that the length in the direction orthogonal to the main contraction direction is elongated when immersed in the interior for 10 seconds. Generation
  • production of such an orthogonal direction means that the polyester-type film which concerns on this invention is suitable as a label member for containers.
  • the cylindrical heat-shrinkable label having the main shrinkage direction of the polyester film according to the present invention as the radial direction and the orthogonal direction of the main shrinkage direction of the film as the axial direction is the container due to the shrinkage in the radial direction.
  • the axial direction is extended or the axial contraction is small, so that it is easy to cause uneven finish of the upper end of the label and chevron of the upper and lower parts starting from the back-pasted part.
  • the pulling in the axial direction can be suppressed.
  • the elongation in the orthogonal direction is performed by immersing the sample film in warm water in an unloaded state, then immersing it in 25 ° C. water for 10 seconds and pulling it up, before immersing in warm water (before shrinkage) and in 25 ° C. water. It is confirmed by applying the dimension of the sample film after immersion (after shrinkage) to the above formula (1) and calculating. If the value calculated at this time is a negative value, the expansion in the orthogonal direction has occurred.
  • the heat shrinkage rate in the orthogonal direction is within 3% at any temperature.
  • the film (preferably within 2%) also corresponds to the film according to the present invention.
  • the value obtained in the same manner as the thermal shrinkage rate is preferably 0% or less, and preferably -0.5% or less. Further, the elongation is preferably caused when immersed in warm water of 80 ⁇ 0.5 ° C. and 85 ⁇ 0.5 ° C. for 10 seconds.
  • the haze of the film according to the present invention after heat shrinkage is usually 10% or less, preferably 9.7% or less, and more preferably 9.5% or less.
  • the thickness of the film according to the present invention is preferably 20 to 100 ⁇ m, more preferably 30 to 60 ⁇ m.
  • a preferred film according to the present invention is a film that can be bonded to each other with a solvent.
  • This “adhesive with a solvent” means that the solvent adhesive strength determined by the “solvent adhesiveness” evaluation method in the examples described later is 3 N / 15 mm or more.
  • a solvent is used to form the cylindrical shape. That is, a solvent is used to produce a thermoplastic tubular film (thermoplastic label) by bonding the two ends of the film so that the main shrinkage direction is the radial direction.
  • adhesion between films can be realized by applying a solvent to one surface of one film end, and pressing the applied surface to the surface of the other film end, and the produced thermoplastic label is: Usually cut to the required length.
  • Examples of the solvent for bonding the films include aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene; halogenated hydrocarbons such as methylene chloride and chloroform; phenols such as phenol; furans such as tetrahydrofuran.
  • Organic solvents such as oxolanes such as 1,3-dioxolane are used. In view of the generation of toxic substances due to halogens such as chlorine atoms, non-chlorine organic solvents are preferable, and tetrahydrofuran and 1,3-dioxolane are preferable in view of safety.
  • dicarboxylic acid component constituting the polyester examples include aromatic dicarboxylic acids, esters of aromatic dicarboxylic acids, and aliphatic dicarboxylic acids. More specific aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • esters examples include dialkyl esters and diaryl esters of the aromatic dicarboxylic acids specifically mentioned above, and examples of the aliphatic dicarboxylic acids include dimer acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, oxalic acid, Succinic acid is mentioned.
  • An oxycarboxylic acid such as p-oxybenzoic acid; a trivalent or higher carboxylic acid such as trimellitic anhydride or pyromellitic anhydride may be a carboxylic acid component constituting the polyester, if necessary. .
  • Examples of the polyhydric alcohol component constituting the polyester include diol and triol.
  • Examples of the diol include ethylene glycol, diethylene glycol, 1,3-propanediol, triethylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 3- Alkylene glycols such as methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol
  • An ether glycol such as an alkylene oxide adduct of polyoxytetramethylene glycol, polyethylene glycol, a bisphenol compound or a derivative thereof; a dimer diol;
  • Examples of the triol include alkyl triols such as trimethylolprop
  • neopentyl glycol, 1,4-cyclohexanedimethanol, and the like are useful components for realizing film amorphization and high heat shrinkability, such as neopentyl glycol and
  • the amount of 1,4-cyclohexanedimethanol or the like is preferably 5 to 40 mol%, preferably 10 to 35 mol%, based on 100 mol% of all diols. -40 mol% is more preferable, and 20-35 mol% is still more preferable.
  • 1,4-butanediol, 1,3-propanediol, and the like are useful for lowering the glass transition temperature of the film and exhibiting heat shrinkability in a low temperature range.
  • the amount of 1,4-butanediol and the like is appropriately set because rapid heat shrinkage may occur in the region and the finish and transparency after shrinkage may deteriorate.
  • Polyester film consists of units composed of ethylene glycol and terephthalic acid (ethylene terephthalate unit), neopentyl glycol and terephthalic acid, which can achieve excellent heat shrinkage properties, suppression of whitening, and good adhesion with solvents.
  • Unit (neopentyl terephthalate unit), unit consisting of 1,4-cyclohexanedimethanol and terephthalic acid (1,4-cyclohexanedimethylene terephthalate unit), unit consisting of 1,4-butanediol and terephthalic acid (butylene terephthalate) Talay Units), units composed of propylene glycol and terephthalic acid (propylene terephthalate unit), units composed of ethylene glycol and terephthalic acid (ethylene naphthalate unit), units composed of ethylene glycol and isophthalic acid (ethylene isophthalate unit), etc.
  • the ethylene terephthalate unit is the main component in all polyesters in terms of film tear resistance, heat resistance, shrink finish, adhesion to containers due to increased yield point stress, cost, etc. It is a unit.
  • the amount of the ethylene terephthalate unit in the whole polyester is preferably 60 mol% or more and less than 72 mol%, and preferably 70 mol% or less. If it is less than 72 mol%, it will be excellent in solvent adhesiveness, and if it is 70 mol% or less, it will become a more suitable heat shrinkage rate.
  • any combination of the following units is included in the film.
  • the combination is an ethylene terephthalate unit, a neopentyl terephthalate unit or a 1,4-cyclohexanedimethylene terephthalate unit, and a butylene terephthalate unit or a propylene terephthalate unit.
  • the analysis of the unit content can be performed using, for example, 1 H-NMR.
  • inorganic particles used as lubricants include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide
  • silica particles of aggregates formed by agglomerating primary particles such as riotium fluoride, etc., film handling properties are good and haze is low.
  • organic salt particles include terephthalates such as calcium oxalate, calcium, barium, zinc, manganese, and magnesium.
  • crosslinked polymer particles include one or more copolymers selected from vinyl monomers such as divinylbenzene, styrene, and (meth) acrylic acid; polytetrafluoroethylene; benzoguanamine resin; thermosetting Urea resin; thermosetting phenol resin.
  • the polyester may contain an ultraviolet absorber, an antistatic agent, a coloring agent, an antibacterial agent, and the like as necessary.
  • an anionic antistatic agent may be present on at least one side (preferably both sides) of this surface. Even if an anionic antistatic agent is included in the film raw material by kneading or the like, generation and accumulation of static electricity can be suppressed if the anionic antistatic agent oozes from the inside of the film to the surface. However, since the glass transition temperature of the polyester constituting the film is generally high, the anionic antistatic agent is often difficult to seep out to the film surface at room temperature and in the vicinity thereof, and sufficiently suppresses the generation and accumulation of static electricity. It tends to be impossible.
  • the film forming temperature for producing the film according to the present invention produced by stretching the resin is relatively high, and the reaction activity of the polar group of the polyester is high, the film raw material is antistatic.
  • the film raw material is antistatic.
  • deterioration of the polyester is promoted at the time of film formation, so that the physical properties of the film may be lowered and coloring may occur.
  • the occurrence of trouble due to static electricity can be suppressed by adjusting the amount of the antistatic agent, and the degree of this suppression can be known from the surface specific resistance value of the film.
  • the surface specific resistance value of the film is preferably 13 log ⁇ or less, and preferably 12 log ⁇ or less.
  • the lower limit value of the surface specific resistance value is not particularly limited, but may be 8 log ⁇ or more practically.
  • the abundance of the anionic antistatic agent on the film surface for setting the above-mentioned surface resistivity is preferably 0.001 to 0.5 g / m 2 . If the amount of the anionic antistatic agent is less than the above range, the antistatic effect may not be sufficiently secured. On the other hand, when the amount of the anionic antistatic agent exceeds the above range, the transparency and blocking resistance of the film may be lowered.
  • the anionic antistatic agent preferably has an alkyl group and has 10 to 20 carbon atoms.
  • an antistatic agent for example, even if there is scattering or disappearance due to heat in film production or secondary processing of the film, the amount of the scattering or the like can be kept low. Moreover, when carbon number exceeds 20, the antistatic effect of antistatic agent itself may be inadequate. More preferred anionic antistatic agents are those having 12 to 18 carbon atoms.
  • the anionic antistatic agent in the present invention can be selected from known antistatic agents, and sulfuric acid such as higher alcohol sulfates, sulfates of alkylphenol ethylene oxide adducts, alkylsulfonates, and alkylallylsulfonates. And sulfonic acid derivatives. More specifically, alkyl sulfonate, alkyl benzene sulfonate, alkyl sulfate ester salt, alkyl ethoxy sulfate ester salt, and alkyl phosphate ester salt are exemplified. Suitable anionic antistatic agents include, for example, dodecyl sulfonate and dodecyl benzene sulfonate.
  • the heat-shrinkable polyester film of the present invention comprises a polyester-based substrate film having a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester.
  • An embodiment provided on at least one side is also preferable.
  • the heat-shrinkable polyester film will be described.
  • the radical polymerizable monomer used in the present invention is preferably a radical polymerizable monomer that essentially contains a hydrophilic radical polymerizable monomer. This is because the blocking resistance improving layer of the present invention can be formed using a dispersion of an aqueous solvent of a polyester-based graft copolymer (details will be described later).
  • the hydrophilic radical polymerizable monomer means a radical polymerizable monomer having a hydrophilic group or a group that can be changed to a hydrophilic group later.
  • examples of the radical polymerizable monomer having a hydrophilic group include a radical polymerizable monomer containing a carboxyl group, hydroxyl group, phosphoric acid group, phosphorous acid group, sulfonic acid group, amide group, quaternary ammonium base and the like.
  • examples of the radical polymerizable monomer having a group that can be changed into a hydrophilic group include radical polymerizable monomers containing an acid anhydride group, a glycidyl group, a chloro group, and the like.
  • fumaric acid and its anhydride monoester or diester of fumaric acid such as monoethyl fumarate, diethyl fumarate, dibutyl fumarate; maleic acid and its anhydride, monoethyl maleate, diethyl maleate, maleic acid Monoester or diester of maleic acid such as dibutyl; itaconic acid and its anhydride, monoester or diester of itaconic acid; maleimide such as phenylmaleimide; styrene such as styrene, ⁇ -methylstyrene, t-butylstyrene, chloromethylstyrene Derivatives: vinyltoluene, divinylbenzene and the like.
  • alkyl acrylate, alkyl methacrylate (the alkyl group is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, phenyl group, Benzyl group, phenylethyl group, etc.); hydroxy-containing acrylic monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate; acrylamide, methacrylamide, N-methyl methacryl Amide, N-methylacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N, N-dimethylolacrylamide, N-methoxymethylacrylamide, N-methoxymethyl Amide group-containing acrylic monomers such as tacrylamide and N-phenyl
  • hydrophilic radical polymerizable monomers may be used alone or in combination of two or more.
  • the hydrophilic group is preferably a carboxyl group from the viewpoint that the water-dispersibility of the polyester-based graft copolymer and the acid value are within a suitable range (described later). Therefore, the hydrophilic radical polymerizable monomer is a carboxyl group.
  • a radical polymerizable monomer having a group or a group capable of generating a carboxyl group is preferred, and examples thereof include maleic anhydride and esters thereof.
  • the radically polymerizable monomer preferably contains at least maleic anhydride and styrene.
  • the hydrophobic copolyester used in the present invention is preferably an essentially water-insoluble polyester that does not inherently disperse or dissolve in water. This is because the water-dispersed or dissolved polyester is superior in water resistance as compared with the case where the polyester is used as a trunk polymer in graft polymerization.
  • the hydrophobic copolyester has an ester bond in the main chain or side chain, and is obtained by polycondensation of polyvalent carboxylic acid and glycol.
  • the polyvalent carboxylic acid component constituting the hydrophobic copolyester include aromatic, aliphatic, and alicyclic dicarboxylic acids, dicarboxylic acids containing radical polymerizable double bonds, and trivalent or higher polyvalent carboxylic acids.
  • these ester derivatives can be used.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid and the like.
  • aromatic dicarboxylic acid ester derivatives include the dialkyl esters and diaryl esters of the aromatic dicarboxylic acids specifically mentioned above. It is preferable not to use a hydrophilic group-containing dicarboxylic acid such as 5-sodium sulfoisophthalic acid because water resistance decreases.
  • aliphatic dicarboxylic acid examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid.
  • alicyclic dicarboxylic acid examples include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and acid anhydrides thereof.
  • dicarboxylic acid containing a radical polymerizable double bond examples include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid and other ⁇ , ⁇ -unsaturated dicarboxylic acids; 2,5-norbornene dicarboxylic acid anhydride, Mention may be made of alicyclic dicarboxylic acids containing radically polymerizable double bonds such as tetrahydrophthalic anhydride. From the viewpoint of polymerizability, fumaric acid, maleic acid and 2,5-norbornene dicarboxylic acid are preferred.
  • the hydrophobic copolyester used in the present invention has an aromatic dicarboxylic acid of 60 to 99.5 mol%, an aliphatic dicarboxylic acid and / or an alicyclic dicarboxylic acid of 0 to 39.5 mol% in 100 mol% of the dicarboxylic acid component.
  • the dicarboxylic acid containing a radical polymerizable double bond is preferably 0.5 to 10 mol%.
  • the heat resistance may decrease.
  • the content rate of the dicarboxylic acid containing a radically polymerizable double bond is less than 0.5 mol%, it becomes difficult to perform efficient grafting of the radically polymerizable monomer to the hydrophobic copolymerized polyester.
  • the content of the dicarboxylic acid containing a radically polymerizable double bond exceeds 10 mol%, the viscosity will increase too late in the grafting reaction, which may hinder the uniform progress of the reaction. It is not preferable.
  • the content of aromatic dicarboxylic acid is 63 to 98 mol%
  • the content of aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid is 0 to 30 mol%
  • dicarboxylic acid containing a radical polymerizable double bond is 2 to 7 mol%.
  • the glycol component constituting the hydrophobic copolyester is composed of an aliphatic glycol having 2 to 10 carbon atoms and / or an alicyclic glycol having 6 to 12 carbon atoms and / or an ether bond-containing glycol.
  • Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -Hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol and the like.
  • Examples of the alicyclic glycol having 6 to 12 carbon atoms include 1,4-cyclohexanedimethanol.
  • ether bond-containing glycol examples include diethylene glycol, triethylene glycol, dipropylene glycol, and glycols obtained by adding ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as 2,2-bis ( 4-hydroxyethoxyphenyl) propane and the like.
  • Polyethylene glycol, polypropylene glycol, and polytetramethylene glycol may be used as necessary.
  • the hydrophobic copolyester used in the present invention can be copolymerized with 0 to 5 mol% of a tri- or higher functional polycarboxylic acid and / or polyol.
  • the tri- or higher functional polyol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • the tri- or higher functional polycarboxylic acid and / or polyol is copolymerized in the range of 0 to 5 mol%, preferably 0 to 3 mol%, based on the total acid component or the total glycol component. If it exceeds 5 mol%, gelation tends to occur during polymerization.
  • the weight average molecular weight of the hydrophobic copolyester used in the present invention is preferably in the range of 5000 to 50000. When the weight average molecular weight is less than 5,000, the heat resistance is lowered. When the weight average molecular weight exceeds 50,000, problems such as gelation at the time of polymerization occur.
  • the grafting of the radically polymerizable monomer to the hydrophobic copolymerized polyester is performed by using at least one radically polymerizable monomer using a graft polymerization initiator in a state where the hydrophobic copolymerized polyester is dissolved in an organic solvent. By reacting.
  • the reaction product after completion of the grafting reaction is not limited to the graft copolymer of the desired hydrophobic copolymerized polyester and the radically polymerizable monomer, but the hydrophobic copolymerized polyester and the hydrophobic copolymer that have not undergone grafting. It also contains a (co) polymer obtained from a radically polymerizable monomer that has not been grafted to the polyester.
  • the polyester-based graft copolymer in this specification is not only the above-mentioned polyester-based graft copolymer, but in addition to this, a hydrophobic copolymerized polyester that has not undergone grafting, and a radically polymerizable monomer that has not been grafted. Also included is a reaction mixture that also contains a (co) polymer and a monomer (residual monomer) obtained from
  • the mass ratio of the hydrophobic copolymerized polyester is less than 40% by mass, the excellent heat resistance of the polyester resin cannot be exhibited.
  • the mass ratio of the hydrophobic copolyester exceeds 95% by mass, blocking, which is a defect of the polyester resin, easily occurs.
  • Examples of the graft polymerization initiator that can be used in the present invention include organic peroxides and organic azo compounds known to those skilled in the art.
  • Examples of the organic peroxide include benzoyl peroxide and t-butyl peroxypivalate.
  • Examples of the organic azo compound include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylpareronitrile), azobisdimethylvaleronitrile, and the like.
  • the amount of the polymerization initiator used for the graft polymerization is at least 0.2% by mass, preferably 0.5% by mass or more, based on the radical polymerizable monomer.
  • a chain transfer agent for adjusting the chain length of the branched polymer for example, octyl mercaptan, mercaptoethanol, 3-t-butyl-4-hydroxyanisole, etc.
  • the chain transfer agent is preferably added in the range of 0 to 5% by mass with respect to the radical polymerizable monomer.
  • the reaction solvent used for grafting the radically polymerizable monomer to the hydrophobic copolymerized polyester is preferably composed of an aqueous organic solvent having a boiling point of 50 to 250 ° C.
  • the aqueous organic solvent means an organic solvent having a solubility in water at 20 ° C. of at least 10 g / L or more, desirably 20 g / L or more.
  • An aqueous organic solvent having a boiling point exceeding 250 ° C. is inappropriate because the evaporation rate is too slow and the solvent cannot be sufficiently removed even by high-temperature baking of the coating film.
  • a graft polymerization initiator that cleaves into radicals at a temperature of 50 ° C. or lower must be used, which increases the handling risk. This is not preferable.
  • a hydrophobic copolymerized polyester is well dissolved and a radical polymerizable monomer containing a carboxyl group-containing radical polymerizable monomer and a graft reaction product of the radical polymerizable monomer (polyester-based graft copolymer) are used.
  • a radical polymerizable monomer containing a carboxyl group-containing radical polymerizable monomer and a graft reaction product of the radical polymerizable monomer polyester-based graft copolymer
  • the first group of aqueous organic solvents that dissolve the polymer) relatively well include esters such as ethyl acetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; tetrahydrofuran, dioxane, 1,3-dioxolane and the like.
  • Cyclic ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, propylene glycol propyl ether, ethylene glycol ethyl ether, ethylene glycol butyl ether; methyl Carbitols such as rubitol, ethyl carbitol, butyl carbitol; glycols; lower esters of glycol ethers such as ethylene glycol diacetate and ethylene glycol ethyl ether acetate; ketone alcohols such as diacetone alcohol; dimethylformamide; And N-substituted amides such as dimethylacetamide and N-methylpyrrolidone.
  • glycol ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, propylene glycol propyl ether, ethylene glycol ethyl ether, ethylene glycol butyl ether; methyl Carbitols such as rubitol, ethy
  • the hydrophobic copolyester hardly dissolves, but a radically polymerizable monomer containing a carboxyl group-containing radically polymerizable monomer and a second group of aqueous organic solvents that dissolve a graft reaction product of the radically polymerizable monomer relatively well.
  • a radically polymerizable monomer containing a carboxyl group-containing radically polymerizable monomer and a second group of aqueous organic solvents that dissolve a graft reaction product of the radically polymerizable monomer relatively well.
  • examples thereof include water, lower alcohols, lower carboxylic acids, and lower amines.
  • a particularly preferred second group of aqueous organic solvents for the practice of the present invention are alcohols and glycols having 1 to 4 carbon atoms.
  • Examples of the mode in which the grafting reaction is performed with a single solvent include a mode in which only one kind is selected from the first group of aqueous organic solvents.
  • a mode in which only one kind is selected from the first group of aqueous organic solvents As an embodiment performed with a mixed solvent, for example, an embodiment in which a plurality of types are selected only from the first group of aqueous organic solvents, or at least one type is selected from the first group of aqueous organic solvents, and at least one type is selected from the second group of aqueous organic solvents.
  • a mode to add can be mentioned.
  • the reaction solvent is a single solvent from the first group of aqueous organic solvents and when the reaction solvent is a mixed solvent composed of each of the first group and the second group of aqueous organic solvents, the graft polymerization reaction Can be performed.
  • the reaction solvent is a single solvent from the first group of aqueous organic solvents and when the reaction solvent is a mixed solvent composed of each of the first group and the second group of aqueous organic solvents.
  • the mass ratio of the mixed solvent of the first group / second group is more desirably 95/5 to 10/90, further desirably 90/10 to 20/80, and most desirably 85/15 to 30.
  • the range is / 70.
  • the optimum mass ratio is determined according to the solubility of the hydrophobic copolyester used.
  • polyester graft copolymer The polyester-based graft copolymer obtained by the grafting is in the form of an organic solvent solution or dispersion, or an aqueous solvent solution or dispersion.
  • a dispersion of an aqueous solvent that is, a form of an aqueous dispersion is preferable in terms of working environment and applicability.
  • Such an aqueous dispersion is obtained by graft-polymerizing a radically polymerizable monomer containing a hydrophilic radically polymerizable monomer to a hydrophobic copolymerized polyester in the aqueous organic solvent, adding water, and then distilling off the aqueous organic solvent. Can be obtained.
  • the acid value of the polyester-based graft copolymer is preferably 600 eq / 10 6 g or more.
  • a more preferable acid value is 1200 eq / 10 6 g or more.
  • the acid value of the polyester-based graft copolymer is less than 600 eq / 10 6 g, it cannot be said that the adhesion with the layer coated with the primer treatment material is sufficient.
  • the glass transition temperature of the polyester-based graft copolymer is not particularly limited, but is preferably 30 ° C. or lower.
  • a polyester-based graft copolymer having a glass transition temperature of 30 ° C. or less for the anti-blocking layer a heat-shrinkable polyester film particularly excellent in heat-resistant blocking property can be obtained.
  • the aqueous dispersion in the present invention exhibits a translucent or milky white appearance with an average particle diameter measured by a laser light scattering method of 500 nm or less.
  • water dispersions having various particle sizes can be obtained.
  • the particle size is suitably 10 to 500 nm, preferably 400 nm or less, more preferably 300 nm or less from the viewpoint of dispersion stability.
  • the gloss of the coating film surface is lowered, and the transparency of the coating may be lowered.
  • the thickness is less than 10 nm, the heat blocking property which is the object of the present invention may be lowered.
  • the polyester-based graft copolymer preferably used in the present invention is preferably neutralized with a basic compound, and can be easily dispersed in water by neutralization.
  • a basic compound a compound that volatilizes at the time of forming a coating film or baking and curing with a curing agent is desirable, and ammonia, organic amines, and the like are preferable.
  • Examples of desirable compounds include triethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine , 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, dimethylaminopropylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanol An amine etc. are mentioned.
  • the pH value of the aqueous dispersion is in the range of 5.0 to 9.0 by at least partial neutralization or complete neutralization, depending on the carboxyl group content contained in the polyester-based graft copolymer. It is desirable to use it as is. If a basic compound having a boiling point of 100 ° C. or lower is used, the residual basic compound in the coating film after drying is easily reduced, and thus the coating film has excellent stability. Moreover, the transfer property of printing ink improves by using a basic compound 100 degreeC or more, or controlling drying conditions, and leaving 500 ppm or more of basic compounds in the coating film after drying.
  • the weight average molecular weight of the polymer of the radically polymerizable monomer (graft chain portion) is preferably 500 to 50,000.
  • the graft efficiency is lowered, and there is a tendency that hydrophilic groups are not sufficiently imparted to the hydrophobic copolymer polyester. is there.
  • the graft polymer of the radical polymerizable monomer forms a hydrated layer of dispersed particles.
  • the graft polymer of the radical polymerizable monomer is used.
  • the weight average molecular weight of is desirably 500 or more.
  • the upper limit of the weight average molecular weight of the graft polymer of the radical polymerizable monomer is preferably 50,000 from the viewpoint of polymerizability in solution polymerization.
  • the weight average molecular weight within this range can be controlled by appropriately combining an initiator amount, a monomer dropping time, a polymerization time, a reaction solvent, a monomer composition or, if necessary, a chain transfer agent or a polymerization inhibitor.
  • the blocking resistance improving layer of the present invention can be formed only from the above-mentioned polyester-based graft copolymer, but for other purposes, general-purpose polyester-based resins, urethane-based resins, acrylic resins, copolymers thereof, Various water-soluble resins, or various functional resins such as conductive resins such as polyaniline and polypyrrole, antibacterial resins, ultraviolet-absorbing resins, and gas barrier resins may be mixed.
  • various additives such as a surfactant, an antistatic agent, an inorganic lubricant, an organic lubricant, an antibacterial agent, a photooxidation catalyst, and an ultraviolet absorber are used within the range not impairing the effects of the present invention.
  • An agent or the like may be blended.
  • a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester, and a blocking resistance improving layer containing an anionic antistatic agent are provided on at least one side of the film. It is also preferable that it is the aspect provided in.
  • an anionic antistatic agent is included in the solution or dispersion for forming the anti-blocking layer or the aqueous solvent solution or dispersion to give both components to the film surface. It can be shown.
  • the polyester used to produce the unstretched polyester film is one or two selected from aromatic dicarboxylic acids, esters of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, oxycarboxylic acids, and trivalent or higher carboxylic acids.
  • a suitable ester exchange catalyst such as zinc acetate and / or a polymerization catalyst such as antimony trioxide.
  • the polyester after polymerization is taken out from the polymerization apparatus in the form of a strand in a molten state, and then immediately cooled with water, and cut with a strand cutter into chips.
  • the chip after this cut has a cylindrical shape with an elliptical bottom surface.
  • polyester chips having different components When manufacturing a film containing two or more kinds of polyesters having different components, two or more kinds of polyester chips having different components are mixed. At this time, the polyester chip having the highest use ratio and the elliptical shape of the chip are mixed.
  • the same kind of polyester in the hopper by using polyester chips that are within ⁇ 20% (preferably within ⁇ 15%) of the average size of the major axis, minor axis, and cylindrical height of the bottom surface Since the uneven distribution phenomenon of the chip can be suppressed, uniform dispersion of the lubricant and the like in the film can be realized.
  • copolyesters having a generally low melting point have problems such as difficulty in handling during drying, so homopolyester (polyethylene terephthalate, polyethylene It is preferable to mix naphthalate, poly (1,4-cyclohexene diethylene terephthalate, etc.) and a copolyester.
  • the chip is previously dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer, and formed into a film at a temperature of 200 to 300 ° C.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer
  • extruding and cooling There are a method of extruding and cooling, and (2) a method of extruding an undried polyester chip into a film while removing moisture in a vent type extruder and cooling.
  • any known method such as a T-die method or a tubular method may be employed.
  • the cooling after the extrusion is rapidly cooled with a chill roll having a surface temperature of 25 ° C., for example.
  • the thermal conductivity coefficient to the film is 0.0013 calories / cm 2 ⁇ sec ⁇ ° C. or less and Tg-20 ° C.- It is preferable to preheat the unstretched film until the film temperature reaches Tg + 60 ° C.
  • the temperature at each position on the film surface in this preheating step should be within the average temperature ⁇ 1 ° C. of the film surface within the range of the distance in the vertical direction corresponding to the roll film winding length of the film according to the present invention.
  • the average temperature is preferably within ⁇ 0.5 ° C.
  • Stretching may be performed using a tenter.
  • the film is stretched at a temperature of Tg-30 ° C to Tg + 40 ° C, more preferably at a temperature of Tg-15 ° C to Tg + 30 ° C, and the transverse direction of the film is 2.3 to 7.3 times, preferably Set to 3.5 to 6.0 times. If hot air of 60 to 120 ° C. is blown onto the stretched film, the polyester orientation after stretching is fixed, so that the main shrinkage rate of the heat-shrinkable film is lowered. In addition, if hot air of 30-60 ° C.
  • the temperature at each position on the film surface in the stretching step is preferably within an average temperature ⁇ 1 ° C. within the range of the longitudinal distance corresponding to the roll film winding length of the film according to the present invention, and the average temperature ⁇ 0. More preferably within 5 ° C.
  • the heat transfer coefficient of the stretching process is preferably 0.0037 J / cm 2 ⁇ sec ⁇ ° C. or more. .00544 to 0.00837 J / cm 2 ⁇ sec ⁇ ° C. is more preferable.
  • longitudinal stretching with a tenter may be performed as long as the characteristics of the film according to the present invention are not impaired.
  • the stretching mode in the case of performing longitudinal and lateral biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching, and may be re-stretched as necessary. Further, in sequential biaxial stretching, any of stretching methods such as vertical and horizontal, horizontal and vertical, vertical and horizontal and horizontal and vertical and horizontal directions may be used. Even when these longitudinal stretching steps or biaxial stretching steps are adopted, the film surface temperature in the preheating step, the film surface temperature in the stretching step, and the heat transfer coefficient in the stretching step are the same as those in the transverse stretching.
  • a heat-shrinkable polyester film can be produced as described above, in order to produce a heat-shrinkable polyester film of a preferred embodiment in which an anionic antistatic agent is present on at least one side, an anionic charge is provided on at least one side of the film A liquid containing an inhibitor is applied. After application of the liquid, uniaxial stretching or biaxial stretching is performed. That is, (1) after applying an antistatic agent-containing liquid to an unstretched film, it is uniaxially or biaxially stretched, or (2) a polyester-based stretched film is produced by uniaxially or biaxially stretching an unstretched film.
  • an antistatic agent-containing liquid is added to the film between the first stretching step and the second stretching step.
  • the antistatic agent can be directly present on the film surface, so that the glass transition temperature of the polyester constituting the film is high. Regardless of this, the antistatic effect is effectively exhibited, and film deterioration and coloring caused by the antistatic agent can be prevented.
  • the stretching conditions themselves are not significantly different from the case where the anionic antistatic agent is not applied.
  • the solvent of the antistatic agent-containing liquid to be applied to the film surface is not particularly limited, but it is preferable to use a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water.
  • a lower alcohol having 1 to 3 carbon atoms that can be mixed with water at an arbitrary ratio is preferable, and examples thereof include methanol, ethanol, n-propanol, and isopropanol.
  • Alcohols with a large number of carbon atoms are not preferred because they are likely to cause coating spots due to phase separation with water.
  • alcohols with a large number of carbon atoms may be used in combination with lower alcohols having 1 to 3 carbon atoms as long as they do not cause phase separation. It doesn't matter.
  • the amount of the lower alcohol in the antistatic agent-containing liquid is preferably 10% by mass or more.
  • the amount of the lower alcohol is less than 10% by mass, the surface tension of the antistatic agent-containing liquid is increased, the wettability to the film is lowered, and coating spots are likely to occur, and the reason is unknown.
  • the upper limit of the lower alcohol in the antistatic agent-containing liquid is preferably 60% by mass. If it exceeds 60% by mass, it may be necessary to take explosion-proof measures to avoid the explosion risk of lower alcohols.
  • the total alcohol amount shall be 60 mass% or less.
  • a coating method of applying a coating solution containing a polyester-based graft copolymer on a polyester-based substrate film there is a laminating method in which a resin layer containing a polyester-based graft copolymer is laminated.
  • a coating method it is preferable to use a coating method. This is because in the lamination method, there is a lower limit to the thickness of the anti-blocking layer, and adverse effects such as changes in the properties of the film serving as the substrate may occur.
  • the polyester-based graft copolymer can be present as a thin film on the film surface, blocking resistance can be imparted without changing the properties of the film serving as the substrate.
  • an organic solvent solution or an organic solvent dispersion of the polyester-based graft copolymer, or an aqueous solvent solution or an aqueous solvent dispersion can be used.
  • an aqueous solvent solution or an aqueous solvent dispersion is preferable in that an organic solvent that is problematic for the environment is not used.
  • a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water as the solvent.
  • the lower alcohol having 1 to 3 carbon atoms those that can be mixed with water at an arbitrary ratio, such as methanol, ethanol, n-propanol, and isopropanol, are preferable.
  • Alcohols having a large number of carbon atoms are not preferable because they are phase-separated from water when a coating solution is prepared, and application of such coating solutions tends to cause coating spots.
  • a lower alcohol having 1 to 3 carbon atoms may be used in combination as long as phase separation does not occur.
  • the amount of lower alcohol in the coating solution is preferably 10% by mass or more.
  • the amount of the lower alcohol is less than 10% by mass, the surface tension of the coating solution is increased, the wettability to the film is lowered, and coating spots are easily generated. The reason is unknown, but in a heat-shrinkable film obtained by applying and then drying a coating solution, when a sudden temperature / humidity change occurs, the transparency of the film is lowered and the practicality is impaired. Sometimes.
  • the amount of lower alcohol in the coating solution is preferably 60% by mass or less. If the amount of the lower alcohol exceeds 60% by mass, the amount of organic solvent in the coating solution will increase. It is necessary to take. In addition, when using alcohol with many carbon atoms simultaneously with lower alcohol, it is recommended that the total amount of alcohol in a coating liquid shall be 60 mass% or less.
  • the solid content of the polyester-based graft copolymer and the crosslinking agent (described later) in the organic solvent or aqueous solvent is preferably 0.5% by mass or more (more preferably 1% by mass or more), and 50% by weight or less. (More preferably 30% by weight or less) is preferable. In addition, it is also possible to mix
  • the method for applying the coating liquid containing the polyester-based graft copolymer to the polyester-based substrate film is not particularly limited, and known methods such as an air knife method, a gravure method, a reverse method, a die method, a bar method, and a dip method.
  • the coating method can be used.
  • the coating amount of the coating solution is preferably 0.002 ⁇ 0.5g / m 2 as polyester-based graft copolymer solids, and more preferably 0.004 ⁇ 0.05g / m 2. If the coating amount is less than 0.002 g / m 2 , the heat-resistant blocking effect may not be sufficiently ensured. On the other hand, if the coating amount exceeds 0.5 g / m 2 , the transparency and gloss of the film may be lowered.
  • the polyester-based graft copolymer used in the present invention is self-crosslinkable and does not crosslink at room temperature, but crosslinks without a crosslinker by performing an intermolecular reaction such as a hydrogen abstraction reaction by a thermal radical with heat during drying. . This makes it possible for the first time to exhibit the blocking resistance that is the object of the present invention.
  • the polyester base film and the polyester-based graft copolymer are not subject to thermal degradation.
  • heat amount are preferable. Specifically, it is 60 ° C to 250 ° C, more preferably 65 ° C to 220 ° C.
  • the drying time sufficient self-crosslinking property is exhibited even at a relatively low temperature, and thus the present invention is not limited to the above conditions.
  • the crosslinkability of the coating film can be evaluated by various methods, for example, a method of measuring an insoluble fraction in a chloroform solvent that dissolves both the hydrophobic copolymerized polyester and the polyester-based graft copolymer. .
  • the insoluble fraction of the coating film obtained by drying at 80 ° C. or less and heat-treating at 120 ° C. for 5 minutes is preferably 50% or more, more preferably 70% or more. When the insoluble fraction of the coating film is less than 50%, not only the water resistance is not sufficient, but also blocking occurs.
  • the present invention it is possible to impart high water resistance and solvent resistance by further adding a crosslinking agent to the coating solution.
  • the cross-linking agent is not particularly limited as long as it is capable of cross-linking with a functional group or the like present in the polyester-based graft copolymer by heat or light and finally forming a three-dimensional network structure. .
  • Cross-linking agents include phenol formaldehyde resins that are condensates of alkylated phenols, cresols, and the like with formaldehyde; adducts of urea, melamine, benzoguanamine, and the like with formaldehyde, and these adducts having 1 to 6 carbon atoms.
  • Examples include amino resins such as alkyl ether compounds composed of alcohols; polyfunctional epoxy compounds; polyfunctional isocyanate compounds; blocked isocyanate compounds; polyfunctional aziridine compounds; oxazoline compounds.
  • phenol formaldehyde resin examples include alkylated (methyl, ethyl, propyl, isopropyl or butyl) phenol, p-tert-amylphenol, 4,4′-sec-butylidenephenol, p-tert-butylphenol, o-, m-, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, xylenol, etc. And the condensates of phenols and formaldehyde.
  • amino resins examples include methoxylated methylol urea, methoxylated methylol N, N-ethylene urea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, and the like.
  • Preferred are methoxylated methylol melamine, butoxylated methylol melamine, and methylolated benzoguanamine.
  • polyfunctional epoxy compound examples include diglycidyl ether of bisphenol A and oligomer thereof, diglycidyl ether of hydrogenated bisphenol A and oligomer thereof, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, p-oxybenzoic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene Glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether And polyalkylene glycol diglycidyl ethers, trimellitic acid g
  • polyfunctional isocyanate compound examples include low-molecular or high-molecular aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates.
  • polyisocyanate examples include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and trimers of these isocyanate compounds.
  • an excess amount of these isocyanate compounds and low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, or polyester polyols, poly
  • polymer active hydrogen compounds such as ether polyols and polyamides
  • the blocked isocyanate compound can be prepared by subjecting the isocyanate compound and the blocking agent to an addition reaction by a conventionally known appropriate method.
  • the isocyanate blocking agent include phenols such as phenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; thiophenols such as thiophenol and methylthiophenol; oximes such as acetoxime, methyl etiketooxime, and cyclohexanone oxime.
  • Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propyllactam; aromatic amines; imides; acetylacetone, acetoacetate Active methylene compounds such as malonic acid ethyl ester; mercaptans; imines; ureas; diaryl compounds; and sodium bisulfite and the like.
  • the above crosslinking agents can be used alone or in combination of two or more.
  • the amount of the crosslinking agent is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the polyester-based graft copolymer.
  • a blending method of the crosslinking agent (1) when the crosslinking agent is water-soluble, a method of directly dissolving or dispersing the graft copolymer in an aqueous solvent solution or an aqueous solvent dispersion, or (2) a crosslinking agent When oil-soluble, there is a method of adding to the reaction solution after the grafting reaction is completed. These methods can be appropriately selected depending on the type and properties of the crosslinking agent. Further, a curing agent or an accelerator can be used in combination with the crosslinking agent.
  • ⁇ Stretching and heat setting ⁇ it is preferable to perform at least uniaxial stretching after the above drying and then heat-set.
  • a thin film can be easily formed by stretching.
  • the polyester orientation is fixed by heat setting, the main shrinkage rate of the heat-shrinkable film obtained using this is lowered.
  • the stretching conditions are not significantly different from those in the case of not providing the anti-blocking layer.
  • the anionic antistatic agent is added to the coating solution for forming the anti-blocking layer. Can be efficiently processed.
  • the heat-shrinkable label of the present invention is produced using the heat-shrinkable polyester film. At this time, printing may be performed as necessary.
  • NMR analysis of polyester Each sample was dissolved in a solvent in which chloroform D (manufactured by Yurisop) and trifluoroacetic acid D1 (manufactured by Yurisopp) were mixed at 10: 1 (volume ratio) to prepare a sample solution.
  • 1 H-NMR of the sample solution was measured using NMR (“GEMINI-200”; manufactured by Varian) under the measurement conditions of a temperature of 23 ° C. and a total of 64 times. In NMR measurement, the peak intensity of a predetermined proton was calculated, and the chip composition and film composition were determined as mol%.
  • is a pass level and “ ⁇ ”, “ ⁇ ”, and “XX” are bad. Further, “defects” in the following evaluation criteria correspond to jumping, wrinkling, insufficient shrinkage, label edge folding, and shrinkage whitening.
  • Good finish
  • Some defects (within 2 locations)
  • Defects (3-5 locations)
  • XX Many defects (over 6 locations)
  • Glass transition temperature (Tg) A solution or dispersion of the polyester-based graft copolymer was applied to a glass plate and then dried at 170 ° C. to obtain a graft polymer solid. 10 mg of this solid content is taken in a sample pan, and using a differential scanning calorimeter (manufactured by Shimadzu Corporation, atmosphere control device: FC-60A, workstation: TA-60WS), the temperature rising rate is 10 ° C./min under a nitrogen atmosphere. The glass transition temperature (Tg) was determined from the data obtained by the measurement.
  • Blocking property Heat seal the surface temperature of the seal bar within a range of 95 ⁇ 0.5 ° C, heat seal the film surfaces at a pressure of 40 N / cm2 and time of 300 seconds, and then remove a 15 mm wide sample.
  • the peel strength was measured using a tensile tester and evaluated according to the following criteria. ⁇ : Peel strength less than 0.1 N / 15 mm ⁇ : Peel strength of 0.1 N / 15 mm or more
  • the film after stretching was subjected to a primary heat treatment at 95 ° C. for 14 seconds, followed by a secondary heat treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 ⁇ m.
  • Table 2 shows the evaluation results of the characteristics of the film.
  • Example 2 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1 except that the ratio of the polyester A to C chips was changed to 5 wt% for A, 80 wt% for B, and 15 wt% for C. .
  • Example 3 Polyester A, C, and D chips were used as the polyester chips, and the ratio of these chips was the same as in Experimental Example 1 except that A was 15 wt%, C was 10 wt%, and D was 75 wt%. The heat-shrinkable polyester film of this experimental example was obtained.
  • Example 4 The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to primary heat treatment at 92 ° C. for 14 seconds.
  • the heat-shrinkable polyester film of this experimental example was obtained.
  • Example 5 The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 104 ° C. for 14 seconds.
  • the heat-shrinkable polyester film of this experimental example was obtained.
  • Example 6 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1 except that the primary heat treatment temperature after stretching in the transverse direction was 85 ° C.
  • Example 7 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1, except that the ratio of the polyester A to C chips was 40 wt%, B was 50 wt%, and C was 10 wt%. .
  • Example 8 The same method as in Experimental Example 1 except that the ratio of the polyester A to C chips was 40 wt% A, 50 wt% B, 10 wt% C, and the primary heat treatment temperature after stretching in the transverse direction was 85 ° C. Thus, a heat-shrinkable polyester film of this experimental example was obtained.
  • Example 9 The heat-shrinkable polyester of this experimental example was prepared in the same manner as in Experimental Example 1 except that 75 wt% of the polyester B chip and 25 wt% of the C chip were used, and the primary heat treatment temperature after stretching in the transverse direction was 85 ° C. A system film was obtained.
  • (Particularly preferred experimental examples 10 to 11) (Anionic antistatic agent-containing liquid 1) Water is added to the dodecyl sulfonate to dilute it, and isopropanol is further added to add an anionic antistatic agent-containing liquid 1 having a solid content concentration of 2 mass% (dodecyl sulfonate: 2 mass%, water: 63 mass%, isopropanol: 35 mass%). )
  • Anionic antistatic agent-containing liquid 2 Diluted by adding water to dodecylbenzenesulfonate, and further added isopropanol, an anionic antistatic agent-containing liquid 2 having a solid content concentration of 2 mass% (dodecylbenzenesulfonate: 2 mass%, water: 63 mass%, isopropanol: 35 Mass%).
  • Example 10 Separately pre-dried polyester A to C chips were mixed at a ratio of 15 wt% A, 75 wt% B, and 10 wt% C, fed to the extruder, melt extruded at 275 ° C., and surface temperature 25 ° C. The film was rapidly cooled on a chill roll to obtain an unstretched film having a thickness of 180 ⁇ m. An anionic antistatic agent-containing liquid 1 is applied to one side of this unstretched film by an air knife method, and the unstretched film is subsequently introduced into a tenter. The prestretched film temperature is set to 70 ° C. The stretched film was stretched 4.0 times in the transverse direction.
  • the film after stretching was subjected to a primary heat treatment at 95 ° C. for 14 seconds, followed by a secondary heat treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 ⁇ m.
  • Table 3 shows the evaluation results of the characteristics of the film.
  • Example 13 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12, except that the ratio of the polyester A to C chips was 5 wt%, B was 80 wt%, and C was 15 wt%. .
  • Example 14 Polyester A, C, and D chips were used as the polyester chips, and the ratio of these chips was the same as in Experimental Example 12, except that A was 15 wt%, C was 10 wt%, and D was 75 wt%. The heat-shrinkable polyester film of this experimental example was obtained.
  • Example 15 The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 92 ° C. for 14 seconds.
  • the heat-shrinkable polyester film of this experimental example was obtained.
  • Example 16 The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 104 ° C. for 14 seconds. The heat-shrinkable polyester film of this experimental example was obtained.
  • Example 17 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12 except that the primary heat treatment temperature after stretching in the transverse direction was 85 ° C.
  • Example 18 A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12 except that the ratio of the polyester A to C chips was 40 wt%, B was 50 wt%, and C was 10 wt%. .
  • Example 19 The same method as in Experimental Example 12 except that the ratio of the polyester A to C chips was 40 wt% for A, 50 wt% for B, 10 wt% for C, and the primary heat treatment temperature after lateral stretching was 85 ° C. Thus, a heat-shrinkable polyester film of this experimental example was obtained.
  • Example 20 The heat-shrinkable polyester of this experimental example was prepared in the same manner as in Experimental Example 12 except that 75 wt% of the polyester B chip and 25 wt% of the C chip were used and the primary heat treatment temperature after extending in the transverse direction was 85 ° C. A system film was obtained.
  • hydrophobic copolyester had a weight average molecular weight of 20,000 and was pale yellow and transparent.
  • the reactor internal temperature was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off to obtain a water-dispersed polyester graft copolymer.
  • the polyester graft copolymer was light yellow and transparent and had a glass transition temperature of ⁇ 10 ° C.
  • the water-dispersed polyester-based graft copolymer is diluted by adding water, and colloidal silica and isopropanol are further added to form a coating solution having a solid concentration of 1% by mass (polyester-based graft copolymer: 1% by mass, colloidal silica: 1% by mass, water: 63% by mass, isopropanol: 35% by mass).
  • coating solution 3 is applied as a polyester graft copolymer solid content by an air knife method so that it becomes 0.006 g / m 2 after drying, and is continuously led to a tenter.
  • the film temperature reached 70 ° C.
  • the film was stretched 4.0 times in the transverse direction at a temperature of 72 ° C.
  • heat treatment was carried out at 95 ° C. for 14 seconds, followed by treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 ⁇ m.
  • the heat transfer coefficient in the preheating process was 0.0009, and the heat transfer coefficient in the stretching process was 0.0056.
  • Table 4 shows the physical property values of the film of the obtained film roll.
  • Example 22 In Experimental Example 21, a heat-shrinkable polyester film was obtained in the same manner as in Experimental Example 21, except that the coating amount of the coating liquid 3 was set to 0.003 g / m 2 after drying as a polyester-based graft copolymer solid content. .
  • Table 4 shows the physical property values of the film of the obtained film roll.
  • Example 23 which is not preferable to Experimental Examples 21 to 22
  • Example 23 A heat-shrinkable polyester film having a thickness of 45 ⁇ m was obtained in the same manner as in Example 21 except that the coating liquid 3 was not applied.
  • Table 4 shows the physical property values of the film of the obtained film roll.
  • hydrophobic copolyester had a weight average molecular weight of 20,000 and was pale yellow and transparent.
  • the reactor internal temperature was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off to obtain a water-dispersed polyester graft copolymer.
  • the polyester graft copolymer was light yellow and transparent and had a glass transition temperature of ⁇ 10 ° C.
  • the water-dispersed polyester-based graft copolymer is diluted by adding water, dodecyl sulfonate is added, isopropanol is added, and a solid content concentration is 3% by mass (polyester-based graft copolymer: 2.6% by mass, Antistatic agent: 0.4% by mass, water: 62% by mass, isopropanol: 35% by mass).
  • the coating liquid 4 is applied as a polyester graft copolymer solid content by an air knife method so as to be 0.03 g / m 2 after drying, and continuously led to a tenter. After preheating until the film temperature reached 70 ° C., the film was stretched 4.0 times in the transverse direction at a temperature of 72 ° C. Next, heat treatment was carried out at 95 ° C. for 14 seconds, followed by treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 ⁇ m. At this time, the heat transfer coefficient in the preheating process was 0.0009, and the heat transfer coefficient in the stretching process was 0.0056. Table 5 shows the physical property values of the film of the obtained film roll.
  • Example 24 a heat-shrinkable polyester film was obtained in the same manner as in Example 1 except that the coating amount of the coating liquid 4 was set to 0.004 g / m 2 after drying as a polyester graft copolymer solid content. .
  • Table 5 shows the physical property values of the film of the obtained film roll.
  • the heat-shrinkable polyester film of the present invention can maintain a good appearance, is suitable for label use, and has high industrial utility value. In addition to suppressing the occurrence of troubles due to static electricity, it can also be resistant to blocking at high temperatures, and is suitable for labeling containers that are filled with high-temperature contents.

