WO2009084419A1 - Polyaniline complex, and composition and molded article each comprising the same - Google Patents

Polyaniline complex, and composition and molded article each comprising the same Download PDF

Info

Publication number
WO2009084419A1
WO2009084419A1 PCT/JP2008/072803 JP2008072803W WO2009084419A1 WO 2009084419 A1 WO2009084419 A1 WO 2009084419A1 JP 2008072803 W JP2008072803 W JP 2008072803W WO 2009084419 A1 WO2009084419 A1 WO 2009084419A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
hydrocarbon group
organic
polyaniline
Prior art date
Application number
PCT/JP2008/072803
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Bando
Yosuke Jibiki
Norihiro Kuroda
Ichiro Nasuno
Shinobu Yamao
Takeharu Tajima
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2009547986A priority Critical patent/JPWO2009084419A1/en
Publication of WO2009084419A1 publication Critical patent/WO2009084419A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates

Definitions

  • the present invention relates to a novel polyaniline composite and a method for producing the same, and further relates to a conductive composition using the polyaniline composite and a molded product obtained therefrom.
  • Polyaniline is a well-known material as one of conductive polymers. In addition to its electrical properties, polyaniline has the advantage and property of being able to be synthesized relatively easily from inexpensive aniline and exhibiting excellent stability against air or the like in a state of conductivity.
  • a method for producing polyaniline As a method for producing polyaniline, a method of electrolytic oxidation polymerization or chemical oxidation polymerization of aniline or aniline derivatives is known. In electrolytic oxidation polymerization, a film having excellent electrical properties can be obtained. However, in general, the production cost is higher than chemical oxidation polymerization, and it is not suitable for mass production. Have difficulty.
  • a dopant is added to polyaniline obtained in a non-conductive base state (so-called emeraldine base state).
  • emeraldine base state a non-conductive base state
  • polyaniline in the non-conductive base state is not suitable for industrial production because it hardly dissolves in most organic solvents.
  • the conductive polyaniline (so-called emeraldine salt state) generated after the protonation is substantially insoluble and infusible, and it is difficult to easily manufacture a conductive composite material and a molded body thereof.
  • Patent Document 1 International Publication No. 2005/052058 Pamphlet
  • an object of the present invention is to provide a novel and excellent polyaniline complex, a method for producing the same, a composition and a molded body using the same.
  • the conductivity of the polyaniline composition depends on the organic acid and inorganic acid doping ratio of the polyaniline complex, and the ratio of the organic dopant to the inorganic dopant, the molecular weight, and the molecular weight distribution. Further, it has been found that according to the multistage polymerization method, the polyaniline complex having high conductivity can be obtained by controlling the doping rate, the ratio between the organic dopant and the inorganic dopant, the molecular weight, and the molecular weight distribution within a specific range. In a conductive polymer, the doping rate, doping species, molecular weight, and molecular weight distribution listed here are important structural factors that determine the performance. That is, the polyaniline complex disclosed in the present invention is a novel substance in that it has a characteristic structure factor. According to the present invention, the following polyaniline complex and its composition are provided.
  • An organic solvent, an organic acid, a substituted or unsubstituted polyaniline complex doped with an inorganic acid, and A conductive polyaniline composition comprising a compound having a phenolic hydroxyl group, The sum (a) of the organic acid and inorganic acid doping rates in the polyaniline composite is 0.4 ⁇ a ⁇ 0.6, Of the total doping rate (a), the proportion (b / a) of the doping rate (b) of the inorganic acid is 0.02 or more, A conductive polyaniline composition, wherein the polyaniline complex has a weight average molecular weight of 20,000 or more and a molecular weight distribution of 5.0 to 10.0. 2.
  • the organic acid is represented by the following formula (I) HXARn (I) ⁇ In the formula, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 is a hydrocarbon group, silyl group, — (R 2 O) x -R which may contain a substituent having 4 or more carbon atoms.
  • the organic protonic acid represented by the formula (I) is represented by the following formula (II) HXCR 4 (CR 5 2 COOR 6 ) COOR 7 (II) ⁇
  • X is an acidic group
  • R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si- group (wherein R 8 is a hydrocarbon group, Three R 8 may be the same or different)
  • R 6 and R 7 are each independently a hydrocarbon group or a — (R 9 O) q —R 10 group
  • R 9 is carbon A hydrogen group or a silylene group
  • R 10 is a hydrogen atom, a hydrocarbon group or R 11 3 Si— (R 11 is a hydrocarbon group, and three R 11 may be the same or different
  • q is an integer greater than or equal to 1] ⁇ 4.
  • the organic protonic acid represented by the formula (II) is represented by the following formula (III) HO 3 SCH (CH 2 COOR 12 ) COOR 13 (III) ⁇
  • R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15 group [where R 14 is a hydrocarbon group or a silylene group, and R 15 is hydrogen An atom, a hydrocarbon group or an R 16 3 Si— group (wherein R 16 is a hydrocarbon group, and three R 16 may be the same or different), and r is an integer of 1 or more] Is ⁇ 5.
  • the conductive polyaniline composition according to 4 which is a sulfosuccinic acid derivative represented by the formula: 6). 6.
  • the organic solvent is a mixture of a water-immiscible organic solvent and a water-soluble organic solvent, and the mixing ratio (water-immiscible organic solvent: water-soluble organic solvent) is a mass ratio of 99-50: 1-50.
  • the water-immiscible organic solvent is selected from aromatic solvents, halogen-containing solvents, ester solvents, ketones having 4 or more carbon atoms, alcohols having 5 or more carbon atoms, and acrylic derivatives. 12.
  • the substituted or unsubstituted aniline is polymerized in the first step at a temperature of ⁇ 10 ° C. to 20 ° C. together with an organic acid or a salt thereof and an inorganic acid or a salt thereof.
  • the organic acid or a salt thereof is represented by the following general formula (I ′) M (XARn) m (I ′) ⁇ Wherein M is a hydrogen atom or an organic or inorganic free radical, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently- R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 is a hydrocarbon having 4 or more carbon atoms which may contain a substituent.
  • the organic protonic acid represented by the formula (I) or a salt thereof is represented by the following formula (II ′) M (XCR 4 (CR 5 2 COOR 6 ) COOR 7 ) p (II ′) ⁇
  • M is a hydrogen atom or an organic or inorganic free radical
  • X is an acidic group
  • R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si— group.
  • R 8 is a hydrocarbon group, and three R 8 may be the same or different
  • R 6 and R 7 are each independently a hydrocarbon group or — (R 9 O ) Q —R 10 group
  • R 9 is a hydrocarbon group or a silylene group
  • R 10 is a hydrogen atom, a hydrocarbon group, or R 11 3 Si— (R 11 is a hydrocarbon group, R 11 may be the same or different, and q is an integer of 1 or more]
  • p is an valence of M ⁇ , or an organic protonic acid or a salt thereof represented by 15 A method for producing a polyaniline complex. 17.
  • the organic protonic acid represented by the formula (II) or a salt thereof is represented by the following formula (III ′) M (O 3 SCH (CH 2 COOR 12 ) COOR 13 ) m (III ′) ⁇
  • M is a hydrogen atom or an organic or inorganic free radical
  • R 12 and R 13 are each independently a hydrocarbon group or a — (R 14 O) r —R 15 group
  • R 15 is a hydrogen atom, a hydrocarbon group or an R 16 3 Si— group (where R 16 is a hydrocarbon group, and three R 16 s may be the same or different)
  • r is an integer of 1 or more
  • m is a valence of M ⁇ .
  • a process for producing a conductive polyaniline composition comprising reacting a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid as described in 18 above with a compound having a phenolic hydroxyl group.
  • 20. 13 A conductive molded article obtained by molding the conductive polyaniline composition according to any one of 1 to 12 above. 21. 13.
  • the conductive polyaniline composition of the present invention comprises an organic solvent, a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid (hereinafter referred to as polyaniline complex), and a compound having a phenolic hydroxyl group (hereinafter referred to as “polyaniline complex”).
  • polyaniline complex a compound having a phenolic hydroxyl group
  • a phenolic compound A phenolic compound).
  • the polyaniline complex and the phenolic compound are dissolved in an organic solvent.
  • the sum (a) of the doping rates of the organic acid and the inorganic acid in the polyaniline complex is 0.4 ⁇ a ⁇ 0.6.
  • the sum (a) of the doping ratio of organic acid and inorganic acid in the polyaniline complex is 0.5, which means that one molecule of dopant is doped with respect to two molecules of nitrogen, and this value and the vicinity thereof. , The conductivity is the highest.
  • the ratio of the doping of the organic acid and the inorganic acid is such that the ratio (b / a) of the doping ratio (b) of the inorganic acid is 0.02 or more in the total doping ratio (a), preferably organic acid: inorganic
  • the acid is 0.98: 0.02 to 0.90: 0.1.
  • the doping rate of the inorganic acid plays a very important role, and a total doping rate of 0.02 or more is necessary.
  • the doping rate of the inorganic acid is 0.02 or more of the total doping rate, the effect of adding the phenolic compound, that is, the intermolecular interaction with the phenolic compound is manifested. As a result, the conductive composition having high conductivity Is given.
  • the polyaniline complex has a weight average molecular weight (hereinafter referred to as molecular weight) of 20,000 or more and a molecular weight distribution of 5.0 to 10. If the molecular weight is less than 20,000, the conductivity is lowered. Preferably the molecular weight is in the range of 50,000 to 200,000. On the other hand, the molecular weight distribution is preferably narrow from the viewpoint of electrical conductivity, but is preferably wide from the viewpoint of solubility in solvents and moldability. In some applications, moldability is often more important than electrical conductivity, and the molecular weight distribution is preferably in the range of 5.0 to 10.0 from the viewpoint of industrial usefulness.
  • molecular weight weight average molecular weight
  • the molecular weight distribution is preferably narrow from the viewpoint of electrical conductivity, but is preferably wide from the viewpoint of solubility in solvents and moldability. In some applications, moldability is often more important than electrical conductivity, and the molecular weight distribution is preferably in the range of 5.0 to 10.0 from the
  • the molecular weight distribution when the molecular weight distribution is less than 5.0, the strength and stretchability of the conductive article obtained from the composition tend to decrease. On the other hand, when the molecular weight distribution exceeds 10.0, in most cases, the ultra high molecular weight is obtained. It is a composition containing a component, and in such a composition, there exists a tendency for the solubility to a solvent to fall.
  • the molecular weight and molecular weight distribution are measured by gel permeation chromatography (GPC), and detailed measurement conditions will be described later in Examples.
  • the polyaniline complex and the polyaniline composition of the present invention can be produced by the method described below.
  • Examples of the substituent of the substituted polyaniline in the polyaniline complex include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group, alkoxyl groups such as methoxy group and phenoxy group, aryloxy group, CF And halogen-containing hydrocarbon groups such as 3 groups.
  • organic acids to be doped into the polyaniline complex include the following formula (I) HXARn (I) And organic protonic acid (hereinafter referred to as organic protonic acid (I)).
  • X is an acidic group.
  • A is a hydrocarbon group which may contain a substituent, and examples thereof include a linear or branched alkyl or alkenyl group having 1 to 24 carbon atoms, a substituent such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, menthyl and the like.
  • cycloalkyl groups including optionally substituted cycloalkyl groups, dicyclohexyl groups such as bicyclohexyl, norbornyl, adamantyl or the like or polycycloalkyl groups, phenyl, tosyl, thiophenyl, pyrrolinyl, pyridinyl, furanyl and the like
  • An aryl group containing an aromatic ring, naphthyl, anthracenyl, fluorenyl, 1,2,3,4-tetrahydronaphthyl, indanyl, quinolinyl, indonyl, etc. may be condensed diaryl group or polyaryl group, alkylaryl group, etc. Is mentioned.
  • R is each independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ).
  • R 1 may contain a substituent hydrocarbon group having 4 or more carbon atoms, silyl group, alkylsilyl group, — (R 2 O) x—R 3 group, — (OSiR 3 2 ) x—.
  • OR 3 (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more).
  • R 1 is a hydrocarbon group
  • examples of when R 1 is a hydrocarbon group include linear or branched butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, pentadecyl, eicosanyl, etc. Can be mentioned.
  • n is an integer of 2 or more.
  • dialkylbenzenesulfonic acid dialkylnaphthalenesulfonic acid
  • a compound represented by the following formula (II) can be preferably used.
  • X is an acidic group, for example, —SO 3 — group, —PO 3 2- group, —PO 4 (OH) 2 — group, —OPO 3 2- group, —OPO 2 ( OH) - group, -COO - group and the like, -SO 3 - group.
  • R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si— group (where R 8 is a hydrocarbon group, and three R 8 may be the same or different). ).
  • Examples of the hydrocarbon group when R 4 and R 5 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, aryl groups containing aromatic rings, and alkylaryl groups.
  • the hydrocarbon group when R 8 is a hydrocarbon group is the same as in the case of R 4 and R 5 .
  • R 6 and R 7 are each independently a hydrocarbon group or — (R 9 O) q —R 10 group [wherein R 9 is a hydrocarbon group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon A group or R 11 3 Si— (R 11 is a hydrocarbon group, three R 11 may be the same or different), and q is an integer of 1 or more].
  • hydrocarbon group when R 6 and R 7 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, preferably 4 or more carbon atoms, aryl groups containing aromatic rings, and alkylaryl
  • specific examples of the hydrocarbon group when R 6 and R 7 are hydrocarbon groups include, for example, a linear or branched butyl group, pentyl group, hexyl group, octyl group, decyl group Etc.
  • R 6 and R 7 when R 9 is a hydrocarbon group, the hydrocarbon group includes a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group containing an aromatic ring, an alkylarylene group, an aryl An alkylene group and the like; Further, in R 6 and R 7 , the hydrocarbon group in the case where R 10 and R 11 are hydrocarbon groups is the same as in the case of R 4 and R 5 , and q is 1 to 10. preferable.
  • R 6 and R 7 are — (R 9 O) n —R 10 group include, for example, (Wherein X represents a —SO 3 group or the like).
  • the organic protonic acid (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III) (hereinafter referred to as sulfosuccinic acid derivative (III)).
  • sulfosuccinic acid derivative (III) HO 3 SCH (CH 2 COOR 12 ) COOR 13 (III)
  • R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15 group [where R 14 is a hydrocarbon group or a silylene group, R 15 is a hydrogen atom, a hydrocarbon (wherein, R 16 is a hydrocarbon group, and three R 16 may be the same or may be different) group or R 16 3 Si- groups are, r is 1 or more is an integer.
  • the hydrocarbon group when R 12 and R 13 are hydrocarbon groups is the same as R 6 and R 7 .
  • R 12 and R 13 the hydrocarbon group in the case where R 14 is a hydrocarbon group is the same as R 9 described above. In R 12 and R 13 , the hydrocarbon group in the case where R 15 and R 16 are hydrocarbon groups is the same as R 4 and R 5 described above. r is preferably from 1 to 10.
  • R 12 and R 13 are — (R 14 O) q —R 15 group is the same as — (R 9 O) n —R 10 in R 6 and R 7 .
  • the hydrocarbon group is the same as R 6 and R 7 and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, a decyl group, or the like.
  • inorganic acids doped into the polyaniline composite include hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid.
  • the phenolic compound used in the composition of the present invention is not particularly limited, and any compound having an aromatic hydroxyl group can be suitably used without any particular limitation. That is, substituted phenols, polyhydric phenols, bisphenols, biphenols, and polymers having a phenolic hydroxyl group are suitably used according to the purpose.
  • Phenols polyhydric phenolic compounds such as catechol and resorcinol, 4,4′-isopropylidenediphenol (Bis-A), 2-methylenebis (4-methylphenol), 4- (2-phenylpropan-2-yl ) Bisphenols such as benzene-1,3diol, 4,4′dihydroxybiphenol, 4,4′dihydroxybenzophenone, 4,4′dihydroxydiphenyl ether, 4,4′dihydroxydiphenylsulfone, and the like; and phenol resins, polyphenols And polymer compounds such as poly (hydroxystyrene).
  • the phenolic compound is present not as a solvent but as a dopant.
  • the fact that the phenolic compound is a dopant means that the molded product produced from the composition of the present invention to which the phenolic compound is added has a very high electrical conductivity compared to the molded product to which this compound is not added, and an organic solvent.
  • the UV-vis (ultraviolet-visible) spectrum in which the molded product obtained from the conductive polyaniline composition of the present invention containing a phenolic compound and the molded product obtained from a polyaniline composite containing no phenolic compound after removal is different. It is clear that the phenolic compound remains in the molded product after the organic solvent is removed.
  • phenolic and cresol solvents as described above as phenolic compounds suitably used in the present invention, but usually solvents such as naphthol and 2-methylenebis (4-methylphenol) are generally used. It is also clear from the compounds that are not recognized. That is, these phenolic compounds have a strong molecular interaction with the polyaniline complex of the present invention and form a new composition that exhibits high conductivity.
  • the molar concentration of the phenolic compound relative to 1 g of the polyaniline complex is preferably in the range of 0.01 mmol / g to 50 mmol / g. If the amount of this compound added is too small, the effect of improving the electrical conductivity may not be obtained. Moreover, when too much, there exists a possibility that the uniformity of a composition may be impaired or it may become a material by which the transparency and the electrical property were impaired by the influence of the excess phenolic compound. In particular, it is preferably in the range of 0.05 mmol / g to 20 mmol / g.
  • the phenolic compound preferably has two or more aromatic rings, and more preferably has two aromatic rings.
  • the phenolic compound having two or more aromatic rings is not particularly limited as long as it has aromaticity, for example, two or more aromatic rings such as a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, and a pyrrole ring. And having at least one phenolic hydroxyl group can be used.
  • a compound represented by the following formula (IV) can be preferably used.
  • Ar-X-Ar '(IV) [Wherein, X is a single bond, a group containing an oxygen atom, a nitrogen atom, or a group containing a carbon atom, and Ar and Ar ′ are aromatic ring groups, which may be the same or different. Ar and / or Ar ′ has at least one hydroxyl group. Ar and Ar ′ may have one or more substituents selected from the group consisting of a halogen atom, a nitro group, a nitrile group, an amino group, a cyano group, and a carbonyl group. ]
  • X is a single bond, oxygen atom, —NH—, —NHCO—, —COO—, —CO—, —COCH 2 —, —OCO—, —CH 2 —, —C 2 H 4 —, —C 3 H 6- and the like.
  • preferred examples of X include an oxygen atom.
  • One or two X can be present in the phenolic compound. When two are present, the two Xs may be the same or different. Examples of such a structure include a fluorene structure having a single bond and —CH 2 — as X.
  • examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, and an isobutyl group.
  • examples of other substituents for Ar and Ar ′ include halogen, amino group, cyano group, nitro group, nitrile group, and carbonyl group.
  • a plurality of Ar or Ar ′ substituents may be bonded to each other to form a ring.
  • Examples of the ring structure include a cyclohexyl ring, a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, and a pyrrole ring.
  • a phenolic compound other than the compound of the formula (IV) in which two aromatic rings are bonded via X a phenolic compound in which a hydroxyl group is added to a polycyclic aromatic ring such as a naphthalene ring or an anthracene ring is used.
  • a polycyclic aromatic ring such as a naphthalene ring or an anthracene ring.
  • Such a compound is preferable in that it exhibits heat resistance and high conductivity. Examples of such a compound include ⁇ -naphthol and ⁇ -naphthol.
  • the phenolic compound containing two or more aromatic rings is preferably a phenolic compound having a melting point of room temperature or higher or a boiling point of 200 ° C. or higher at room temperature. Particularly preferred are 2-, 3-, or 4-hydroxybiphenyl, 2-, 3-, or 4-phenoxyphenol, 1- or 2-naphthol, and the like.
  • the organic solvent contained in the polyaniline composition may be a solvent in which the organic solvent is not substantially miscible with water (water-immiscible organic solvent) or a water-soluble organic solvent.
  • water-immiscible organic solvents include aromatic solvents such as toluene, xylene, ethylbenzene, tetralin, and styrene derivatives (such as styrene and divinylbenzene), halogen-containing solvents such as chloroform and dichloromethane, ethyl acetate, and butyl acetate.
  • Ester solvents methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, ketones having 4 or more carbon atoms such as cyclohexanone, alcohols having 5 or more carbon atoms such as pentanol and benzyl alcohol, methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate, etc.
  • An acrylic derivative is mentioned.
  • water-soluble organic solvent examples include water-soluble alcohols such as methanol, ethanol, isopropyl alcohol, butanol and 2-methoxyethanol, water-soluble ketones such as acetone and gamma-butyrolactone, water-soluble oxygen-containing ring derivatives such as tetrahydrofuran, N-methyl
  • water-soluble alcohols such as methanol, ethanol, isopropyl alcohol, butanol and 2-methoxyethanol
  • water-soluble ketones such as acetone and gamma-butyrolactone
  • water-soluble oxygen-containing ring derivatives such as tetrahydrofuran
  • N-methyl examples include aprotic polar solvents such as pyrrolidone, dimethylformamide, and dimethyl sulfoxide.
  • the polyaniline complex and phenolic compound of the present invention are soluble in alcohols such as 2-butanol, 2-pentanol, and benzyl alcohol. Alcohol is preferable from the viewpoint of reducing environmental burden unlike toluene.
  • a mixed organic solvent of a water-immiscible organic solvent and a water-soluble organic solvent is used in a mass ratio of 99 to 50: 1 to 50, whereby the polyaniline complex solution obtained in the present invention is obtained.
  • it is preferable in terms of long-term storage because it can prevent generation of gels and the like.
  • the ratio of the polyaniline complex in the organic solvent is usually 900 g / L or less, preferably 0.01 to 300 g / L or less, depending on the type of the organic solvent. If the content of the polyaniline complex is too high, the solution state cannot be maintained, and it becomes difficult to handle the molded body, the uniformity of the molded body is impaired, and consequently the electrical properties and mechanical strength of the molded body. , Resulting in a decrease in transparency. On the other hand, if the content of the polyaniline complex is too small, only a very thin film can be produced when the film is formed by the method described later, which may make it difficult to produce a uniform conductive film.
  • the polyaniline composition of the present invention is electrically conductive, and the conductivity can be widely controlled depending on the properties of the polyaniline complex and the type and amount of the compound having a phenolic hydroxyl group to be used. However, it is usually 1.0 S / cm or more, preferably 50 S / cm or more, and more preferably 100 S / cm.
  • resins inorganic materials, curing agents, plasticizers and the like may be added to the polyaniline composition of the present invention depending on the purpose.
  • Other resins are added for the purpose of, for example, a binder base material, a plasticizer, a matrix base material, and specific examples thereof include, for example, polyolefins such as polyethylene and polypropylene, chlorinated polyolefins, polystyrenes, polyesters, polyamides, polyacetals. , Polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyvinyl alcohol and the like. A chlorinated polyolefin is preferred.
  • styrene derivatives such as styrene and divinylbenzene, or acrylic derivatives such as methyl methacrylate, ethyl methacrylate, and cyclohexyl methacrylate can be used as the soluble organic medium.
  • the organic medium having these reactive functional groups and polyaniline are homogeneously mixed and dissolved, and then the organic medium having these reactive functional groups is reacted by an arbitrary method, whereby various kinds of conductive materials are obtained. It means that a complex is obtained. That is, for example, a thermosetting or UV curable conductive curable resin can be provided according to a required application.
  • Inorganic materials are added for the purpose of, for example, improving strength, surface hardness, dimensional stability and other mechanical properties.
  • Specific examples thereof include silica (silicon dioxide), titania (titanium oxide), alumina ( Aluminum oxide) and the like.
  • the curing agent is added, for example, for the purpose of improving strength, surface hardness, dimensional stability and other mechanical properties, and specific examples thereof include, for example, thermosetting agents such as phenol resins, acrylate monomers and photopolymerization. Examples thereof include a photo-curing agent using a property initiator.
  • the plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength, and specific examples thereof include phthalates and phosphates.
  • the conductive polyaniline composition of the present invention is produced by reacting with a phenolic compound after producing a substituted or unsubstituted polyaniline complex as follows.
  • the substituted or unsubstituted aniline is polymerized in the first step at a temperature of ⁇ 10 ° C. to 20 ° C. with an organic acid or a salt thereof, and an inorganic acid or a salt thereof, and further at a temperature 5 ° C. or more higher than the above temperature.
  • Polymerization is performed in the second and subsequent steps with a stirring power of ⁇ 2000 w / m 3 to produce a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid.
  • the polymerization temperature in the first stage is ⁇ 10 ° C. to 20 ° C.
  • the polymerization temperature in the second stage and thereafter is 15 ° C. to 40 ° C.
  • the polymerization temperature after the second stage is 5 ° C. or more, preferably 20 to 30 ° C. higher than the polymerization temperature of the first stage.
  • the dope rate can be adjusted by the polymerization temperature after the second stage. That is, when the polymerization temperature is raised, the doping rate approaches the ideal value of 0.5, and the doping rate of the inorganic dopant tends to increase.
  • the first stage stirring power is 50 to 300 w / m 3 .
  • the stirring power after the second stage is 4 to 1000 w / m 3 .
  • the molecular weight distribution can be adjusted by the stirring power after the second stage. That is, when the stirring power is reduced, the molecular weight distribution tends to be reduced.
  • molecular weight can be adjusted by changing the oxidizing agent density
  • the polymerization time for each stage can be set as appropriate. For example, the polymerization time for the first stage is 5 to 25 hours, and the polymerization time for each stage after the second stage is 0.5 to 4 hours.
  • the number of stages of polymerization of the polyaniline complex is not particularly limited, but can be efficiently produced by two-stage polymerization.
  • a polyaniline complex is produced by such multistage polymerization, a polyaniline complex can be produced stably and reproducibly.
  • a polyaniline complex when manufactured using a water-immiscible organic solvent, a polyaniline complex can be manufactured in a two-phase system of a water-immiscible organic solvent and an aqueous solution.
  • surfactant when manufacturing by the two-phase system of a water-immiscible organic solvent and aqueous solution, surfactant can be added as needed and the reaction rate and a yield improvement can be aimed at.
  • the surfactant to be used is not particularly limited, and anionic, cationic, and nonionic surfactants are widely and suitably used. Of these, cationic and nonionic surfactants are preferred.
  • the addition amount of the organic acid or salt thereof and the inorganic acid or salt thereof with respect to the substituted or unsubstituted aniline can be appropriately set.
  • the organic acid or salt thereof is 1 to 50 mol% with respect to the substituted or unsubstituted aniline.
  • the polyaniline complex is polymerized by, for example, a chemical oxidative polymerization method or an electrolytic polymerization method.
  • the organic acid or a salt thereof is preferably an organic protonic acid or a salt thereof represented by the following formula (I ′).
  • M (XARn) m (I ′) wherein M is a hydrogen atom or an organic or inorganic free radical, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently- R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), —CO (COOR 1 ) [wherein R 1 is a hydrocarbon group which may contain a substituent having 4 or more carbon atoms.
  • a silyl group, — (R 2 O) x—R 3 group, or — (OSiR 3 2 ) x—OR 3 group R 2 is an alkylene group, and R 3 may be the same or different hydrocarbon groups, respectively.
  • x is an integer greater than or equal to 1)]
  • n is an integer greater than or equal to 2
  • m is the valence of M ⁇
  • M is a hydrogen atom or an organic or inorganic free radical.
  • the organic free radical include a pyridinium group, an imidazolium group, and an anilinium group
  • examples of the inorganic free radical include sodium, lithium, potassium, cesium, ammonium, and the like.
  • m is the valence of M.
  • X, A, R, and n are the same as in the above formula (I).
  • dialkylbenzene sulfonic acid dialkyl naphthalene sulfonic acid, sulfophthalic acid ester, and a compound represented by the following formula (II ′) can be preferably used.
  • M XCR 4 (CR 5 2 COOR 6 ) COOR 7
  • p is the valence of M.
  • the organic protonic acid or a salt thereof (II ′) is more preferably a sulfosuccinic acid derivative represented by the following formula (III ′) (hereinafter referred to as sulfosuccinic acid derivative (III ′)).
  • M and m are the same as in the above formula (I ′).
  • R 12 and R 13 are the same as in the above formula (III).
  • the polyaniline complex When the polyaniline complex is produced in a water-immiscible organic solvent, it can be produced by adding a phenolic compound to the polyaniline complex dissolved in the water-immiscible organic solvent.
  • a conductive molded body can be obtained from the polyaniline composition of the present invention. Specifically, a conductive molded body is obtained by molding the polyaniline composition of the present invention and removing the organic solvent.
  • the thickness thereof is usually 1 mm or less, preferably in the range of 10 nm to 50 ⁇ m.
  • a film having a thickness in this range is advantageous in that it does not easily crack during film formation and has uniform electrical characteristics.
  • the conductive polyaniline composition of the present invention is formed into a film, a tough and flexible self-supporting conductive film can be obtained.
  • This film can have a tensile elongation of 10% or more at a pulling speed of 1 mm / min.
  • a conductive film (surface conductive article) can be produced by applying the conductive polyaniline composition of the present invention to a substrate such as glass, a resin film, a sheet or a nonwoven fabric having a desired shape and removing the organic solvent. .
  • a method for applying the composition to a substrate known general methods such as a casting method, a spray method, a dip coating method, a doctor blade method, a barcode method, a spin coating method, an electrospinning method, screen printing, and a gravure printing method are used. Can be used.
  • the organic solvent may be volatilized by heating.
  • heating is performed at a temperature of 250 ° C. or less, preferably 50 to 200 ° C. in an air stream, and further, heating is performed under reduced pressure as necessary.
  • the heating temperature and the heating time are not particularly limited and may be appropriately selected according to the material used.
  • the polyaniline composition of the present invention may be mixed with a base material to form a conductive article.
  • Thermoplastics such as polyolefin such as polyethylene and polypropylene, chlorinated polyolefin, polystyrene, polyester, polyamide, polyacetal, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyvinyl alcohol
  • thermosetting resins such as resins, epoxy resins, phenol resins, and urethane resins.
  • the molded article of the present invention can be a self-supporting molded article having no substrate.
  • a molded body having a desired mechanical strength can be obtained when the composition contains the other resin described above.
  • Example 1 [Production of polyaniline complex] 1.8 g of AOT (sodium diisooctylsulfosuccinate) was dissolved in 50 mL of toluene, and the solution was put into a 500 mL separable flask placed under a nitrogen stream, and 1.8 mL of aniline was further added to this solution. Thereafter, 150 mL of 1N hydrochloric acid was added to the solution, and the solution temperature was cooled to 5 ° C.
  • AOT sodium diisooctylsulfosuccinate
  • this complex solution was removed with # 5C filter paper, and a toluene solution of the polyaniline complex was recovered. This solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate and remove volatile components to obtain 1.25 g of a polyaniline complex.
  • the obtained polyaniline composition solution was formed on an ITO substrate by a spin coating method, and the intrinsic conductivity was measured by a four-terminal method. The results are shown in Table 2.
  • Example 2 A polyaniline complex was obtained in the same manner as in Example 1 except that the polymerization temperature in the first stage was changed to 0 ° C. in Example 1. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
  • Example 3 A polyaniline complex was obtained in the same manner as in Example 1 except that the polymerization temperature in the second stage was 10 ° C. in Example 1. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
  • Example 4 A polyaniline complex was obtained in the same manner as in Example 1 except that the hydrochloric acid concentration used in Example 1 was changed to 0.5N. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
  • Comparative Example 1 AOT 1.8g was melt
  • the reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 18 hours from the start of dropping. Thereafter, the aqueous phase separated into two phases by standing was separated, and the toluene phase was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to obtain a polyaniline complex toluene solution.
  • this complex solution was removed with # 5C filter paper, and a toluene solution of the polyaniline complex was recovered. This solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate and remove volatile components, whereby 1.05 g of a polyaniline complex was obtained.
  • the intrinsic conductivity, doping rate, molecular weight, and molecular weight distribution of the obtained polyaniline composite were measured in the same manner as in Example 1. Moreover, the intrinsic conductivity of the composition with the phenolic compound was measured. The results are shown in Tables 1 and 2.
  • Comparative Example 2 AOT 1.8g was melt
  • the doping rate, molecular weight, molecular weight distribution, and intrinsic conductivity were measured in the same manner as in Example 1. Moreover, the intrinsic conductivity of the composition with the phenolic compound was measured. The results are shown in Tables 1 and 2.
  • Comparative Example 3 Polymerization of the polyaniline complex was carried out in the same manner as in Example 1 except that the amount of AOT used for polymerization was changed to 0.9 g in Example 1. However, in this case, the polyaniline complex was hardly recovered from the toluene phase side, and most was recovered as an insoluble matter. This insoluble matter was separated by filtration, washed several times with water and dried, and further purified twice by washing with hexane. This was subjected to elemental analysis in the same manner as in Example 1, and the dope rate was measured.
  • the polyaniline complex obtained at the same time was mixed with a 1N aqueous sodium hydroxide solution in the same manner as in Example 1, and after re-recovery, it was subjected to GPC measurement to measure molecular weight and molecular weight distribution. Further, the obtained polyaniline complex was redissolved in toluene in the same manner as in Example 1 and an attempt was made to measure the intrinsic conductivity.
  • Comparative Example 4 A polyaniline composite was obtained in the same manner as in Example 1 except that the stirring strength in the second stage polymerization was changed to 2200 w / m 3 in Example 1. Thereafter, the organic acid and inorganic acid topo rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline complex, and intrinsic conductivity of the composition with the phenolic compound were measured by the same procedure and operation as in Example 1. did. This product was poor in re-solubility in toluene, and only a part of the insoluble component was confirmed.
  • Example 5 1 g of the polyaniline complex obtained in Example 1 was dissolved again in 20 ml of toluene to prepare a uniform polyaniline complex solution. Here, 1 g of 2-naphthol was added instead of m-cresol to obtain a polyaniline composition. This solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The obtained coating film had an intrinsic conductivity of 108 S / cm.
  • Example 6 A polyaniline composition was obtained in the same manner as in Example 5, except that 1 g of 2-methylenebis (4-methylphenol) was used instead of 2-naphthol. This solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The obtained coating film had an intrinsic conductivity of 46 S / cm.
  • Example 7 The specific conductivity was measured in the same manner as in Example 1 except that 1 g of the polyaniline complex obtained in Example 1 was dissolved in 20 ml of an alcohol solvent. Table 3 shows the solvents used and the intrinsic conductivity obtained.
  • Example 8 1 g of the polyaniline complex obtained in Example 1 was dissolved again in 20 ml of toluene solution to prepare a polyaniline complex solution, and further 2 ml of m-cresol was added to obtain a polyaniline composition.
  • This composition was spread on a glass substrate in a range of 14 mm ⁇ 52 mm, and dried at 80 ° C. for 30 minutes in an air stream to form a conductive film having a thickness of 16 ⁇ m.
  • the obtained conductive film was measured using a tensile tester in accordance with DIN 53504-53, with a tensile speed of 1 mm / min. A tensile test was carried out. As a result, the elongation at break was 27%.
  • Example 9 The polyaniline composition obtained in Example 8 was applied to a glass substrate by a spin coating method, and this substrate was held at 105 ° C. for 500 hours in a nitrogen atmosphere to measure a change in surface resistance value. The results are shown in Table 4.
  • Example 10 The polyaniline complex obtained in Example 1 was dissolved in toluene to prepare a 5 wt% polyaniline complex solution. To 5 g of this solution, 1.25 g of chlorinated polyethylene resin Super Clone HE-505 (manufactured by Nippon Paper Chemicals Co., Ltd.) was added, and 2 mL of m-cresol was added to obtain a uniform solution to obtain a polyaniline composition.