Abstract

A heat-shrinkable polyester film suitable for the use as labels for bottles which exhibits at least a high heat shrinkage factor and little causes whitening even when heat-shrunken, specifically, a heat-shrinkable polyester film which exhibits a heat shrinkage factor of 30 to 60% in the main shrinkage direction when immersed in hot water of 95±0.5°C for 10 seconds and which elongates in the direction perpendicular to the main shrinkage direction when immersed in hot water kept at a temperature of 59.5 to 90.5°C (with a tolerance of ±0.5°C) for 10 seconds. It is preferable that the film exhibit a heat shrinkage factor of less than 40% in the main shrinkage direction when immersed in hot water of 80±0.5°C for 10 seconds.

Description

熱収縮性ポリエステル系フィルムHeat-shrinkable polyester film
 本発明は、ラベル用途にも好適に使用できる熱収縮性ポリエステル系フィルムに関するものである。 The present invention relates to a heat-shrinkable polyester film that can be suitably used for label applications.
 加熱により収縮する性質を有する熱収縮性プラスチックフィルムは、包装、ラベル、キャップシールなどの用途に広く用いられている。ポリ塩化ビニル系フィルム、ポリスチレン系フィルム、ポリエステル系フィルムなどの延伸フィルムが熱収縮性プラスチックフィルムとして知られており、これらのフィルムはポリエチレンテレフタレート(PET)容器、ポリエチレン容器、ガラス容器などの各種容器のラベル、キャップシール、集積包装の用途に使用されている。 The heat-shrinkable plastic film having the property of shrinking by heating is widely used for applications such as packaging, labels, and cap seals. Stretched films such as polyvinyl chloride films, polystyrene films, and polyester films are known as heat-shrinkable plastic films. These films are used in various containers such as polyethylene terephthalate (PET) containers, polyethylene containers, and glass containers. Used for labels, cap seals, and integrated packaging applications.
 上記の通り各種プラスチックフィルムが熱収縮性フィルムとして使用されているが、ポリ塩化ビニル系フィルムは、耐熱性が低い問題、これを焼却処理する際に塩化水素ガスやダイオキシンの発生原因となる等の環境適合性に関する問題を抱えている。また、ポリ塩化ビニル系フィルムのラベルが設けられているPET製容器等の容器をリサイクル利用する際には、当該容器からラベルを分離しなければならないという問題がある。 Various plastic films are used as heat-shrinkable films as described above. Polyvinyl chloride films have low heat resistance, and cause generation of hydrogen chloride gas and dioxins when incinerated. I have a problem with environmental compatibility. In addition, when a container such as a PET container provided with a label of a polyvinyl chloride film is recycled, there is a problem that the label must be separated from the container.
 ポリスチレン系フィルムについては、収縮後の仕上がり性が良好であるものの、耐溶剤性に乏しいために、フィルム表面への印刷を施す場合には特殊な組成のインキを使用しなければならない。また、ポリスチレン系フィルムをホット用飲料PETボトルラベルとして適用した場合、そのボトル保管で使用されるホットウォーマー等の加温設備の熱線等にラベルが接触すると、ラベルが瞬時に融けてしまうという耐熱性に関する問題がある。その他、ポリスチレン系フィルムに関する問題として、商品の良イメージとして要求されうる透明性が低いこと(ポリスチレン系フィルムを熱風で収縮させると、失透が発生しやすい)、処理するための焼却温度を高めなければならないこと、焼却時における多量の黒煙と異臭の発生がある。 Polystyrene film has good finish after shrinkage, but has poor solvent resistance. Therefore, when printing on the film surface, special composition ink must be used. In addition, when a polystyrene film is applied as a hot beverage PET bottle label, the label melts instantly when the label comes into contact with the hot wire of a heating equipment such as a hot warmer used in the bottle storage. There is a problem with. Other problems related to polystyrene films are low transparency that can be required as a good image of products (devitrification is likely to occur when polystyrene films are shrunk with hot air), and the incineration temperature for processing must be increased. There is a lot of black smoke and off-flavor generated during incineration.
 ポリエステル系フィルムは、上述したポリ塩化ビニル系フィルムやポリスチレン系フィルムの耐熱性、環境適合性、耐溶剤性等の問題が改善されたフィルムとして、容器のラベル等に使用されている(例えば、特許文献1参照)。 Polyester films are used for container labels and the like as a film in which the above-mentioned problems such as heat resistance, environmental compatibility and solvent resistance of the polyvinyl chloride film and polystyrene film have been improved (for example, patents) Reference 1).
 ただし、ポリエステル系フィルムに対してその収縮特性が更に改善されることが求められており、改善が望まれる第一の特性として、フィルムの加熱収縮によりラベルを容器に装着する際のラベル(フィルム)の白化発生抑制がある。この白化の発生は特に熱風等の乾熱によりフィルムを加熱収縮させる場合に生じ易く、また、熱収縮率の高いフィルムで発生しやすい傾向がある。そして、生じた白化は、経時的に悪化する傾向がある。低熱収縮率フィルムを選択してラベルの白化を避けることも考えられるが、フィルム収縮のための必要熱量が大きくなるがために、特に、耐熱性が低い容器へのダメージ付与、および熱膨張した容器が収縮して元の大きさに戻るときにラベルと容器との密着性が低下することが問題となる。近年進められている省資源化を背景とした容器原料の使用量削減に基づいて容器が薄肉化しており、容器の耐熱性が低下傾向にあることから、上記の容器へのダメージ付与と密着性低下が発生しやすくなっている。そのため、熱収縮率が低いフィルムを選択するよりも、熱収縮率が高く、かつ、白化発生を抑えることができるフィルムが望まれる。 However, there is a demand for further improvement of the shrinkage property of the polyester film, and the first property that is desired to be improved is a label (film) when the label is attached to the container by heat shrinkage of the film. Of whitening. This whitening tends to occur particularly when the film is heated and shrunk by dry heat such as hot air, and tends to occur in a film having a high heat shrinkage rate. The resulting whitening tends to worsen over time. It may be possible to avoid the whitening of the label by selecting a film with a low heat shrinkage rate. However, since the amount of heat required for film shrinkage increases, in particular, damage is given to a container with low heat resistance, and the container is thermally expanded. When the film shrinks and returns to its original size, the problem is that the adhesion between the label and the container decreases. Due to the reduction in the amount of container raw materials used in recent years due to resource saving, the container is thinned and the heat resistance of the container tends to decrease. A decrease is likely to occur. Therefore, a film having a high heat shrinkage rate and capable of suppressing the occurrence of whitening is desired rather than selecting a film having a low heat shrinkage rate.
 また、ポリエステル系フィルムに望まれる第二特性として、収縮ムラの発生の抑制があ
り、更には、第三特性として、ラベルの飛び上がり(容器にラベルを装着する際に、ラベルが任意の装着位置から容器軸の上端方向に不作為に移動すること)の抑制がある。上記第一特性と共に、これら第二特性および第三特性は、良外観のラベルを容器に装着するために望まれる特性である。収縮ムラは、特に熱風等の乾熱によりフィルムを加熱収縮させる場合に生じ易く、またフィルムが急激に熱収縮するような特性を持つと生じ易い。ラベルの飛び上がりは、主収縮方向と直交する方向の熱収縮率が高いフィルムを加熱収縮させる場合に生じ易い。いずれも店頭における商品の見栄えに影響を及ぼすことから、収縮時にムラや飛び上がりが生じないフィルムが望まれる。
In addition, as a second characteristic desired for the polyester film, there is a suppression of occurrence of shrinkage unevenness, and further, as a third characteristic, the label jumps up (when the label is mounted on the container, the label can be moved from an arbitrary mounting position). (Random movement in the upper end direction of the container shaft). Together with the first characteristic, the second characteristic and the third characteristic are characteristics that are desired for mounting a good-appearance label on a container. Shrinkage unevenness is particularly likely to occur when the film is heated and shrunk by dry heat such as hot air, and is also likely to occur when the film has characteristics that cause rapid thermal shrinkage. The jumping of the label tends to occur when a film having a high thermal shrinkage rate in a direction orthogonal to the main shrinkage direction is heated and shrunk. Since both affect the appearance of the product at the store, a film that does not cause unevenness or jumping during shrinkage is desired.
 また、従来公知のポリエステル系フィルムは絶縁体であることから、そのフィルムには静電気が発生・蓄積し易いといった問題がある。例えば、フィルム製造工程、フィルムへの印刷、フィルム同士の接着等でのロールへのフィルム巻き付きや人体への感電を生じさせる静電気は、フィルムの取り扱いを煩雑にさせる要因となる。また、静電気は所謂印刷ヒゲ、フィルム表面の汚れ等の原因になるため、商品価値の低下を誘引しかねない。したがって、静電気の発生・蓄積が抑えられたポリエステル系フィルムが望まれる。 In addition, since a conventionally known polyester film is an insulator, there is a problem that static electricity is easily generated and accumulated in the film. For example, static electricity that causes film wrapping around a roll in the film manufacturing process, film printing, adhesion between films, or electric shock to the human body becomes a factor that complicates the handling of the film. Moreover, since static electricity causes so-called printing mustaches, dirt on the film surface, and the like, it may induce a decline in commercial value. Therefore, a polyester film in which generation / accumulation of static electricity is suppressed is desired.
 また、印刷加工が必要に応じて施された後に筒状に加工された熱収縮性フィルム(熱収縮性ラベル)で容器の周面を覆い、次いで、このフィルムを熱収縮させることにより容器の周面にラベルを被覆する方法が、容器へのラベル装着方法として多用されており、熱収縮性フィルムを筒状に加工するためには、溶剤をフィルムの片側の一面に塗布し、この塗布面をフィルムの反対側の一面に当接することによりフィルムの両面を接着することが一つの手段として挙げられる。しかし、ポリエステル系フィルムの組成によっては、フィルム両端部の接着性が不足する場合があった。この接着性が不足、つまり接着強度が不足した場合、熱収縮過程または容器取り扱い時に、一度は容器に装着されたラベルが剥離する恐れがある。そのため、上記の接着性が十分な熱収縮性ラベルが望まれる。
特開2002-46177号公報
In addition, the peripheral surface of the container is covered with a heat-shrinkable film (heat-shrinkable label) that is processed into a cylindrical shape after being subjected to printing as necessary, and then the film is heat-shrinked to thereby surround the container. The method of covering the surface with a label is often used as a method for attaching a label to a container. In order to process a heat-shrinkable film into a cylindrical shape, a solvent is applied to one surface of the film, and this coated surface is applied. One means is to bond both surfaces of the film by contacting one surface of the film opposite to the other surface. However, depending on the composition of the polyester film, the adhesiveness at both ends of the film may be insufficient. If the adhesiveness is insufficient, that is, the adhesive strength is insufficient, the label attached to the container may be peeled off once during the heat shrinking process or the container handling. For this reason, a heat-shrinkable label having sufficient adhesiveness is desired.
JP 2002-46177 A
 また、容器に充填される飲料等の内容物が高温であるような場合は、隣接する容器間で、容器に装着された熱収縮性フィルム(熱収縮性ラベル)同士のブロッキングが発生することがある。フィルムには、印刷を含めた加工時の静電気によるトラブル防止のために、静電気防止剤が塗布されることが一般的であり、静電気防止剤が耐熱ブロッキング効果をもたらす。しかしながら、高温の内容物を容器に充填した後は、容器に温水シャワー等を浴びせて冷却することが多く、その結果、フィルム表面に塗布された静電気防止剤が温水で流されてしまい、実質上耐熱ブロッキング効果が得られない場合がある。
Moreover, when the contents of beverages or the like filled in the container are at a high temperature, blocking between the heat-shrinkable films (heat-shrinkable labels) attached to the containers may occur between adjacent containers. is there. In order to prevent troubles caused by static electricity during processing including printing, an antistatic agent is generally applied to the film, and the antistatic agent provides a heat-resistant blocking effect. However, after filling the container with high-temperature contents, the container is often cooled by taking a warm water shower or the like, and as a result, the antistatic agent applied to the film surface is washed away with warm water, substantially. The heat blocking effect may not be obtained.
 本発明は、上記事情に鑑み、少なくとも熱収縮率が高く且つ熱収縮による白化発生を抑えることができる熱収縮性ポリエステル系フィルムの提供を目的とする。更に好ましい態様として、静電気によるトラブル発生を抑制することができる熱収縮性ポリエステル系フィルムや高温でのブロッキング発生が抑制された熱収縮性ポリエステル系フィルムの提供し、容器へのラベル用途に好適な熱収縮性ポリエステル系フィルムの提供を課題とする。 In view of the above circumstances, an object of the present invention is to provide a heat-shrinkable polyester film having at least a high heat shrinkage rate and capable of suppressing the occurrence of whitening due to heat shrinkage. As a more preferred embodiment, a heat-shrinkable polyester film that can suppress the occurrence of trouble due to static electricity or a heat-shrinkable polyester film that suppresses the occurrence of blocking at high temperatures is provided, and heat suitable for labeling containers. An object is to provide a shrinkable polyester film.
 即ち、本発明に係る熱収縮性ポリエステル系フィルムは、以下の構成よりなる。
1. 95±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が30~60%であり、
 59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度の温水中に10秒間浸漬した際において主収縮方向に直交する方向の長さが伸長することを特徴とする熱収縮性ポリエステル系フィルム。
2. アニオン系帯電防止剤が少なくとも片面に存在している上記第1記載の熱収縮性ポリエステル系フィルム。
3. 前記アニオン系帯電防止剤が、アルキル基を有し且つ炭素数が10~20である上記第2に記載の熱収縮性ポリエステル系フィルム。
4. 少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層を、フィルムの少なくとも片面に設けた上記第1記載の熱収縮性ポリエステル系フィルム。
5. 前記ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含む上記第4に記載の熱収縮性ポリエステル系フィルム。
6. 少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層をフィルムの少なくとも片面に設け、且つアニオン系帯電防止剤が前記耐ブロッキング性改良層中に存在する上記第1に記載の熱収縮性ポリエステル系フィルム。
7. ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含む上記第6に記載の熱収縮性ポリエステル系フィルム。
8. アニオン系帯電防止剤が、アルキル基を有し且つ炭素数が10~20である上記第6に記載の熱収縮性ポリエステル系フィルム。
9. 80±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が、40%未満である上記第1、第2、第4、及び第6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。
10. 60±0.5℃、65±0.5℃、70±0.5℃、75±0.5℃、80±0.5℃、85±0.5℃、90±0.5℃、および95±0.5℃の温水中に10秒間浸漬した際の何れかの温水中への浸漬で主収縮方向の熱収縮が始まり、
 [(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満である上記第1、第2、第4、及び第6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。
11. 熱収縮後のヘーズが10%以下である上記第1、第2、第4、及び第6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。
12. 非塩素系有機溶剤で接着可能である上記第1、第2、第4、及び第6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。
13. 上記第1、第2、第4、及び第6のいずれか1項に記載の熱収縮性ポリエステル系フィルムを使用して作製された熱収縮性ラベル。
That is, the heat-shrinkable polyester film according to the present invention has the following configuration.
1. The heat shrinkage rate in the main shrinkage direction when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds is 30 to 60%,
The length in the direction perpendicular to the main contraction direction is extended when immersed for 10 seconds in warm water at any temperature corresponding to 59.5 to 90.5 ° C and [constant temperature ± 0.5 ° C]. A heat-shrinkable polyester film.
2. The heat-shrinkable polyester film according to the first aspect, wherein the anionic antistatic agent is present on at least one side.
3. The heat-shrinkable polyester film as described in the second item, wherein the anionic antistatic agent has an alkyl group and has 10 to 20 carbon atoms.
4). The heat-shrinkable polyester according to the first aspect, wherein a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film. Film.
5). The heat-shrinkable polyester film according to the fourth aspect, wherein the radical polymerizable monomer contains at least maleic anhydride and styrene.
6). A blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film, and the anionic antistatic agent is provided with the anti-blocking property. The heat-shrinkable polyester film as described in the above item 1, which is present in the property improving layer.
7). The heat-shrinkable polyester film according to the sixth aspect, wherein the radical polymerizable monomer contains at least maleic anhydride and styrene.
8). The heat-shrinkable polyester film as described in the above item 6, wherein the anionic antistatic agent has an alkyl group and has 10 to 20 carbon atoms.
9. The thermal shrinkage rate in the main shrinkage direction when immersed in warm water of 80 ± 0.5 ° C. for 10 seconds is any one of the first, second, fourth, and sixth, which is less than 40%. Heat shrinkable polyester film.
10. 60 ± 0.5 ° C, 65 ± 0.5 ° C, 70 ± 0.5 ° C, 75 ± 0.5 ° C, 80 ± 0.5 ° C, 85 ± 0.5 ° C, 90 ± 0.5 ° C, and Thermal contraction in the main contraction direction begins with immersion in any warm water when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds,
[(Thermal shrinkage rate in the main shrinkage direction + 10 ° C. in the main shrinkage direction + 10 ° C.)] to [(temperature shrinkage rate in the main shrinkage direction in excess of 0% −5 ° C.)] The heat-shrinkable polyester film according to any one of the first, second, fourth, and sixth aspects, wherein a value obtained by subtracting a heat shrinkage ratio in a main shrinkage direction is less than 20%.
11. The heat-shrinkable polyester film according to any one of the first, second, fourth, and sixth, wherein the haze after heat shrinkage is 10% or less.
12 The heat-shrinkable polyester film according to any one of the first, second, fourth, and sixth, which can be bonded with a non-chlorine organic solvent.
13. The heat-shrinkable label produced using the heat-shrinkable polyester film of any one of said 1st, 2nd, 4th, and 6th.
 本発明に係る熱収縮性ポリエステル系フィルムは、95±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が30~60%であり、59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度の温水中に10秒間浸漬した際において主収縮方向に直交する方向の長さが伸長することが好ましい。前記主収縮方向の熱収縮率は、80±0.5℃の温水中に10秒間浸漬した際に40%未満であると好適である。 The heat-shrinkable polyester film according to the present invention has a heat shrinkage ratio of 30 to 60% in the main shrinkage direction when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds, and 59.5 to 90.5. It is preferable that the length in the direction perpendicular to the main contraction direction is extended when immersed in warm water at 10 ° C. and any temperature corresponding to [constant temperature ± 0.5 ° C.] for 10 seconds. The thermal shrinkage rate in the main shrinkage direction is preferably less than 40% when immersed in warm water of 80 ± 0.5 ° C. for 10 seconds.
 前記本発明に係るフィルムにおいて、「主収縮方向」とは、試料フィルムの最も収縮した方向を意味し、正方形のフィルムを試料とする場合、その正方形の縦方向または横方向が収縮方向となる。「熱収縮率」とは、温水中に試料フィルムを無荷重状態で浸漬した後、25℃の水中に10秒浸漬して引き上げ、温水への浸漬前(収縮前)と25℃の水への浸漬後(収縮後)の試料フィルムの寸法を下記式(1)に当てはめて算出される値である。また、「59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度」とは、例えば、60±0.5℃、65±0.5℃、70±0.5℃、75±0.5℃、80±0.5℃、85±0.5℃、および90±0.5℃から選択された一種または二種以上の温度である。
 式(1):熱収縮率(%)=100×(収縮前の長さ-収縮後の長さ)÷(収縮前の長さ)
In the film according to the present invention, the “main shrinkage direction” means the most contracted direction of the sample film. When a square film is used as the sample, the vertical direction or the horizontal direction of the square is the shrink direction. “Thermal shrinkage” means that after immersing a sample film in warm water under no load condition, it is pulled up by immersing it in 25 ° C. water for 10 seconds before being immersed in warm water (before shrinkage) and in 25 ° C. water. This is a value calculated by applying the dimension of the sample film after immersion (after shrinkage) to the following formula (1). Further, “any temperature corresponding to 59.5 to 90.5 ° C. and [constant temperature ± 0.5 ° C.]” means, for example, 60 ± 0.5 ° C., 65 ± 0.5 ° C., 70 ± One or more temperatures selected from 0.5 ° C, 75 ± 0.5 ° C, 80 ± 0.5 ° C, 85 ± 0.5 ° C, and 90 ± 0.5 ° C.
Formula (1): Heat shrinkage rate (%) = 100 × (length before shrinkage−length after shrinkage) ÷ (length before shrinkage)
 前記本発明に係るフィルムは、60±0.5℃、65±0.5℃、70±0.5℃、75±0.5℃、80±0.5℃、85±0.5℃、90±0.5℃、および95±0.5℃の温水中に10秒間浸漬した際の何れかの温水中への浸漬で主収縮方向の熱収縮が始まり、[(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満であると好適である。 The film according to the present invention is 60 ± 0.5 ° C., 65 ± 0.5 ° C., 70 ± 0.5 ° C., 75 ± 0.5 ° C., 80 ± 0.5 ° C., 85 ± 0.5 ° C., Thermal contraction in the main contraction direction starts with immersion in warm water at 90 ± 0.5 ° C. and 95 ± 0.5 ° C. for 10 seconds. Thermal contraction rate in the main contraction direction at a temperature exceeding 10% + 10 ° C.] to [The thermal contraction rate in the main contraction direction at a temperature −5 ° C. where the thermal contraction rate in the main contraction direction exceeds 0%]] The value obtained by subtracting is preferably less than 20%.
 前記本発明に係るフィルムは、熱収縮後のヘーズが10%以下であると良い。その熱収縮後のヘーズは、次の通り決定される。温度30℃、相対湿度85%の雰囲気に4週間保存した熱収縮性ポリエステル系フィルムを使用し、主収縮方向が径方向となるように作製した直径11cmのチューブ状フィルムを用いる次の方法により、前記の熱収縮後のヘーズが求められる。チューブ状フィルム内に温度40℃の円筒状ガラス瓶(直径6.6cm)を配置させ、そのフィルムに向けて150℃(風速10m/秒)の熱風を13秒当て、熱風による収縮後のフィルム(チューブ状フィルムサンプル数10)を切り出し、これを熱収縮後のフィルム試料とする。熱収縮後のフィルムのヘーズをJIS
K7136に準
拠して測定し、その平均値が熱収縮後のヘーズである。
The film according to the present invention preferably has a haze after heat shrinkage of 10% or less. The haze after the heat shrinkage is determined as follows. Using a heat-shrinkable polyester film stored for 4 weeks in an atmosphere at a temperature of 30 ° C. and a relative humidity of 85%, the following method using a tubular film having a diameter of 11 cm prepared so that the main shrinkage direction is the radial direction, The haze after the heat shrinkage is required. A cylindrical glass bottle (diameter 6.6 cm) having a temperature of 40 ° C. is placed in the tube-shaped film, hot air at 150 ° C. (wind speed 10 m / sec) is applied to the film for 13 seconds, and the film after shrinking with hot air (tube) 10) is cut out and used as a film sample after heat shrinkage. JIS for film haze after heat shrinkage
Measured according to K7136, the average value is the haze after heat shrinkage.
 飲料等の容器のラベルに使用される筒状の熱収縮性ラベルとして本発明に係る熱収縮性ポリエステル系フィルムが使用されても良く、熱収縮性ラベルの収縮特性と溶剤によるフィルム間の接着性を両立させ、かつ、その溶剤による環境への問題や安全性を考慮した場合には、本発明に係るフィルムが非塩素系有機溶剤で接着可能であるものだと好適である。 The heat-shrinkable polyester film according to the present invention may be used as a cylindrical heat-shrinkable label used for labels of containers such as beverages. In view of environmental problems and safety due to the solvent, it is preferable that the film according to the present invention can be bonded with a non-chlorine organic solvent.
 本発明の熱収縮性ポリエステル系フィルムは、アニオン系帯電防止剤がフィルムの少なくとも片面に存在していることも好ましい。前記アニオン系帯電防止剤は、アルキル基を有し且つ炭素数が10~20であるものが好適である。 In the heat-shrinkable polyester film of the present invention, an anionic antistatic agent is preferably present on at least one side of the film. The anionic antistatic agent preferably has an alkyl group and has 10 to 20 carbon atoms.
 本発明の熱収縮性ポリエステル系フィルムは、少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層を、フィルムの少なくとも片面に設けた態様も好ましい。 The heat-shrinkable polyester film of the present invention has a blocking resistance improving layer containing a polyester graft copolymer obtained by grafting at least one radical polymerizable monomer on a hydrophobic copolymer polyester on at least one side of the film. The provided aspect is also preferable.
 また、本発明において、前記ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含むことが好ましい。 In the present invention, it is preferable that the radical polymerizable monomer contains at least maleic anhydride and styrene.
 本発明の熱収縮性ポリエステル系フィルムは、ラベル、包装等の用途に好適に用いることが可能なものであり、水蒸気により収縮させた場合だけでなく熱風により収縮させた場合にも、優れた熱収縮特性を有し、かつ、熱収縮処理を行った場合の白化発生が抑えることができ、更には、熱収縮によるシワ、端部の折れ込み、および飛び上がりを抑えることができる。 The heat-shrinkable polyester film of the present invention can be suitably used for applications such as labels and packaging, and has excellent heat resistance not only when shrinking with water vapor but also when shrinking with hot air. It has shrinkage characteristics and can suppress the occurrence of whitening when the heat shrink treatment is performed. Furthermore, wrinkles due to heat shrinkage, folding of edges, and jumping up can be suppressed.
 また、熱収縮性ポリエステル系フィルムの表面にアニオン系帯電防止剤を存在させた態様においては、フィルム内部に練り込まれていないからこそフィルムの表面固有抵抗値を低く抑え、静電気によるトラブル発生の抑制が可能となる。 In addition, in an embodiment in which an anionic antistatic agent is present on the surface of the heat-shrinkable polyester film, the surface resistivity of the film is kept low because it is not kneaded inside the film, and troubles due to static electricity are suppressed. Is possible.
 また、耐ブロッキング性改良層を、フィルムの少なくとも片面に設けた態様においては、高温でのブロッキングの発生も抑制された熱収縮性ポリエステル系フィルムを得ることができた。耐ブロッキング性改良層中にアニオン系帯電防止剤を含ませることもでき、両者の効果を兼備させることもできる。 Further, in the embodiment in which the anti-blocking layer was provided on at least one side of the film, a heat-shrinkable polyester film in which occurrence of blocking at high temperature was suppressed could be obtained. An anionic antistatic agent can also be included in the anti-blocking layer, and both effects can be combined.
 本発明に係る熱収縮性ポリエステル系フィルムは、95±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が30~60%であることが好ましい。その熱収縮率は、35~57%であると好ましく、40~55%であるとより好ましい。前記の熱収縮率が30%未満のフィルムは熱収縮率が不足するので、このフィルムを例えばラベルとして使用した場合には、当該ラベルが容器に密着固定されない。その収縮率が30%未満のフィルムに高熱量を付加して収縮させても、容器の熱的ダメージを与える恐れがあると共に、容器の熱変形によるラベル緩みが発生しやすくなる。一方、前記熱収縮率が60%を超えるフィルムは、熱収縮による白化、急激な収縮による収縮ムラ、印刷した場合の印刷図柄の歪み、ラベル上部の不均一な仕上がりが生じやすくなる。 The heat-shrinkable polyester film according to the present invention preferably has a heat shrinkage ratio in the main shrinkage direction of 30 to 60% when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds. The heat shrinkage rate is preferably 35 to 57%, more preferably 40 to 55%. The film having a heat shrinkage rate of less than 30% is insufficient in heat shrinkage rate. Therefore, when this film is used as a label, for example, the label is not tightly fixed to the container. Even if a film having a shrinkage rate of less than 30% is shrunk by applying a high amount of heat, the container may be thermally damaged, and label loosening due to thermal deformation of the container tends to occur. On the other hand, a film having a heat shrinkage ratio exceeding 60% tends to cause whitening due to heat shrinkage, shrinkage unevenness due to rapid shrinkage, distortion of a printed pattern when printed, and uneven finish on the label.
 本発明に係るフィルムの80±0.5℃温水中に浸漬した場合の主収縮方向の熱収縮率は、40%未満であることが好ましい。当該熱収縮率が40%を超えると、急激な収縮が生じやすくなり、収縮ムラの発生や白化の発生によってフィルムの透明性が低下してしまう場合がある。 The thermal contraction rate in the main contraction direction when the film according to the present invention is immersed in warm water of 80 ± 0.5 ° C. is preferably less than 40%. If the thermal shrinkage rate exceeds 40%, rapid shrinkage tends to occur, and the transparency of the film may be lowered due to occurrence of shrinkage unevenness or whitening.
 また、本発明に係るフィルムにおいては、60±0.5℃、65±0.5℃、70±0.5℃、75±0.5℃、80±0.5℃、85±0.5℃、90±0.5℃、および95±0.5℃の温水中に10秒間浸漬した際の何れかの温水中への浸漬で主収縮方向の熱収縮が始まり、[(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満であると好適である。この値が20%を超えても、急激な収縮が生じやすくなり、収縮ムラの発生や白化の発生によってフィルムの透明性が低下してしまう場合がある。 In the film according to the present invention, 60 ± 0.5 ° C., 65 ± 0.5 ° C., 70 ± 0.5 ° C., 75 ± 0.5 ° C., 80 ± 0.5 ° C., 85 ± 0.5 Thermal contraction in the main contraction direction starts with immersion in warm water at 10 ° C., 90 ± 0.5 ° C., and 95 ± 0.5 ° C. for 10 seconds. Heat shrinkage in the main shrinkage direction (temperature at which the heat shrinkage rate exceeds 0% + 10 ° C.)] to [(temperature at which the heat shrinkage rate in the main shrinkage direction exceeds 0% −5 ° C.)] The value obtained by subtracting the rate is preferably less than 20%. Even if this value exceeds 20%, rapid shrinkage tends to occur, and the transparency of the film may be lowered due to the occurrence of uneven shrinkage or whitening.
 本発明に係る熱収縮性ポリエステル系フィルムは、上記の主収縮方向の熱収縮率と共に、59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度の温水中に10秒間浸漬した際において主収縮方向に直交する方向の長さが伸長することも特徴としている。このような直交方向の伸長が生じることは、本発明に係るポリエステル系フィルムが容器用ラベル部材として適することを意味している。つまり、本発明に係るポリエステル系フィルムの主収縮方向を径方向とし、かつ、同フィルムの主収縮方向の直交方向を軸方向とする筒状熱収縮性ラベルは、径方向の収縮によりラベルが容器に固定される前において軸方向が伸長するか又は軸方向の収縮が小さいものとなるから、ラベル上端の仕上がりの不均一と、背貼り加工部を起点にする上下部の山形とを生じさせ易くする軸方向の引き込みを抑制できるのである。 The heat-shrinkable polyester film according to the present invention comprises hot water having a temperature corresponding to 59.5 to 90.5 ° C. and [constant temperature ± 0.5 ° C.] together with the heat shrinkage rate in the main shrinkage direction. It is also characterized in that the length in the direction orthogonal to the main contraction direction is elongated when immersed in the interior for 10 seconds. Generation | occurrence | production of such an orthogonal direction means that the polyester-type film which concerns on this invention is suitable as a label member for containers. That is, the cylindrical heat-shrinkable label having the main shrinkage direction of the polyester film according to the present invention as the radial direction and the orthogonal direction of the main shrinkage direction of the film as the axial direction is the container due to the shrinkage in the radial direction. Before it is fixed to the sheet, the axial direction is extended or the axial contraction is small, so that it is easy to cause uneven finish of the upper end of the label and chevron of the upper and lower parts starting from the back-pasted part. The pulling in the axial direction can be suppressed.