  • chlorinated polyethylene resin Super Clone HE-505 manufactured by Nippon Paper Chemicals Co., Ltd.
  • composition prepared above was applied to a 0.3 mm thick super pure array sheet (SG-140TC, manufactured by Idemitsu Unitech) using a bar coater and dried in an oven at 80 ° C. for 5 minutes to obtain a conductive sheet. .
  • the surface resistance of this sheet was 1.0 ⁇ 10 2 ⁇ / ⁇ .
  • Example 11 The same operation as in Example 10 was performed except that HE910 (manufactured by Nippon Paper Chemicals Co., Ltd.) was used as the chlorinated polyethylene resin in Example 10 instead of Super Clone HE505, under a nitrogen atmosphere at 105 ° C., The change of the surface resistance value was measured by holding for 500 hours. The results are shown in Table 4. As shown in Table 4, the resistance stability under high temperature exposure is greatly improved in the polyaniline composition to which chlorinated polyolefin is added.
  • HE910 manufactured by Nippon Paper Chemicals Co., Ltd.
  • Example 12 (1) Synthesis of sodium 3,4-bis [(2-ethylhexyl) oxycarbonyl] cyclohexanesulfonate 4-cyclohexene-1,2-dicarboxylic acid di (2-ethylhexyl) ester (manufactured by Tokyo Chemical Industry Co., Ltd.) under an argon gas stream 80 g and 900 mL of isopropyl alcohol were charged, and a solution of 42.3 g of sodium hydrogen sulfite (manufactured by Wako Pure Chemical Industries, Ltd.) in 660 mL of water was added. The solution was heated to reflux temperature and stirred at 80-83 ° C. for 16 hours.
  • Example 13 The polyaniline complex obtained in Example 1 was dissolved in chloroform to prepare a 5 wt% polyaniline complex solution. To 200 g of the solution, 6 g of polyethylene oxide (Aldrich) having a weight average molecular weight (Mw) of 900,000 was added, and 20 g of m-cresol and 150 g of isopropyl alcohol were added to obtain a uniform solution to obtain a composition.
  • polyethylene oxide Aldrich
  • Mw weight average molecular weight
  • This solution was electrospun using Nanospider NS LAB 200S (manufactured by Elmarco) at a distance between electrodes of 160 mm, a voltage of 50 kV, a cylinder rotation speed of 3.5 rpm, and a winding speed of 8 cm / min.
  • a composition was obtained.
  • a polypropylene sheet having a thickness of 0.3 mm and a width of 40 cm and a polypropylene nonwoven fabric having a basis weight of 20 g / m 2 and a width of 40 cm were used as the base material.
  • the amount of the polyaniline composition attached to the polypropylene sheet and the polypropylene nonwoven fabric was determined by measuring the weight difference before and after electrospinning. As a result, the adhesion amount of the polyaniline composition was 0.4 to 0.8 g / m 2 in all cases.
  • Example 14 The polyaniline complex obtained in Example 1 was dissolved in chloroform to prepare a 5 wt% polyaniline complex solution. To 410 g of the solution, 1 g of polyethylene oxide (Aldrich) having a weight average molecular weight (Mw) of 900,000 was added, and 20 g of m-cresol and 210 g of isopropyl alcohol were added to obtain a uniform solution to obtain a composition.
  • Aldrich polyethylene oxide having a weight average molecular weight (Mw) of 900,000 was added, and 20 g of m-cresol and 210 g of isopropyl alcohol were added to obtain a uniform solution to obtain a composition.
  • This solution was electrospun with Nanospider NS LAB 200S (manufactured by Elmarco) at a distance between electrodes of 160 mm, a voltage of 73 kV, a cylinder rotation speed of 3 rpm, and a winding speed of 8 cm / min to obtain a filamentous composition having a diameter of 300 nm or less. It was.
  • the base material used was a polypropylene sheet having a thickness of 0.3 mm and a width of 40 cm, a PET sheet having a thickness of 0.1 mm and a width of 40 cm, and a polypropylene nonwoven fabric having a basis weight of 30 g / m 2 and a width of 40 cm.
  • the amount of the polyaniline composition attached to the polypropylene sheet, the PET sheet, and the polypropylene nonwoven fabric was determined by measuring the weight difference before and after electrospinning. As a result, the adhesion amount of the polyaniline composition was 0.4 to 0.8 g / m 2 in all cases.
  • Example 15 5 parts by mass of the polyaniline complex obtained in Example 1 was dissolved in 95 parts by mass of chloroform or toluene. To this solution, 10 parts by mass of m-cresol and 1 to 90 parts by mass of various highly polar organic solvents shown in Table 6 were added to prepare a polyaniline composition solution. The obtained polyaniline composition solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The results shown in Table 6 were obtained. Further, when the storage stability of each obtained polyaniline composition solution was examined, no gel was observed even after storage for 10 days.
  • the polyaniline composite, conductive polyaniline composition, and molded product of the present invention are used in the field of power electronics and optoelectronics. Electrostatic / antistatic materials, transparent electrodes and conductive film materials, electroluminescent element materials, circuit materials, antenna materials It can be used for electromagnetic shielding materials, capacitor electrodes / dielectrics / electrolytes, electrode materials for solar cells and secondary batteries, fuel cell separator materials, actuators, various sensor substrates, etc., plating base materials, and rust inhibitors.

Abstract

Disclosed is an electrically conductive polyaniline composition comprising an organic solvent, a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid, and a compound having a phenolic hydroxy group, wherein the total doping ratio (a) which is the sum total of the doping ratio of the polyaniline complex with the organic acid and the doping ratio of the polyaniline complex with the inorganic acid is more than 0.4 and less than 0.6, wherein the ratio of the doping ratio (b) of the polyaniline complex with the inorganic acid to the total doping ratio (a) (i.e., b/a) is 0.02 or more, and wherein the polyaniline complex has a weight average molecular weight of 20,000 or more and a molecular weight distribution of less than 5.0.

Description

ポリアニリン複合体、その組成物及び成形体Polyaniline composite, composition thereof and molded product
 本発明は、新規なポリアニリン複合体及びその製造方法に関し、さらに、そのポリアニリン複合体を用いた導電性組成物及びそれから得られる成形体に関する。 The present invention relates to a novel polyaniline composite and a method for producing the same, and further relates to a conductive composition using the polyaniline composite and a molded product obtained therefrom.
 ポリアニリンは、導電性高分子の1つとして周知の材料である。ポリアニリンは、その電気的な特性に加え、安価なアニリンから比較的簡便に合成でき、且つ導電性を示す状態で、空気等に対して優れた安定性を示すという利点及び特性を有する。 Polyaniline is a well-known material as one of conductive polymers. In addition to its electrical properties, polyaniline has the advantage and property of being able to be synthesized relatively easily from inexpensive aniline and exhibiting excellent stability against air or the like in a state of conductivity.
 ポリアニリンの製造方法としては、アニリン又はアニリン誘導体を電解酸化重合する方法又は化学酸化重合する方法が知られている。
 電解酸化重合では、電気的特性等に優れたフィルムが得られるが、一般に、化学酸化重合に比べて製造コストが高く、大量生産には適しておらず、複雑な形状の成形体を得ることも困難である。
As a method for producing polyaniline, a method of electrolytic oxidation polymerization or chemical oxidation polymerization of aniline or aniline derivatives is known.
In electrolytic oxidation polymerization, a film having excellent electrical properties can be obtained. However, in general, the production cost is higher than chemical oxidation polymerization, and it is not suitable for mass production. Have difficulty.
 一方、化学酸化重合によって導電性のアニリン又はアニリン誘導体の重合体を得るためには、一般に、非導電性塩基状態(いわゆるエメラルディン塩基状態)で得られるポリアニリンにドーパント(ドーピング剤)を加えてプロトネーションする工程を必要とする。しかしながら、非導電性塩基状態のポリアニリンは大部分の有機溶剤に殆ど溶解しないため、工業的な製造に適するものではない。さらに、プロトネーション後に生成する導電性のポリアニリン(いわゆるエメラルディン塩状態)は、実質的に不溶不融であり、導電性の複合材料及びその成形体を簡便に製造することは難しい。 On the other hand, in order to obtain a conductive aniline or aniline derivative polymer by chemical oxidative polymerization, in general, a dopant (doping agent) is added to polyaniline obtained in a non-conductive base state (so-called emeraldine base state). The process of nation is required. However, polyaniline in the non-conductive base state is not suitable for industrial production because it hardly dissolves in most organic solvents. Furthermore, the conductive polyaniline (so-called emeraldine salt state) generated after the protonation is substantially insoluble and infusible, and it is difficult to easily manufacture a conductive composite material and a molded body thereof.
 上記の問題に対し、本発明者らは、製造や取り扱いが容易な可溶性の導電性ポリアニリン複合体及びその組成物を開発している(特許文献1)。
国際公開第2005/052058パンフレット
In response to the above problems, the present inventors have developed a soluble conductive polyaniline complex and a composition thereof that are easy to manufacture and handle (Patent Document 1).
International Publication No. 2005/052058 Pamphlet
 特許文献1に記載のポリアニリン複合体及びその組成物は優れた性質を有するものであるが、ポリアニリン複合体及びその組成物、並びにそれらの製造方法についてさらなる改善が求められていた。
 従って、本発明は、新規な優れたポリアニリン複合体及びその製造方法、並びにそれを用いた組成物及び成形体を提供することを目的とする。
Although the polyaniline complex and the composition thereof described in Patent Document 1 have excellent properties, further improvements have been required for the polyaniline complex and the composition thereof, and the production method thereof.
Accordingly, an object of the present invention is to provide a novel and excellent polyaniline complex, a method for producing the same, a composition and a molded body using the same.
 本発明者らは、鋭意研究の結果、ポリアニリン組成物の導電率が、ポリアニリン複合体の有機酸と無機酸のドープ率及び有機ドーパントと無機ドーパントの比率、分子量、分子量分布に依存することを見出し、また、多段重合法によれば、ドープ率、有機ドーパントと無機ドーパントの比率、分子量、分子量分布をある特定の範囲で制御でき、高い導電率を有するポリアニリン複合体が得られることを見出した。導電性ポリマーにおいては、ここに挙げたドープ率、ドープ種、分子量、分子量分布は、その性能を決める重要な構造因子である。即ち本発明で開示されたポリアニリン複合体は、特徴的な構造因子を有する点において、新規な物質である。本発明によれば、以下のポリアニリン複合体及びその組成物等が提供される。 As a result of intensive studies, the present inventors have found that the conductivity of the polyaniline composition depends on the organic acid and inorganic acid doping ratio of the polyaniline complex, and the ratio of the organic dopant to the inorganic dopant, the molecular weight, and the molecular weight distribution. Further, it has been found that according to the multistage polymerization method, the polyaniline complex having high conductivity can be obtained by controlling the doping rate, the ratio between the organic dopant and the inorganic dopant, the molecular weight, and the molecular weight distribution within a specific range. In a conductive polymer, the doping rate, doping species, molecular weight, and molecular weight distribution listed here are important structural factors that determine the performance. That is, the polyaniline complex disclosed in the present invention is a novel substance in that it has a characteristic structure factor. According to the present invention, the following polyaniline complex and its composition are provided.
1.有機溶剤、及び
 有機酸と、無機酸でドープされている置換若しくは非置換ポリアニリン複合体と、
 フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物であって、
 前記ポリアニリン複合体における有機酸と無機酸のドープ率の総和(a)が0.4<a<0.6であり、
 ドープ率の総和(a)のうち、無機酸のドープ率(b)の割合(b/a)が0.02以上であり、
 前記ポリアニリン複合体の重量平均分子量が20,000以上で、分子量分布が5.0~10.0であることを特徴とする導電性ポリアニリン組成物。
2.前記フェノール性水酸基を有する化合物の、前記ポリアニリン複合体1gに対するモル濃度が、0.01mmol/g~50mmol/gの範囲である1記載の導電性ポリアニリン組成物。
3.前記有機酸が、下記式(I)
      HXARn              (I)
{式中、Xは、酸性基であり、Aは、置換基を含んでもよい炭化水素基であり、Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は-CO(COOR)[ここで、Rは炭素数が4以上の置換基を含んでもよい炭化水素基、シリル基、-(RO)x-R基、又は-(OSiR )x-OR基(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である]であり、nは2以上の整数である}
で示される有機プロトン酸である1又は2記載の導電性ポリアニリン組成物。
4.式(I)で示される有機プロトン酸が、下記式(II)
      HXCR(CR COOR)COOR       (II)
{式中、Xは、酸性基であり、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)であり、R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]である}
で示される有機プロトン酸である3記載の導電性ポリアニリン組成物。
5.式(II)で示される有機プロトン酸が、下記式(III)
      HOSCH(CHCOOR12)COOR13     (III)
{式中、R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]である}
で示されるスルホコハク酸誘導体である4記載の導電性ポリアニリン組成物。
6.前記無機酸が塩酸、硫酸、燐酸又は硝酸である1~5のいずれか記載の導電性ポリアニリン組成物。
7.前記有機溶剤が実質的に水に混和しない溶剤である1~6のいずれか記載の導電性ポリアニリン組成物。
8.前記有機溶剤が水溶性有機溶剤である1~6のいずれか記載の導電性ポリアニリン組成物。
9.さらに、樹脂又は樹脂の前駆体を含む1~8のいずれか記載の導電性ポリアニリン組成物。
10.前記樹脂が塩素化ポリオレフィンである9記載の導電性ポリアニリン組成物。
11.前記有機溶剤が水不混和性有機溶剤と水溶性有機溶剤との混合物であって、その混合比(水不混和性有機溶剤:水溶性有機溶剤)が、99~50:1~50の質量比である1~10のいずれか記載の導電性ポリアニリン組成物。
12.前記水不混和性有機溶剤は、芳香族溶剤、含ハロゲン溶剤、エステル系溶剤、炭素数4以上のケトン類、炭素数5以上のアルコール類、アクリル誘導体から選択され、
 前記水溶性有機溶剤は、水溶性アルコール、水溶性ケトン、水溶性含酸素環誘導体、非プロトン性極性溶剤から選択されたものである11に記載の導電性ポリアニリン組成物。
13.置換又は未置換アニリンを、有機酸又はその塩、及び無機酸又はその塩と共に、-10℃~20℃の温度において第一段の工程で重合し、さらに前記温度から5℃以上高い温度において4~2000w/mの撹拌動力で第二段以降の工程で重合する、有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体の製造方法。
14.実質的に水と混和しない有機溶剤と水溶液の二相系で、ポリアニリン複合体を製造する13に記載のポリアニリン複合体の製造方法。
15.前記有機酸又はその塩が、下記一般式(I’)
    M(XARn)m                   (I’)
{式中、Mは、水素原子又は有機若しくは無機遊離基であり、Xは、酸性基であり、Aは、置換基を含んでもよい炭化水素基であり、Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は-CO(COOR)[ここで、Rは置換基を含んでもよい炭素数が4以上の炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である]であり、nは2以上の整数であり、mは、Mの価数である}で示される有機プロトン酸又はその塩である13又は14記載のポリアニリン複合体の製造方法。
16.式(I)で示される有機プロトン酸又はその塩が、下記式(II’)
    M(XCR(CR COOR)COOR     (II’)
{式中、Mは、水素原子又は有機若しくは無機遊離基であり、Xは、酸性基であり、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)であり、R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]であり、pは、Mの価数である}で示される有機プロトン酸又はその塩である15記載のポリアニリン複合体の製造方法。17.式(II)で示される有機プロトン酸又はその塩が、下記式(III’)
    M(OSCH(CHCOOR12)COOR13   (III’)
{式中、Mは、水素原子又は有機若しくは無機遊離基であり、R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]であり、mは、Mの価数である}で示されるスルホコハク酸誘導体である16記載のポリアニリン複合体の製造方法。
18.上記13~17のいずれか記載の製造方法により得られる有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体。
19.上記18記載の有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体とフェノール性水酸基を有する化合物とを反応させる導電性ポリアニリン組成物の製造方法。
20.上記1~12のいずれか記載の導電性ポリアニリン組成物を成形してなる導電性成形体。
21.上記1~12のいずれか記載の導電性ポリアニリン組成物を成形してなる導電性フィルム。
22.上記1~12のいずれか記載の導電性ポリアニリン組成物を、基材に塗布してなる表面導電性物品。
23.基材が樹脂フィルムである22記載の表面導電性物品。
24.上記1~12のいずれか記載の導電性ポリアニリン組成物を、基材と混合してなる導電性物品。
25.上記1~12のいずれか記載の導電性ポリアニリン組成物を、基材にエレクトロスピニングしてなる導電性物品。
1. An organic solvent, an organic acid, a substituted or unsubstituted polyaniline complex doped with an inorganic acid, and
A conductive polyaniline composition comprising a compound having a phenolic hydroxyl group,
The sum (a) of the organic acid and inorganic acid doping rates in the polyaniline composite is 0.4 <a <0.6,
Of the total doping rate (a), the proportion (b / a) of the doping rate (b) of the inorganic acid is 0.02 or more,
A conductive polyaniline composition, wherein the polyaniline complex has a weight average molecular weight of 20,000 or more and a molecular weight distribution of 5.0 to 10.0.
2. 2. The conductive polyaniline composition according to 1, wherein a molar concentration of the compound having a phenolic hydroxyl group with respect to 1 g of the polyaniline complex is in a range of 0.01 mmol / g to 50 mmol / g.
3. The organic acid is represented by the following formula (I)
HXARn (I)
{In the formula, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 is a hydrocarbon group, silyl group, — (R 2 O) x -R which may contain a substituent having 4 or more carbon atoms. 3 groups, or — (OSiR 3 2 ) x—OR 3 group (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more). And n is an integer greater than or equal to 2}
The conductive polyaniline composition according to 1 or 2, which is an organic protonic acid represented by the formula:
4). The organic protonic acid represented by the formula (I) is represented by the following formula (II)
HXCR 4 (CR 5 2 COOR 6 ) COOR 7 (II)
{Wherein X is an acidic group, R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si- group (wherein R 8 is a hydrocarbon group, Three R 8 may be the same or different), and R 6 and R 7 are each independently a hydrocarbon group or a — (R 9 O) q —R 10 group [wherein R 9 is carbon A hydrogen group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon group or R 11 3 Si— (R 11 is a hydrocarbon group, and three R 11 may be the same or different); q is an integer greater than or equal to 1]}
4. The conductive polyaniline composition according to 3, which is an organic protonic acid represented by
5). The organic protonic acid represented by the formula (II) is represented by the following formula (III)
HO 3 SCH (CH 2 COOR 12 ) COOR 13 (III)
{Wherein R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15 group [where R 14 is a hydrocarbon group or a silylene group, and R 15 is hydrogen An atom, a hydrocarbon group or an R 16 3 Si— group (wherein R 16 is a hydrocarbon group, and three R 16 may be the same or different), and r is an integer of 1 or more] Is}
5. The conductive polyaniline composition according to 4, which is a sulfosuccinic acid derivative represented by the formula:
6). 6. The conductive polyaniline composition according to any one of 1 to 5, wherein the inorganic acid is hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid.
7). 7. The conductive polyaniline composition according to any one of 1 to 6, wherein the organic solvent is a solvent that is substantially immiscible with water.
8). 7. The conductive polyaniline composition according to any one of 1 to 6, wherein the organic solvent is a water-soluble organic solvent.
9. The conductive polyaniline composition according to any one of 1 to 8, further comprising a resin or a resin precursor.
10. 10. The conductive polyaniline composition according to 9, wherein the resin is a chlorinated polyolefin.
11. The organic solvent is a mixture of a water-immiscible organic solvent and a water-soluble organic solvent, and the mixing ratio (water-immiscible organic solvent: water-soluble organic solvent) is a mass ratio of 99-50: 1-50. 11. The conductive polyaniline composition according to any one of 1 to 10, wherein
12 The water-immiscible organic solvent is selected from aromatic solvents, halogen-containing solvents, ester solvents, ketones having 4 or more carbon atoms, alcohols having 5 or more carbon atoms, and acrylic derivatives.
12. The conductive polyaniline composition according to 11, wherein the water-soluble organic solvent is selected from water-soluble alcohols, water-soluble ketones, water-soluble oxygen-containing ring derivatives, and aprotic polar solvents.
13. The substituted or unsubstituted aniline is polymerized in the first step at a temperature of −10 ° C. to 20 ° C. together with an organic acid or a salt thereof and an inorganic acid or a salt thereof. A method for producing a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid, which is polymerized in the second and subsequent steps with a stirring power of ˜2000 w / m 3 .
14 14. The method for producing a polyaniline complex according to 13, wherein the polyaniline complex is produced in a two-phase system of an organic solvent substantially immiscible with water and an aqueous solution.
15. The organic acid or a salt thereof is represented by the following general formula (I ′)
M (XARn) m (I ′)
{Wherein M is a hydrogen atom or an organic or inorganic free radical, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently- R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 is a hydrocarbon having 4 or more carbon atoms which may contain a substituent. Group, silyl group, alkylsilyl group, — (R 2 O) x—R 3 group, or — (OSiR 3 2 ) x—OR 3 (R 2 is an alkylene group, and R 3 may be the same or different. Is a good hydrocarbon group, x is an integer of 1 or more], n is an integer of 2 or more, and m is the valence of M} or a salt thereof The manufacturing method of the polyaniline composite_body | complex of 13 or 14 which is these.
16. The organic protonic acid represented by the formula (I) or a salt thereof is represented by the following formula (II ′)
M (XCR 4 (CR 5 2 COOR 6 ) COOR 7 ) p (II ′)
{Wherein M is a hydrogen atom or an organic or inorganic free radical, X is an acidic group, and R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si— group. (Wherein R 8 is a hydrocarbon group, and three R 8 may be the same or different), and R 6 and R 7 are each independently a hydrocarbon group or — (R 9 O ) Q —R 10 group [wherein R 9 is a hydrocarbon group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon group, or R 11 3 Si— (R 11 is a hydrocarbon group, R 11 may be the same or different, and q is an integer of 1 or more], p is an valence of M}, or an organic protonic acid or a salt thereof represented by 15 A method for producing a polyaniline complex. 17. The organic protonic acid represented by the formula (II) or a salt thereof is represented by the following formula (III ′)
M (O 3 SCH (CH 2 COOR 12 ) COOR 13 ) m (III ′)
{Wherein M is a hydrogen atom or an organic or inorganic free radical, and R 12 and R 13 are each independently a hydrocarbon group or a — (R 14 O) r —R 15 group [wherein R 14 Is a hydrocarbon group or a silylene group, R 15 is a hydrogen atom, a hydrocarbon group or an R 16 3 Si— group (where R 16 is a hydrocarbon group, and three R 16 s may be the same or different) And r is an integer of 1 or more], and m is a valence of M}. The method for producing a polyaniline complex according to 16, which is a sulfosuccinic acid derivative represented by:
18. 18. A substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid obtained by the production method according to any one of 13 to 17 above.
19. 19. A process for producing a conductive polyaniline composition comprising reacting a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid as described in 18 above with a compound having a phenolic hydroxyl group.
20. 13. A conductive molded article obtained by molding the conductive polyaniline composition according to any one of 1 to 12 above.
21. 13. A conductive film obtained by molding the conductive polyaniline composition according to any one of 1 to 12 above.
22. A surface conductive article obtained by applying the conductive polyaniline composition described in any one of 1 to 12 above to a substrate.
23. 23. The surface conductive article according to 22, wherein the substrate is a resin film.
24. 13. A conductive article obtained by mixing the conductive polyaniline composition according to any one of 1 to 12 above with a base material.
25. 13. A conductive article obtained by electrospinning a conductive polyaniline composition according to any one of 1 to 12 above to a substrate.
 本発明によれば、新規な優れたポリアニリン複合体及びその製造方法、並びにそれを用いた組成物及び成形体を提供できる。 According to the present invention, it is possible to provide a novel and excellent polyaniline complex, a production method thereof, and a composition and a molded body using the same.
 本発明の導電性ポリアニリン組成物は、有機溶剤、及び有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体(以下、ポリアニリン複合体という)と、フェノール性水酸基を有する化合物(以下、フェノール性化合物という)を含む。ポリアニリン複合体とフェノール性化合物は有機溶剤に溶解している。 The conductive polyaniline composition of the present invention comprises an organic solvent, a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid (hereinafter referred to as polyaniline complex), and a compound having a phenolic hydroxyl group (hereinafter referred to as “polyaniline complex”). A phenolic compound). The polyaniline complex and the phenolic compound are dissolved in an organic solvent.
 ここで、ポリアニリン複合体における有機酸と無機酸のドープ率の総和(a)は0.4<a<0.6である。ポリアニリン複合体における有機酸と無機酸のドープ率の総和(a)が、0.5であることは、窒素2分子に対して1分子のドーパントがドープすることを意味し、この値及びその近傍において、導電率が最も高くなる。 Here, the sum (a) of the doping rates of the organic acid and the inorganic acid in the polyaniline complex is 0.4 <a <0.6. The sum (a) of the doping ratio of organic acid and inorganic acid in the polyaniline complex is 0.5, which means that one molecule of dopant is doped with respect to two molecules of nitrogen, and this value and the vicinity thereof. , The conductivity is the highest.
 有機酸と無機酸のドープの割合は、ドープ率の総和(a)のうち、無機酸のドープ率(b)の割合(b/a)が0.02以上であり、好ましくは有機酸:無機酸=0.98:0.02~0.90:0.1である。 The ratio of the doping of the organic acid and the inorganic acid is such that the ratio (b / a) of the doping ratio (b) of the inorganic acid is 0.02 or more in the total doping ratio (a), preferably organic acid: inorganic The acid is 0.98: 0.02 to 0.90: 0.1.
 ここで、有機酸、無機酸の総ドープ率が0.6以上では、本発明で得られる導電性組成物の固有伝導率が低下する傾向がある。一方、0.4以下では各種溶剤に不溶となり、基材塗布等の加工性を著しく損なう結果となる。
 また、高導電率の導電性組成物を得るためには、無機酸のドープ率が非常に重要な役割を担っており、トータルドープ率の0.02以上が必要である。無機酸のドープ率がトータルドープ率の0.02以上になった場合にフェノール性化合物の添加効果、即ちフェノール性化合物との分子間相互作用が発現し、結果として高導電率の導電性組成物を与えるのである。
Here, when the total dope ratio of the organic acid and the inorganic acid is 0.6 or more, the intrinsic conductivity of the conductive composition obtained in the present invention tends to decrease. On the other hand, if it is 0.4 or less, it becomes insoluble in various solvents, resulting in a significant loss of workability such as coating of a substrate.
Further, in order to obtain a conductive composition having a high conductivity, the doping rate of the inorganic acid plays a very important role, and a total doping rate of 0.02 or more is necessary. When the doping rate of the inorganic acid is 0.02 or more of the total doping rate, the effect of adding the phenolic compound, that is, the intermolecular interaction with the phenolic compound is manifested. As a result, the conductive composition having high conductivity Is given.
 また、ポリアニリン複合体の重量平均分子量(以下、分子量という)は20,000以上で、分子量分布が5.0~10である。分子量が20,000未満であると、導電性が低下する。好ましくは分子量は50,000~200,000の範囲である。一方、分子量分布に関しては、導電率の観点からは分子量分布は狭い方が好ましいが、溶剤への溶解性、成形性の観点では分子量分布は広い方が好ましい。用途によっては、導電率よりも成形性が重視される場合も多く、工業的有用性の観点から、分子量分布が5.0~10.0の範囲が好ましい。ここで分子量分布が5.0未満では組成物から得られる導電性物品の強度、延伸性が低下する傾向があり、一方、分子量分布が10.0を超す場合は、殆どのケースで超高分子量成分を含む組成物であり、このような組成物では溶剤への溶解性が低下する傾向がある。 In addition, the polyaniline complex has a weight average molecular weight (hereinafter referred to as molecular weight) of 20,000 or more and a molecular weight distribution of 5.0 to 10. If the molecular weight is less than 20,000, the conductivity is lowered. Preferably the molecular weight is in the range of 50,000 to 200,000. On the other hand, the molecular weight distribution is preferably narrow from the viewpoint of electrical conductivity, but is preferably wide from the viewpoint of solubility in solvents and moldability. In some applications, moldability is often more important than electrical conductivity, and the molecular weight distribution is preferably in the range of 5.0 to 10.0 from the viewpoint of industrial usefulness. Here, when the molecular weight distribution is less than 5.0, the strength and stretchability of the conductive article obtained from the composition tend to decrease. On the other hand, when the molecular weight distribution exceeds 10.0, in most cases, the ultra high molecular weight is obtained. It is a composition containing a component, and in such a composition, there exists a tendency for the solubility to a solvent to fall.
 分子量と分子量分布はゲルパーミェションクロマトグラフィ(GPC)により測定し、詳細な測定条件は実施例にて後述する。
  本発明のポリアニリン複合体及びポリアニリン組成物は後述する方法により製造できる。
The molecular weight and molecular weight distribution are measured by gel permeation chromatography (GPC), and detailed measurement conditions will be described later in Examples.
The polyaniline complex and the polyaniline composition of the present invention can be produced by the method described below.
 ポリアニリン複合体における置換ポリアニリンの置換基としては、例えば、メチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基、メトキシ基、フェノキシ基等のアルコキシル基、アリーロキシ基、CF基等の含ハロゲン炭化水素基等が挙げられる。 Examples of the substituent of the substituted polyaniline in the polyaniline complex include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group, alkoxyl groups such as methoxy group and phenoxy group, aryloxy group, CF And halogen-containing hydrocarbon groups such as 3 groups.
 ポリアニリン複合体にドープする好適な有機酸の例として、下記式(I)
      HXARn              (I)
で示される有機プロトン酸(以下、有機プロトン酸(I)という)が挙げられる。
 上記式(I)において、Xは、酸性基であり、例えば、-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基等が挙げられ、-SO 基が好ましい。
 Aは、置換基を含んでもよい炭化水素基であり、例えば、炭素数1~24の直鎖若しくは分岐状のアルキルやアルケニル基、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、メンチル等の置換基を含んでいてもよいシクロアルキル基、ビシクロヘキシル、ノルボルニル、アダマンチル等の縮合してもよいジシクロアルキル基若しくはポリシクロアルキル基、フェニル、トシル、チオフェニル、ピローリニル、ピリジニル、フラニル等の置換基を含んでいてもよい芳香環を含むアリール基、ナフチル、アントラセニル、フルオレニル、1,2,3,4-テトラヒドロナフチル、インダニル、キノリニル、インドニル等の縮合していてもよいジアリール基若しくはポリアリール基、アルキルアリール基等が挙げられる。
Examples of suitable organic acids to be doped into the polyaniline complex include the following formula (I)
HXARn (I)
And organic protonic acid (hereinafter referred to as organic protonic acid (I)).
In the above formula (I), X is an acidic group. For example, —SO 3 group, —PO 3 2- group, —PO 4 (OH) 2 group, —OPO 3 2- group, —OPO 2 ( OH) - group, -COO - group and the like, -SO 3 - group.
A is a hydrocarbon group which may contain a substituent, and examples thereof include a linear or branched alkyl or alkenyl group having 1 to 24 carbon atoms, a substituent such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, menthyl and the like. Including optionally substituted cycloalkyl groups, dicyclohexyl groups such as bicyclohexyl, norbornyl, adamantyl or the like or polycycloalkyl groups, phenyl, tosyl, thiophenyl, pyrrolinyl, pyridinyl, furanyl and the like An aryl group containing an aromatic ring, naphthyl, anthracenyl, fluorenyl, 1,2,3,4-tetrahydronaphthyl, indanyl, quinolinyl, indonyl, etc., may be condensed diaryl group or polyaryl group, alkylaryl group, etc. Is mentioned.
 Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、-CO(COOR)である。ここで、Rは置換基を含んでもよい炭素数が4以上の炭化水素基、シリル基、アルキルシリル基、又は-(RO)x-R基、-(OSiR )x-OR(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である。Rが炭化水素基である場合の例としては、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基等が挙げられる。
 nは2以上の整数である。
R is each independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ). Here, R 1 may contain a substituent hydrocarbon group having 4 or more carbon atoms, silyl group, alkylsilyl group, — (R 2 O) x—R 3 group, — (OSiR 3 2 ) x—. OR 3 (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more). Examples of when R 1 is a hydrocarbon group include linear or branched butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, pentadecyl, eicosanyl, etc. Can be mentioned.
n is an integer of 2 or more.
 式(I)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、下式(II)で表される化合物が好ましく利用できる。
      HXCR(CR COOR)COOR       (II)
 上記式(II)において、Xは、酸性基であり、例えば、-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基等が挙げられ、-SO 基が好ましい。
As the compound represented by the formula (I), dialkylbenzenesulfonic acid, dialkylnaphthalenesulfonic acid, and a compound represented by the following formula (II) can be preferably used.
HXCR 4 (CR 5 2 COOR 6 ) COOR 7 (II)
In the above formula (II), X is an acidic group, for example, —SO 3 group, —PO 3 2- group, —PO 4 (OH) 2 group, —OPO 3 2- group, —OPO 2 ( OH) - group, -COO - group and the like, -SO 3 - group.
 R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)である。R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられる。Rが炭化水素基である場合の炭化水素基としては、R及びRの場合と同様である。 R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si— group (where R 8 is a hydrocarbon group, and three R 8 may be the same or different). ). Examples of the hydrocarbon group when R 4 and R 5 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, aryl groups containing aromatic rings, and alkylaryl groups. The hydrocarbon group when R 8 is a hydrocarbon group is the same as in the case of R 4 and R 5 .
 R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]である。R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24、好ましくは炭素数4以上の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられ、R及びRが炭化水素基である場合の炭化水素基の具体例としては、例えば、直鎖又は分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。 R 6 and R 7 are each independently a hydrocarbon group or — (R 9 O) q —R 10 group [wherein R 9 is a hydrocarbon group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon A group or R 11 3 Si— (R 11 is a hydrocarbon group, three R 11 may be the same or different), and q is an integer of 1 or more]. Examples of the hydrocarbon group when R 6 and R 7 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, preferably 4 or more carbon atoms, aryl groups containing aromatic rings, and alkylaryl Specific examples of the hydrocarbon group when R 6 and R 7 are hydrocarbon groups include, for example, a linear or branched butyl group, pentyl group, hexyl group, octyl group, decyl group Etc.
 R及びRにおける、Rが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキレン基、芳香環を含むアリーレン基、アルキルアリーレン基、アリールアルキレン基等である。また、R及びRにおける、R10及びR11が炭化水素基である場合の炭化水素基としては、R及びRの場合と同様であり、qは、1~10であることが好ましい。 In R 6 and R 7 , when R 9 is a hydrocarbon group, the hydrocarbon group includes a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group containing an aromatic ring, an alkylarylene group, an aryl An alkylene group and the like; Further, in R 6 and R 7 , the hydrocarbon group in the case where R 10 and R 11 are hydrocarbon groups is the same as in the case of R 4 and R 5 , and q is 1 to 10. preferable.
 R及びRが-(RO)-R10基である場合の具体例としては、例えば、  
Figure JPOXMLDOC01-appb-C000001
(式中、Xは-SO基等である)で示される基が挙げられる。
 上記有機プロトン酸(II)は、下記式(III)で示されるスルホコハク酸誘導体(以下、スルホコハク酸誘導体(III)という)であることがさらに好ましい。
      HOSCH(CHCOOR12)COOR13     (III)
Specific examples of the case where R 6 and R 7 are — (R 9 O) n —R 10 group include, for example,
Figure JPOXMLDOC01-appb-C000001
(Wherein X represents a —SO 3 group or the like).