 上記の直交方向の伸長は、温水中に試料フィルムを無荷重状態で浸漬した後、25℃の水中に10秒浸漬して引き上げ、温水への浸漬前(収縮前)と25℃の水への浸漬後(収縮後)の試料フィルムの寸法を上記式(1)に当てはめて算出することにより確認される。このときに算出された値が負の値であれば、直交方向の伸長が生じたことになる。 The elongation in the orthogonal direction is performed by immersing the sample film in warm water in an unloaded state, then immersing it in 25 ° C. water for 10 seconds and pulling it up, before immersing in warm water (before shrinkage) and in 25 ° C. water. It is confirmed by applying the dimension of the sample film after immersion (after shrinkage) to the above formula (1) and calculating. If the value calculated at this time is a negative value, the expansion in the orthogonal direction has occurred.
 なお、上記の伸長が59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度で生じる限り、当該いずれかの温度で直交方向の熱収縮率3%以内(好ましくは2%以内)のものも本発明に係るフィルムに該当する。 As long as the above elongation occurs at any temperature corresponding to 59.5 to 90.5 ° C. and [constant temperature ± 0.5 ° C.], the heat shrinkage rate in the orthogonal direction is within 3% at any temperature. The film (preferably within 2%) also corresponds to the film according to the present invention.
 上記の伸長は、熱収縮率と同様にして求めた値が0%以下であると良く、-0.5%以下が好ましい。また、伸長は、80±0.5℃および85±0.5℃の温水中に10秒間浸漬した際に生じることが好ましい。 As for the above elongation, the value obtained in the same manner as the thermal shrinkage rate is preferably 0% or less, and preferably -0.5% or less. Further, the elongation is preferably caused when immersed in warm water of 80 ± 0.5 ° C. and 85 ± 0.5 ° C. for 10 seconds.
 本発明に係るフィルムの熱収縮後のヘーズは、通常、10%以下であり、9.7%以下であると好ましく、9.5%以下であると更に好ましい。 The haze of the film according to the present invention after heat shrinkage is usually 10% or less, preferably 9.7% or less, and more preferably 9.5% or less.
 本発明に係るフィルムの厚みは、20~100μmが好ましく、30~60μmがより好ましい。 The thickness of the film according to the present invention is preferably 20 to 100 μm, more preferably 30 to 60 μm.
 好適な本発明に係るフィルムは、フィルム同士を溶剤で接着可能なものである。この「溶剤で接着可能」とは、後記実施例における「溶剤接着性」評価方法により決定される溶剤接着強度が3N/15mm以上であることを意味する。本発明に係るフィルムを容器用ラベルとして適用する場合には、フィルムを円筒状等の筒状にする必要があり、この筒状を形成するために溶剤が使用される。つまり、フィルムの2つの端部を主収縮方向が径方向となるように接着して熱可塑性筒状フィルム(熱可塑性ラベル)を作製するために、溶剤が使用される。なお、フィルム同士の接着は、一方のフィルム端部の一面に溶剤を塗布し、当該塗布面を他方のフィルム端部の表面に圧接させることで実現可能であり、作製された熱可塑性ラベルは、通常、必要な長さに切断される。 A preferred film according to the present invention is a film that can be bonded to each other with a solvent. This “adhesive with a solvent” means that the solvent adhesive strength determined by the “solvent adhesiveness” evaluation method in the examples described later is 3 N / 15 mm or more. When the film according to the present invention is applied as a container label, the film needs to be formed into a cylindrical shape such as a cylindrical shape, and a solvent is used to form the cylindrical shape. That is, a solvent is used to produce a thermoplastic tubular film (thermoplastic label) by bonding the two ends of the film so that the main shrinkage direction is the radial direction. In addition, adhesion between films can be realized by applying a solvent to one surface of one film end, and pressing the applied surface to the surface of the other film end, and the produced thermoplastic label is: Usually cut to the required length.
 フィルム同士を接着するための溶剤としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素;塩化メチレン、クロロホルムなどのハロゲン化炭化水素;フェノール等のフェノール類;テトラヒドロフラン等のフラン類;1,3-ジオキソラン等のオキソラン類等の有機溶剤が用いられる。塩素原子等のハロゲンに起因する有毒物質の発生を考慮すれば、非塩素系有機溶剤が好ましく、安全性の観点を特に考慮すれば、テトラヒドロフラン、1,3-ジオキソランが好ましい。 Examples of the solvent for bonding the films include aromatic hydrocarbons such as benzene, toluene, xylene and trimethylbenzene; halogenated hydrocarbons such as methylene chloride and chloroform; phenols such as phenol; furans such as tetrahydrofuran. Organic solvents such as oxolanes such as 1,3-dioxolane are used. In view of the generation of toxic substances due to halogens such as chlorine atoms, non-chlorine organic solvents are preferable, and tetrahydrofuran and 1,3-dioxolane are preferable in view of safety.
 ポリエステルを構成するジカルボン酸成分としては、芳香族ジカルボン酸、芳香族ジカルボン酸のエステル、脂肪族ジカルボン酸などが挙げられる。より具体的な芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレン-1,4-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、5-ナトリウムスルホイソフタル酸が挙げられ、芳香族ジカルボン酸のエステルとしては、前記の具体的に挙げた芳香族ジカルボン酸のジアルキルエステル、ジアリールエステルが挙げられ、脂肪族ジカルボン酸としては、ダイマー酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸、シュウ酸、コハク酸が挙げられる。なお、p-オキシ安息香酸などのオキシカルボン酸;無水トリメリット酸、無水ピロメリット酸等の3価以上のカルボン酸;が必要に応じて、ポリエステルを構成するカルボン酸成分となっていても良い。 Examples of the dicarboxylic acid component constituting the polyester include aromatic dicarboxylic acids, esters of aromatic dicarboxylic acids, and aliphatic dicarboxylic acids. More specific aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Examples of the esters include dialkyl esters and diaryl esters of the aromatic dicarboxylic acids specifically mentioned above, and examples of the aliphatic dicarboxylic acids include dimer acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, oxalic acid, Succinic acid is mentioned. An oxycarboxylic acid such as p-oxybenzoic acid; a trivalent or higher carboxylic acid such as trimellitic anhydride or pyromellitic anhydride may be a carboxylic acid component constituting the polyester, if necessary. .
 ポリエステルを構成する多価アルコール成分としては、ジオール、トリオールなどがある。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、トリエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオールなどのアルキレングリコール;ポリオキシテトラメチレングリコール、ポリエチレングリコール、ビスフェノール系化合物又はその誘導体のアルキレンオキサイド付加物などのエーテルグリコール類;ダイマージオール;が挙げられる。また、トリオールとしては、例えば、トリメチロールプロパン、グリセリン、ペンタエリスリトールなどのアルキルトリオールが挙げられる。上記に例を挙げた多価アルコール成分のうち、ネオペンチルグリコールや1,4-シクロヘキサンジメタノールなどはフィルムの非晶化と高熱収縮性を実現するための有用な成分であり、ネオペンチルグリコールおよび1,4-シクロヘキサンジメタノールなどの量は、全ジオールを100モル%としたときに5~40モル%が良く、10~35モル%が好ましく、更にフィルムの溶剤接着性を考慮すれば、18~40モル%がより好ましく、20~35モル%が更に好ましい。また、1,4-ブタンジオール、1,3-プロパンジオールなどは、フィルムのガラス転移温度低下と低温度域での熱収縮性を発現させるのに有用であるが、過剰量であると低温度領域で急激な熱収縮が生じて収縮後の仕上がりと透明性が悪化する場合があるので1,4-ブタンジオール等の量は適宜に設定される。 Examples of the polyhydric alcohol component constituting the polyester include diol and triol. Examples of the diol include ethylene glycol, diethylene glycol, 1,3-propanediol, triethylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 3- Alkylene glycols such as methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol An ether glycol such as an alkylene oxide adduct of polyoxytetramethylene glycol, polyethylene glycol, a bisphenol compound or a derivative thereof; a dimer diol; Examples of the triol include alkyl triols such as trimethylolpropane, glycerin, and pentaerythritol. Among the polyhydric alcohol components exemplified above, neopentyl glycol, 1,4-cyclohexanedimethanol, and the like are useful components for realizing film amorphization and high heat shrinkability, such as neopentyl glycol and The amount of 1,4-cyclohexanedimethanol or the like is preferably 5 to 40 mol%, preferably 10 to 35 mol%, based on 100 mol% of all diols. -40 mol% is more preferable, and 20-35 mol% is still more preferable. 1,4-butanediol, 1,3-propanediol, and the like are useful for lowering the glass transition temperature of the film and exhibiting heat shrinkability in a low temperature range. The amount of 1,4-butanediol and the like is appropriately set because rapid heat shrinkage may occur in the region and the finish and transparency after shrinkage may deteriorate.
 カルボン酸と多価アルコールが縮合してできるポリエステルの繰り返し構成単位に相当する酸成分由来の単位と多価アルコール成分由来の単位を1つずつ有するものを「ユニット」とした場合、本発明に係るポリエステル系フィルムは、優れた熱収縮特性、白化発生の抑制、および溶剤による良接着性を実現可能なエチレングリコールとテレフタル酸とからなるユニット(エチレンテレフタレートユニット)、ネオペンチルグリコールとテレフタル酸とからなるユニット(ネオペンチルテレフタレートユニット)、1,4-シクロヘキサンジメタノールとテレフタル酸とからなるユニット(1,4-シクロヘキサンジメチレンテレフタレートユニット)、1,4-ブタンジオールとテレフタル酸とからなるユニット(ブチレンテレフタレートユニット)、プロピレングリコールとテレフタル酸とからなるユニット(プロピレンテレフタレートユニット)、エチレングリコールとテレフタル酸からなるユニット(エチレンナフタレートユニット)、エチレングリコールとイソフタル酸からなるユニット(エチレンイソフタレートユニット)等のから選択されたユニットを一種以上有し、フィルムの耐破れ性、耐熱性、収縮仕上り性、降伏点応力増加による容器への密着性、コスト等の観点から、エチレンテレフタレート単位が全ポリエステル中の主要構成単位となっているものである。全ポリエステル中におけるエチレンテレフタレートユニットの量は、60モル%以上、72モル%未満であると良く、70モル%以下であると好ましい。72モル%未満であれば溶剤接着性に優れ、また70モル%以下であればより適正な熱収縮率となる。 When a unit having one unit derived from an acid component and one unit derived from a polyhydric alcohol component corresponding to a repeating structural unit of a polyester formed by condensation of a carboxylic acid and a polyhydric alcohol is used as a “unit”, the present invention Polyester film consists of units composed of ethylene glycol and terephthalic acid (ethylene terephthalate unit), neopentyl glycol and terephthalic acid, which can achieve excellent heat shrinkage properties, suppression of whitening, and good adhesion with solvents. Unit (neopentyl terephthalate unit), unit consisting of 1,4-cyclohexanedimethanol and terephthalic acid (1,4-cyclohexanedimethylene terephthalate unit), unit consisting of 1,4-butanediol and terephthalic acid (butylene terephthalate) Talay Units), units composed of propylene glycol and terephthalic acid (propylene terephthalate unit), units composed of ethylene glycol and terephthalic acid (ethylene naphthalate unit), units composed of ethylene glycol and isophthalic acid (ethylene isophthalate unit), etc. Having one or more selected units, the ethylene terephthalate unit is the main component in all polyesters in terms of film tear resistance, heat resistance, shrink finish, adhesion to containers due to increased yield point stress, cost, etc. It is a unit. The amount of the ethylene terephthalate unit in the whole polyester is preferably 60 mol% or more and less than 72 mol%, and preferably 70 mol% or less. If it is less than 72 mol%, it will be excellent in solvent adhesiveness, and if it is 70 mol% or less, it will become a more suitable heat shrinkage rate.
 次のユニットのいずれかの組み合わせがフィルムに含まれていることが好適である。その組み合わせは、エチレンテレフタレートユニットと、ネオペンチルテレフタレートユニットまたは1,4-シクロヘキサンジメチレンテレフタレートユニットと、ブチレンテレフタレートユニットまたはプロピレンテレフタレートユニットである。この組み合わせにおけるモル比は、エチレンテレフタレートユニット:ネオペンチルテレフタレートユニットまたは1,4-シクロヘキサンジメチレンテレフタレートユニット:ブチレンテレフタレートユニットまたはプロピレンテレフタレートユニット=60~72:5~40:9~15であると良い。ユニットの含有量の解析は、例えば、1H-NMRを用いて行うこと
ができる。
Suitably any combination of the following units is included in the film. The combination is an ethylene terephthalate unit, a neopentyl terephthalate unit or a 1,4-cyclohexanedimethylene terephthalate unit, and a butylene terephthalate unit or a propylene terephthalate unit. The molar ratio in this combination is preferably ethylene terephthalate unit: neopentyl terephthalate unit or 1,4-cyclohexanedimethylene terephthalate unit: butylene terephthalate unit or propylene terephthalate unit = 60 to 72: 5 to 40: 9 to 15. The analysis of the unit content can be performed using, for example, 1 H-NMR.
 フィルムを構成するポリエステルには、無機粒子、有機塩粒子、および架橋高分子粒子から選択された一種または二種以上が滑剤として添加されていても良い。滑剤として使用される無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リオチウム等が挙げられ、1次粒子が凝集してできた凝集体のシリカ粒子が選択されているときには、フィルムのハンドリング性が良好である上にヘーズが低い。有機塩粒子としては、例えば、蓚酸カルシウム、カルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩が挙げられる。また、架橋高分子粒子としては、例えば、ジビニルベンゼン、スチレン、(メタ)アクリル酸等のビニル系モノマーから選択された一種または二種以上の共重合体;ポリテトラフルオロエチレン;ベンゾグアナミン樹脂;熱硬化性尿素樹脂;熱硬化性フェノール樹脂;が挙げられる。 In the polyester constituting the film, one or more selected from inorganic particles, organic salt particles, and crosslinked polymer particles may be added as a lubricant. Inorganic particles used as lubricants include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide In addition, when silica particles of aggregates formed by agglomerating primary particles are selected, such as riotium fluoride, etc., film handling properties are good and haze is low. Examples of the organic salt particles include terephthalates such as calcium oxalate, calcium, barium, zinc, manganese, and magnesium. Examples of the crosslinked polymer particles include one or more copolymers selected from vinyl monomers such as divinylbenzene, styrene, and (meth) acrylic acid; polytetrafluoroethylene; benzoguanamine resin; thermosetting Urea resin; thermosetting phenol resin.
 また、ポリエステルには、紫外線吸収剤、帯電防止剤、着色剤、抗菌剤等を必要に応じて含ませても良い。 Further, the polyester may contain an ultraviolet absorber, an antistatic agent, a coloring agent, an antibacterial agent, and the like as necessary.
 本発明に係るフィルムの好ましい態様として、この表面の少なくとも片面(好ましくは両面)にアニオン系帯電防止剤が存在していることがある。練り込み等によりアニオン系帯電防止剤をフィルム原料に含ませることによっても、フィルム内部から表面にアニオン系帯電防止剤が滲みでれば静電気の発生と蓄積を抑えることが可能である。しかしながら、フィルムを構成するポリエステルのガラス転移温度は一般的に高いため、常温およびその付近の温度でアニオン系帯電防止剤がフィルム表面に滲み出難いことが多く、静電気の発生と蓄積を十分に抑えることができない傾向にある。また、樹脂の延伸により製造される本発明に係るフィルムを製造するための製膜温度が比較的高く、更にはポリエステルが有する極性基の反応活性が高いこともあって、フィルム原料中に帯電防止剤が配合されれば、製膜時にポリエステルの劣化が促されるがためにフィルムの物理的性質の低下や着色が発生することがある。 As a preferred embodiment of the film according to the present invention, an anionic antistatic agent may be present on at least one side (preferably both sides) of this surface. Even if an anionic antistatic agent is included in the film raw material by kneading or the like, generation and accumulation of static electricity can be suppressed if the anionic antistatic agent oozes from the inside of the film to the surface. However, since the glass transition temperature of the polyester constituting the film is generally high, the anionic antistatic agent is often difficult to seep out to the film surface at room temperature and in the vicinity thereof, and sufficiently suppresses the generation and accumulation of static electricity. It tends to be impossible. In addition, since the film forming temperature for producing the film according to the present invention produced by stretching the resin is relatively high, and the reaction activity of the polar group of the polyester is high, the film raw material is antistatic. When an agent is blended, deterioration of the polyester is promoted at the time of film formation, so that the physical properties of the film may be lowered and coloring may occur.
 耐電防止剤の量を調整することで静電気によるトラブル発生を抑制でき、この抑制の程度はフィルムの表面固有抵抗値から知ることが可能である。静電気によるトラブル発生を十分に抑えるためには、フィルムの表面固有抵抗値が13logΩ以下であると良く、12logΩ以下であると好ましい。一方、表面固有抵抗値の下限値は特に限定されないが、実用上8logΩ以上であっても構わない。上記の表面固有抵抗値に設定するためのフィルム表面のアニオン系帯電防止剤の存在量は、0.001~0.5g/m2であることが好ましい。アニオン系帯電防止剤の存在量が上記範囲を下回ると、帯電防止効果を十分に確保できないことがある。他方、アニオン系帯電防止剤の存在量が上記範囲を超えると、フィルムの透明性や耐ブロッキング性が低下することがある。 The occurrence of trouble due to static electricity can be suppressed by adjusting the amount of the antistatic agent, and the degree of this suppression can be known from the surface specific resistance value of the film. In order to sufficiently suppress the occurrence of trouble due to static electricity, the surface specific resistance value of the film is preferably 13 logΩ or less, and preferably 12 logΩ or less. On the other hand, the lower limit value of the surface specific resistance value is not particularly limited, but may be 8 logΩ or more practically. The abundance of the anionic antistatic agent on the film surface for setting the above-mentioned surface resistivity is preferably 0.001 to 0.5 g / m 2 . If the amount of the anionic antistatic agent is less than the above range, the antistatic effect may not be sufficiently secured. On the other hand, when the amount of the anionic antistatic agent exceeds the above range, the transparency and blocking resistance of the film may be lowered.
 上記アニオン系帯電防止剤は、アルキル基を有し且つ炭素数が10~20のものが好ましい。このような帯電防止剤であれば、例えば、フィルム製造やフィルムの二次加工での熱による飛散・消失があっても当該飛散等の量を低く抑えることができる。また、炭素数が20を超える場合には、帯電防止剤自体の帯電防止効果が不十分な場合がある。より好ましいアニオン系帯電防止剤は、その炭素数が12~18のものである。 The anionic antistatic agent preferably has an alkyl group and has 10 to 20 carbon atoms. With such an antistatic agent, for example, even if there is scattering or disappearance due to heat in film production or secondary processing of the film, the amount of the scattering or the like can be kept low. Moreover, when carbon number exceeds 20, the antistatic effect of antistatic agent itself may be inadequate. More preferred anionic antistatic agents are those having 12 to 18 carbon atoms.
 公知の帯電防止剤から本発明におけるアニオン系帯電防止剤を選定することができ、高級アルコール硫酸エステル塩、アルキルフェノール酸化エチレン付加体の硫酸エステル塩、アルキルスルホン酸塩、アルキルアリルスルホン酸塩などの硫酸及びスルホン酸誘導体から選択すると良い。より具体的には、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルエトキシ硫酸エステル塩、アルキルリン酸エステル塩が挙げられる。好適なアニオン系帯電防止剤としては、例えば、ドデシルスルホネート、ドデシルベンゼンスルホネートが挙げられる。 The anionic antistatic agent in the present invention can be selected from known antistatic agents, and sulfuric acid such as higher alcohol sulfates, sulfates of alkylphenol ethylene oxide adducts, alkylsulfonates, and alkylallylsulfonates. And sulfonic acid derivatives. More specifically, alkyl sulfonate, alkyl benzene sulfonate, alkyl sulfate ester salt, alkyl ethoxy sulfate ester salt, and alkyl phosphate ester salt are exemplified. Suitable anionic antistatic agents include, for example, dodecyl sulfonate and dodecyl benzene sulfonate.
 本発明の熱収縮性ポリエステル系フィルムは、少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層を、ポリエステル系基材フィルムの少なくとも片面に設けた態様も好ましい。以下、前記の熱収縮性ポリエステル系フィルムについて説明する。 The heat-shrinkable polyester film of the present invention comprises a polyester-based substrate film having a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester. An embodiment provided on at least one side is also preferable. Hereinafter, the heat-shrinkable polyester film will be described.
 (ラジカル重合性モノマー)
 本発明で用いるラジカル重合性モノマーとしては、親水性ラジカル重合性モノマーを必須的に含むラジカル重合性モノマーであることが好ましい。これにより、本発明の耐ブロッキング性改良層を、ポリエステル系グラフト共重合体の水系溶媒の分散液を用いて形成することができるからである(詳細は後述する)。
(Radically polymerizable monomer)
The radical polymerizable monomer used in the present invention is preferably a radical polymerizable monomer that essentially contains a hydrophilic radical polymerizable monomer. This is because the blocking resistance improving layer of the present invention can be formed using a dispersion of an aqueous solvent of a polyester-based graft copolymer (details will be described later).
 親水性ラジカル重合性モノマーとは、親水基を有するか、後で親水基に変化できる基を有するラジカル重合性モノマーを意味する。親水基を有するラジカル重合性モノマーとしては、カルボキシル基、ヒドロキシル基、リン酸基、亜リン酸基、スルホン酸基、アミド基、第4級アンモニウム塩基等を含むラジカル重合性モノマーを挙げることができる。一方、親水基に変化できる基を有するラジカル重合性モノマーとしては、酸無水物基、グリシジル基、クロル基等を含むラジカル重合性モノマーを挙げることができる。 The hydrophilic radical polymerizable monomer means a radical polymerizable monomer having a hydrophilic group or a group that can be changed to a hydrophilic group later. Examples of the radical polymerizable monomer having a hydrophilic group include a radical polymerizable monomer containing a carboxyl group, hydroxyl group, phosphoric acid group, phosphorous acid group, sulfonic acid group, amide group, quaternary ammonium base and the like. . On the other hand, examples of the radical polymerizable monomer having a group that can be changed into a hydrophilic group include radical polymerizable monomers containing an acid anhydride group, a glycidyl group, a chloro group, and the like.
 具体的には、フマル酸とその無水物、フマル酸モノエチル、フマル酸ジエチル、フマル酸ジブチルなどのフマル酸のモノエステルまたはジエステル;マレイン酸とその無水物、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸ジブチルなどのマレイン酸のモノエステルまたはジエステル;イタコン酸とその無水物、イタコン酸のモノエステルまたはジエステル;フェニルマレイミド等のマレイミド;スチレン、α-メチルスチレン、t-ブチルスチレン、クロロメチルスチレン等のスチレン誘導体;ビニルトルエン、ジビニルベンゼン等が挙げられる。 Specifically, fumaric acid and its anhydride, monoester or diester of fumaric acid such as monoethyl fumarate, diethyl fumarate, dibutyl fumarate; maleic acid and its anhydride, monoethyl maleate, diethyl maleate, maleic acid Monoester or diester of maleic acid such as dibutyl; itaconic acid and its anhydride, monoester or diester of itaconic acid; maleimide such as phenylmaleimide; styrene such as styrene, α-methylstyrene, t-butylstyrene, chloromethylstyrene Derivatives: vinyltoluene, divinylbenzene and the like.
 また、アルキルアクリレート、アルキルメタクリレート(アルキル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、フェニルエチル基等);2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート等のヒドロキシ含有アクリル単量体;アクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-メチルアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-フェニルアクリルアミド等のアミド基含有アクリルモノマー;N,N-ジエチルアミノエチルアクリレート、N,N-ジエチルアミノエチルメタクリレート等のアミノ基含有アクリルモノマー;グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有アクリルモノマー;アクリル酸、メタクリル酸及びそれらの塩(ナトリウム塩、カリウム塩、アンモニウム塩)等のカルボキシル基またはその塩を含有するアクリルモノマーが挙げられる。 In addition, alkyl acrylate, alkyl methacrylate (the alkyl group is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, phenyl group, Benzyl group, phenylethyl group, etc.); hydroxy-containing acrylic monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate; acrylamide, methacrylamide, N-methyl methacryl Amide, N-methylacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N, N-dimethylolacrylamide, N-methoxymethylacrylamide, N-methoxymethyl Amide group-containing acrylic monomers such as tacrylamide and N-phenylacrylamide; Amino group-containing acrylic monomers such as N, N-diethylaminoethyl acrylate and N, N-diethylaminoethyl methacrylate; Epoxy group-containing acrylic monomers such as glycidyl acrylate and glycidyl methacrylate; Examples thereof include acrylic monomers containing a carboxyl group such as acrylic acid, methacrylic acid and salts thereof (sodium salt, potassium salt, ammonium salt) or salts thereof.
 上記親水性ラジカル重合性モノマーは、単独で用いても、2種以上を組み合わせて用いてもよい。 The above hydrophilic radical polymerizable monomers may be used alone or in combination of two or more.
 これらの中でも、ポリエステル系グラフト共重合体の水分散性、及び酸価を好適な範囲(後述する)にする点から、親水基はカルボキシル基が好ましく、したがって、親水性ラジカル重合性モノマーは、カルボキシル基を有するか、カルボキシル基を発生する基を有するラジカル重合性モノマーが好ましく、例えば、マレイン酸無水物とそのエステルが挙げられる。 Among these, the hydrophilic group is preferably a carboxyl group from the viewpoint that the water-dispersibility of the polyester-based graft copolymer and the acid value are within a suitable range (described later). Therefore, the hydrophilic radical polymerizable monomer is a carboxyl group. A radical polymerizable monomer having a group or a group capable of generating a carboxyl group is preferred, and examples thereof include maleic anhydride and esters thereof.
 本発明においては、ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含んでいることが好ましい。 In the present invention, the radically polymerizable monomer preferably contains at least maleic anhydride and styrene.
 (疎水性共重合ポリエステル)
 本発明で用いる疎水性共重合ポリエステルは、本来それ自身で水に分散または溶解しない本質的に水不溶性のポリエステルであることが好ましい。水に分散するまたは溶解するポリエステルをグラフト重合の際の幹ポリマーとして使用する場合に比べて、耐水性に優れているからである。
(Hydrophobic copolyester)
The hydrophobic copolyester used in the present invention is preferably an essentially water-insoluble polyester that does not inherently disperse or dissolve in water. This is because the water-dispersed or dissolved polyester is superior in water resistance as compared with the case where the polyester is used as a trunk polymer in graft polymerization.
 疎水性共重合ポリエステルは、主鎖あるいは側鎖にエステル結合を有するもので、多価カルボン酸とグリコールとを重縮合して得られるものである。疎水性共重合ポリエステルを構成する多価カルボン酸成分としては、芳香族、脂肪族、脂環族のジカルボン酸や、ラジカル重合性二重結合を含有するジカルボン酸、3価以上の多価カルボン酸、あるいはこれらのエステル誘導体を用いることができる。 The hydrophobic copolyester has an ester bond in the main chain or side chain, and is obtained by polycondensation of polyvalent carboxylic acid and glycol. Examples of the polyvalent carboxylic acid component constituting the hydrophobic copolyester include aromatic, aliphatic, and alicyclic dicarboxylic acids, dicarboxylic acids containing radical polymerizable double bonds, and trivalent or higher polyvalent carboxylic acids. Alternatively, these ester derivatives can be used.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等を挙げることができる。芳香族ジカルボン酸のエステル誘導体としては、前記の具体的に挙げた芳香族ジカルボン酸のジアルキルエステル、ジアリールエステルが挙げられる。5-ナトリウムスルホイソフタル酸等の親水基含有ジカルボン酸は、耐水性が低下することから用いない方が好ましい。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid and the like. Examples of the aromatic dicarboxylic acid ester derivatives include the dialkyl esters and diaryl esters of the aromatic dicarboxylic acids specifically mentioned above. It is preferable not to use a hydrophilic group-containing dicarboxylic acid such as 5-sodium sulfoisophthalic acid because water resistance decreases.
 脂肪族ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸等を挙げることができる。 Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid.
 脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物等を挙げることができる。 Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and acid anhydrides thereof.
 ラジカル重合性二重結合を含有するジカルボン酸としては、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸等のα、β-不飽和ジカルボン酸;2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸等のラジカル重合性二重結合を含有する脂環族ジカルボン酸等を挙げることができる。重合性の点から、フマル酸、マレイン酸、2,5-ノルボルネンジカルボン酸が好ましい。 Examples of the dicarboxylic acid containing a radical polymerizable double bond include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid and other α, β-unsaturated dicarboxylic acids; 2,5-norbornene dicarboxylic acid anhydride, Mention may be made of alicyclic dicarboxylic acids containing radically polymerizable double bonds such as tetrahydrophthalic anhydride. From the viewpoint of polymerizability, fumaric acid, maleic acid and 2,5-norbornene dicarboxylic acid are preferred.
 本発明で用いる疎水性共重合ポリエステルは、ジカルボン酸成分100モル%中、芳香族ジカルボン酸60~99.5モル%、脂肪族ジカルボン酸および/または脂環族ジカルボン酸0~39.5モル%、ラジカル重合性二重結合を含有するジカルボン酸0.5~10モル%であることが好ましい。 The hydrophobic copolyester used in the present invention has an aromatic dicarboxylic acid of 60 to 99.5 mol%, an aliphatic dicarboxylic acid and / or an alicyclic dicarboxylic acid of 0 to 39.5 mol% in 100 mol% of the dicarboxylic acid component. The dicarboxylic acid containing a radical polymerizable double bond is preferably 0.5 to 10 mol%.
 芳香族ジカルボン酸の含有率が60モル%未満である場合や脂肪族ジカルボン酸および/または脂環族ジカルボン酸の含有率が39.5モル%を超える場合は、耐熱性が低下する場合がある。また、ラジカル重合性二重結合を含有するジカルボン酸の含有率が0.5モル%未満の場合、疎水性共重合ポリエステルに対するラジカル重合性モノマーの効率的なグラフト化が行われ難くなる。逆に、ラジカル重合性二重結合を含有するジカルボン酸の含有率が10モル%を超える場合は、グラフト化反応の後期に粘度が上昇し過ぎて、反応の均一な進行を妨げる場合があるので好ましくない。 When the content of aromatic dicarboxylic acid is less than 60 mol%, or when the content of aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid exceeds 39.5 mol%, the heat resistance may decrease. . Moreover, when the content rate of the dicarboxylic acid containing a radically polymerizable double bond is less than 0.5 mol%, it becomes difficult to perform efficient grafting of the radically polymerizable monomer to the hydrophobic copolymerized polyester. Conversely, if the content of the dicarboxylic acid containing a radically polymerizable double bond exceeds 10 mol%, the viscosity will increase too late in the grafting reaction, which may hinder the uniform progress of the reaction. It is not preferable.
 より好ましくは、芳香族ジカルボン酸の含有率が63~98モル%、脂肪族ジカルボン酸および/または脂環族ジカルボン酸の含有率が0~30モル%、ラジカル重合性二重結合を含有するジカルボン酸の含有率が2~7モル%である。 More preferably, the content of aromatic dicarboxylic acid is 63 to 98 mol%, the content of aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid is 0 to 30 mol%, and dicarboxylic acid containing a radical polymerizable double bond. The acid content is 2 to 7 mol%.
 疎水性共重合ポリエステルを構成するグリコール成分は、炭素数2~10の脂肪族グリコールおよび/または炭素数6~12の脂環族グリコールおよび/またはエーテル結合含有グリコールよりなる。 The glycol component constituting the hydrophobic copolyester is composed of an aliphatic glycol having 2 to 10 carbon atoms and / or an alicyclic glycol having 6 to 12 carbon atoms and / or an ether bond-containing glycol.
 炭素数2~10の脂肪族グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等を挙げることができる。 Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -Hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol and the like.
 炭素数6~12の脂環族グリコールとしては、1,4-シクロヘキサンジメタノール等を挙げることができる。 Examples of the alicyclic glycol having 6 to 12 carbon atoms include 1,4-cyclohexanedimethanol.
 エーテル結合含有グリコールとしては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールの他、ビスフェノール類の二つのフェノール性水酸基に、エチレンオキサイドまたはプロピレンオキサイドを付加して得られるグリコール類、例えば2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン等を挙げることができる。ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールも必要により使用し得る。 Examples of the ether bond-containing glycol include diethylene glycol, triethylene glycol, dipropylene glycol, and glycols obtained by adding ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as 2,2-bis ( 4-hydroxyethoxyphenyl) propane and the like. Polyethylene glycol, polypropylene glycol, and polytetramethylene glycol may be used as necessary.
 本発明で用いる疎水性共重合ポリエステルには、0~5モル%の3官能以上のポリカルボン酸および/またはポリオールを共重合することができるが、3官能以上のポリカルボン酸としては、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等が挙げられる。また、3官能以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 The hydrophobic copolyester used in the present invention can be copolymerized with 0 to 5 mol% of a tri- or higher functional polycarboxylic acid and / or polyol. ) Trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate) and the like. Examples of the tri- or higher functional polyol include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