The organic protonic acid (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III) (hereinafter referred to as sulfosuccinic acid derivative (III)).
HO 3 SCH (CH 2 COOR 12 ) COOR 13 (III)
 R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]である。
 R12及びR13が炭化水素基である場合の炭化水素基としては、R及びRと同様である。
R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15 group [where R 14 is a hydrocarbon group or a silylene group, R 15 is a hydrogen atom, a hydrocarbon (wherein, R 16 is a hydrocarbon group, and three R 16 may be the same or may be different) group or R 16 3 Si- groups are, r is 1 or more is an integer.
The hydrocarbon group when R 12 and R 13 are hydrocarbon groups is the same as R 6 and R 7 .
 R12及びR13において、R14が炭化水素基である場合の炭化水素基としては、上記Rと同様である。また、R12及びR13において、R15及びR16が炭化水素基である場合の炭化水素基としては、上記R及びRと同様である。
 rは、1~10であることが好ましい。
In R 12 and R 13 , the hydrocarbon group in the case where R 14 is a hydrocarbon group is the same as R 9 described above. In R 12 and R 13 , the hydrocarbon group in the case where R 15 and R 16 are hydrocarbon groups is the same as R 4 and R 5 described above.
r is preferably from 1 to 10.
 R12及びR13が-(R14O)-R15基である場合の具体例としては、R及びRにおける-(RO)-R10と同様である。
 R12及びR13が炭化水素基である場合の炭化水素基としては、R及びRと同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基等が好ましい。 ポリアニリン複合体にドープする無機酸の例として、塩酸、硫酸、燐酸、硝酸が挙げられる。
A specific example in the case where R 12 and R 13 are — (R 14 O) q —R 15 group is the same as — (R 9 O) n —R 10 in R 6 and R 7 .
In the case where R 12 and R 13 are hydrocarbon groups, the hydrocarbon group is the same as R 6 and R 7 and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, a decyl group, or the like. Examples of inorganic acids doped into the polyaniline composite include hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid.
 本発明の組成物で用いるフェノール性化合物は、特に限定されず、芳香族性の水酸基を有する化合物であれば、特に何の制限もなく好適に使用できる。即ち置換フェノール類、多価フェノール類、ビスフェノール類、ビフェノール類及びフェノール性水酸基を有するポリマー類が、目的に応じて好適に用いられる。具体的には、フェノール、o-,m-若しくはp-クレゾール、o-,m-若しくはp-エチルフェノール、o-,m-若しくはp-プロピルフェノール、o-,m-若しくはp-ブチルフェノール、o-,m-若しくはp-メトキシフェノール、o-,m-若しくはp-エトキシフェノール、o-,m-若しくはp-プロポキシフェノール、o-,m-若しくはp-ブトキシフェノール、o-,m-若しくはp-ニトロフェノール、o-,m-若しくはp-シアノフェノール、o-,m-若しくはp-クロロフェノール、o-,m-若しくはp-臭化フェノール、o-,m-若しくはp-フッ化フェノール、o-,m-若しくはp-ヨウ化フェノール等のフェノール誘導体、サリチル酸、ヒドロキシ安息香酸、ヒドロキシナフタレン等の置換フェノール類;カテコール、レゾルシノール等の多価フェノール性化合物、4,4’-イソプロピリデンジフェノール(Bis-A)、2-メチレンビス(4-メチルフェノール)、4-(2-フェニルプロパン-2-イル)ベンゼンー1,3ジオール等のビスフェノール類、4,4’ジヒドロキシビフェノール、4,4’ジヒドロキシベンゾフェノン、4,4’ジヒドロキシジフェニルエーテル、4,4’ジヒドロキシジフェニルスルホン等のビフェノール類、;及びフェノール樹脂、ポリフェノール、ポリ(ヒドロキシスチレン)等の高分子化合物等を例示することができる。 The phenolic compound used in the composition of the present invention is not particularly limited, and any compound having an aromatic hydroxyl group can be suitably used without any particular limitation. That is, substituted phenols, polyhydric phenols, bisphenols, biphenols, and polymers having a phenolic hydroxyl group are suitably used according to the purpose. Specifically, phenol, o-, m- or p-cresol, o-, m- or p-ethylphenol, o-, m- or p-propylphenol, o-, m- or p-butylphenol, o -, M- or p-methoxyphenol, o-, m- or p-ethoxyphenol, o-, m- or p-propoxyphenol, o-, m- or p-butoxyphenol, o-, m- or p Nitrophenol, o-, m- or p-cyanophenol, o-, m- or p-chlorophenol, o-, m- or p-brominated phenol, o-, m- or p-fluorinated phenol, placement of phenol derivatives such as o-, m- or p-iodinated phenols, salicylic acid, hydroxybenzoic acid, hydroxynaphthalene, etc. Phenols; polyhydric phenolic compounds such as catechol and resorcinol, 4,4′-isopropylidenediphenol (Bis-A), 2-methylenebis (4-methylphenol), 4- (2-phenylpropan-2-yl ) Bisphenols such as benzene-1,3diol, 4,4′dihydroxybiphenol, 4,4′dihydroxybenzophenone, 4,4′dihydroxydiphenyl ether, 4,4′dihydroxydiphenylsulfone, and the like; and phenol resins, polyphenols And polymer compounds such as poly (hydroxystyrene).
 本発明の組成物において、フェノール性化合物は、溶媒ではなく、ドーパントとして存在している。フェノール性化合物がドーパントであることは、フェノール性化合物を添加した本発明の組成物から製造した成形体は、これを添加しない成形体に比べて電気伝導率が非常に高いこと、及び有機溶剤を除去した後の、フェノール性化合物を含む本発明の導電性ポリアニリン組成物から得られる成形体とフェノール性化合物を含まないポリアニリン複合体から得られる成形体とが、異なるUV-vis(紫外可視)スペクトルを示すことによって裏付けられ、有機溶剤を除去した後の成形体中にフェノール性化合物が残存していることは明らかである。このことは、本発明において好適に用いられるフェノール性化合物として、前述のようにフェノール、クレゾールのような溶剤にとどまらず、ナフトールや2-メチレンビス(4-メチルフェノール)のような、通常一般には溶剤と認識されない化合物が挙げられることからも明らかである。即ち、これらフェノール性化合物は、本発明のポリアニリン複合体に強く分子相互作用を及ぼし、高い伝導率を発現する新たな組成物を形成するのである。 In the composition of the present invention, the phenolic compound is present not as a solvent but as a dopant. The fact that the phenolic compound is a dopant means that the molded product produced from the composition of the present invention to which the phenolic compound is added has a very high electrical conductivity compared to the molded product to which this compound is not added, and an organic solvent. The UV-vis (ultraviolet-visible) spectrum in which the molded product obtained from the conductive polyaniline composition of the present invention containing a phenolic compound and the molded product obtained from a polyaniline composite containing no phenolic compound after removal is different. It is clear that the phenolic compound remains in the molded product after the organic solvent is removed. This is not limited to phenolic and cresol solvents as described above as phenolic compounds suitably used in the present invention, but usually solvents such as naphthol and 2-methylenebis (4-methylphenol) are generally used. It is also clear from the compounds that are not recognized. That is, these phenolic compounds have a strong molecular interaction with the polyaniline complex of the present invention and form a new composition that exhibits high conductivity.
 フェノール性化合物のポリアニリン複合体1gに対するモル濃度は、0.01mmol/g~50mmol/gの範囲であることが好ましい。この化合物の添加量が少なすぎると、電気伝導率の改善効果が得られないおそれがある。また、多すぎる場合にも、組成物の均一性が損なわれたり、余剰のフェノール性化合物の影響で透明性や電気特性が損なわれた材料となるおそれがある。特に、0.05mmol/g~20mmol/gの範囲であることが好ましい。 The molar concentration of the phenolic compound relative to 1 g of the polyaniline complex is preferably in the range of 0.01 mmol / g to 50 mmol / g. If the amount of this compound added is too small, the effect of improving the electrical conductivity may not be obtained. Moreover, when too much, there exists a possibility that the uniformity of a composition may be impaired or it may become a material by which the transparency and the electrical property were impaired by the influence of the excess phenolic compound. In particular, it is preferably in the range of 0.05 mmol / g to 20 mmol / g.
 耐熱性の観点から、フェノール性化合物は、好ましくは芳香環を2個以上有し、より好ましくは芳香環を2個有することが好ましい。芳香環を2個以上有するフェノール性化合物としては芳香族性を有していれば特に制限は無く、例えば、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピロール環等の芳香環を2つ以上有し、かつフェノール性水酸基を1つ以上有するものが使用できる。 From the viewpoint of heat resistance, the phenolic compound preferably has two or more aromatic rings, and more preferably has two aromatic rings. The phenolic compound having two or more aromatic rings is not particularly limited as long as it has aromaticity, for example, two or more aromatic rings such as a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, and a pyrrole ring. And having at least one phenolic hydroxyl group can be used.
 このような化合物として、下記式(IV)で表されるものが好ましく使用できる。
    Ar-X-Ar’   (IV)
[式中、Xは単結合、酸素原子、窒素原子を含む基、又は炭素原子を含む基であり、Ar及びAr’は芳香環基であり、両者は同一でも異なってもよい。Ar及び/又はAr’は、少なくとも一つの水酸基を有する。ArとAr’は、ハロゲン原子、ニトロ基、ニトリル基、アミノ基、シアノ基及びカルボニル基からなる群から選択される置換基を1つ以上有してもよい。]
As such a compound, a compound represented by the following formula (IV) can be preferably used.
Ar-X-Ar '(IV)
[Wherein, X is a single bond, a group containing an oxygen atom, a nitrogen atom, or a group containing a carbon atom, and Ar and Ar ′ are aromatic ring groups, which may be the same or different. Ar and / or Ar ′ has at least one hydroxyl group. Ar and Ar ′ may have one or more substituents selected from the group consisting of a halogen atom, a nitro group, a nitrile group, an amino group, a cyano group, and a carbonyl group. ]
 Xとしては、単結合、酸素原子、-NH-、-NHCO-、-COO-、-CO-、-COCH-、-OCO-、-CH-、-C-、-C-等が挙げられる。耐熱性と高い導電性を得るという観点から、好ましいXとして、酸素原子を挙げることができる。
 Xは、フェノール性化合物中に1個又は2個存在させることができる。2個存在する場合、2つのXは同一でも異なっていてもよい。このようなものとして、例えば、Xとして単結合と-CH-を有するフルオレン構造が挙げられる。
X is a single bond, oxygen atom, —NH—, —NHCO—, —COO—, —CO—, —COCH 2 —, —OCO—, —CH 2 —, —C 2 H 4 —, —C 3 H 6- and the like. From the standpoint of obtaining heat resistance and high electrical conductivity, preferred examples of X include an oxygen atom.
One or two X can be present in the phenolic compound. When two are present, the two Xs may be the same or different. Examples of such a structure include a fluorene structure having a single bond and —CH 2 — as X.
 Ar、Ar’上の置換基のうち、炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等が挙げられる。
 また、Ar、Ar’のその他の置換基としては、ハロゲン、アミノ基、シアノ基、ニトロ基、ニトリル基、カルボニル基等が挙げられる。
 また、Ar又はAr’の複数の置換基は、互いに結合して環を形成してもよい。環構造としては、例えば、シクロヘキシル環、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピロール環等が挙げられる。
Of the substituents on Ar and Ar ′, examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, and an isobutyl group.
Examples of other substituents for Ar and Ar ′ include halogen, amino group, cyano group, nitro group, nitrile group, and carbonyl group.
A plurality of Ar or Ar ′ substituents may be bonded to each other to form a ring. Examples of the ring structure include a cyclohexyl ring, a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, and a pyrrole ring.
 また、2個の芳香環がXを介して結合している式(IV)化合物以外の好ましいフェノール性化合物として、ナフタレン環やアントラセン環のような多環芳香環に水酸基が付加したフェノール性化合物が挙げられる。このような化合物は、耐熱性と高い導電性が発現する点で好ましい。このような化合物として、例えば、α-ナフトールやβ-ナフトールが挙げられる。 Moreover, as a preferable phenolic compound other than the compound of the formula (IV) in which two aromatic rings are bonded via X, a phenolic compound in which a hydroxyl group is added to a polycyclic aromatic ring such as a naphthalene ring or an anthracene ring is used. Can be mentioned. Such a compound is preferable in that it exhibits heat resistance and high conductivity. Examples of such a compound include α-naphthol and β-naphthol.
 芳香族環を2個以上含むフェノール性化合物は、融点が室温以上又は、室温での沸点が200℃以上のフェノール性化合物が好ましい。特に好ましくは、2-、3-、又は4-ヒドロキシビフェニル、2-、3-、又は4-フェノキシフェノール、1-又は2-ナフトール等が挙げられる。 The phenolic compound containing two or more aromatic rings is preferably a phenolic compound having a melting point of room temperature or higher or a boiling point of 200 ° C. or higher at room temperature. Particularly preferred are 2-, 3-, or 4-hydroxybiphenyl, 2-, 3-, or 4-phenoxyphenol, 1- or 2-naphthol, and the like.
 ポリアニリン組成物に含まれる有機溶剤は、有機溶剤が実質的に水に混和しない溶剤(水不混和性有機溶剤)でも、水溶性有機溶剤でもよい。
 水不混和性有機溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、テトラリン、スチレン誘導体(例えばスチレン、ジビニルベンゼン等)等の芳香族溶剤、クロロホルム、ジクロロメタン等の含ハロゲン溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の炭素数4以上のケトン類、ペンタノール、ベンジルアルコール等の炭素数5以上のアルコール類、メチルメタクリレート、エチルメタクリレート、シクロヘキシルメタクリレート等のアクリル誘導体が挙げられる。
The organic solvent contained in the polyaniline composition may be a solvent in which the organic solvent is not substantially miscible with water (water-immiscible organic solvent) or a water-soluble organic solvent.
Examples of water-immiscible organic solvents include aromatic solvents such as toluene, xylene, ethylbenzene, tetralin, and styrene derivatives (such as styrene and divinylbenzene), halogen-containing solvents such as chloroform and dichloromethane, ethyl acetate, and butyl acetate. Ester solvents, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, ketones having 4 or more carbon atoms such as cyclohexanone, alcohols having 5 or more carbon atoms such as pentanol and benzyl alcohol, methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate, etc. An acrylic derivative is mentioned.
 水溶性有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、2-メトキシエタノール等の水溶性アルコール、アセトン、ガンマブチロラクトン等の水溶性ケトン、テトラヒドロフラン等の水溶性含酸素環誘導体、Nメチルピロリドン、ジメチルホルムアミド、ジメチルスルフォキシド等の、非プロトン性極性溶剤が挙げられる。 Examples of the water-soluble organic solvent include water-soluble alcohols such as methanol, ethanol, isopropyl alcohol, butanol and 2-methoxyethanol, water-soluble ketones such as acetone and gamma-butyrolactone, water-soluble oxygen-containing ring derivatives such as tetrahydrofuran, N-methyl Examples include aprotic polar solvents such as pyrrolidone, dimethylformamide, and dimethyl sulfoxide.
 本発明のポリアニリン複合体とフェノール性化合物は、2-ブタノール、2-ペンタノール、ベンジルアルコール等のアルコールに溶解する。アルコールは、トルエン等と異なり環境負荷低減の観点から好ましい。
 また、有機溶剤を用いるに当たり、水不混和性有機溶剤と水溶性有機溶剤との混合有機溶剤を99~50:1~50の質量比で用いることにより、本発明で得られるポリアニリン複合体溶液を保存する際に、ゲル等の発生を防止でき、長期保存する上から好ましい。
The polyaniline complex and phenolic compound of the present invention are soluble in alcohols such as 2-butanol, 2-pentanol, and benzyl alcohol. Alcohol is preferable from the viewpoint of reducing environmental burden unlike toluene.
In using the organic solvent, a mixed organic solvent of a water-immiscible organic solvent and a water-soluble organic solvent is used in a mass ratio of 99 to 50: 1 to 50, whereby the polyaniline complex solution obtained in the present invention is obtained. When storing, it is preferable in terms of long-term storage because it can prevent generation of gels and the like.
 有機溶剤中のポリアニリン複合体の割合は、有機溶剤の種類によるが、通常、900g/L以下であり、好ましくは0.01~300g/L以下の範囲である。ポリアニリン複合体の含有量が多すぎると、溶液状態が保持できなくなり、成形体を成形する際の取り扱いが困難になり、成形体の均一性が損なわれ、ひいては成形体の電気特性や機械的強度、透明性の低下を生じる。一方、ポリアニリン複合体の含有量が少なすぎると、後述する方法により成膜したとき、非常に薄い膜しか製造できず、均一な導電性膜の製造が難しくなる恐れがある。 The ratio of the polyaniline complex in the organic solvent is usually 900 g / L or less, preferably 0.01 to 300 g / L or less, depending on the type of the organic solvent. If the content of the polyaniline complex is too high, the solution state cannot be maintained, and it becomes difficult to handle the molded body, the uniformity of the molded body is impaired, and consequently the electrical properties and mechanical strength of the molded body. , Resulting in a decrease in transparency. On the other hand, if the content of the polyaniline complex is too small, only a very thin film can be produced when the film is formed by the method described later, which may make it difficult to produce a uniform conductive film.
 本発明のポリアニリン組成物は導電性であり、その導電性はポリアニリン複合体の性状や、用いるフェノール性水酸基を有する化合物の種類や添加量により幅広く制御可能であって、各種の用途に応じて使い分けることが可能であるが、通常では1.0S/cm以上、好ましくは、50S/cm以上、さらに好ましくは100S/cmである。 The polyaniline composition of the present invention is electrically conductive, and the conductivity can be widely controlled depending on the properties of the polyaniline complex and the type and amount of the compound having a phenolic hydroxyl group to be used. However, it is usually 1.0 S / cm or more, preferably 50 S / cm or more, and more preferably 100 S / cm.
 本発明のポリアニリン組成物には、目的に応じて他の樹脂、無機材料、硬化剤、又は可塑剤等を添加してもよい。
 他の樹脂は、例えば、バインダー基材や可塑剤、マトリックス基材等の目的で添加され、その具体例としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、塩素化ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等が挙げられる。好ましくは塩素化ポリオレフィンである。
 また樹脂の代わりに、また樹脂と共に、エポキシ樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂を形成し得る前駆体を用いてもよい。
Other resins, inorganic materials, curing agents, plasticizers and the like may be added to the polyaniline composition of the present invention depending on the purpose.
Other resins are added for the purpose of, for example, a binder base material, a plasticizer, a matrix base material, and specific examples thereof include, for example, polyolefins such as polyethylene and polypropylene, chlorinated polyolefins, polystyrenes, polyesters, polyamides, polyacetals. , Polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyvinyl alcohol and the like. A chlorinated polyolefin is preferred.
Moreover, you may use the precursor which can form thermosetting resins, such as an epoxy resin, a urethane resin, a phenol resin, with resin instead of resin.
 また本発明によれば、溶解可能な有機媒体としてスチレン、ジビニルベンゼン等のスチレン誘導体、あるいはメチルメタクリレート、エチルメタクリレート、シクロヘキシルメタクリレート等のアクリル誘導体を用いることができる。このことは、これら反応性官能基を有する有機媒体とポリアニリンを均質に混合、溶解させた後に、任意の方法でこれら反応性官能基を有する有機媒体を反応させることにより、導電性を有する各種の複合体が得られることを意味する。即ち、例えば、熱硬化型やUV硬化型の導電性硬化樹脂を、必要な用途に応じて提供できる。 Further, according to the present invention, styrene derivatives such as styrene and divinylbenzene, or acrylic derivatives such as methyl methacrylate, ethyl methacrylate, and cyclohexyl methacrylate can be used as the soluble organic medium. This is because the organic medium having these reactive functional groups and polyaniline are homogeneously mixed and dissolved, and then the organic medium having these reactive functional groups is reacted by an arbitrary method, whereby various kinds of conductive materials are obtained. It means that a complex is obtained. That is, for example, a thermosetting or UV curable conductive curable resin can be provided according to a required application.
 無機材料は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、例えば、シリカ(二酸化ケイ素)、チタニア(酸化チタン)、アルミナ(酸化アルミニウム)等が挙げられる。 Inorganic materials are added for the purpose of, for example, improving strength, surface hardness, dimensional stability and other mechanical properties. Specific examples thereof include silica (silicon dioxide), titania (titanium oxide), alumina ( Aluminum oxide) and the like.
 硬化剤は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、例えば、フェノール樹脂等の熱硬化剤、アクリレート系モノマーと光重合性開始剤による光硬化剤等が挙げられる。 The curing agent is added, for example, for the purpose of improving strength, surface hardness, dimensional stability and other mechanical properties, and specific examples thereof include, for example, thermosetting agents such as phenol resins, acrylate monomers and photopolymerization. Examples thereof include a photo-curing agent using a property initiator.
 可塑剤は、例えば、引張強度や曲げ強度等の機械的特性の向上等の目的で添加され、その具体例としては、例えば、フタル酸エステル類やリン酸エステル類等が挙げられる。 The plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength, and specific examples thereof include phthalates and phosphates.
 本発明の導電性ポリアニリン組成物は、置換若しくは非置換ポリアニリン複合体を以下のようにして製造してから、フェノール性化合物と反応させる。
 置換又は未置換アニリンを、有機酸又はその塩、及び無機酸又はその塩と共に、-10℃~20℃の温度において第一段の工程で重合し、さらに前記温度から5℃以上高い温度において4~2000w/mの撹拌動力で第二段以降の工程で重合して、有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体を製造する。
The conductive polyaniline composition of the present invention is produced by reacting with a phenolic compound after producing a substituted or unsubstituted polyaniline complex as follows.
The substituted or unsubstituted aniline is polymerized in the first step at a temperature of −10 ° C. to 20 ° C. with an organic acid or a salt thereof, and an inorganic acid or a salt thereof, and further at a temperature 5 ° C. or more higher than the above temperature. Polymerization is performed in the second and subsequent steps with a stirring power of ˜2000 w / m 3 to produce a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid.
 好ましくは、第一段の重合温度は-10℃~20℃であり、第二段以降の重合温度は15℃~40℃である。第二段以降の重合温度が第一段の重合温度に比較して、5℃以上、好ましくは20~30℃高い。第二段以降の重合温度によりドープ率を調整できる。即ち、重合温度を高くするとドープ率が理想値である0.5に近づき、さらに無機ドーパントのドープ率が増加する傾向がある。 Preferably, the polymerization temperature in the first stage is −10 ° C. to 20 ° C., and the polymerization temperature in the second stage and thereafter is 15 ° C. to 40 ° C. The polymerization temperature after the second stage is 5 ° C. or more, preferably 20 to 30 ° C. higher than the polymerization temperature of the first stage. The dope rate can be adjusted by the polymerization temperature after the second stage. That is, when the polymerization temperature is raised, the doping rate approaches the ideal value of 0.5, and the doping rate of the inorganic dopant tends to increase.
 好ましくは、第一段の撹拌動力は50~300w/mである。また、好ましくは、第二段以降の撹拌動力は4~1000w/mである。第二段以降の撹拌動力により分子量分布を調整できる。即ち、撹拌動力を小さくすると分子量分布が小さくなる傾向がある。 Preferably, the first stage stirring power is 50 to 300 w / m 3 . Preferably, the stirring power after the second stage is 4 to 1000 w / m 3 . The molecular weight distribution can be adjusted by the stirring power after the second stage. That is, when the stirring power is reduced, the molecular weight distribution tends to be reduced.
 尚、分子量は、重合に用いる酸化剤濃度、反応時間を変更することにより調整できる。
 各段の重合時間は適宜設定できるが、例えば、第一段の重合時間は5~25時間であり、第二段以降の各段の重合時間は0.5~4時間である。
In addition, molecular weight can be adjusted by changing the oxidizing agent density | concentration used for superposition | polymerization, and reaction time.
The polymerization time for each stage can be set as appropriate. For example, the polymerization time for the first stage is 5 to 25 hours, and the polymerization time for each stage after the second stage is 0.5 to 4 hours.
 ポリアニリン複合体の重合の段数には特に制限はないが、二段重合で効率的に製造できる。
 このような多段重合でポリアニリン複合体を製造すると、安定して再現良くポリアニリン複合体を製造できる。
The number of stages of polymerization of the polyaniline complex is not particularly limited, but can be efficiently produced by two-stage polymerization.
When a polyaniline complex is produced by such multistage polymerization, a polyaniline complex can be produced stably and reproducibly.
 さらに、水不混和性有機溶剤を用いて製造すると、水不混和性有機溶剤と水溶液の二相系で、ポリアニリン複合体を製造できる。
 さらに水不混和性有機溶剤と水溶液の二相系で製造する場合、必要に応じて界面活性剤を添加し、反応速度の向上や収率向上を図ることができる。この場合、用いる界面活性剤には特に制限はなく、アニオン性、カチオン性、ノニオン性界面活性剤が広く好適に用いられる。この中で好ましいのはカチオン性及びノニオン性界面活性剤である。
Furthermore, when manufactured using a water-immiscible organic solvent, a polyaniline complex can be manufactured in a two-phase system of a water-immiscible organic solvent and an aqueous solution.
Furthermore, when manufacturing by the two-phase system of a water-immiscible organic solvent and aqueous solution, surfactant can be added as needed and the reaction rate and a yield improvement can be aimed at. In this case, the surfactant to be used is not particularly limited, and anionic, cationic, and nonionic surfactants are widely and suitably used. Of these, cationic and nonionic surfactants are preferred.
 置換又は未置換アニリンに対する有機酸又はその塩、及び無機酸又はその塩の添加量は、適宜設定できるが、例えば、置換又は未置換アニリンに対して、有機酸又はその塩が1~50モル%及び無機酸又はその塩が10~100モル%である。
 ポリアニリン複合体は、例えば化学酸化重合法や電解重合法により重合する。
The addition amount of the organic acid or salt thereof and the inorganic acid or salt thereof with respect to the substituted or unsubstituted aniline can be appropriately set. For example, the organic acid or salt thereof is 1 to 50 mol% with respect to the substituted or unsubstituted aniline. And 10 to 100 mol% of inorganic acid or salt thereof.
The polyaniline complex is polymerized by, for example, a chemical oxidative polymerization method or an electrolytic polymerization method.
 有機酸又はその塩は、好ましくは、下記式(I’)で示される有機プロトン酸又はその塩である。
  M(XARn)m                    (I’)
{式中、Mは、水素原子又は有機若しくは無機遊離基であり、Xは、酸性基であり、Aは、置換基を含んでもよい炭化水素基であり、Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、-CO(COOR)[ここで、Rは炭素数が4以上の置換基を含んでもよい炭化水素基、シリル基、-(RO)x-R基、又は-(OSiR )x-OR基(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である]であり、nは2以上の整数であり、mは、Mの価数である}
The organic acid or a salt thereof is preferably an organic protonic acid or a salt thereof represented by the following formula (I ′).
M (XARn) m (I ′)
{Wherein M is a hydrogen atom or an organic or inorganic free radical, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently- R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), —CO (COOR 1 ) [wherein R 1 is a hydrocarbon group which may contain a substituent having 4 or more carbon atoms. , A silyl group, — (R 2 O) x—R 3 group, or — (OSiR 3 2 ) x—OR 3 group (R 2 is an alkylene group, and R 3 may be the same or different hydrocarbon groups, respectively. And x is an integer greater than or equal to 1)], n is an integer greater than or equal to 2, and m is the valence of M}
 上記式(I’)において、Mは、水素原子又は有機若しくは無機遊離基である。有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基等が挙げられ、無機遊離基としては、例えば、ナトリウム、リチウム、カリウム、セシウム、アンモニウム等が挙げられる。mは、Mの価数である。
 X、A、R、nは上記式(I)と同じである。
In the above formula (I ′), M is a hydrogen atom or an organic or inorganic free radical. Examples of the organic free radical include a pyridinium group, an imidazolium group, and an anilinium group, and examples of the inorganic free radical include sodium, lithium, potassium, cesium, ammonium, and the like. m is the valence of M.
X, A, R, and n are the same as in the above formula (I).
 式(I’)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、スルホフタール酸エステル、下式(II’)で表される化合物が好ましく利用できる。
    M(XCR(CR COOR)COOR    (II’)
 上記式(II’)において、Mは、式(I’)と同じである。X、R、R、R、Rは、上記式(II)と同じである。pは、上記Mの価数である。
 上記有機プロトン酸又はその塩(II’)は、下記式(III’)で示されるスルホコハク酸誘導体(以下、スルホコハク酸誘導体(III’)という)であることがさらに好ましい。
As the compound represented by the formula (I ′), dialkylbenzene sulfonic acid, dialkyl naphthalene sulfonic acid, sulfophthalic acid ester, and a compound represented by the following formula (II ′) can be preferably used.
M (XCR 4 (CR 5 2 COOR 6 ) COOR 7 ) p (II ′)
In the above formula (II ′), M is the same as in the formula (I ′). X, R 4, R 5, R 6, R 7 are the same as in the formula (II). p is the valence of M.
The organic protonic acid or a salt thereof (II ′) is more preferably a sulfosuccinic acid derivative represented by the following formula (III ′) (hereinafter referred to as sulfosuccinic acid derivative (III ′)).
   M(OSCH(CHCOOR12)COOR13  (III’) 
 上記式(III’)において、M及びmは、上記式(I’)と同じである。R12及びR13は、上記式(III)と同じである。
 ポリアニリン複合体を得た後、フェノール性化合物と反応させる。フェノール性化合物を、固体状態又は液状で加えても、水不混和性溶剤中に溶解又は懸濁した状態で添加してもよい。好ましくは、添加後も溶解した状態になるように適切な溶剤添加法を選択する。
M (O 3 SCH (CH 2 COOR 12 ) COOR 13 ) m (III ′)
In the above formula (III ′), M and m are the same as in the above formula (I ′). R 12 and R 13 are the same as in the above formula (III).
After obtaining the polyaniline complex, it is reacted with a phenolic compound. The phenolic compound may be added in a solid state or in a liquid state, or may be added in a state dissolved or suspended in a water-immiscible solvent. Preferably, an appropriate solvent addition method is selected so as to be in a dissolved state even after the addition.
 ポリアニリン複合体を水不混和性有機溶剤中で製造した場合は、水不混和性有機溶剤に溶解した状態のポリアニリン複合体に、フェノール性化合物を添加して製造できる。 When the polyaniline complex is produced in a water-immiscible organic solvent, it can be produced by adding a phenolic compound to the polyaniline complex dissolved in the water-immiscible organic solvent.
 本発明のポリアニリン組成物から導電性成形体が得られる。具体的には、本発明のポリアニリン組成物を成形し有機溶剤を除去することにより、導電性成形体が得られる。 A conductive molded body can be obtained from the polyaniline composition of the present invention. Specifically, a conductive molded body is obtained by molding the polyaniline composition of the present invention and removing the organic solvent.
 本発明の成形体が膜又はフィルムである場合、これらの厚さは、通常1mm以下、好ましくは10nm~50μmの範囲である。この範囲の厚みの膜は、成膜時にひび割れが生じにくく、電気特性が均一である等の利点を有する。
 特に、本発明の導電性ポリアニリン組成物を成膜すると、強靭で柔軟な自立性の導電性フィルムが得られる。このフィルムは、引張り速度1mm/分での引張り伸びが10%以上にもなり得る。
When the molded article of the present invention is a film or a film, the thickness thereof is usually 1 mm or less, preferably in the range of 10 nm to 50 μm. A film having a thickness in this range is advantageous in that it does not easily crack during film formation and has uniform electrical characteristics.
In particular, when the conductive polyaniline composition of the present invention is formed into a film, a tough and flexible self-supporting conductive film can be obtained. This film can have a tensile elongation of 10% or more at a pulling speed of 1 mm / min.
 本発明の導電性ポリアニリン組成物を、所望の形状を有するガラスや樹脂フィルム、シート、不織布等の基材に塗布し、有機溶剤を除去することによって導電性膜(表面導電性物品)を製造できる。 A conductive film (surface conductive article) can be produced by applying the conductive polyaniline composition of the present invention to a substrate such as glass, a resin film, a sheet or a nonwoven fabric having a desired shape and removing the organic solvent. .
 組成物を基材に塗布する方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコード法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等、公知の一般的な方法を用いることができる。 As a method for applying the composition to a substrate, known general methods such as a casting method, a spray method, a dip coating method, a doctor blade method, a barcode method, a spin coating method, an electrospinning method, screen printing, and a gravure printing method are used. Can be used.
 有機溶剤を除去するには、加熱して有機溶剤を揮発させればよい。有機溶剤を揮発させる方法としては、例えば、空気気流下250℃以下、好ましくは50~200℃の温度で加熱し、さらに、必要に応じて、減圧下に加熱する。尚、加熱温度及び加熱時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。 In order to remove the organic solvent, the organic solvent may be volatilized by heating. As a method for volatilizing the organic solvent, for example, heating is performed at a temperature of 250 ° C. or less, preferably 50 to 200 ° C. in an air stream, and further, heating is performed under reduced pressure as necessary. The heating temperature and the heating time are not particularly limited and may be appropriately selected according to the material used.
 また、本発明のポリアニリン組成物は、基材と混合して導電性物品としてもよい。基材としてポリエチレンやポリプロピレン等のポリオレフィン、塩素化ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等の熱可塑性樹脂、又はエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂等が挙げられる。 Further, the polyaniline composition of the present invention may be mixed with a base material to form a conductive article. Thermoplastics such as polyolefin such as polyethylene and polypropylene, chlorinated polyolefin, polystyrene, polyester, polyamide, polyacetal, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyvinyl alcohol Examples thereof include thermosetting resins such as resins, epoxy resins, phenol resins, and urethane resins.
 さらに、本発明の成形体は、基材を有しない自己支持型成形体とすることもできる。自己支持型成形体とする場合には、好ましくは、組成物が上述した他の樹脂を含むようにすると、所望の機械的強度を有する成形体を得ることができる。
[実施例]
Furthermore, the molded article of the present invention can be a self-supporting molded article having no substrate. In the case of a self-supporting molded body, preferably, a molded body having a desired mechanical strength can be obtained when the composition contains the other resin described above.
[Example]
実施例1
[ポリアニリン複合体の製造]
 AOT(ジイソオクチルスルホコハク酸ナトリウム)1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。
Example 1
[Production of polyaniline complex]
1.8 g of AOT (sodium diisooctylsulfosuccinate) was dissolved in 50 mL of toluene, and the solution was put into a 500 mL separable flask placed under a nitrogen stream, and 1.8 mL of aniline was further added to this solution. Thereafter, 150 mL of 1N hydrochloric acid was added to the solution, and the solution temperature was cooled to 5 ° C.
 溶液内温が5℃に到達した時点で、テフロン(登録商標)製アンカー翼にて180w/mの攪拌強度で攪拌を開始し、ここに、3.6gの過硫酸アンモニウムを1N塩酸50mLに溶解した溶液を滴下ロートを用いて、2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、トルエン125mLを追加し、攪拌強度12w/mの条件で、反応温度を25℃まで上昇させ4時間、反応を継続した。 When the internal temperature of the solution reached 5 ° C., stirring was started with a stirring strength of 180 w / m 3 with a Teflon (registered trademark) anchor blade, and 3.6 g of ammonium persulfate was dissolved in 50 mL of 1N hydrochloric acid. The solution was added dropwise using a dropping funnel over 2 hours. The reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 18 hours from the start of dropping. Thereafter, 125 mL of toluene was added, and the reaction temperature was increased to 25 ° C. under the condition of stirring intensity of 12 w / m 3 , and the reaction was continued for 4 hours.