 3官能以上のポリカルボン酸および/またはポリオールは、全酸成分あるいは全グリコール成分に対し0~5モル%、望ましくは0~3モル%の範囲で共重合される。5モル%を超えると重合時のゲル化が起こり易い。 The tri- or higher functional polycarboxylic acid and / or polyol is copolymerized in the range of 0 to 5 mol%, preferably 0 to 3 mol%, based on the total acid component or the total glycol component. If it exceeds 5 mol%, gelation tends to occur during polymerization.
 本発明で用いる疎水性共重合ポリエステルの重量平均分子量は、5000~50000の範囲が好ましい。重量平均分子量が5000未満の場合は耐熱性の低下があり、50000を超えると重合時にゲル化する等の問題が起きる。 The weight average molecular weight of the hydrophobic copolyester used in the present invention is preferably in the range of 5000 to 50000. When the weight average molecular weight is less than 5,000, the heat resistance is lowered. When the weight average molecular weight exceeds 50,000, problems such as gelation at the time of polymerization occur.
 (疎水性共重合ポリエステルへのラジカル重合性モノマーのグラフト化)
 本発明における、疎水性共重合ポリエステルへのラジカル重合性モノマーのグラフト化は、疎水性共重合ポリエステルを有機溶剤中に溶解させた状態において、グラフト重合開始剤を用いて少なくとも一種のラジカル重合性モノマーを反応させることにより行う。
(Grafting of radically polymerizable monomer onto hydrophobic copolyester)
In the present invention, the grafting of the radically polymerizable monomer to the hydrophobic copolymerized polyester is performed by using at least one radically polymerizable monomer using a graft polymerization initiator in a state where the hydrophobic copolymerized polyester is dissolved in an organic solvent. By reacting.
 なお、グラフト反応終了後の反応生成物は、所望の疎水性共重合ポリエステルとラジカル重合性モノマーとのグラフト共重合体の他に、グラフト化を受けなかった疎水性共重合ポリエステル及び疎水性共重合ポリエステルにグラフトしなかったラジカル重合性モノマーから得られる(共)重合体をも含有している。本明細書におけるポリエステル系グラフト共重合体とは、上記したポリエステル系グラフト共重合体だけでなく、これに加えて、グラフト化を受けなかった疎水性共重合ポリエステル、グラフトしなかったラジカル重合性モノマーから得られる(共)重合体およびモノマー(残存モノマー)も含む反応混合物をも包含する。 The reaction product after completion of the grafting reaction is not limited to the graft copolymer of the desired hydrophobic copolymerized polyester and the radically polymerizable monomer, but the hydrophobic copolymerized polyester and the hydrophobic copolymer that have not undergone grafting. It also contains a (co) polymer obtained from a radically polymerizable monomer that has not been grafted to the polyester. The polyester-based graft copolymer in this specification is not only the above-mentioned polyester-based graft copolymer, but in addition to this, a hydrophobic copolymerized polyester that has not undergone grafting, and a radically polymerizable monomer that has not been grafted. Also included is a reaction mixture that also contains a (co) polymer and a monomer (residual monomer) obtained from
 本発明の目的に適合する疎水性共重合ポリエステルとラジカル重合性モノマーの質量比率は、ポリエステル/ラジカル重合性モノマー=40/60~95/5の範囲が望ましく、55/45~93/7の範囲がさらに望ましく、60/40~90/10の範囲が最も望ましい。疎水性共重合ポリエステルの質量比率が40質量%未満であるとき、ポリエステル樹脂の優れた耐熱性を発揮することができない。一方、疎水性共重合ポリエステルの質量比率が95質量%を超えるときは、ポリエステル樹脂の欠点であるブロッキングが起こり易くなる。 The mass ratio of the hydrophobic copolymerized polyester and the radical polymerizable monomer suitable for the purpose of the present invention is preferably in the range of polyester / radical polymerizable monomer = 40/60 to 95/5, and in the range of 55/45 to 93/7. Is more desirable, and the range of 60/40 to 90/10 is most desirable. When the mass ratio of the hydrophobic copolymerized polyester is less than 40% by mass, the excellent heat resistance of the polyester resin cannot be exhibited. On the other hand, when the mass ratio of the hydrophobic copolyester exceeds 95% by mass, blocking, which is a defect of the polyester resin, easily occurs.
 本発明で用い得るグラフト重合開始剤としては、例えば、当業者に公知の有機過酸化物類や有機アゾ化合物類が挙げられる。有機過酸化物としては、ベンゾイルパーオキサイド、t-ブチルパーオキシピバレートが挙げられる。有機アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルパレロニトリル)、アゾビスジメチルバレロニトリル等が挙げられる。グラフト重合を行うための重合開始剤の使用量は、ラジカル重合性モノマーに対して、少なくとも0.2質量%以上、好ましくは0.5質量%以上である。 Examples of the graft polymerization initiator that can be used in the present invention include organic peroxides and organic azo compounds known to those skilled in the art. Examples of the organic peroxide include benzoyl peroxide and t-butyl peroxypivalate. Examples of the organic azo compound include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylpareronitrile), azobisdimethylvaleronitrile, and the like. The amount of the polymerization initiator used for the graft polymerization is at least 0.2% by mass, preferably 0.5% by mass or more, based on the radical polymerizable monomer.
 本発明においては、グラフト重合開始剤の他に、枝ポリマーの鎖長を調節するための連鎖移動剤、例えば、オクチルメルカプタン、メルカプトエタノール、3-t-ブチル-4-ヒドロキシアニソールなどを必要に応じて用い得る。この場合、連鎖移動剤は、ラジカル重合性モノマーに対して0~5質量%の範囲で添加することが望ましい。 In the present invention, in addition to the graft polymerization initiator, a chain transfer agent for adjusting the chain length of the branched polymer, for example, octyl mercaptan, mercaptoethanol, 3-t-butyl-4-hydroxyanisole, etc. Can be used. In this case, the chain transfer agent is preferably added in the range of 0 to 5% by mass with respect to the radical polymerizable monomer.
 疎水性共重合ポリエステルへのラジカル重合性モノマーのグラフト化に際して用いる反応溶媒は、沸点が50~250℃の水性有機溶媒から構成されることが好ましい。ここで水性有機溶媒とは、20℃における水に対する溶解性が少なくとも10g/L以上、望ましくは20g/L以上である有機溶媒を意味する。沸点が250℃を超える水性有機溶媒は、蒸発速度が余りにおそく、塗膜の高温焼付によっても溶媒を充分に取り除くことができないので不適当である。また沸点が50℃以下の水性有機溶媒では、かかる溶媒中でグラフト化反応を実施する場合、50℃以下の温度でラジカルに解裂するグラフト重合開始剤を用いねばならず取扱上の危険が増大することから好ましくない。 The reaction solvent used for grafting the radically polymerizable monomer to the hydrophobic copolymerized polyester is preferably composed of an aqueous organic solvent having a boiling point of 50 to 250 ° C. Herein, the aqueous organic solvent means an organic solvent having a solubility in water at 20 ° C. of at least 10 g / L or more, desirably 20 g / L or more. An aqueous organic solvent having a boiling point exceeding 250 ° C. is inappropriate because the evaporation rate is too slow and the solvent cannot be sufficiently removed even by high-temperature baking of the coating film. In the case of an aqueous organic solvent having a boiling point of 50 ° C. or lower, when a grafting reaction is carried out in such a solvent, a graft polymerization initiator that cleaves into radicals at a temperature of 50 ° C. or lower must be used, which increases the handling risk. This is not preferable.
 本発明で用いる水性有機溶媒のうち、疎水性共重合ポリエステルをよく溶解し、かつカルボキシル基含有ラジカル重合性モノマーを含むラジカル重合性モノマー、およびラジカル重合性モノマーのグラフト反応生成物(ポリエステル系グラフト共重合体)を比較的良く溶解する第一群の水性有機溶媒として、例えば、酢酸エチル等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、1,3-ジオキソラン等の環状エーテル類;エチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコ-ルプロピルエーテル、エチレングリコールエチルエーテル、エチレングリコールブチルエーテル等のグリコールエーテル類;メチルカルビトール、エチルカルビトール、ブチルカルビトール等のカルビトール類;グリコール類;エチレングリコールジアセテート、エチレングリコールエチルエーテルアセテート等の、グリコールエーテルの低級エステル類;ダイアセトンアルコール等のケトンアルコール類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のN-置換アミド類が挙げられる。 Of the aqueous organic solvent used in the present invention, a hydrophobic copolymerized polyester is well dissolved and a radical polymerizable monomer containing a carboxyl group-containing radical polymerizable monomer and a graft reaction product of the radical polymerizable monomer (polyester-based graft copolymer) are used. Examples of the first group of aqueous organic solvents that dissolve the polymer) relatively well include esters such as ethyl acetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; tetrahydrofuran, dioxane, 1,3-dioxolane and the like. Cyclic ethers; glycol ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, propylene glycol propyl ether, ethylene glycol ethyl ether, ethylene glycol butyl ether; methyl Carbitols such as rubitol, ethyl carbitol, butyl carbitol; glycols; lower esters of glycol ethers such as ethylene glycol diacetate and ethylene glycol ethyl ether acetate; ketone alcohols such as diacetone alcohol; dimethylformamide; And N-substituted amides such as dimethylacetamide and N-methylpyrrolidone.
 また、疎水性共重合ポリエステルはほとんど溶解しないが、カルボキシル基含有ラジカル重合性モノマーを含むラジカル重合性モノマー、およびラジカル重合性モノマーのグラフト反応生成物を比較的よく溶解する第二群の水性有機溶媒として、水、低級アルコール類、低級カルボン酸類、低級アミン類等が挙げられる。本発明の実施に特に好ましい第二群の水性有機溶媒は、炭素数1~4のアルコール類およびグリコール類である。 In addition, the hydrophobic copolyester hardly dissolves, but a radically polymerizable monomer containing a carboxyl group-containing radically polymerizable monomer and a second group of aqueous organic solvents that dissolve a graft reaction product of the radically polymerizable monomer relatively well. Examples thereof include water, lower alcohols, lower carboxylic acids, and lower amines. A particularly preferred second group of aqueous organic solvents for the practice of the present invention are alcohols and glycols having 1 to 4 carbon atoms.
 グラフト化反応を単一溶媒で行なう態様としては、例えば、第一群の水性有機溶媒からただ一種を選んで行なう態様を挙げることができる。混合溶媒で行なう態様としては、例えば、第一群の水性有機溶媒からのみ複数種選ぶ態様や、第一群の水性有機溶媒から少なくとも一種を選び、それに第二群の水性有機溶媒から少なくとも一種を加える態様を挙げることができる。 Examples of the mode in which the grafting reaction is performed with a single solvent include a mode in which only one kind is selected from the first group of aqueous organic solvents. As an embodiment performed with a mixed solvent, for example, an embodiment in which a plurality of types are selected only from the first group of aqueous organic solvents, or at least one type is selected from the first group of aqueous organic solvents, and at least one type is selected from the second group of aqueous organic solvents. A mode to add can be mentioned.
 反応溶媒が、第一群の水性有機溶媒からの単一溶媒である場合と、第一群および第二群の水性有機溶媒のそれぞれ一種からなる混合溶媒である場合のいずれにおいても、グラフト重合反応を行なうことができる。しかし、グラフト化反応の進行挙動、グラフト化反応生成物およびそれから導かれる水分散体の外観、性状などに差異がみられる。本発明のグラフト反応においては、第一群および第二群の水性有機溶媒のそれぞれ一種からなる混合溶媒を用いる方が好ましい。というのも、疎水性共重合ポリエステルの溶解状態を調節し分子間架橋を起こり難くすることが、グラフト反応中のゲル化の防止に有効であるところ、効率の高いグラフト化とゲル化抑制の両立は後者の混合溶媒系において達成できるからである。これは、第一群の溶媒中では疎水性共重合ポリエステル分子鎖が延びた(広がりの大きい)状態にあり、一方、第一群/第二群の混合溶媒中では疎水性共重合ポリエステル分子鎖が糸まり状に絡まった(広がりの小さい)状態にあることが、これら溶液中の疎水性共重合ポリエステルの粘度測定により確認されたことに基づく。 In both cases where the reaction solvent is a single solvent from the first group of aqueous organic solvents and when the reaction solvent is a mixed solvent composed of each of the first group and the second group of aqueous organic solvents, the graft polymerization reaction Can be performed. However, there are differences in the progress behavior of the grafting reaction, the appearance and properties of the grafting reaction product and the aqueous dispersion derived therefrom. In the graft reaction of the present invention, it is preferable to use a mixed solvent composed of each of the first group and the second group of aqueous organic solvents. This is because it is effective to prevent gelation during the grafting reaction by adjusting the dissolved state of the hydrophobic copolyester to make it difficult to cause intermolecular crosslinking. This can be achieved in the latter mixed solvent system. This is because the hydrophobic copolyester molecular chains are extended (largely spread) in the first group of solvents, while the hydrophobic copolyester molecular chains are in the first group / second group mixed solvent. Is based on the fact that it was confirmed by measuring the viscosity of the hydrophobic copolyester in these solutions that the thread is entangled (smallly spread).
 本発明においては、第一群/第二群の混合溶媒の質量比率は、より望ましくは95/5~10/90、さらに望ましくは90/10~20/80、最も望ましくは85/15~30/70の範囲である。最適の質量比率は、使用する疎水性共重合ポリエステルの溶解性などに応じて決定される。 In the present invention, the mass ratio of the mixed solvent of the first group / second group is more desirably 95/5 to 10/90, further desirably 90/10 to 20/80, and most desirably 85/15 to 30. The range is / 70. The optimum mass ratio is determined according to the solubility of the hydrophobic copolyester used.
 (ポリエステル系グラフト共重合体)
 上記グラフト化によって得られるポリエステル系グラフト共重合体は、有機溶媒の溶液もしくは分散液、あるいは、水系溶媒の溶液もしくは分散液の形態になる。特に、水系溶媒の分散液、すなわち、水分散体の形態が、作業環境、塗布性の点で好ましい。この様な水分散体は、上記水性有機溶媒中で疎水性共重合ポリエステルに親水性ラジカル重合性モノマーを含むラジカル重合性モノマーをグラフト重合した後、水を添加し、次いで水性有機溶媒を留去することにより得ることができる。
(Polyester graft copolymer)
The polyester-based graft copolymer obtained by the grafting is in the form of an organic solvent solution or dispersion, or an aqueous solvent solution or dispersion. In particular, a dispersion of an aqueous solvent, that is, a form of an aqueous dispersion is preferable in terms of working environment and applicability. Such an aqueous dispersion is obtained by graft-polymerizing a radically polymerizable monomer containing a hydrophilic radically polymerizable monomer to a hydrophobic copolymerized polyester in the aqueous organic solvent, adding water, and then distilling off the aqueous organic solvent. Can be obtained.
 本発明において、ポリエステル系グラフト共重合体の酸価は、600eq/106g以
上であることが好ましい。より好ましい酸価は1200eq/106g以上である。ポリ
エステル系グラフト共重合体の酸価が600eq/106g未満である場合は、本プライ
マー処理材に被覆される層との接着性が十分とはいえない。
In the present invention, the acid value of the polyester-based graft copolymer is preferably 600 eq / 10 6 g or more. A more preferable acid value is 1200 eq / 10 6 g or more. When the acid value of the polyester-based graft copolymer is less than 600 eq / 10 6 g, it cannot be said that the adhesion with the layer coated with the primer treatment material is sufficient.
 ポリエステル系グラフト共重合体のガラス転移温度は、特に制限されるものではないが、好ましくは30℃以下である。ガラス転移温度が30℃以下のポリエステル系グラフト共重合体を耐ブロッキング性改良層に用いることにより、特に耐熱ブロッキング性に優れた熱収縮性ポリエステル系フィルムが得られる。 The glass transition temperature of the polyester-based graft copolymer is not particularly limited, but is preferably 30 ° C. or lower. By using a polyester-based graft copolymer having a glass transition temperature of 30 ° C. or less for the anti-blocking layer, a heat-shrinkable polyester film particularly excellent in heat-resistant blocking property can be obtained.
 本発明での水分散体は、レーザー光散乱法により測定される平均粒子径が500nm以下の、半透明ないし乳白色の外観を呈する。重合方法の調整により、多様な粒子径の水分散体が得られるが、粒子径は10~500nmが適当であり、分散安定性の点から400nm以下が好ましく、300nm以下がより好ましい。粒子径が500nmを超えると被覆膜表面の光沢の低下がみられ、被覆物の透明性が低下する場合がある。また、10nm未満では、本発明の目的である耐熱ブロッキング性が低下する場合がある。 The aqueous dispersion in the present invention exhibits a translucent or milky white appearance with an average particle diameter measured by a laser light scattering method of 500 nm or less. By adjusting the polymerization method, water dispersions having various particle sizes can be obtained. The particle size is suitably 10 to 500 nm, preferably 400 nm or less, more preferably 300 nm or less from the viewpoint of dispersion stability. When the particle diameter exceeds 500 nm, the gloss of the coating film surface is lowered, and the transparency of the coating may be lowered. On the other hand, if the thickness is less than 10 nm, the heat blocking property which is the object of the present invention may be lowered.
 本発明で好ましく用いられるポリエステル系グラフト共重合体は、塩基性化合物で中和することが好ましく、中和することによって容易に水分散化することが出来る。塩基性化合物としては、塗膜形成時、あるいは硬化剤配合による焼付硬化時に揮散する化合物が望ましく、アンモニア、有機アミン類等が好適である。望ましい化合物の例としては、トリエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、ジメチルアミノプロピルアミン、メチルイミノビスプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。 The polyester-based graft copolymer preferably used in the present invention is preferably neutralized with a basic compound, and can be easily dispersed in water by neutralization. As the basic compound, a compound that volatilizes at the time of forming a coating film or baking and curing with a curing agent is desirable, and ammonia, organic amines, and the like are preferable. Examples of desirable compounds include triethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine , 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, dimethylaminopropylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanol An amine etc. are mentioned.
 塩基性化合物は、ポリエステル系グラフト共重合体中に含まれるカルボキシル基含有量に応じて、少なくとも部分中和、または完全中和によって水分散体のpH値が5.0~9.0の範囲であるように使用するのが望ましい。沸点が100℃以下の塩基性化合物を使用した場合であれば、乾燥後の塗膜中の残留塩基性化合物を少なくし易いことから、塗膜の安定性に優れる。また100℃以上の塩基性化合物を使用したり乾燥条件を制御したりして、乾燥後の塗膜中に塩基化合物を500ppm以上残留させることにより、印刷インクの転移性が向上する。 In the basic compound, the pH value of the aqueous dispersion is in the range of 5.0 to 9.0 by at least partial neutralization or complete neutralization, depending on the carboxyl group content contained in the polyester-based graft copolymer. It is desirable to use it as is. If a basic compound having a boiling point of 100 ° C. or lower is used, the residual basic compound in the coating film after drying is easily reduced, and thus the coating film has excellent stability. Moreover, the transfer property of printing ink improves by using a basic compound 100 degreeC or more, or controlling drying conditions, and leaving 500 ppm or more of basic compounds in the coating film after drying.
 本発明で用いるポリエステル系グラフト共重合体では、ラジカル重合性モノマーの重合物(グラフト鎖部分)の重量平均分子量は500~50,000であるのが好ましい。ラジカル重合性モノマーの重合物の重量平均分子量を500未満にコントロールすることは一般に困難であり、グラフト効率が低下し、疎水性共重合ポリエステルへの親水性基の付与が十分に行なわれない傾向がある。また、ラジカル重合性モノマーのグラフト重合物は分散粒子の水和層を形成するが、十分な厚みの水和層をもたせ、安定な水分散体を得るためにはラジカル重合性モノマーのグラフト重合物の重量平均分子量は500以上であることが望ましい。また、ラジカル重合性モノマーのグラフト重合物の重量平均分子量の上限は、溶液重合における重合性の観点から50,000が好ましい。この範囲内での重量平均分子量のコントロールは、開始剤量、モノマー滴下時間、重合時間、反応溶媒、モノマー組成あるいは必要に応じて連鎖移動剤や重合禁止剤を適宜組み合わせることにより行なうことができる。 In the polyester-based graft copolymer used in the present invention, the weight average molecular weight of the polymer of the radically polymerizable monomer (graft chain portion) is preferably 500 to 50,000. Generally, it is difficult to control the weight average molecular weight of the polymer of the radical polymerizable monomer to less than 500, the graft efficiency is lowered, and there is a tendency that hydrophilic groups are not sufficiently imparted to the hydrophobic copolymer polyester. is there. In addition, the graft polymer of the radical polymerizable monomer forms a hydrated layer of dispersed particles. To obtain a stable aqueous dispersion with a sufficient thickness of the hydrated layer, the graft polymer of the radical polymerizable monomer is used. The weight average molecular weight of is desirably 500 or more. Further, the upper limit of the weight average molecular weight of the graft polymer of the radical polymerizable monomer is preferably 50,000 from the viewpoint of polymerizability in solution polymerization. The weight average molecular weight within this range can be controlled by appropriately combining an initiator amount, a monomer dropping time, a polymerization time, a reaction solvent, a monomer composition or, if necessary, a chain transfer agent or a polymerization inhibitor.
 (耐ブロッキング性改良層)
 本発明の耐ブロッキング性改良層は、上記ポリエステル系グラフト共重合体のみから形成することもできるが、他の目的から、汎用のポリエステル系樹脂、ウレタン系樹脂、アクリル樹脂、それらの共重合体、各種水溶性樹脂、あるいは、例えばポリアニリンやポリピロール等の導電性樹脂や抗菌性樹脂、紫外線吸収性樹脂、ガスバリアー性樹脂等の各種機能性樹脂を混合して形成してもかまわない。
(Blocking resistance improvement layer)
The blocking resistance improving layer of the present invention can be formed only from the above-mentioned polyester-based graft copolymer, but for other purposes, general-purpose polyester-based resins, urethane-based resins, acrylic resins, copolymers thereof, Various water-soluble resins, or various functional resins such as conductive resins such as polyaniline and polypyrrole, antibacterial resins, ultraviolet-absorbing resins, and gas barrier resins may be mixed.
 また、耐ブロッキング性改良層中には、本発明の効果を損なわない範囲で、各種の添加剤、例えば界面活性剤、帯電防止剤、無機滑剤、有機滑剤、抗菌剤、光酸化触媒、紫外線吸収剤等が配合されていてもよい。 In the anti-blocking layer, various additives such as a surfactant, an antistatic agent, an inorganic lubricant, an organic lubricant, an antibacterial agent, a photooxidation catalyst, and an ultraviolet absorber are used within the range not impairing the effects of the present invention. An agent or the like may be blended.
 本発明においては、少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体、及びアニオン系帯電防止剤を含有する耐ブロッキング性改良層を、フィルムの少なくとも片面に設けたこと態様であることも好ましい。この態様は、前記の耐ブロッキング性改良層を形成するための溶液もしくは分散液、あるいは、水系溶媒の溶液もしくは分散液にアニオン系帯電防止剤を含ませることにより、両者の成分をフィルム表面に付与せしめることができる。 In the present invention, a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester, and a blocking resistance improving layer containing an anionic antistatic agent are provided on at least one side of the film. It is also preferable that it is the aspect provided in. In this embodiment, an anionic antistatic agent is included in the solution or dispersion for forming the anti-blocking layer or the aqueous solvent solution or dispersion to give both components to the film surface. It can be shown.
 次に本発明に係るフィルムの製造方法について説明する。
 一種または二種以上のポリエステルの混合物を含む未延伸ポリエステル系フィルムを作製し、これを延伸後、熱処理すれば、上記の熱収縮特性および溶剤接着性を有する本発明に係るフィルムを製造することができる。
Next, the manufacturing method of the film which concerns on this invention is demonstrated.
By producing an unstretched polyester film containing a mixture of one or two or more polyesters and then heat-treating the stretched polyester film, it is possible to produce the film according to the present invention having the above heat shrinkage characteristics and solvent adhesiveness. it can.
 未延伸ポリエステル系フィルムを作製するために使用されるポリエステルは、芳香族ジカルボン酸、芳香族ジカルボンのエステル、脂肪族ジカルボン酸、オキシカルボン酸、および3価以上のカルボン酸から選択された一種または二種以上のモノマーと、多価アルコールから選択された一種または二種以上のモノマーとを、酢酸亜鉛等のエステル交換触媒および/または三酸化アンチモン等の重合触媒を適宜存在させて、重合させることにより得られる。 The polyester used to produce the unstretched polyester film is one or two selected from aromatic dicarboxylic acids, esters of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, oxycarboxylic acids, and trivalent or higher carboxylic acids. By polymerizing one or more monomers and one or more monomers selected from polyhydric alcohols in the presence of a suitable ester exchange catalyst such as zinc acetate and / or a polymerization catalyst such as antimony trioxide. can get.
 滑剤等が添加されたポリエステルを得るためには、モノマーの重合工程中に当該重合系中に滑剤等を分散させる方法;重合して得られたポリエステルを再度溶融させ、この溶融しているポリエステルに滑剤等を添加する方法;等が挙げられる。 In order to obtain a polyester to which a lubricant or the like has been added, a method in which the lubricant or the like is dispersed in the polymerization system during the monomer polymerization process; the polyester obtained by polymerization is melted again, And a method of adding a lubricant and the like.
 重合後のポリエステルを、溶融状態で重合装置からストランド状で取り出した後に直ちに水冷し、ストランドカッターによりカットしてチップにすると良い。このカット後のチップは、底面が楕円形である円筒状となる。 The polyester after polymerization is taken out from the polymerization apparatus in the form of a strand in a molten state, and then immediately cooled with water, and cut with a strand cutter into chips. The chip after this cut has a cylindrical shape with an elliptical bottom surface.
 成分が異なる二種以上のポリエステルを含むフィルムを製造する場合には、成分が異なる二種以上のポリエステルチップを混合することになり、このとき、最も使用比率の高いポリエステルチップと、当該チップの楕円状底面の長径、短径、及び円筒状の高さのそれぞれの平均サイズの±20%以内(好ましくは±15%以内)の範囲であるポリエステルチップとを使用すれば、ホッパー内での同種ポリエステルチップの偏在現象を抑止できるので、フィルム中の滑剤等の均一な分散を実現できる。 When manufacturing a film containing two or more kinds of polyesters having different components, two or more kinds of polyester chips having different components are mixed. At this time, the polyester chip having the highest use ratio and the elliptical shape of the chip are mixed. The same kind of polyester in the hopper by using polyester chips that are within ± 20% (preferably within ± 15%) of the average size of the major axis, minor axis, and cylindrical height of the bottom surface Since the uneven distribution phenomenon of the chip can be suppressed, uniform dispersion of the lubricant and the like in the film can be realized.
 また、共重合ポリエステルのチップとホモポリエステルのチップを混合する場合には、融点が一般的に低い共重合ポリエステルには乾燥時の取り扱いが難しい等の問題があるので、ホモポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ(1,4-シクロヘキセンジエチレンテレフタレート)等)と共重合ポリエステルとを混合することが好ましい。 In addition, when mixing copolyester chips and homopolyester chips, copolyesters having a generally low melting point have problems such as difficulty in handling during drying, so homopolyester (polyethylene terephthalate, polyethylene It is preferable to mix naphthalate, poly (1,4-cyclohexene diethylene terephthalate, etc.) and a copolyester.
 ポリエステルチップから未延伸フィルムを作製する方法としては、(1)当該チップを予めホッパードライヤー、パドルドライヤー等の乾燥機、又は真空乾燥機を用いて乾燥し、200~300℃の温度でフィルム状に押し出し、冷却する方法、(2)未乾燥のポリエステルチップをベント式押し出し機内で水分を除去しながらフィルム状に押し出し、冷却する方法、等がある。押し出しに際しては、Tダイ法、チューブラ法等の公知となっているいずれの方法を採用しても構わない。押し出し後の冷却は、例えば表面温度が25℃のチルロールで急冷する。 As a method for producing an unstretched film from a polyester chip, (1) the chip is previously dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer, and formed into a film at a temperature of 200 to 300 ° C. There are a method of extruding and cooling, and (2) a method of extruding an undried polyester chip into a film while removing moisture in a vent type extruder and cooling. For the extrusion, any known method such as a T-die method or a tubular method may be employed. The cooling after the extrusion is rapidly cooled with a chill roll having a surface temperature of 25 ° C., for example.
 主収縮方向が横方向である熱収縮性ラベルが実用的であるので、そのラベルを製造するために適した未延伸フィルムの延伸処理を例として以下に説明する(次段落以降においては、「主収縮方向」と「横方向」は同義であり、「直交方向」と「縦方向」は同義である。)。なお、主収縮方向が縦方向である熱収縮性ラベルを製造する場合には、以下の未延伸フィルム処理における延伸方向を90度変えるだけで足りる。 Since a heat-shrinkable label having a main shrinkage direction in the transverse direction is practical, the drawing process of an unstretched film suitable for manufacturing the label will be described below as an example. “Shrinkage direction” and “lateral direction” are synonymous, and “orthogonal direction” and “vertical direction” are synonymous. When manufacturing a heat-shrinkable label whose main shrinkage direction is the longitudinal direction, it is sufficient to change the stretching direction in the following unstretched film processing by 90 degrees.
 熱収縮性ポリエステル系フィルムの厚み分布を均一化させる必要がある場合、延伸に先立ち、フィルムへの熱伝導係数が0.0013カロリー/cm・sec・℃以下の低風速でTg-20℃~Tg+60℃のフィルム温度になるまで未延伸フィルムの予備加熱を行うことが好ましい。この予備加熱工程でのフィルム表面の各位置の温度は、本発明に係るフィルムのロールフィルム巻き長に相当する縦方向の距離の範囲内において、フィルム表面の平均温度±1℃以内であることが好ましく、平均温度±0.5℃以内であればさらに好ましい。 When it is necessary to make the thickness distribution of the heat-shrinkable polyester film uniform, prior to stretching, the thermal conductivity coefficient to the film is 0.0013 calories / cm 2 · sec · ° C. or less and Tg-20 ° C.- It is preferable to preheat the unstretched film until the film temperature reaches Tg + 60 ° C. The temperature at each position on the film surface in this preheating step should be within the average temperature ± 1 ° C. of the film surface within the range of the distance in the vertical direction corresponding to the roll film winding length of the film according to the present invention. The average temperature is preferably within ± 0.5 ° C.
 延伸はテンターを用いて行うと良く、Tg-30℃~Tg+40℃の温度、さらに好ましくはTg-15℃~Tg+30℃の温度で、フィルムの横方向を2.3~7.3倍、好ましくは3.5~6.0倍にする。延伸したフィルムに60~120℃の温風を吹き付ければ、延伸後のポリエステル配向が固定されるので、熱収縮性フィルムの主収縮率が低くなる。また、先の温風の吹きつけに続けて30~60℃の温風を延伸フィルムに吹き付ければ、[(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満となる。 Stretching may be performed using a tenter. The film is stretched at a temperature of Tg-30 ° C to Tg + 40 ° C, more preferably at a temperature of Tg-15 ° C to Tg + 30 ° C, and the transverse direction of the film is 2.3 to 7.3 times, preferably Set to 3.5 to 6.0 times. If hot air of 60 to 120 ° C. is blown onto the stretched film, the polyester orientation after stretching is fixed, so that the main shrinkage rate of the heat-shrinkable film is lowered. In addition, if hot air of 30-60 ° C. is blown onto the stretched film following the previous hot air blowing, the main shrinking direction of [(temperature at which the main shrinkage direction exceeds 0% + 10 ° C.)] The value obtained by subtracting [the heat shrinkage rate in the main shrinkage direction (temperature at which the heat shrinkage rate in the main shrinkage direction exceeds 0% −5 ° C.)] from the [heat shrinkage rate of
 なお、延伸における温度条件の変動は、熱収縮性フィルムの収縮特性に影響を与えやすいので、延伸時の温度、延伸後の温風温度の変動を抑止することが好ましい。延伸工程におけるフィルム表面の各位置の温度は、本発明に係るフィルムのロールフィルム巻き長に相当する縦方向の距離の範囲内において、平均温度±1℃以内であることが好ましく、平均温度±0.5℃以内であればさらに好ましい。また、延伸に伴うフィルムの内部発熱を抑制し、横方向のフィルム温度斑を小さくする点に着目すれば、延伸工程の熱伝達係数は0.0037J/cm2・sec・℃以上が好ましく、0.00544~0.00837
J/cm2・sec・℃がより好ましい。