 その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体トルエン溶液を得た。 Thereafter, the aqueous phase side separated into two phases by standing was separated, and the toluene phase side was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to obtain a polyaniline complex toluene solution.
 この複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.25gのポリアニリン複合体を得た。 Some insoluble matter contained in this complex solution was removed with # 5C filter paper, and a toluene solution of the polyaniline complex was recovered. This solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate and remove volatile components to obtain 1.25 g of a polyaniline complex.
[ポリアニリン複合体の特性及びポリアニリン組成物]
 得られたポリアニリン複合体1gを20mlのトルエンに再度溶解し、分液ロート中で、水洗を5回実施し不純物を完全に除去した。その後、トルエンを蒸発乾固し、ポリアニリン複合体を回収して元素分析に供し、炭素、水素、窒素、硫黄、塩素の含量を測定した。この測定から、スルホコハク酸、及び塩素の、ポリアニリン骨格に対するドープ率を算出し、その和をとることで有機酸、無機酸の総ドープ率とした。結果を表1,2に示す。
[Characteristics of polyaniline composite and polyaniline composition]
1 g of the obtained polyaniline complex was dissolved again in 20 ml of toluene, and washed with water 5 times in a separatory funnel to completely remove impurities. Thereafter, toluene was evaporated to dryness, the polyaniline complex was recovered and subjected to elemental analysis, and the contents of carbon, hydrogen, nitrogen, sulfur and chlorine were measured. From this measurement, the dope rate of sulfosuccinic acid and chlorine with respect to the polyaniline skeleton was calculated, and the sum was taken as the total dope rate of organic acid and inorganic acid. The results are shown in Tables 1 and 2.
 同時に得られたポリアニリン複合体を1gとり、20mlのトルエンに再溶解した。この溶液を、1N水酸化ナトリウム水溶液40mlに混合し、析出分を濾過、回収した。この固形分を0.01モルのLiBr/N-メチルピロリドン溶液に溶解させ、60℃、流速0.35ml/分の条件で、GPC測定を行いポリスチレン(PS)換算法にて分子量、分子量分布を測定した(使用カラム:TOSOH TSK-GEL GMHHR-H)。結果を表2に示す。 1 g of the polyaniline complex obtained at the same time was taken and redissolved in 20 ml of toluene. This solution was mixed with 40 ml of 1N aqueous sodium hydroxide solution, and the precipitate was collected by filtration. This solid content was dissolved in 0.01 mol of LiBr / N-methylpyrrolidone solution, GPC measurement was performed at 60 ° C. and a flow rate of 0.35 ml / min, and the molecular weight and molecular weight distribution were determined by polystyrene (PS) conversion method. Measured (column used: TOSOH TSK-GEL GMHHR-H). The results are shown in Table 2.
 さらに、得られたポリアニリン複合体1gを20mlのトルエンに再度溶解し、均一なポリアニリン複合体溶液を調製し、ITO(インジウム錫酸化物)基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。
 上記と同様にポリアニリン複合体のトルエン溶液を調整し、さらにm-クレゾール2mlを添加してポリアニリン組成物を得た。結果を表2に示す。
Further, 1 g of the obtained polyaniline complex is dissolved again in 20 ml of toluene to prepare a uniform polyaniline complex solution, and is formed on an ITO (indium tin oxide) substrate by a spin coating method. Intrinsic conductivity was measured.
A toluene solution of the polyaniline complex was prepared in the same manner as described above, and 2 ml of m-cresol was further added to obtain a polyaniline composition. The results are shown in Table 2.
 得られたポリアニリン組成物溶液をITO基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。結果を表2に示す。 The obtained polyaniline composition solution was formed on an ITO substrate by a spin coating method, and the intrinsic conductivity was measured by a four-terminal method. The results are shown in Table 2.
実施例2
 実施例1にて一段目の重合温度を0℃に変更した以外は、実施例1と同様の操作を行いポリアニリン複合体を得た。さらにこのポリアニリン複合体を用いて実施例1と同様の手順、操作にて、有機酸、無機酸のドープ率、分子量、分子量分布及びポリアニリン複合体の固有伝導率、またフェノール性化合物との組成物の固有伝導率を測定した。結果を表1,2に示す。
Example 2
A polyaniline complex was obtained in the same manner as in Example 1 except that the polymerization temperature in the first stage was changed to 0 ° C. in Example 1. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
実施例3
 実施例1にて二段目の重合温度を10℃とした以外は、実施例1と同様の操作を行いポリアニリン複合体を得た。さらにこのポリアニリン複合体を用いて実施例1と同様の手順、操作にて、有機酸、無機酸のドープ率、分子量、分子量分布及びポリアニリン複合体の固有伝導率、またフェノール性化合物との組成物の固有伝導率を測定した。結果を表1,2に示す。
Example 3
A polyaniline complex was obtained in the same manner as in Example 1 except that the polymerization temperature in the second stage was 10 ° C. in Example 1. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
実施例4
 実施例1にて用いる塩酸濃度を0.5Nに変更した以外は、実施例1と同様の操作を行いポリアニリン複合体を得た。さらにこのポリアニリン複合体を用いて実施例1と同様の手順、操作にて、有機酸、無機酸のドープ率、分子量、分子量分布及びポリアニリン複合体の固有伝導率、またフェノール性化合物との組成物の固有伝導率を測定した。結果を表1,2に示す。
Example 4
A polyaniline complex was obtained in the same manner as in Example 1 except that the hydrochloric acid concentration used in Example 1 was changed to 0.5N. Furthermore, using this polyaniline composite, the same procedures and operations as in Example 1 were followed, and the organic acid, inorganic acid dope rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline composite, and a composition with a phenolic compound The intrinsic conductivity of was measured. The results are shown in Tables 1 and 2.
比較例1
 AOT1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。
溶液内温が5℃に到達した時点で、テフロン(登録商標)製アンカー翼にて180w/mの攪拌強度で攪拌を開始し、ここに、3.6gの過硫酸アンモニウムを1N塩酸50mLに溶解した溶液を滴下ロートを用いて、2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体トルエン溶液を得た。
Comparative Example 1
AOT 1.8g was melt | dissolved in toluene 50mL, the solution was put into the 500 mL separable flask put under nitrogen stream, and 1.8 mL aniline was further added to this solution. Thereafter, 150 mL of 1N hydrochloric acid was added to the solution, and the solution temperature was cooled to 5 ° C.
When the internal temperature of the solution reached 5 ° C., stirring was started with a stirring strength of 180 w / m 3 with a Teflon (registered trademark) anchor blade, and 3.6 g of ammonium persulfate was dissolved in 50 mL of 1N hydrochloric acid. The solution was added dropwise using a dropping funnel over 2 hours. The reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 18 hours from the start of dropping. Thereafter, the aqueous phase separated into two phases by standing was separated, and the toluene phase was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to obtain a polyaniline complex toluene solution.
 この複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.05gのポリアニリン複合体を得た。 Some insoluble matter contained in this complex solution was removed with # 5C filter paper, and a toluene solution of the polyaniline complex was recovered. This solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate and remove volatile components, whereby 1.05 g of a polyaniline complex was obtained.
 得られたポリアニリン複合体について、実施例1と同様にして固有伝導率、ドープ率、分子量、分子量分布を測定した。またフェノール性化合物との組成物の固有伝導率を測定した。結果を表1,2に示す。 The intrinsic conductivity, doping rate, molecular weight, and molecular weight distribution of the obtained polyaniline composite were measured in the same manner as in Example 1. Moreover, the intrinsic conductivity of the composition with the phenolic compound was measured. The results are shown in Tables 1 and 2.
比較例2
 AOT1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。
Comparative Example 2
AOT 1.8g was melt | dissolved in toluene 50mL, the solution was put into the 500 mL separable flask put under nitrogen stream, and 1.8 mL aniline was further added to this solution. Thereafter, 150 mL of 1N hydrochloric acid was added to the solution, and the solution temperature was cooled to 5 ° C.
 溶液内温が5℃に到達した時点で、テフロン(登録商標)製アンカー翼にて180w/mの攪拌強度で攪拌を開始し、ここに、3.6gの過硫酸アンモニウムを1N塩酸50mLに溶解した溶液を滴下ロートを用いて、2時間かけて滴下した。滴下開始から4時間、溶液内温を5℃に保ったまま反応を実施した。 When the internal temperature of the solution reached 5 ° C., stirring was started with a stirring strength of 180 w / m 3 with a Teflon (registered trademark) anchor blade, and 3.6 g of ammonium persulfate was dissolved in 50 mL of 1N hydrochloric acid. The solution was added dropwise using a dropping funnel over 2 hours. The reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 4 hours from the start of dropping.
 その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体トルエン溶液を得た。 Thereafter, the aqueous phase side separated into two phases by standing was separated, and the toluene phase side was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to obtain a polyaniline complex toluene solution.
 この複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、0.55gのポリアニリン複合体を得た。 Some insoluble matter contained in this complex solution was removed with # 5C filter paper, and a toluene solution of the polyaniline complex was recovered. The solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate and remove volatile components to obtain 0.55 g of a polyaniline complex.
 得られたポリアニリン複合体について、実施例1と同様にしてドープ率、分子量、分子量分布、固有伝導率を測定した。またフェノール性化合物との組成物の固有伝導率を測定した。結果を表1,2に示す。 For the obtained polyaniline composite, the doping rate, molecular weight, molecular weight distribution, and intrinsic conductivity were measured in the same manner as in Example 1. Moreover, the intrinsic conductivity of the composition with the phenolic compound was measured. The results are shown in Tables 1 and 2.
比較例3
 実施例1で、重合に用いるAOTの量を0.9gに変更した以外は、実施例1と同様の操作を行いポリアニリン複合体の重合を実施した。しかしながら、この場合はトルエン相側から殆ど、ポリアニリン複合体が回収されず、大部分が不溶分として回収された。この不溶分を濾別し、水にて数回洗浄し乾燥した後、さらにヘキサンで2回洗浄し精製した。このものを実施例1と同様に元素分析に供し、ドープ率の測定を実施した。
Comparative Example 3
Polymerization of the polyaniline complex was carried out in the same manner as in Example 1 except that the amount of AOT used for polymerization was changed to 0.9 g in Example 1. However, in this case, the polyaniline complex was hardly recovered from the toluene phase side, and most was recovered as an insoluble matter. This insoluble matter was separated by filtration, washed several times with water and dried, and further purified twice by washing with hexane. This was subjected to elemental analysis in the same manner as in Example 1, and the dope rate was measured.
 同時に得られたポリアニリン複合体を実施例1と同様に1N水酸化ナトリウム水溶液に混合し、再回収後、GPC測定に供し、分子量、分子量分布を測定した。
 さらに、得られたポリアニリン複合体を実施例1と同様にトルエンに再溶解させ固有導電率の測定を試みたが、殆どが溶解せず、測定不能であった。
The polyaniline complex obtained at the same time was mixed with a 1N aqueous sodium hydroxide solution in the same manner as in Example 1, and after re-recovery, it was subjected to GPC measurement to measure molecular weight and molecular weight distribution.
Further, the obtained polyaniline complex was redissolved in toluene in the same manner as in Example 1 and an attempt was made to measure the intrinsic conductivity.
比較例4
 実施例1で、二段目の重合時の攪拌強度を2200w/mに変更した以外は、実施例1と同様の操作にてポリアニリン複合体を得た。その後、実施例1と同様な手順、操作にて、有機酸、無機酸のトープ率、分子量、分子量分布及びポリアニリン複合体の固有伝導率、またフェノール性化合物との組成物の固有伝導率を測定した。尚、このものはトルエンへの再溶解性が悪く、ごく一部、不溶成分が確認された。
Comparative Example 4
A polyaniline composite was obtained in the same manner as in Example 1 except that the stirring strength in the second stage polymerization was changed to 2200 w / m 3 in Example 1. Thereafter, the organic acid and inorganic acid topo rate, molecular weight, molecular weight distribution, intrinsic conductivity of the polyaniline complex, and intrinsic conductivity of the composition with the phenolic compound were measured by the same procedure and operation as in Example 1. did. This product was poor in re-solubility in toluene, and only a part of the insoluble component was confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から、実施例1~4におけるポリアニリン複合体にフェノール性化合物を添加すると飛躍的に固有伝導率が向上すること、また、比較例1~4より、フェノール性化合物の添加効果は、得られたポリアニリン複合体のドープ率、そのうちの無機ドーパントの含量、及び分子量、分子量分布といったポリマーの構造因子に依存することが明らかである。 From Table 2, the intrinsic conductivity is drastically improved when the phenolic compound is added to the polyaniline composite in Examples 1 to 4, and the addition effect of the phenolic compound is obtained from Comparative Examples 1 to 4. It is apparent that the polyaniline complex depends on the dope rate, the content of the inorganic dopant, the molecular weight and the molecular weight distribution of the polymer.
実施例5
 実施例1で得られたポリアニリン複合体1gを20mlのトルエンに再度溶解し、均一なポリアニリン複合体溶液を調製した。ここに、m-クレゾールの代わりに2-ナフトール1gを添加して、ポリアニリン組成物を得た。この溶液をITO基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。得られた塗布膜の固有伝導率は108S/cmであった。
Example 5
1 g of the polyaniline complex obtained in Example 1 was dissolved again in 20 ml of toluene to prepare a uniform polyaniline complex solution. Here, 1 g of 2-naphthol was added instead of m-cresol to obtain a polyaniline composition. This solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The obtained coating film had an intrinsic conductivity of 108 S / cm.
実施例6
 実施例5で、2-ナフトールの代わりに、2-メチレンビス(4-メチルフェノール)1gを用いた以外は、実施例5と同様な操作を行い、ポリアニリン組成物を得た。この溶液をITO基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。得られた塗布膜の固有伝導率は46S/cmであった。
Example 6
A polyaniline composition was obtained in the same manner as in Example 5, except that 1 g of 2-methylenebis (4-methylphenol) was used instead of 2-naphthol. This solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The obtained coating film had an intrinsic conductivity of 46 S / cm.
 実施例5,6より、本発明でのフェノール性化合物の役割は、単なる溶剤としての機能ではなく、ポリアニリン複合体に分子相互作用を及ぼし、高い固有伝導率を有する組成物を形成せしめることであることが、明らかである。 From Examples 5 and 6, the role of the phenolic compound in the present invention is not a function as a mere solvent, but a molecular interaction with the polyaniline complex to form a composition having a high intrinsic conductivity. It is clear.
実施例7
 実施例1で得られたポリアニリン複合体1gをアルコール溶剤20mlに溶解させた以外は、実施例1と同様な操作を行い、固有伝導率を測定した。用いた溶剤と得られた固有伝導率を表3に示す。
Example 7
The specific conductivity was measured in the same manner as in Example 1 except that 1 g of the polyaniline complex obtained in Example 1 was dissolved in 20 ml of an alcohol solvent. Table 3 shows the solvents used and the intrinsic conductivity obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例8
 実施例1で得られたポリアニリン複合体1gを、20mlのトルエン溶液に再度溶解し、ポリアニリン複合体溶液を調製し、さらにm-クレゾール2mlを添加してポリアニリン組成物を得た。
 この組成物をガラス基板上、14mm×52mmの範囲に展開し、空気気流下、80℃で30分間乾燥し、厚さ16μmの導電性膜を作成した。得られた導電性膜を、引張り試験機を用いて、DIN53504-53に準拠し、引張り速度1mm/min.にて引張り試験を実施した。その結果、破断伸びは27%であった。
Example 8
1 g of the polyaniline complex obtained in Example 1 was dissolved again in 20 ml of toluene solution to prepare a polyaniline complex solution, and further 2 ml of m-cresol was added to obtain a polyaniline composition.
This composition was spread on a glass substrate in a range of 14 mm × 52 mm, and dried at 80 ° C. for 30 minutes in an air stream to form a conductive film having a thickness of 16 μm. The obtained conductive film was measured using a tensile tester in accordance with DIN 53504-53, with a tensile speed of 1 mm / min. A tensile test was carried out. As a result, the elongation at break was 27%.
実施例9
 実施例8で得られたポリアニリン組成物をスピンコート法によりガラス基板に塗布し、この基板を窒素雰囲気下、105℃、500時間保持して表面抵抗値の変化を測定した。結果を表4に示す。
Example 9
The polyaniline composition obtained in Example 8 was applied to a glass substrate by a spin coating method, and this substrate was held at 105 ° C. for 500 hours in a nitrogen atmosphere to measure a change in surface resistance value. The results are shown in Table 4.
実施例10
 実施例1で得られたポリアニリン複合体をトルエンに溶解させ、5重量%のポリアニリン複合体溶液を調製した。この溶液5gに塩素化ポリエチレン樹脂スーパークロンHE-505(日本製紙ケミカル株式会社製)を1.25g添加し、m-クレゾール2mLを添加して均一な溶液とし、ポリアニリン組成物を得た。
Example 10
The polyaniline complex obtained in Example 1 was dissolved in toluene to prepare a 5 wt% polyaniline complex solution. To 5 g of this solution, 1.25 g of chlorinated polyethylene resin Super Clone HE-505 (manufactured by Nippon Paper Chemicals Co., Ltd.) was added, and 2 mL of m-cresol was added to obtain a uniform solution to obtain a polyaniline composition.
 0.3mm厚スーパーピュアレイシート(SG-140TC、出光ユニテック社製)に上記で調製した組成物をバーコーターを用いて塗布し、80℃のオーブン中で5分間乾燥し、導電シートを得た。このシートの表面抵抗は1.0×10Ω/□であった。 The composition prepared above was applied to a 0.3 mm thick super pure array sheet (SG-140TC, manufactured by Idemitsu Unitech) using a bar coater and dried in an oven at 80 ° C. for 5 minutes to obtain a conductive sheet. . The surface resistance of this sheet was 1.0 × 10 2 Ω / □.