In addition, since the fluctuation | variation of the temperature conditions in extending | stretching tends to influence the shrinkage | contraction characteristic of a heat-shrinkable film, it is preferable to suppress the fluctuation | variation of the temperature at the time of extending | stretching, and the warm air temperature after extending | stretching. The temperature at each position on the film surface in the stretching step is preferably within an average temperature ± 1 ° C. within the range of the longitudinal distance corresponding to the roll film winding length of the film according to the present invention, and the average temperature ± 0. More preferably within 5 ° C. Moreover, if attention is paid to the fact that the internal heat generation of the film accompanying stretching is suppressed and the film temperature unevenness in the transverse direction is reduced, the heat transfer coefficient of the stretching process is preferably 0.0037 J / cm 2 · sec · ° C. or more. .00544 to 0.00837
J / cm 2 · sec · ° C. is more preferable.
 縦方向の収縮をもたらす縦延伸を行う必要は必ずしもないが、フィルムの強度向上の観点からは、本発明に係るフィルムの特徴を損なうことが無い限り、テンターでの縦延伸を行っても良い。縦横の2軸延伸を行う場合の延伸態様は、逐次2軸延伸および同時2軸延伸のいずれでも良く、必要に応じて再延伸を行っても良い。また、逐次2軸延伸においては延伸の順序として、縦横、横縦、縦横縦、横縦横等のいずれの方式でも良い。これらの縦延伸工程あるいは2軸延伸工程を採用する場合においても、予備加熱工程のフィルム表面温度、延伸工程のフィルム表面温度、および延伸工程の熱伝達係数は、上記横延伸と同様である。 Although it is not always necessary to perform longitudinal stretching that causes contraction in the longitudinal direction, from the viewpoint of improving the strength of the film, longitudinal stretching with a tenter may be performed as long as the characteristics of the film according to the present invention are not impaired. The stretching mode in the case of performing longitudinal and lateral biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching, and may be re-stretched as necessary. Further, in sequential biaxial stretching, any of stretching methods such as vertical and horizontal, horizontal and vertical, vertical and horizontal and horizontal and vertical and horizontal directions may be used. Even when these longitudinal stretching steps or biaxial stretching steps are adopted, the film surface temperature in the preheating step, the film surface temperature in the stretching step, and the heat transfer coefficient in the stretching step are the same as those in the transverse stretching.
 以上により熱収縮性ポリエステル系フィルムを製造できるが、アニオン系帯電防止剤が少なくとも片面に存在している好ましい態様の熱収縮性ポリエステル系フィルムを製造するためには、フィルムの少なくとも片面にアニオン系帯電防止剤を含有する液を塗布する。当該液の塗布後に一軸延伸または二軸延伸する。つまり、(1)未延伸フィルムに帯電防止剤含有液を塗布した後、一軸または二軸延伸するか、(2)未延伸フィルムを一軸延伸または二軸延伸してポリエステル系延伸フィルムを製造する第一延伸工程と、このポリエステル系延伸フィルムを更に一軸延伸または二軸延伸する第二延伸工程とを有する場合には、第一延伸工程と第二延伸工程との間のフィルムに帯電防止剤含有液を塗布する。帯電防止剤をフィルムに練り込む方法ではなく、そのような塗布法を採用することにより帯電防止剤をフィルム表面に直接存在させることができるので、フィルムを構成するポリエステルのガラス転移温度の高さによらず帯電防止効果が有効に発揮され、また、帯電防止剤によるフィルム劣化や着色なども防止できる。延伸条件そのものは、上記のアニオン系帯電防止剤を塗布しない場合と大きな違いはない。 Although a heat-shrinkable polyester film can be produced as described above, in order to produce a heat-shrinkable polyester film of a preferred embodiment in which an anionic antistatic agent is present on at least one side, an anionic charge is provided on at least one side of the film A liquid containing an inhibitor is applied. After application of the liquid, uniaxial stretching or biaxial stretching is performed. That is, (1) after applying an antistatic agent-containing liquid to an unstretched film, it is uniaxially or biaxially stretched, or (2) a polyester-based stretched film is produced by uniaxially or biaxially stretching an unstretched film. In the case of having a first stretching step and a second stretching step for further uniaxially stretching or biaxially stretching the polyester-based stretched film, an antistatic agent-containing liquid is added to the film between the first stretching step and the second stretching step. Apply. Rather than kneading the antistatic agent into the film, by adopting such a coating method, the antistatic agent can be directly present on the film surface, so that the glass transition temperature of the polyester constituting the film is high. Regardless of this, the antistatic effect is effectively exhibited, and film deterioration and coloring caused by the antistatic agent can be prevented. The stretching conditions themselves are not significantly different from the case where the anionic antistatic agent is not applied.
 フィルム表面に塗付する帯電防止剤含有液の溶媒は、特に限定されないが、炭素数1~3の低級アルコールと水の混合溶媒を用いることが好ましい。水と任意の割合で混合できる炭素数1~3の低級アルコールが好ましく、例えば、メタノール、エタノール、n-プロパノール、イソプロパノールが挙げられる。炭素数が多いアルコールは水と相分離して塗布斑が生じ易くなるため好ましくないが、相分離を起こさない程度であれば、炭素数の多いアルコールを炭素数1~3の低級アルコールと併用しても構わない。 The solvent of the antistatic agent-containing liquid to be applied to the film surface is not particularly limited, but it is preferable to use a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water. A lower alcohol having 1 to 3 carbon atoms that can be mixed with water at an arbitrary ratio is preferable, and examples thereof include methanol, ethanol, n-propanol, and isopropanol. Alcohols with a large number of carbon atoms are not preferred because they are likely to cause coating spots due to phase separation with water. However, alcohols with a large number of carbon atoms may be used in combination with lower alcohols having 1 to 3 carbon atoms as long as they do not cause phase separation. It doesn't matter.
 上記低級アルコールの帯電防止剤含有液中における量は、10質量%以上とすることが好ましい。低級アルコール量が10質量%未満の場合には、帯電防止剤含有液の表面張力が大きくなってフィルムへの濡れ性が低下し、塗布斑が生じ易くなり、また、理由は不明であるが、塗布後の乾燥において急激な温湿度変化が生じた場合にフィルムの透明性が低下して実用性が損なわれることがある。一方、帯電防止剤含有液中の低級アルコールの上限量は、60質量%が好ましい。60質量%を超える場合には、低級アルコールの爆発危険性回避のための防爆対策を行わなければならないことがある。なお、低級アルコールと同時に、より炭素数の多いアルコールを併用する場合には、総アルコール量を60質量%以下とすることが推奨される。 The amount of the lower alcohol in the antistatic agent-containing liquid is preferably 10% by mass or more. When the amount of the lower alcohol is less than 10% by mass, the surface tension of the antistatic agent-containing liquid is increased, the wettability to the film is lowered, and coating spots are likely to occur, and the reason is unknown. When drastic temperature / humidity changes occur during drying after coating, the transparency of the film may be lowered, impairing practicality. On the other hand, the upper limit of the lower alcohol in the antistatic agent-containing liquid is preferably 60% by mass. If it exceeds 60% by mass, it may be necessary to take explosion-proof measures to avoid the explosion risk of lower alcohols. In addition, when using alcohol with many carbon atoms simultaneously with lower alcohol, it is recommended that the total alcohol amount shall be 60 mass% or less.
 また、好ましい態様として、フィルムの少なくとも片面に耐ブロッキング性改良層を設ける場合の製造方法としては、ポリエステル系基材フィルム上に、ポリエステル系グラフト共重合体を含有する塗布液を塗布する塗布法の他に、ポリエステル系グラフト共重合体を含有する樹脂層を積層する積層法があるが、本発明においては塗布法を用いて形成することが好ましい。これは、積層法では、耐ブロッキング性改良層の厚さに下限があり、基材となるフィルムの特性が変わるなどの弊害が生じる場合もあるからである。これに対し、塗布法では、ポリエステル系グラフト共重合体をフィルム表面に薄膜で存在させることができるため、基材となるフィルムの特性を変えることなく耐ブロッキング性を付与することができる。 Further, as a preferred embodiment, as a production method in the case of providing a blocking resistance improving layer on at least one surface of the film, a coating method of applying a coating solution containing a polyester-based graft copolymer on a polyester-based substrate film In addition, there is a laminating method in which a resin layer containing a polyester-based graft copolymer is laminated. In the present invention, it is preferable to use a coating method. This is because in the lamination method, there is a lower limit to the thickness of the anti-blocking layer, and adverse effects such as changes in the properties of the film serving as the substrate may occur. On the other hand, in the coating method, since the polyester-based graft copolymer can be present as a thin film on the film surface, blocking resistance can be imparted without changing the properties of the film serving as the substrate.
 ≪塗布液の塗布≫
 ポリエステル系グラフト共重合体を含有する塗布液としては、ポリエステル系グラフト共重合体の有機溶媒溶液または有機溶媒分散液、あるいは、水系溶媒溶液または水系溶媒分散液を用い得る。特に、水系溶媒溶液または水系溶媒分散液が、環境に対して問題となる有機溶媒を用いない点で好ましい。
≪Application of coating liquid≫
As the coating solution containing the polyester-based graft copolymer, an organic solvent solution or an organic solvent dispersion of the polyester-based graft copolymer, or an aqueous solvent solution or an aqueous solvent dispersion can be used. In particular, an aqueous solvent solution or an aqueous solvent dispersion is preferable in that an organic solvent that is problematic for the environment is not used.
 具体的には、溶媒として炭素数1~3の低級アルコールと水との混合溶媒を用いることが好ましい。炭素数1~3の低級アルコールとしては、メタノール、エタノール、n-プロパノール、イソプロパノールなどの、水と任意の割合で混合し得るものが好適である。炭素数が多いアルコールは、塗布液を調製した際に水と相分離してしまい、このような塗布液を用いると塗布斑が生じ易くなるため好ましくない。ただし、相分離を起こさない程度であれば、炭素数1~3の低級アルコールと併用しても構わない。 Specifically, it is preferable to use a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water as the solvent. As the lower alcohol having 1 to 3 carbon atoms, those that can be mixed with water at an arbitrary ratio, such as methanol, ethanol, n-propanol, and isopropanol, are preferable. Alcohols having a large number of carbon atoms are not preferable because they are phase-separated from water when a coating solution is prepared, and application of such coating solutions tends to cause coating spots. However, a lower alcohol having 1 to 3 carbon atoms may be used in combination as long as phase separation does not occur.
 塗布液中の低級アルコール量は10質量%以上とすることが好ましい。低級アルコール量が10質量%未満の場合には、塗布液の表面張力が大きくなってフィルムへの濡れ性が低下し、塗布斑が生じ易くなる。また、理由は不明であるが、塗布液を塗布後、乾燥して得られる熱収縮性フィルムにおいて、急激な温湿度変化が生じた場合に、フィルムの透明性が低下して実用性が損なわれることがある。 The amount of lower alcohol in the coating solution is preferably 10% by mass or more. When the amount of the lower alcohol is less than 10% by mass, the surface tension of the coating solution is increased, the wettability to the film is lowered, and coating spots are easily generated. The reason is unknown, but in a heat-shrinkable film obtained by applying and then drying a coating solution, when a sudden temperature / humidity change occurs, the transparency of the film is lowered and the practicality is impaired. Sometimes.
 また、塗布液中の低級アルコール量は60質量%以下であることが好ましい。低級アルコール量が60質量%を超える場合には、塗布液中の有機溶媒量が多くなることとなるため、フィルム製造工程中に塗布液を塗布する場合、爆発の危険性が生じるために防爆対策を講じる必要がある。なお、低級アルコールと同時に、より炭素数の多いアルコールを併用する場合には、塗布液中のアルコールの総量を60質量%以下とすることが推奨される。 Further, the amount of lower alcohol in the coating solution is preferably 60% by mass or less. If the amount of the lower alcohol exceeds 60% by mass, the amount of organic solvent in the coating solution will increase. It is necessary to take. In addition, when using alcohol with many carbon atoms simultaneously with lower alcohol, it is recommended that the total amount of alcohol in a coating liquid shall be 60 mass% or less.
 有機溶媒あるいは水系溶媒中のポリエステル系グラフト共重合体および架橋結合剤(後述する)の固形分含有量は、0.5質量%以上(より好ましくは1質量%以上)が好ましく、50重量%以下(より好ましくは30重量%以下)が好ましい。なお、塗布液には無機滑剤を配合することも可能である。 The solid content of the polyester-based graft copolymer and the crosslinking agent (described later) in the organic solvent or aqueous solvent is preferably 0.5% by mass or more (more preferably 1% by mass or more), and 50% by weight or less. (More preferably 30% by weight or less) is preferable. In addition, it is also possible to mix | blend an inorganic lubricant with a coating liquid.
 ポリエステル系グラフト共重合体を含む塗布液をポリエステル系基材フィルムに塗布する方法は、特に限定されるものではなく、エアナイフ方式、グラビア方式、リバース方式、ダイ方式、バー方式、ディップ方式などの公知の塗布方式を用い得る。 The method for applying the coating liquid containing the polyester-based graft copolymer to the polyester-based substrate film is not particularly limited, and known methods such as an air knife method, a gravure method, a reverse method, a die method, a bar method, and a dip method. The coating method can be used.
 塗布液の塗布量は、ポリエステル系グラフト共重合体固形分として0.002~0.5g/m2であることが好ましく、0.004~0.05g/m2であることがより好ましい。塗布量が0.002g/m2未満であると、耐熱ブロッキング効果が十分に確保できな
いことがある。また、塗布量が0.5g/m2を超えると、フィルムの透明性や光沢性が
低下することがある。
The coating amount of the coating solution is preferably 0.002 ~ 0.5g / m 2 as polyester-based graft copolymer solids, and more preferably 0.004 ~ 0.05g / m 2. If the coating amount is less than 0.002 g / m 2 , the heat-resistant blocking effect may not be sufficiently ensured. On the other hand, if the coating amount exceeds 0.5 g / m 2 , the transparency and gloss of the film may be lowered.
 ≪乾燥≫
 本発明において用いるポリエステル系グラフト共重合体は自己架橋性を有し、常温では架橋しないが、乾燥時の熱で、熱ラジカルによる水素引き抜き反応等の分子間反応を行い、架橋剤なしで架橋する。これにより初めて、本発明の目的である耐ブロッキング性を発現できる。
≪Dry≫
The polyester-based graft copolymer used in the present invention is self-crosslinkable and does not crosslink at room temperature, but crosslinks without a crosslinker by performing an intermolecular reaction such as a hydrogen abstraction reaction by a thermal radical with heat during drying. . This makes it possible for the first time to exhibit the blocking resistance that is the object of the present invention.
 塗布後の乾燥条件は特に規制は無いが、ポリエステル系グラフト共重合体のもつ自己架橋性を発現するためには、ポリエステル系基材フィルム及びポリエステル系グラフト共重合体に熱劣化が起こらない範囲内で、熱量を多くする条件が好ましい。具体的には60℃~250℃、さらに好ましくは65℃~220℃である。ただし、乾燥時間を長くすることにより、比較的低い温度でも十分な自己架橋性を発現するため、上記の条件に限らない。 There are no particular restrictions on the drying conditions after coating, but in order to express the self-crosslinking property of the polyester-based graft copolymer, the polyester base film and the polyester-based graft copolymer are not subject to thermal degradation. And the conditions which increase calorie | heat amount are preferable. Specifically, it is 60 ° C to 250 ° C, more preferably 65 ° C to 220 ° C. However, by extending the drying time, sufficient self-crosslinking property is exhibited even at a relatively low temperature, and thus the present invention is not limited to the above conditions.
 塗膜の架橋性については、様々の方法で評価できるが、例えば、疎水性共重合ポリエステルおよびポリエステル系グラフト共重合体の両方を溶解するクロロホルム溶媒での不溶分率を測定する方法等が挙げられる。80℃以下で乾燥し、120℃で5分間熱処理して得られる塗膜の不溶分率が、好ましくは50%以上、より好ましくは70%以上である。塗膜の不溶分率が50%未満の場合は、耐水性が十分でないばかりでなく、ブロッキングも起こしてしまう。 The crosslinkability of the coating film can be evaluated by various methods, for example, a method of measuring an insoluble fraction in a chloroform solvent that dissolves both the hydrophobic copolymerized polyester and the polyester-based graft copolymer. . The insoluble fraction of the coating film obtained by drying at 80 ° C. or less and heat-treating at 120 ° C. for 5 minutes is preferably 50% or more, more preferably 70% or more. When the insoluble fraction of the coating film is less than 50%, not only the water resistance is not sufficient, but also blocking occurs.
 本発明においては、塗布液にさらに架橋結合剤を添加することにより高度な耐水性、耐溶剤性を付与することが可能である。架橋結合剤としては、前記ポリエステル系グラフト共重合体に存在する官能基などと熱や光で架橋反応をし、最終的には3次元網目構造を形成しうる架橋結合剤であれば特に限定されない。 In the present invention, it is possible to impart high water resistance and solvent resistance by further adding a crosslinking agent to the coating solution. The cross-linking agent is not particularly limited as long as it is capable of cross-linking with a functional group or the like present in the polyester-based graft copolymer by heat or light and finally forming a three-dimensional network structure. .
 架橋結合剤としては、アルキル化フェノール類、クレゾール類などとホルムアルデヒドとの縮合物のフェノールホルムアルデヒド樹脂;尿素、メラミン、ベンゾグアナミンなどとホルムアルデヒドとの付加物、この付加物と炭素原子数が1~6のアルコールからなるアルキルエーテル化合物などのアミノ樹脂;多官能性エポキシ化合物;多官能性イソシアネート化合物;ブロックイソシアネート化合物;多官能性アジリジン化合物;オキサゾリン化合物などが挙げられる。 Cross-linking agents include phenol formaldehyde resins that are condensates of alkylated phenols, cresols, and the like with formaldehyde; adducts of urea, melamine, benzoguanamine, and the like with formaldehyde, and these adducts having 1 to 6 carbon atoms. Examples include amino resins such as alkyl ether compounds composed of alcohols; polyfunctional epoxy compounds; polyfunctional isocyanate compounds; blocked isocyanate compounds; polyfunctional aziridine compounds; oxazoline compounds.
 フェノールホルムアルデヒド樹脂としては、例えば、アルキル化(メチル、エチル、プロピル、イソプロピルまたはブチル)フェノール、p-tert-アミルフェノール、4,4’-sec-ブチリデンフェノール、p-tert-ブチルフェノール、o-、m-、p-クレゾール、p-シクロヘキシルフェノール、4,4’-イソプロピリデンフェノール、p-ノニルフェノール、p-オクチルフェノール、3-ペンタデシルフェノール、フェノール、フェニル-o-クレゾール、p-フェニルフェノール、キシレノールなどのフェノール類とホルムアルデヒドとの縮合物を挙げることができる。 Examples of the phenol formaldehyde resin include alkylated (methyl, ethyl, propyl, isopropyl or butyl) phenol, p-tert-amylphenol, 4,4′-sec-butylidenephenol, p-tert-butylphenol, o-, m-, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, xylenol, etc. And the condensates of phenols and formaldehyde.
 アミノ樹脂としては、例えば、メトキシ化メチロール尿素、メトキシ化メチロールN,N-エチレン尿素、メトキシ化メチロールジシアンジアミド、メトキシ化メチロールメラミン、メトキシ化メチロールベンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メチロールベンゾグアナミンなどが挙げられる。好ましくは、メトキシ化メチロールメラミン、ブトキシ化メチロールメラミン、およびメチロール化ベンゾグアナミンである。 Examples of amino resins include methoxylated methylol urea, methoxylated methylol N, N-ethylene urea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, and the like. . Preferred are methoxylated methylol melamine, butoxylated methylol melamine, and methylolated benzoguanamine.
 多官能性エポキシ化合物としては、例えば、ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙げることができる。 Examples of the polyfunctional epoxy compound include diglycidyl ether of bisphenol A and oligomer thereof, diglycidyl ether of hydrogenated bisphenol A and oligomer thereof, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, p-oxybenzoic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene Glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether And polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tris Examples thereof include glycidyl ether and triglycidyl ether of glycerol alkylene oxide adduct.
 多官能性イソシアネート化合物としては、低分子または高分子の芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートが挙げられる。ポリイソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、およびこれらのイソシアネート化合物の3量体がある。さらに、これらのイソシアネート化合物の過剰量と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物、またはポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類などの高分子活性水素化合物とを反応させて得られる末端イソシアネート基含有化合物を挙げることができる。 Examples of the polyfunctional isocyanate compound include low-molecular or high-molecular aromatic and aliphatic diisocyanates and trivalent or higher polyisocyanates. Examples of the polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and trimers of these isocyanate compounds. Furthermore, an excess amount of these isocyanate compounds and low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, or polyester polyols, poly The terminal isocyanate group containing compound obtained by making it react with polymer active hydrogen compounds, such as ether polyols and polyamides, can be mentioned.
 ブロックイソシアネート化合物は上記イソシアネート化合物とブロック化剤とを従来公知の適宜の方法より付加反応させて調製し得る。イソシアネートブロック化剤としては、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類;チオフェノール、メチルチオフェノールなどのチオフェノール類;アセトキシム、メチルエチケトオキシム、シクロヘキサノンオキシムなどのオキシム類;メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類;t-ブタノール、t-ペンタノールなどの第3級アルコール類;ε-カプロラクタム、δ-バレロラクタム、ν-ブチロラクタム、β-プロピルラクタムなどのラクタム類;芳香族アミン類;イミド類;アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物;メルカプタン類;イミン類;尿素類;ジアリール化合物類;重亜硫酸ソーダなどを挙げることができる。 The blocked isocyanate compound can be prepared by subjecting the isocyanate compound and the blocking agent to an addition reaction by a conventionally known appropriate method. Examples of the isocyanate blocking agent include phenols such as phenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; thiophenols such as thiophenol and methylthiophenol; oximes such as acetoxime, methyl etiketooxime, and cyclohexanone oxime. Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ε-caprolactam, δ-valerolactam, ν-butyrolactam, β-propyllactam; aromatic amines; imides; acetylacetone, acetoacetate Active methylene compounds such as malonic acid ethyl ester; mercaptans; imines; ureas; diaryl compounds; and sodium bisulfite and the like.
 上記の架橋結合剤は、それぞれ単独または2種以上混合して用いることができる。架橋結合剤の配合量は、ポリエステル系グラフト共重合体100質量部に対して、1質量部~40質量部が好ましい。架橋結合剤の配合方法としては、(1)架橋剤が水溶性である場合、直接グラフト共重合体の水系溶媒溶液または水系溶媒分散液中に溶解または分散させる方法、または(2)架橋剤が油溶性である場合、グラフト化反応終了後、反応液に添加する方法がある。これらの方法は、架橋剤の種類、性状により適宜選択し得る。さらに架橋結合剤には、硬化剤あるいは促進剤を併用し得る。 The above crosslinking agents can be used alone or in combination of two or more. The amount of the crosslinking agent is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the polyester-based graft copolymer. As a blending method of the crosslinking agent, (1) when the crosslinking agent is water-soluble, a method of directly dissolving or dispersing the graft copolymer in an aqueous solvent solution or an aqueous solvent dispersion, or (2) a crosslinking agent When oil-soluble, there is a method of adding to the reaction solution after the grafting reaction is completed. These methods can be appropriately selected depending on the type and properties of the crosslinking agent. Further, a curing agent or an accelerator can be used in combination with the crosslinking agent.
 ≪延伸、及び熱固定≫
 本発明においては、上記乾燥を行った後、さらに少なくとも一軸延伸し、次いで熱固定することが好ましい。延伸することにより、容易に薄膜を形成することができる。また、熱固定することによりポリエステル配向が固定されるので、これを用いて得られる熱収縮性フィルムの主収縮率が低くなる。延伸条件は上記の耐ブロッキング性改良層を設けない態様の場合と大きな違いはない。
≪Stretching and heat setting≫
In the present invention, it is preferable to perform at least uniaxial stretching after the above drying and then heat-set. A thin film can be easily formed by stretching. Moreover, since the polyester orientation is fixed by heat setting, the main shrinkage rate of the heat-shrinkable film obtained using this is lowered. The stretching conditions are not significantly different from those in the case of not providing the anti-blocking layer.
 延伸したフィルムに60~120℃の温風を吹き付ければ、延伸後のポリエステル配向が固定されるので、熱収縮性フィルムの主収縮率が低くなる。また、先の温風の吹きつけに続けて30~60℃の温風を延伸したフィルムに吹き付けることが好ましい。これにより、[(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満の熱収縮性ポリエステル系フィルムを得ることができる。 If hot air of 60 to 120 ° C. is blown onto the stretched film, the orientation of the polyester after stretching is fixed, so that the main shrinkage rate of the heat-shrinkable film is lowered. Further, it is preferable to blow hot air of 30 to 60 ° C. on the stretched film following the previous hot air. As a result, [(heat shrinkage rate in the main shrinkage direction in the main shrinkage direction exceeds 0% + 10 ° C.)] [(Temperature at which the heat shrinkage rate in the main shrinkage direction exceeds 0% −5 The heat-shrinkable polyester film having a value obtained by subtracting the heat shrinkage ratio in the main shrinkage direction of [° C.] less than 20% can be obtained.
 アニオン系帯電防止剤が耐ブロッキング性改良層中に存在する態様とするためには、上記の耐ブロッキング性改良層を形成するための塗布液に上記のアニオン系帯電防止剤も含ませて塗布して乾燥させればよく、効率的な加工が可能である。 In order to obtain an embodiment in which the anionic antistatic agent is present in the anti-blocking layer, the anionic antistatic agent is added to the coating solution for forming the anti-blocking layer. Can be efficiently processed.
 (熱収縮性ラベル)
 本発明の熱収縮性ラベルは、上記熱収縮性ポリエステル系フィルムを用いて作製される。この際、必要に応じて印刷加工が施されてもよい。
(Heat shrinkable label)
The heat-shrinkable label of the present invention is produced using the heat-shrinkable polyester film. At this time, printing may be performed as necessary.
 以下、実施例により本発明を詳細に説明するが、本発明は、これら実施例に何ら制限されるものではない。まず、実施例および比較例において作製したフィルムの評価方法について説明する。また、実施例中で「部」とあるのは「質量部」を意味し、「%」とあるのは断りがない限り「質量%」を意味する。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. First, the evaluation method of the film produced in the Example and the comparative example is demonstrated. In the examples, “parts” means “parts by mass”, and “%” means “% by mass” unless otherwise specified.
(1)ポリエステルのNMR解析
 各試料を、クロロホルムD(ユーリソップ社製)とトリフルオロ酢酸D1(ユーリソップ社製)を10:1(体積比)で混合した溶媒に溶解させて、試料溶液を調製し、NMR(「GEMINI-200」;Varian社製)を用いて、温度23℃、積算回数64回の測定条件で試料溶液の1H-NMRを測定した。NMR測定では、所定のプロトンの
ピーク強度を算出して、チップ組成およびフィルム組成をモル%として求めた。
(1) NMR analysis of polyester Each sample was dissolved in a solvent in which chloroform D (manufactured by Yurisop) and trifluoroacetic acid D1 (manufactured by Yurisopp) were mixed at 10: 1 (volume ratio) to prepare a sample solution. 1 H-NMR of the sample solution was measured using NMR (“GEMINI-200”; manufactured by Varian) under the measurement conditions of a temperature of 23 ° C. and a total of 64 times. In NMR measurement, the peak intensity of a predetermined proton was calculated, and the chip composition and film composition were determined as mol%.
(2)熱収縮率
 フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃(所定温度については表2参照)の温水中に無荷重状態で10秒間処理して熱収縮させた後、直ちに25℃±0.5℃の水中に10秒浸漬してから、試料の縦および横方向の長さを測定し、下記式に従い熱収縮率を求めた。
 熱収縮率(%)=(収縮前の長さ-収縮後の長さ)÷収縮前の長さ×100
(2) Heat shrinkage rate The film was cut into a 10 cm × 10 cm square, and heat-shrinked by treatment in warm water at a predetermined temperature ± 0.5 ° C. (see Table 2 for the predetermined temperature) for 10 seconds under no load. Thereafter, the sample was immediately immersed in water at 25 ° C. ± 0.5 ° C. for 10 seconds, then the lengths of the sample in the vertical and horizontal directions were measured, and the thermal shrinkage rate was determined according to the following formula.
Thermal shrinkage rate (%) = (length before shrinkage−length after shrinkage) ÷ length before shrinkage × 100
(3)ヘーズ
 温度30℃、相対湿度85%の雰囲気に4週間保存した熱収縮性ポリエステル系フィルムを使用して、溶剤接着法またはヒートシール法にて、フィルムの主収縮方向が径方向となるように直径11cm、長さ16cmのチューブ状とし、このチューブ状フィルム内に温度40℃の直径が6.6cmである円筒状ガラス瓶を配置させ、そのフィルムに向けて150℃(風速10m/秒)の熱風を13秒当てた。熱風による収縮後のフィルム(チューブ状フィルムサンプル数10)を切り出し、これを熱収縮後のフィルム試料とした。熱収縮後のフィルムのヘーズをJIS
K7136に準拠して測定し、平均値を求めた。ま
た、熱収縮前のフィルムについてもヘーズの平均値を求めた。
(3) Haze Using a heat-shrinkable polyester film stored in an atmosphere at a temperature of 30 ° C. and a relative humidity of 85% for 4 weeks, the main shrinkage direction of the film becomes the radial direction by a solvent adhesion method or a heat seal method. In this tube-shaped film, a cylindrical glass bottle having a diameter of 6.6 cm and a diameter of 6.6 cm is arranged in the tube-shaped film, and 150 ° C. (wind speed 10 m / sec) toward the film. The hot air was applied for 13 seconds. A film after shrinkage with hot air (tubular film sample number 10) was cut out and used as a film sample after heat shrinkage. JIS for film haze after heat shrinkage
Measurement was performed according to K7136, and the average value was obtained. Moreover, the average value of haze was calculated | required also about the film before heat shrink.
(4)溶剤接着性
 熱収縮性フィルムの片面に、フィルムの縦方向に沿って、1,3-ジオキソランを綿棒で塗布量5±0.3g/m2、塗布幅5±1mmで塗布し、この塗布部と塗布されていな
い縦方向のフィルム表面とを貼り合わせてチューブ状フィルムを作製した。25℃の温度条件で24時間後のチューブ状フィルムから、前記貼り合わせ部を含めた縦方向長さ15mmのチューブ状フィルムを切り取り、これを万能引張り試験機(株式会社ボールドウィン社製「STM-50」)にセットし、90°剥離試験で引張速度200mm/分で貼り合わせ部を剥離させた。この剥離における最大強度を溶剤剥離強度とした。
(4) Solvent adhesion One side of the heat-shrinkable film is coated with 1,3-dioxolane with a cotton swab at a coating amount of 5 ± 0.3 g / m 2 and a coating width of 5 ± 1 mm along the longitudinal direction of the film. A tube-shaped film was produced by pasting the coating portion and the uncoated longitudinal film surface. A tube-like film having a length of 15 mm including the bonded portion was cut out from the tube-like film after 24 hours under a temperature condition of 25 ° C., and this was cut into a universal tensile tester (“STM-50” manufactured by Baldwin Co., Ltd.). ”), And the bonded portion was peeled off at a tensile rate of 200 mm / min in a 90 ° peel test. The maximum strength in this peeling was defined as the solvent peeling strength.
(5)収縮仕上がり性
 熱収縮性フィルムに、印刷機を使用してあらかじめ東洋インキ製造(株)の草・青金・白色のインキを3色印刷した。次いで、このフィルムを用い、溶剤接着法、もしくは、ヒートシール法にて横方向(径方向)が主収縮方向となるように熱収縮性ラベルを作製した。このラベルを温度が60℃のガラス瓶に被せ、175℃(風速12m/秒)の熱風を10秒当てて熱収縮させた。熱収縮後のラベル全体の収縮性および仕上がりを目視確認し、以下の4段階の基準で評価した。なお、以下の評価基準では、「○」が合格レベルで、「△」、「×」、および「××」が不良である。また、以下の評価基準における「欠点」には、飛び上がり、シワ、収縮不足、ラベル端部折れ込み、および収縮白化が該当する。
 ○:仕上がり性良
 △:欠点少し有り(2ヶ所以内)
 ×:欠点有り(3~5ヶ所)
 ××:欠点多い(6ヶ所以上)
(5) Shrinkage finishing property Three colors of Toyo Ink Mfg. Co., Ltd. grass, blue gold, and white ink were printed in advance on a heat shrinkable film using a printing machine. Next, using this film, a heat-shrinkable label was prepared by a solvent adhesion method or a heat seal method so that the transverse direction (radial direction) was the main shrinkage direction. This label was placed on a glass bottle having a temperature of 60 ° C., and was subjected to heat shrinkage by applying hot air of 175 ° C. (wind speed 12 m / sec) for 10 seconds. The shrinkage and finish of the entire label after heat shrinkage were visually confirmed and evaluated according to the following four criteria. In the following evaluation criteria, “◯” is a pass level and “Δ”, “×”, and “XX” are bad. Further, “defects” in the following evaluation criteria correspond to jumping, wrinkling, insufficient shrinkage, label edge folding, and shrinkage whitening.
○: Good finish △: Some defects (within 2 locations)
×: Defects (3-5 locations)
XX: Many defects (over 6 locations)
 (6)ガラス転移温度(Tg)
 ポリエステル系グラフト共重合体の溶液または分散液をガラス板に塗布し、次いで170℃で乾燥してグラフト重合体固形分を得た。この固形分10mgをサンプルパンに取り、示差走査熱量計(島津製作所製、雰囲気制御装置:FC-60A、ワークステーション:TA-60WS)を使用して、窒素雰囲気下で昇温速度10℃/分で測定し得られたデータよりガラス転移温度(Tg)を求めた。
(6) Glass transition temperature (Tg)
A solution or dispersion of the polyester-based graft copolymer was applied to a glass plate and then dried at 170 ° C. to obtain a graft polymer solid. 10 mg of this solid content is taken in a sample pan, and using a differential scanning calorimeter (manufactured by Shimadzu Corporation, atmosphere control device: FC-60A, workstation: TA-60WS), the temperature rising rate is 10 ° C./min under a nitrogen atmosphere. The glass transition temperature (Tg) was determined from the data obtained by the measurement.
 (7)ブロッキング性
 ヒートシーラーにて、シールバーの表面温度が95±0.5℃の範囲内で、圧力40N/cm2、時間300秒にてフィルム面同士をヒートシール後、15mm巾のサンプルを切り出し、引張試験機にて剥離強度を測定し、以下の判定基準で評価した。
 ○:剥離強度0.1N/15mm未満
 ×:剥離強度0.1N/15mm以上
(7) Blocking property Heat seal the surface temperature of the seal bar within a range of 95 ± 0.5 ° C, heat seal the film surfaces at a pressure of 40 N / cm2 and time of 300 seconds, and then remove a 15 mm wide sample. The peel strength was measured using a tensile tester and evaluated according to the following criteria.
○: Peel strength less than 0.1 N / 15 mm ×: Peel strength of 0.1 N / 15 mm or more
 (8)表面固有抵抗
 アドバンテスト社製表面固有抵抗測定器(本体:R8340、試料箱:R12704)を用いて、印加電圧100V、23℃・65%RHの雰囲気下で測定し、測定器の読取値を表面固有抵抗とした。
(8) Surface resistivity Using a surface resistivity measuring instrument (main body: R8340, sample box: R12704) manufactured by Advantest Co., Ltd., measured in an atmosphere with an applied voltage of 100 V, 23 ° C. and 65% RH, the reading of the measuring instrument Was the surface resistivity.
(合成例A:ポリエステルの合成)
 撹拌機、温度計、及び部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分であるジメチルテレフタレート(DMT)と、多価アルコール成分であるエチレングリコール(EG)とをモル比EG/DMT=2.2となるように仕込んだ。そのEGの仕込みの際には、無機滑剤をエチレングリコールに分散させた。また、エステル交換触媒である酢酸亜鉛を0.05モル%(ジカルボン酸成分に対して)と、重縮合触媒である三酸化アンチモン0.025モル%(ジカルボン酸成分に対して)とを上記オートクレーブ内に添加し、生成するメタノールを反応系外へ留去させながら、エステル交換反応を進行させた。その後、280℃、26.7Paの条件で重縮合反応を進行させ、減圧下で重縮合反応を終了させ、窒素加圧下で得られたポリマーをストランド状にして水中に吐出させ、当該吐出物をストランドカッターで切断することにより、エチレンテレフタレートユニットを有し且つ無機滑剤を0.7質量%含有するポリエステルAのチップを得た。その組成を表1に示す。
(Synthesis Example A: Synthesis of polyester)
In a stainless steel autoclave equipped with a stirrer, a thermometer, and a partial reflux cooler, a dicarboxylic acid component, dimethyl terephthalate (DMT), and a polyhydric alcohol component, ethylene glycol (EG), have a molar ratio EG / It was charged so that DMT = 2.2. When the EG was charged, an inorganic lubricant was dispersed in ethylene glycol. In addition, 0.05 mol% (based on the dicarboxylic acid component) of zinc acetate as the transesterification catalyst and 0.025 mol% of antimony trioxide (based on the dicarboxylic acid component) as the polycondensation catalyst The transesterification reaction was allowed to proceed while adding methanol and distilling the produced methanol out of the reaction system. Thereafter, the polycondensation reaction is allowed to proceed under the conditions of 280 ° C. and 26.7 Pa, the polycondensation reaction is terminated under reduced pressure, and the polymer obtained under nitrogen pressurization is discharged into water in the form of a strand. By cutting with a strand cutter, a polyester A chip having an ethylene terephthalate unit and containing 0.7% by mass of an inorganic lubricant was obtained. The composition is shown in Table 1.
(合成例B~D:ポリエステルの合成)
 ジカルボン酸成分としてDMTを使用し、多価アルコール成分としてEG、EGとネオペンチルグリコール、1,4-ブタンジオール、または、エチレングリコールと1,4-シクロヘキサンジメタノールを使用し、合成例Aと同様の方法(但し、無機滑剤を使用せず)により、表1に示す組成のポリエステルB~Dのチップを得た。
(Synthesis Examples B to D: Synthesis of polyester)
Same as Synthesis Example A using DMT as the dicarboxylic acid component and EG, EG and neopentyl glycol, 1,4-butanediol, or ethylene glycol and 1,4-cyclohexanedimethanol as the polyhydric alcohol component By using the above method (but without using an inorganic lubricant), polyester B to D chips having the compositions shown in Table 1 were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(好ましい実験例1~5)
(実験例1)
 別個に予備乾燥したポリエステルA~Cのチップを、Aが15wt%、Bが75wt%、Cが10wt%の割合で混合して押出し機に供給後に275℃で溶融押出しし、表面温度25℃のチルロール上で急冷させて厚さ180μmの未延伸フィルムを得た。続けて未延伸フィルムをテンター内に導き、予備加熱として未延伸フィルム温度を70℃とし、温度72℃の未延伸フィルムを横方向に4.0倍延伸した。次に、延伸後のフィルムを95℃で14秒間一次熱処理し、続けて50℃で10秒間二次熱処理することにより厚さ45μmの熱収縮性ポリエステル系フィルムを得た。当該フィルムの特性評価結果を表2に示す。
(Preferable Experimental Examples 1 to 5)
(Experimental example 1)
Separately pre-dried polyester A to C chips were mixed at a ratio of 15 wt% A, 75 wt% B, and 10 wt% C, fed to the extruder, melt extruded at 275 ° C., and surface temperature 25 ° C. The film was rapidly cooled on a chill roll to obtain an unstretched film having a thickness of 180 μm. Subsequently, the unstretched film was introduced into the tenter, and as a preheating, the unstretched film temperature was set to 70 ° C., and the unstretched film having a temperature of 72 ° C. was stretched 4.0 times in the transverse direction. Next, the film after stretching was subjected to a primary heat treatment at 95 ° C. for 14 seconds, followed by a secondary heat treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 μm. Table 2 shows the evaluation results of the characteristics of the film.
(実験例2)
 ポリエステルA~Cのチップの割合を、Aが5wt%、Bが80wt%、Cが15wt%とした以外は実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 2)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1 except that the ratio of the polyester A to C chips was changed to 5 wt% for A, 80 wt% for B, and 15 wt% for C. .
(実験例3)
 ポリエステルのチップとしてポリエステルA、C、およびDのチップを使用し、これらチップの割合をAが15wt%、Cが10wt%、Dが75wt%とした以外は、実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 3)
Polyester A, C, and D chips were used as the polyester chips, and the ratio of these chips was the same as in Experimental Example 1 except that A was 15 wt%, C was 10 wt%, and D was 75 wt%. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例4)
 ポリエステルA~Cのチップの割合を、Aが15wt%、Bが75wt%、Cが10wt%とし、延伸後のフィルムを92℃で14秒間一次熱処理した以外は、実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 4)
The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to primary heat treatment at 92 ° C. for 14 seconds. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例5)
 ポリエステルA~Cのチップの割合を、Aが15wt%、Bが75wt%、Cが10wt%とし、延伸後のフィルムを104℃で14秒間一次熱処理した以外は、実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 5)
The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 104 ° C. for 14 seconds. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例1~5に対して好ましくない実験例6~9)
(実験例6)
 横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental Examples 6 to 9 which are not preferable to Experimental Examples 1 to 5)
(Experimental example 6)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1 except that the primary heat treatment temperature after stretching in the transverse direction was 85 ° C.
(実験例7)
 ポリエステルA~Cのチップの割合を、Aが40wt%、Bが50wt%、Cが10wt%とした以外は実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 7)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 1, except that the ratio of the polyester A to C chips was 40 wt%, B was 50 wt%, and C was 10 wt%. .
(実験例8)
 ポリエステルA~Cのチップの割合を、Aが40wt%、Bが50wt%、Cが10wt%とし、横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 8)
The same method as in Experimental Example 1 except that the ratio of the polyester A to C chips was 40 wt% A, 50 wt% B, 10 wt% C, and the primary heat treatment temperature after stretching in the transverse direction was 85 ° C. Thus, a heat-shrinkable polyester film of this experimental example was obtained.
(実験例9)
 ポリエステルBのチップ75wt%、Cのチップ25wt%を使用し、横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例1と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 9)
The heat-shrinkable polyester of this experimental example was prepared in the same manner as in Experimental Example 1 except that 75 wt% of the polyester B chip and 25 wt% of the C chip were used, and the primary heat treatment temperature after stretching in the transverse direction was 85 ° C. A system film was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(特に好ましい実験例10~11)
(アニオン系帯電防止剤含有液1)
 ドデシルスルホネートに水を加えて希釈し、さらにイソプロパノールを加えて固形分濃度が2質量%のアニオン系帯電防止剤含有液1(ドデシルスルホネート:2質量%、水:63質量%、イソプロパノール:35質量%)を得た。
(Particularly preferred experimental examples 10 to 11)
(Anionic antistatic agent-containing liquid 1)
Water is added to the dodecyl sulfonate to dilute it, and isopropanol is further added to add an anionic antistatic agent-containing liquid 1 having a solid content concentration of 2 mass% (dodecyl sulfonate: 2 mass%, water: 63 mass%, isopropanol: 35 mass%). )
(アニオン系帯電防止剤含有液2)
 ドデシルベンゼンスルホネートに水を加えて希釈し、さらにイソプロパノールを加えて固形分濃度が2質量%のアニオン系帯電防止剤含有液2(ドデシルベンゼンスルホネート:2質量%、水:63質量%、イソプロパノール:35質量%)を得た。
(Anionic antistatic agent-containing liquid 2)
Diluted by adding water to dodecylbenzenesulfonate, and further added isopropanol, an anionic antistatic agent-containing liquid 2 having a solid content concentration of 2 mass% (dodecylbenzenesulfonate: 2 mass%, water: 63 mass%, isopropanol: 35 Mass%).
(実験例10)
 別個に予備乾燥したポリエステルA~Cのチップを、Aが15wt%、Bが75wt%、Cが10wt%の割合で混合して押出し機に供給後に275℃で溶融押出しし、表面温度25℃のチルロール上で急冷させて厚さ180μmの未延伸フィルムを得た。この未延伸フィルムの片面にアニオン系帯電防止剤含有液1をエアナイフ方式で塗布し、続けて未延伸フィルムをテンター内に導き、予備加熱として未延伸フィルム温度を70℃とし、温度72℃の未延伸フィルムを横方向に4.0倍延伸した。次に、延伸後のフィルムを95℃で14秒間一次熱処理し、続けて50℃で10秒間二次熱処理することにより厚さ45μmの熱収縮性ポリエステル系フィルムを得た。当該フィルムの特性評価結果を表3に示す。
(Experimental example 10)
Separately pre-dried polyester A to C chips were mixed at a ratio of 15 wt% A, 75 wt% B, and 10 wt% C, fed to the extruder, melt extruded at 275 ° C., and surface temperature 25 ° C. The film was rapidly cooled on a chill roll to obtain an unstretched film having a thickness of 180 μm. An anionic antistatic agent-containing liquid 1 is applied to one side of this unstretched film by an air knife method, and the unstretched film is subsequently introduced into a tenter. The prestretched film temperature is set to 70 ° C. The stretched film was stretched 4.0 times in the transverse direction. Next, the film after stretching was subjected to a primary heat treatment at 95 ° C. for 14 seconds, followed by a secondary heat treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 μm. Table 3 shows the evaluation results of the characteristics of the film.
(実験例11)
 アニオン系帯電防止剤含有液1をアニオン系帯電防止剤含有液2に替えた以外は、実験例10と同様にして、熱収縮性ポリエステル系フィルムを得た。
(Experimental example 11)
A heat-shrinkable polyester film was obtained in the same manner as in Experimental Example 10, except that the anionic antistatic agent-containing liquid 1 was changed to the anionic antistatic agent-containing liquid 2.
(実験例10~11に対して好ましくない実験例12~20
(実験例12)
 アニオン系帯電防止剤含有液1の塗付を行わなかった以外は、実験例10と同様にして、熱収縮性ポリエステル系フィルムを得た。
(Experimental Examples 12 to 20 which are not preferable to Experimental Examples 10 to 11)
(Experimental example 12)
A heat-shrinkable polyester film was obtained in the same manner as in Experimental Example 10 except that the anionic antistatic agent-containing liquid 1 was not applied.
(実験例13)
 ポリエステルA~Cのチップの割合を、Aが5wt%、Bが80wt%、Cが15wt%とした以外は実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 13)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12, except that the ratio of the polyester A to C chips was 5 wt%, B was 80 wt%, and C was 15 wt%. .
(実験例14)
 ポリエステルのチップとしてポリエステルA、C、およびDのチップを使用し、これらチップの割合をAが15wt%、Cが10wt%、Dが75wt%とした以外は、実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 14)
Polyester A, C, and D chips were used as the polyester chips, and the ratio of these chips was the same as in Experimental Example 12, except that A was 15 wt%, C was 10 wt%, and D was 75 wt%. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例15)
 ポリエステルA~Cのチップの割合を、Aが15wt%、Bが75wt%、Cが10wt%とし、延伸後のフィルムを92℃で14秒間一次熱処理した以外は、実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 15)
The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 92 ° C. for 14 seconds. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例16)
 ポリエステルA~Cのチップの割合を、Aが15wt%、Bが75wt%、Cが10wt%とし、延伸後のフィルムを104℃で14秒間一次熱処理した以外は、実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 16)
The ratio of the polyester A to C chips was 15 wt%, B was 75 wt%, C was 10 wt%, and the stretched film was subjected to a primary heat treatment at 104 ° C. for 14 seconds. The heat-shrinkable polyester film of this experimental example was obtained.
(実験例17)
 横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 17)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12 except that the primary heat treatment temperature after stretching in the transverse direction was 85 ° C.
(実験例18)
 ポリエステルA~Cのチップの割合を、Aが40wt%、Bが50wt%、Cが10wt%とした以外は実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experiment 18)
A heat-shrinkable polyester film of this experimental example was obtained in the same manner as in Experimental Example 12 except that the ratio of the polyester A to C chips was 40 wt%, B was 50 wt%, and C was 10 wt%. .
(実験例19)
 ポリエステルA~Cのチップの割合を、Aが40wt%、Bが50wt%、Cが10wt%とし、横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experimental example 19)
The same method as in Experimental Example 12 except that the ratio of the polyester A to C chips was 40 wt% for A, 50 wt% for B, 10 wt% for C, and the primary heat treatment temperature after lateral stretching was 85 ° C. Thus, a heat-shrinkable polyester film of this experimental example was obtained.
(実験例20)
 ポリエステルBのチップ75wt%、Cのチップ25wt%を使用し、横方向に延伸した後の一次熱処理温度を85℃とした以外は実験例12と同様の方法により、本実験例の熱収縮性ポリエステル系フィルムを得た。
(Experiment 20)
The heat-shrinkable polyester of this experimental example was prepared in the same manner as in Experimental Example 12 except that 75 wt% of the polyester B chip and 25 wt% of the C chip were used and the primary heat treatment temperature after extending in the transverse direction was 85 ° C. A system film was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(特に好ましい実験例21~22)
 (ポリエステル系基材フィルムの調製)
 別個に予備乾燥したポリエステルA~Cのチップを、Aが15wt%、Bが75wt%、Cが10wt%の割合で混合して押出し機に供給後に275℃で溶融押出しし、表面温度25℃のチルロール上で急冷させて厚さ180μmの未延伸のポリエステル系基材フィルムを得た。得られたフィルムのNMR解析を行い、その組成を調べた。その結果を表4に示す。
(Particularly preferred experimental examples 21 to 22)
(Preparation of polyester base film)
Separately pre-dried polyester A to C chips were mixed at a ratio of 15 wt% A, 75 wt% B, and 10 wt% C, fed to the extruder, melt extruded at 275 ° C., and surface temperature 25 ° C. It was rapidly cooled on a chill roll to obtain an unstretched polyester base film having a thickness of 180 μm. The obtained film was subjected to NMR analysis to examine its composition. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (ポリエステル系グラフト共重合体の調製)
 <疎水性共重合ポリエステルの調製>
 撹拌機、温度計、および部分還流式冷却器を具備したステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)345部、グリコール成分として1,4ブタンジオール(BD)211部、エチレングリコール(EG)270部、および重合触媒としてテトラ-n-ブチルチタネート0.5部を仕込み、160℃から220℃まで、4時間かけてエステル交換反応を行った。次いで、ジカルボン酸成分としてフマル酸14部およびアジピン酸160部を加え、200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで255℃まで昇温し、反応系を徐々に減圧した後、0.22mmHgの減圧下で1時間30分反応させ、疎水性共重合ポリエステルを得た。得られた疎水性共重合ポリエステルは、重量平均分子量20000、淡黄色透明であった。
(Preparation of polyester graft copolymer)
<Preparation of hydrophobic copolyester>
In a stainless steel autoclave equipped with a stirrer, thermometer, and partial reflux condenser, 345 parts of dimethyl terephthalate (DMT) as a dicarboxylic acid component, 211 parts of 1,4 butanediol (BD) as a glycol component, ethylene glycol ( EG) 270 parts and 0.5 part of tetra-n-butyl titanate as a polymerization catalyst were charged, and a transesterification reaction was performed from 160 ° C. to 220 ° C. over 4 hours. Next, 14 parts of fumaric acid and 160 parts of adipic acid were added as dicarboxylic acid components, and the temperature was raised from 200 ° C. to 220 ° C. over 1 hour to carry out an esterification reaction. Next, the temperature was raised to 255 ° C., and the pressure of the reaction system was gradually reduced, followed by reaction for 1 hour 30 minutes under a reduced pressure of 0.22 mmHg to obtain a hydrophobic copolyester. The obtained hydrophobic copolyester had a weight average molecular weight of 20,000 and was pale yellow and transparent.
 <ラジカル重合性モノマーのグラフト化>
 撹拌機、温度計、還流装置と定量滴下装置を備えた反応器に、上記疎水性共重合ポリエステル75部、メチルエチルケトン56部およびイソプロピルアルコール19部を入れ、65℃で加熱、撹拌し、疎水性共重合ポリエステルを溶解した。疎水性共重合ポリエステルが完溶した後、ラジカル重合性モノマーとして無水マレイン酸(MA)15部をポリエステル溶液に添加した。次いで、ラジカル重合性モノマーとしてスチレン(ST)10部、およびグラフト重合開始剤としてアゾビスジメチルバレロニトリル1.5部を12部のメチルエチルケトンに溶解した溶液を0.1ml/minでポリエステル溶液中に滴下し、さらに2時間撹拌を続けた。反応溶液から分析用のサンプリングを行った後、メタノール5部を添加した。次いで、水300部とトリエチルアミン15部を反応溶液に加え、1時間撹拌した。その後、反応器内温を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により留去し、水分散ポリエステル系グラフト共重合体を得た。該ポリエステル系グラフト共重合体は淡黄色透明で、ガラス転移温度-10℃であった。
<Grafting of radically polymerizable monomer>
In a reactor equipped with a stirrer, a thermometer, a reflux device and a quantitative dropping device, 75 parts of the hydrophobic copolymer polyester, 56 parts of methyl ethyl ketone and 19 parts of isopropyl alcohol are heated and stirred at 65 ° C. The polymerized polyester was dissolved. After the hydrophobic copolyester was completely dissolved, 15 parts of maleic anhydride (MA) as a radical polymerizable monomer was added to the polyester solution. Next, a solution prepared by dissolving 10 parts of styrene (ST) as a radical polymerizable monomer and 1.5 parts of azobisdimethylvaleronitrile as a graft polymerization initiator in 12 parts of methyl ethyl ketone was dropped into the polyester solution at 0.1 ml / min. The stirring was continued for another 2 hours. After sampling for analysis from the reaction solution, 5 parts of methanol was added. Next, 300 parts of water and 15 parts of triethylamine were added to the reaction solution and stirred for 1 hour. Thereafter, the reactor internal temperature was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off to obtain a water-dispersed polyester graft copolymer. The polyester graft copolymer was light yellow and transparent and had a glass transition temperature of −10 ° C.
 (塗布液3の調合)
 上記水分散ポリエステル系グラフト共重合体に水を加えて希釈し、さらにコロイダルシリカ、イソプロパノールを加えて固形分濃度が1質量%の塗布液(ポリエステル系グラフト共重合体:1質量%、コロイダルシリカ:1質量%、水:63質量%、イソプロパノール:35質量%)を得た。
(Preparation of coating solution 3)
The water-dispersed polyester-based graft copolymer is diluted by adding water, and colloidal silica and isopropanol are further added to form a coating solution having a solid concentration of 1% by mass (polyester-based graft copolymer: 1% by mass, colloidal silica: 1% by mass, water: 63% by mass, isopropanol: 35% by mass).
 (実験例21)
 上記未延伸のポリエステル系基材フィルムの片面に、塗布液3を、ポリエステル系グラフト共重合体固形分として乾燥後に0.006g/m2となるようエアナイフ方式で塗布
し、連続的にテンターに導きフィルム温度が70℃になるまで予備加熱した後、温度72℃で横方向に4.0倍延伸した。次いで95℃にて14秒間熱処理を行い、続けて50℃で10秒間の処理を行い、厚さ45μmの熱収縮性ポリエステル系フィルムを得た。このとき、予備加熱工程での熱伝達係数は0.0009、延伸工程での熱伝達係数は0.0056であった。得られたフィルムロールのフィルムの物性値を表4に示す。
(Experimental example 21)
On one side of the unstretched polyester base film, coating solution 3 is applied as a polyester graft copolymer solid content by an air knife method so that it becomes 0.006 g / m 2 after drying, and is continuously led to a tenter. After preheating until the film temperature reached 70 ° C., the film was stretched 4.0 times in the transverse direction at a temperature of 72 ° C. Next, heat treatment was carried out at 95 ° C. for 14 seconds, followed by treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 μm. At this time, the heat transfer coefficient in the preheating process was 0.0009, and the heat transfer coefficient in the stretching process was 0.0056. Table 4 shows the physical property values of the film of the obtained film roll.
 (実験例22)
 実験例21において、塗布液3の塗布量をポリエステル系グラフト共重合体固形分として乾燥後に0.003g/m2とした以外は実験例21と同様にして、熱収縮性ポリエステル系フィルムを得た。得られたフィルムロールのフィルムの物性値を表4に示す。
(Experimental example 22)
In Experimental Example 21, a heat-shrinkable polyester film was obtained in the same manner as in Experimental Example 21, except that the coating amount of the coating liquid 3 was set to 0.003 g / m 2 after drying as a polyester-based graft copolymer solid content. . Table 4 shows the physical property values of the film of the obtained film roll.
 (実験例21~22に対して好ましくない実験例23)
 (実験例23)
 塗布液3を塗布しない以外は実施例21と同様にして、厚さ45μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムロールのフィルムの物性値を表4に示す。
(Experimental Example 23 which is not preferable to Experimental Examples 21 to 22)
(Experimental example 23)
A heat-shrinkable polyester film having a thickness of 45 μm was obtained in the same manner as in Example 21 except that the coating liquid 3 was not applied. Table 4 shows the physical property values of the film of the obtained film roll.
(特に好ましい実験例24~25)
 (ポリエステル系基材フィルムの調製)
 別個に予備乾燥したポリエステルA~Cのチップを、Aが15wt%、Bが75wt%、Cが10wt%の割合で混合して押出し機に供給後に275℃で溶融押出しし、表面温度25℃のチルロール上で急冷させて厚さ180μmの未延伸のポリエステル系基材フィルムを得た。得られたフィルムのNMR解析を行い、その組成を調べた。その結果を表5に示す。
(Particularly preferred experimental examples 24 to 25)
(Preparation of polyester base film)
Separately pre-dried polyester A to C chips were mixed at a ratio of 15 wt% A, 75 wt% B, and 10 wt% C, fed to the extruder, melt extruded at 275 ° C., and surface temperature 25 ° C. It was rapidly cooled on a chill roll to obtain an unstretched polyester base film having a thickness of 180 μm. The obtained film was subjected to NMR analysis to examine its composition. The results are shown in Table 5.
 (ポリエステル系グラフト共重合体の調製)
 <疎水性共重合ポリエステルの調製>
 撹拌機、温度計、および部分還流式冷却器を具備したステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)345部、グリコール成分として1,4ブタンジオール(BD)211部、エチレングリコール(EG)270部、および重合触媒としてテトラ-n-ブチルチタネート0.5部を仕込み、160℃から220℃まで、4時間かけてエステル交換反応を行った。次いで、ジカルボン酸成分としてフマル酸14部およびアジピン酸160部を加え、200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで255℃まで昇温し、反応系を徐々に減圧した後、0.22mmHgの減圧下で1時間30分反応させ、疎水性共重合ポリエステルを得た。得られた疎水性共重合ポリエステルは、重量平均分子量20000、淡黄色透明であった。 
(Preparation of polyester graft copolymer)
<Preparation of hydrophobic copolyester>
In a stainless steel autoclave equipped with a stirrer, thermometer, and partial reflux condenser, 345 parts of dimethyl terephthalate (DMT) as a dicarboxylic acid component, 211 parts of 1,4 butanediol (BD) as a glycol component, ethylene glycol ( EG) 270 parts and 0.5 part of tetra-n-butyl titanate as a polymerization catalyst were charged, and a transesterification reaction was performed from 160 ° C. to 220 ° C. over 4 hours. Next, 14 parts of fumaric acid and 160 parts of adipic acid were added as dicarboxylic acid components, and the temperature was raised from 200 ° C. to 220 ° C. over 1 hour to carry out an esterification reaction. Next, the temperature was raised to 255 ° C., and the pressure of the reaction system was gradually reduced, followed by reaction for 1 hour 30 minutes under a reduced pressure of 0.22 mmHg to obtain a hydrophobic copolyester. The obtained hydrophobic copolyester had a weight average molecular weight of 20,000 and was pale yellow and transparent.
 <ラジカル重合性モノマーのグラフト化>
 撹拌機、温度計、還流装置と定量滴下装置を備えた反応器に、上記疎水性共重合ポリエステル75部、メチルエチルケトン56部およびイソプロピルアルコール19部を入れ、65℃で加熱、撹拌し、疎水性共重合ポリエステルを溶解した。疎水性共重合ポリエステルが完溶した後、ラジカル重合性モノマーとして無水マレイン酸(MA)15部をポリエステル溶液に添加した。次いで、ラジカル重合性モノマーとしてスチレン(ST)10部、およびグラフト重合開始剤としてアゾビスジメチルバレロニトリル1.5部を12部のメチルエチルケトンに溶解した溶液を0.1ml/minでポリエステル溶液中に滴下し、さらに2時間撹拌を続けた。反応溶液から分析用のサンプリングを行った後、メタノール5部を添加した。次いで、水300部とトリエチルアミン15部を反応溶液に加え、1時間撹拌した。その後、反応器内温を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により留去し、水分散ポリエステル系グラフト共重合体を得た。該ポリエステル系グラフト共重合体は淡黄色透明で、ガラス転移温度-10℃であった。
<Grafting of radically polymerizable monomer>
In a reactor equipped with a stirrer, a thermometer, a reflux device and a quantitative dropping device, 75 parts of the hydrophobic copolymer polyester, 56 parts of methyl ethyl ketone and 19 parts of isopropyl alcohol are heated and stirred at 65 ° C. The polymerized polyester was dissolved. After the hydrophobic copolyester was completely dissolved, 15 parts of maleic anhydride (MA) as a radical polymerizable monomer was added to the polyester solution. Next, a solution prepared by dissolving 10 parts of styrene (ST) as a radical polymerizable monomer and 1.5 parts of azobisdimethylvaleronitrile as a graft polymerization initiator in 12 parts of methyl ethyl ketone was dropped into the polyester solution at 0.1 ml / min. The stirring was continued for another 2 hours. After sampling for analysis from the reaction solution, 5 parts of methanol was added. Next, 300 parts of water and 15 parts of triethylamine were added to the reaction solution and stirred for 1 hour. Thereafter, the reactor internal temperature was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off to obtain a water-dispersed polyester graft copolymer. The polyester graft copolymer was light yellow and transparent and had a glass transition temperature of −10 ° C.
 (塗布液4の調合)
 上記水分散ポリエステル系グラフト共重合体に水を加えて希釈し、ドデシルスルホネートを加え、イソプロパノールを加えて固形分濃度が3質量%の塗布液(ポリエステル系グラフト共重合体:2.6質量%、帯電防止剤:0.4質量%、水:62質量%、イソプロパノール:35質量%)を得た。
(Preparation of coating solution 4)
The water-dispersed polyester-based graft copolymer is diluted by adding water, dodecyl sulfonate is added, isopropanol is added, and a solid content concentration is 3% by mass (polyester-based graft copolymer: 2.6% by mass, Antistatic agent: 0.4% by mass, water: 62% by mass, isopropanol: 35% by mass).
  (実験例24)
 上記未延伸のポリエステル系基材フィルムの片面に、塗布液4を、ポリエステル系グラフト共重合体固形分として乾燥後に0.03g/m2となるようエアナイフ方式で塗布し、連続的にテンターに導きフィルム温度が70℃になるまで予備加熱した後、温度72℃で横方向に4.0倍延伸した。次いで95℃にて14秒間熱処理を行い、続けて50℃で10秒間の処理を行い、厚さ45μmの熱収縮性ポリエステル系フィルムを得た。このとき、予備加熱工程での熱伝達係数は0.0009、延伸工程での熱伝達係数は0.0056であった。得られたフィルムロールのフィルムの物性値を表5に示す。
(Experimental example 24)
On one side of the unstretched polyester base film, the coating liquid 4 is applied as a polyester graft copolymer solid content by an air knife method so as to be 0.03 g / m 2 after drying, and continuously led to a tenter. After preheating until the film temperature reached 70 ° C., the film was stretched 4.0 times in the transverse direction at a temperature of 72 ° C. Next, heat treatment was carried out at 95 ° C. for 14 seconds, followed by treatment at 50 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 45 μm. At this time, the heat transfer coefficient in the preheating process was 0.0009, and the heat transfer coefficient in the stretching process was 0.0056. Table 5 shows the physical property values of the film of the obtained film roll.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実験例25)
 実施例24において、塗布液4の塗布量をポリエステル系グラフト共重合体固形分として乾燥後に0.004g/m2とした以外は実施例1と同様にして、熱収縮性ポリエステル系フィルムを得た。得られたフィルムロールのフィルムの物性値を表5に示す。
(Experimental example 25)
In Example 24, a heat-shrinkable polyester film was obtained in the same manner as in Example 1 except that the coating amount of the coating liquid 4 was set to 0.004 g / m 2 after drying as a polyester graft copolymer solid content. . Table 5 shows the physical property values of the film of the obtained film roll.
(実験例24~25に対して好ましくない実験例26)
 (比較例26)
 塗布液4を塗布しない以外は実験例24と同様にして、厚さ45μmの熱収縮性ポリエステル系フィルムを得た。得られたフィルムロールのフィルムの物性値を表5に示す。
(Experimental example 26 which is not preferable to Experimental examples 24 to 25)
(Comparative Example 26)
A heat-shrinkable polyester film having a thickness of 45 μm was obtained in the same manner as in Experimental Example 24 except that the coating solution 4 was not applied. Table 5 shows the physical property values of the film of the obtained film roll.
 本発明の熱収縮性ポリエステル系フィルムは、外観を良好に保つことができ、ラベル用途に好適で工業上利用価値の高いものである。また、静電気によるトラブル発生を抑制することができる他、高温での耐ブロッキング性を有するものとすることもでき、高温の内容物が充填される容器へのラベル用途にも好適である。 The heat-shrinkable polyester film of the present invention can maintain a good appearance, is suitable for label use, and has high industrial utility value. In addition to suppressing the occurrence of troubles due to static electricity, it can also be resistant to blocking at high temperatures, and is suitable for labeling containers that are filled with high-temperature contents.

Claims (13)

  1.  95±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が30~60%であり、
     59.5~90.5℃かつ[一定温度±0.5℃]に該当するいずれかの温度の温水中に10秒間浸漬した際において主収縮方向に直交する方向の長さが伸長することを特徴とする熱収縮性ポリエステル系フィルム。
    The heat shrinkage rate in the main shrinkage direction when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds is 30 to 60%,
    The length in the direction perpendicular to the main contraction direction is extended when immersed for 10 seconds in warm water at any temperature corresponding to 59.5 to 90.5 ° C and [constant temperature ± 0.5 ° C]. A heat-shrinkable polyester film.
  2.  アニオン系帯電防止剤が少なくとも片面に存在している請求項1記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to claim 1, wherein the anionic antistatic agent is present on at least one side.
  3.  前記アニオン系帯電防止剤が、アルキル基を有し且つ炭素数が10~20である請求項2に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to claim 2, wherein the anionic antistatic agent has an alkyl group and has 10 to 20 carbon atoms.
  4.  少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層を、フィルムの少なくとも片面に設けた請求項1記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester according to claim 1, wherein a blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film. Film.
  5.  前記ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含む請求項4に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to claim 4, wherein the radical polymerizable monomer contains at least maleic anhydride and styrene.
  6.  少なくとも1種のラジカル重合性モノマーを疎水性共重合ポリエステルにグラフトさせたポリエステル系グラフト共重合体を含有する耐ブロッキング性改良層をフィルムの少なくとも片面に設け、且つアニオン系帯電防止剤が前記耐ブロッキング性改良層中に存在する請求項1に記載の熱収縮性ポリエステル系フィルム。 A blocking resistance improving layer containing a polyester-based graft copolymer obtained by grafting at least one radical polymerizable monomer onto a hydrophobic copolymerized polyester is provided on at least one side of the film, and the anionic antistatic agent is provided with the anti-blocking property. The heat-shrinkable polyester film according to claim 1, which is present in the property improving layer.
  7.  ラジカル重合性モノマーが、少なくともマレイン酸無水物とスチレンとを含む請求項6に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to claim 6, wherein the radical polymerizable monomer contains at least maleic anhydride and styrene.
  8.  アニオン系帯電防止剤が、アルキル基を有し且つ炭素数が10~20である請求項6に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to claim 6, wherein the anionic antistatic agent has an alkyl group and has 10 to 20 carbon atoms.
  9.  80±0.5℃の温水中に10秒間浸漬した際の主収縮方向の熱収縮率が、40%未満である請求項1、2、4、及び6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。 The heat shrinkage according to any one of claims 1, 2, 4, and 6, wherein the heat shrinkage rate in the main shrinkage direction when immersed in warm water of 80 ± 0.5 ° C for 10 seconds is less than 40%. Polyester film.
  10.  60±0.5℃、65±0.5℃、70±0.5℃、75±0.5℃、80±0.5℃、85±0.5℃、90±0.5℃、および95±0.5℃の温水中に10秒間浸漬した際の何れかの温水中への浸漬で主収縮方向の熱収縮が始まり、
     [(主収縮方向の熱収縮率が0%を超えた温度+10℃)の主収縮方向の熱収縮率]から[(主収縮方向の熱収縮率が0%を超えた温度-5℃)の主収縮方向の熱収縮率]を減じた値が20%未満である請求項1、2、4、及び6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。
    60 ± 0.5 ° C, 65 ± 0.5 ° C, 70 ± 0.5 ° C, 75 ± 0.5 ° C, 80 ± 0.5 ° C, 85 ± 0.5 ° C, 90 ± 0.5 ° C, and Thermal contraction in the main contraction direction begins with immersion in any warm water when immersed in warm water of 95 ± 0.5 ° C. for 10 seconds,
    [(Thermal shrinkage rate in the main shrinkage direction + 10 ° C. in the main shrinkage direction + 10 ° C.)] to [(temperature shrinkage rate in the main shrinkage direction in excess of 0% −5 ° C.)] The heat-shrinkable polyester film according to any one of claims 1, 2, 4, and 6, wherein a value obtained by subtracting the heat shrinkage ratio in the main shrinkage direction is less than 20%.
  11.  熱収縮後のヘーズが10%以下である請求項1、2、4、及び6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to any one of claims 1, 2, 4, and 6, wherein the haze after heat shrinkage is 10% or less.
  12.  非塩素系有機溶剤で接着可能である請求項1、2、4、及び6のいずれか1項に記載の熱収縮性ポリエステル系フィルム。 The heat-shrinkable polyester film according to any one of claims 1, 2, 4, and 6, which can be bonded with a non-chlorine organic solvent.
  13.  請求項1、2、4、及び6のいずれか1項に記載の熱収縮性ポリエステル系フィルムを使用して作製された熱収縮性ラベル。 A heat-shrinkable label produced using the heat-shrinkable polyester film according to any one of claims 1, 2, 4, and 6.
PCT/JP2008/072809 2007-12-28 2008-12-16 Heat-shrinkable polyester film WO2009084420A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007-340628 2007-12-28
JP2007340628A JP2009160776A (en) 2007-12-28 2007-12-28 Heat-shrinkable polyester film and its manufacturing method
JP2007-340627 2007-12-28
JP2007340629A JP5564753B2 (en) 2007-12-28 2007-12-28 Heat-shrinkable polyester film and heat-shrinkable label
JP2007-340629 2007-12-28
JP2007340627A JP2009160775A (en) 2007-12-28 2007-12-28 Heat-shrinkable polyester film
JP2008-290646 2008-11-13
JP2008290646A JP5487596B2 (en) 2008-11-13 2008-11-13 Heat-shrinkable polyester film and heat-shrinkable label

Publications (1)

Publication Number Publication Date
WO2009084420A1 true WO2009084420A1 (en) 2009-07-09

Family

ID=40824141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072809 WO2009084420A1 (en) 2007-12-28 2008-12-16 Heat-shrinkable polyester film

Country Status (2)

Country Link
TW (1) TWI602684B (en)
WO (1) WO2009084420A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039133A1 (en) * 2014-09-09 2016-03-17 東洋紡株式会社 Heat-shrinkable polyester-based label, package, and process for producing heat-shrinkable polyester-based label

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615732A (en) * 1992-07-02 1994-01-25 Mitsubishi Rayon Co Ltd Heat-shrinkable polyester film
JP2004223714A (en) * 2001-11-27 2004-08-12 Toyobo Co Ltd White laminated polyester film
JP2005126526A (en) * 2003-10-22 2005-05-19 Toyobo Co Ltd Thermally shrinkable polyester-based film, thermally shrinkable label and method for producing thermally shrinkable polyester-based film
JP2005205871A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Polyester film for insert molding
JP2006159905A (en) * 2004-11-11 2006-06-22 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, molded product using it, heat shrinkable label and container
JP2006159906A (en) * 2004-11-11 2006-06-22 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, molded product using it and container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560740B2 (en) * 2007-09-25 2010-10-13 東洋紡績株式会社 Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615732A (en) * 1992-07-02 1994-01-25 Mitsubishi Rayon Co Ltd Heat-shrinkable polyester film
JP2004223714A (en) * 2001-11-27 2004-08-12 Toyobo Co Ltd White laminated polyester film
JP2005126526A (en) * 2003-10-22 2005-05-19 Toyobo Co Ltd Thermally shrinkable polyester-based film, thermally shrinkable label and method for producing thermally shrinkable polyester-based film
JP2005205871A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Polyester film for insert molding
JP2006159905A (en) * 2004-11-11 2006-06-22 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, molded product using it, heat shrinkable label and container
JP2006159906A (en) * 2004-11-11 2006-06-22 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film, molded product using it and container

Also Published As

Publication number Publication date
TW200936364A (en) 2009-09-01
TWI602684B (en) 2017-10-21

Similar Documents

Publication Publication Date Title
KR101816619B1 (en) Biaxially stretched polyester film for mold release
JP2008094089A (en) Polyester film for forming
US8911839B2 (en) Heat shrinkable polyester film
JP4535553B2 (en) Heat shrinkable polyester film
JP4792693B2 (en) Polyester film for molding and dummy container obtained therefrom
JP4904069B2 (en) Polyester film for in-mold transfer
JP5758886B2 (en) Heat shrinkable polyester film
JP5564753B2 (en) Heat-shrinkable polyester film and heat-shrinkable label
JP2005139358A (en) Polyester film for forming and forming member for dummy vessel
WO2020071280A1 (en) Biaxially oriented polyamide film and polyamide film mill roll
JPH11348211A (en) Laminated thermoplastic film
WO2009084420A1 (en) Heat-shrinkable polyester film
JP5487596B2 (en) Heat-shrinkable polyester film and heat-shrinkable label
JP2005068238A (en) Polyester film for molding and dummy container obtained from the same
JP4512987B2 (en) Polyester film for membrane switch
JP2011173372A (en) In-mold transfer laminate film and in-mold transfer processing member comprising the same
KR100559952B1 (en) Heat-shrinkable polyester film for preventing adhesion and manufacturing method thereof
JP2009160775A (en) Heat-shrinkable polyester film
KR101612053B1 (en) Heat shrinkable polyester film
JP2005066939A (en) Molding polyester film and dummy container obtained therefrom
JP2004306516A (en) Laminated oriented film of syndiotactic polystyrene
JP4178839B2 (en) Laminated polyester film for printing
KR100559951B1 (en) Heat-shrinkable polyester film for preventing adhesion and manufacturing method thereof
JP2004307639A (en) Laminated syndiotactic polystyrene-based oriented film
JP3206552B2 (en) Laminated polyamide resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869111

Country of ref document: EP

Kind code of ref document: A1