 さらに、この溶液をスピンコート法によりガラス基板に塗布し、この基板を窒素雰囲気下、105℃、500時間保持して表面抵抗値の変化を測定した。結果を表4に示す。 Further, this solution was applied to a glass substrate by a spin coating method, and this substrate was held at 105 ° C. for 500 hours in a nitrogen atmosphere to measure a change in surface resistance value. The results are shown in Table 4.
実施例11
 実施例10にて塩素化ポリエチレン樹脂として、スーパークロンHE505の代わりに、HE910(日本製紙ケミカル株式会社製)を用いたこと以外は実施例10と同様な操作を行い、窒素雰囲気下、105℃、500時間保持して表面抵抗値の変化を測定した。結果を表4に示す。
 表4に示すように、塩素化ポリオレフィンを添加したポリアニリン組成物では、大幅に高温暴露下での抵抗安定性が改善されている。
Example 11
The same operation as in Example 10 was performed except that HE910 (manufactured by Nippon Paper Chemicals Co., Ltd.) was used as the chlorinated polyethylene resin in Example 10 instead of Super Clone HE505, under a nitrogen atmosphere at 105 ° C., The change of the surface resistance value was measured by holding for 500 hours. The results are shown in Table 4.
As shown in Table 4, the resistance stability under high temperature exposure is greatly improved in the polyaniline composition to which chlorinated polyolefin is added.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例12
(1)3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウムの合成
 アルゴンガス気流下、4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキシル)エステル(東京化成社製)80gとイソプロピルアルコール900mLを仕込み、亜硫酸水素ナトリウム(和光純薬製)42.3gの水660mL溶液を添加した。この溶液を還流の温度まで加熱し、80~83℃で16時間攪拌した。この間、還流開始から、1~5時間後までの1時間毎、その後、9時間後、10時間後に2,2’-アゾビス(イソブチロニトリル)(和光純薬製)1.66gをそれぞれ添加した。反応液を室温まで冷却したのち、減圧下に濃縮を行った。濃縮残渣を酢酸エチル/ヘキサン混合溶液に1Lに溶解し、シリカゲル250gを加えて攪拌し、溶液を濾別した。さらに、シリカゲルから1Lの酢酸エチル/ヘキサン溶液で2回抽出を行い、濾液を合せて減圧下に濃縮した。この濃縮液をカラムクロマトグラフィ(シリカゲル1500g、展開溶媒:酢酸エチル/ヘキサン)で精製し、精製物を無水硫酸ナトリウムで乾燥後、溶剤を減圧留去することで、3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム(下記式に示す化合物AのNa塩)52.4gを得た。
Figure JPOXMLDOC01-appb-C000006
Example 12
(1) Synthesis of sodium 3,4-bis [(2-ethylhexyl) oxycarbonyl] cyclohexanesulfonate 4-cyclohexene-1,2-dicarboxylic acid di (2-ethylhexyl) ester (manufactured by Tokyo Chemical Industry Co., Ltd.) under an argon gas stream 80 g and 900 mL of isopropyl alcohol were charged, and a solution of 42.3 g of sodium hydrogen sulfite (manufactured by Wako Pure Chemical Industries, Ltd.) in 660 mL of water was added. The solution was heated to reflux temperature and stirred at 80-83 ° C. for 16 hours. During this time, 1.66 g of 2,2′-azobis (isobutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) was added every hour from the start of reflux to 1 to 5 hours later, then 9 hours and 10 hours later. did. The reaction solution was cooled to room temperature and then concentrated under reduced pressure. The concentrated residue was dissolved in 1 L of an ethyl acetate / hexane mixed solution, 250 g of silica gel was added and stirred, and the solution was separated by filtration. Further, extraction was performed twice from silica gel with 1 L of ethyl acetate / hexane solution, and the filtrates were combined and concentrated under reduced pressure. This concentrated solution was purified by column chromatography (silica gel 1500 g, developing solvent: ethyl acetate / hexane), the purified product was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 3,4-bis [(2- Ethylhexyl) oxycarbonyl] sodium cyclohexanesulfonate (Na salt of compound A represented by the following formula) was obtained 52.4 g.
Figure JPOXMLDOC01-appb-C000006
(2)ポリアニリン複合体及び組成物の製造
 実施例1にてAOT1.8gの代わりに、上記(1)で合成した3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム2.0gを用いた他は、実施例1と全く同様の操作、手順にてポリアニリン複合体を得、有機酸、無機酸のドープ率、分子量、分子量分布、固有伝導率を測定した。またフェノール性化合物との組成物の固有伝導率を測定した。結果を表5に示す。表5で見るように、本発明においては、AOTに代表されるスルホコハク酸以外の有機酸を用いても、高導電性の導電性組成物が得ることができる。
(2) Production of polyaniline complex and composition Sodium 3,4-bis [(2-ethylhexyl) oxycarbonyl] cyclohexanesulfonate synthesized in the above (1) instead of 1.8 g of AOT in Example 1. Except for using 0 g, a polyaniline composite was obtained by the same operation and procedure as in Example 1, and the doping rate, molecular weight, molecular weight distribution, and intrinsic conductivity of organic acid and inorganic acid were measured. Moreover, the intrinsic conductivity of the composition with the phenolic compound was measured. The results are shown in Table 5. As can be seen from Table 5, in the present invention, a highly conductive conductive composition can be obtained even when an organic acid other than sulfosuccinic acid represented by AOT is used.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例13
 実施例1で得られたポリアニリン複合体をクロロホルムに溶解させ、5重量%のポリアニリン複合体溶液を調製した。その溶液200gに重量平均分子量(Mw)が900000のポリエチレンオキサイド(Aldrich)を6g添加し、m-クレゾール20g及びイソプロピルアルコール150gを添加して均一な溶液とし、組成物を得た。
Example 13
The polyaniline complex obtained in Example 1 was dissolved in chloroform to prepare a 5 wt% polyaniline complex solution. To 200 g of the solution, 6 g of polyethylene oxide (Aldrich) having a weight average molecular weight (Mw) of 900,000 was added, and 20 g of m-cresol and 150 g of isopropyl alcohol were added to obtain a uniform solution to obtain a composition.
 この溶液をNanospider NS LAB 200S(Elmarco社製)を用い、電極間160mm、電圧50kV、シリンダー回転数3.5rpm、巻取り速度8cm/minにて、エレクトロスピニングをおこない,直径100nm~300nmの糸状の組成物を得た。基材にはそれぞれ厚み0.3mm、幅40cmであるポリプロピレン製シート及び目付け20g/m、幅40cmであるポリプロピレン製不織布を用いた。ポリプロピレン製シート及びポリプロピレン製不織布へのポリアニリン組成物の付着量をエレクトロスピニング前後の重量差を測定することにより求めた。その結果、ポリアニリン組成物の付着量は、いずれも0.4~0.8g/mであった。 This solution was electrospun using Nanospider NS LAB 200S (manufactured by Elmarco) at a distance between electrodes of 160 mm, a voltage of 50 kV, a cylinder rotation speed of 3.5 rpm, and a winding speed of 8 cm / min. A composition was obtained. A polypropylene sheet having a thickness of 0.3 mm and a width of 40 cm and a polypropylene nonwoven fabric having a basis weight of 20 g / m 2 and a width of 40 cm were used as the base material. The amount of the polyaniline composition attached to the polypropylene sheet and the polypropylene nonwoven fabric was determined by measuring the weight difference before and after electrospinning. As a result, the adhesion amount of the polyaniline composition was 0.4 to 0.8 g / m 2 in all cases.
実施例14
 実施例1で得られたポリアニリン複合体をクロロホルムに溶解させ、5重量%のポリアニリン複合体溶液を調製した。その溶液410gに重量平均分子量(Mw)が900000のポリエチレンオキサイド(Aldrich)を1g添加し、m-クレゾール20g及びイソプロピルアルコール210gを添加して均一な溶液とし、組成物を得た。
Example 14
The polyaniline complex obtained in Example 1 was dissolved in chloroform to prepare a 5 wt% polyaniline complex solution. To 410 g of the solution, 1 g of polyethylene oxide (Aldrich) having a weight average molecular weight (Mw) of 900,000 was added, and 20 g of m-cresol and 210 g of isopropyl alcohol were added to obtain a uniform solution to obtain a composition.
 この溶液をNanospider NS LAB 200S(Elmarco社製)を用い、電極間160mm、電圧73kV、シリンダー回転数3rpm、巻き取り速度8cm/minにてエレクトロスピニングをおこない、直径300nm以下の糸状の組成物を得た。基材にはそれぞれ厚み0.3mmで幅40cmであるポリプロピレン製シート、厚み0.1mmで幅40cmであるPET製シート及び目付け30g/m、幅40cmであるポリプロピレン製不織布を用いた。ポリプロピレン製シート、PET製シート及びポリプロピレン製不織布へのポリアニリン組成物の付着量をエレクトロスピニング前後の重量差を測定することにより求めた。その結果、ポリアニリン組成物の付着量は、いずれも0.4~0.8g/mであった。 This solution was electrospun with Nanospider NS LAB 200S (manufactured by Elmarco) at a distance between electrodes of 160 mm, a voltage of 73 kV, a cylinder rotation speed of 3 rpm, and a winding speed of 8 cm / min to obtain a filamentous composition having a diameter of 300 nm or less. It was. The base material used was a polypropylene sheet having a thickness of 0.3 mm and a width of 40 cm, a PET sheet having a thickness of 0.1 mm and a width of 40 cm, and a polypropylene nonwoven fabric having a basis weight of 30 g / m 2 and a width of 40 cm. The amount of the polyaniline composition attached to the polypropylene sheet, the PET sheet, and the polypropylene nonwoven fabric was determined by measuring the weight difference before and after electrospinning. As a result, the adhesion amount of the polyaniline composition was 0.4 to 0.8 g / m 2 in all cases.
実施例15
 実施例1で得られたポリアニリン複合体5質量部を、クロロホルム又はトルエン95質量部に溶解させた。この溶液に、さらにm-クレゾール10質量部、表6に示す各種高極性有機溶剤1~90質量部を加えポリアニリン組成物溶液を調製した。得られたポリアニリン組成物溶液をITO基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定したところ、表6の結果が得られた。
 また、得られた各ポリアニリン組成物溶液の保存安定性をそれぞれ調べたところ、10日間保存してもいずれもゲルの発生は見られなかった。
Example 15
5 parts by mass of the polyaniline complex obtained in Example 1 was dissolved in 95 parts by mass of chloroform or toluene. To this solution, 10 parts by mass of m-cresol and 1 to 90 parts by mass of various highly polar organic solvents shown in Table 6 were added to prepare a polyaniline composition solution. The obtained polyaniline composition solution was formed on an ITO substrate by spin coating, and the intrinsic conductivity was measured by a four-terminal method. The results shown in Table 6 were obtained.
Further, when the storage stability of each obtained polyaniline composition solution was examined, no gel was observed even after storage for 10 days.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明のポリアニリン複合体、導電性ポリアニリン組成物、成形体はパワーエレクトロニクス、オプトエレクトロニクス分野において、静電・帯電防止材料、透明電極や導電性フィルム材料、エレクトロルミネッセンス素子の材料、回路材料、アンテナ材料、電磁波遮蔽材料、コンデンサの電極・誘電体・電解質、太陽電池や二次電池の極材料、燃料電池セパレータ材料、アクチュエーター、各種センサー基材等、あるいはメッキ下地剤、防錆剤に利用できる。 The polyaniline composite, conductive polyaniline composition, and molded product of the present invention are used in the field of power electronics and optoelectronics. Electrostatic / antistatic materials, transparent electrodes and conductive film materials, electroluminescent element materials, circuit materials, antenna materials It can be used for electromagnetic shielding materials, capacitor electrodes / dielectrics / electrolytes, electrode materials for solar cells and secondary batteries, fuel cell separator materials, actuators, various sensor substrates, etc., plating base materials, and rust inhibitors.

Claims (25)

  1.  有機溶剤、及び
     有機酸と無機酸でドープされている置換もしくは非置換ポリアニリン複合体と、
     フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物であって、
     前記ポリアニリン複合体における有機酸と無機酸のドープ率の総和(a)が0.4<a<0.6であり、
     ドープ率の総和(a)のうち、無機酸のドープ率(b)の割合(b/a)が0.02以上であり、
     前記ポリアニリン複合体の重量平均分子量が20,000以上で、分子量分布が5.0~10.0である導電性ポリアニリン組成物。
    An organic solvent, and a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid;
    A conductive polyaniline composition comprising a compound having a phenolic hydroxyl group,
    The sum (a) of the organic acid and inorganic acid doping rates in the polyaniline composite is 0.4 <a <0.6,
    Of the total doping rate (a), the proportion (b / a) of the doping rate (b) of the inorganic acid is 0.02 or more,
    A conductive polyaniline composition having a weight average molecular weight of 20,000 or more and a molecular weight distribution of 5.0 to 10.0.
  2.  前記フェノール性水酸基を有する化合物の、前記ポリアニリン複合体1gに対するモル濃度が、0.01mmol/g~50mmol/gの範囲である請求項1記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to claim 1, wherein the molar concentration of the compound having a phenolic hydroxyl group with respect to 1 g of the polyaniline complex is in the range of 0.01 mmol / g to 50 mmol / g.
  3.  前記有機酸が、下記式(I)
          HXARn              (I)
    {式中、Xは、酸性基であり、Aは、置換基を含んでもよい炭化水素基であり、Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は-CO(COOR)[ここで、Rは炭素数が4以上の置換基を含んでもよい炭化水素基、シリル基、-(RO)x-R基、又は-(OSiR )x-OR基(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である]であり、nは2以上の整数である}
    で示される有機プロトン酸である請求項1又は2記載の導電性ポリアニリン組成物。
    The organic acid is represented by the following formula (I)
    HXARn (I)
    {In the formula, X is an acidic group, A is a hydrocarbon group which may contain a substituent, and R is independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 is a hydrocarbon group, silyl group, — (R 2 O) x -R which may contain a substituent having 4 or more carbon atoms. 3 groups, or — (OSiR 3 2 ) x—OR 3 group (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more). And n is an integer greater than or equal to 2}
    The conductive polyaniline composition according to claim 1, which is an organic protonic acid represented by the formula:
  4.  式(I)で示される有機プロトン酸が、下記式(II)
          HXCR(CR COOR)COOR       (II)
    {式中、Xは、酸性基であり、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)であり、R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]である}
    で示される有機プロトン酸である請求項3記載の導電性ポリアニリン組成物。
    The organic protonic acid represented by the formula (I) is represented by the following formula (II)
    HXCR 4 (CR 5 2 COOR 6 ) COOR 7 (II)
    {Wherein X is an acidic group, R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si- group (wherein R 8 is a hydrocarbon group, Three R 8 may be the same or different), and R 6 and R 7 are each independently a hydrocarbon group or a — (R 9 O) q —R 10 group [wherein R 9 is carbon A hydrogen group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon group or R 11 3 Si— (R 11 is a hydrocarbon group, and three R 11 may be the same or different); q is an integer greater than or equal to 1]}
    The conductive polyaniline composition according to claim 3, which is an organic protonic acid represented by the formula:
  5.  式(II)で示される有機プロトン酸が、下記式(III)
          HOSCH(CHCOOR12)COOR13     (III)
    {式中、R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]である}
    で示されるスルホコハク酸誘導体である請求項4記載の導電性ポリアニリン組成物。
    The organic protonic acid represented by the formula (II) is represented by the following formula (III)
    HO 3 SCH (CH 2 COOR 12 ) COOR 13 (III)
    {Wherein R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15 group [where R 14 is a hydrocarbon group or a silylene group, and R 15 is hydrogen An atom, a hydrocarbon group or an R 16 3 Si— group (wherein R 16 is a hydrocarbon group, and three R 16 may be the same or different), and r is an integer of 1 or more] Is}
    The conductive polyaniline composition according to claim 4, which is a sulfosuccinic acid derivative represented by the formula:
  6.  前記無機酸が塩酸、硫酸、燐酸又は硝酸である請求項1~5のいずれか記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to any one of claims 1 to 5, wherein the inorganic acid is hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid.
  7.  前記有機溶剤が実質的に水に混和しない溶剤である請求項1~6のいずれか記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to any one of claims 1 to 6, wherein the organic solvent is a solvent that is substantially immiscible with water.
  8.  前記有機溶剤が水溶性有機溶剤である請求項1~6のいずれか記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to any one of claims 1 to 6, wherein the organic solvent is a water-soluble organic solvent.
  9.  さらに、樹脂又は樹脂の前駆体を含む請求項1~8のいずれか記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to any one of claims 1 to 8, further comprising a resin or a resin precursor.
  10.  前記樹脂が塩素化ポリオレフィンである請求項9記載の導電性ポリアニリン組成物。 The conductive polyaniline composition according to claim 9, wherein the resin is a chlorinated polyolefin.
  11.  前記有機溶剤が水不混和性有機溶剤と水溶性有機溶剤との混合物であって、その混合比(水不混和性有機溶剤:水溶性有機溶剤)が、99~50:1~50の質量比である請求項1~10のいずれか記載の導電性ポリアニリン組成物。 The organic solvent is a mixture of a water-immiscible organic solvent and a water-soluble organic solvent, and the mixing ratio (water-immiscible organic solvent: water-soluble organic solvent) is a mass ratio of 99-50: 1-50. The conductive polyaniline composition according to any one of claims 1 to 10, wherein
  12.  前記水不混和性有機溶剤は、芳香族溶剤、含ハロゲン溶剤、エステル系溶剤、炭素数4以上のケトン類、炭素数5以上のアルコール類、アクリル誘導体から選択され、
     前記水溶性有機溶剤は、水溶性アルコール、水溶性ケトン、水溶性含酸素環誘導体、非プロトン性極性溶剤から選択されたものである請求項11に記載の導電性ポリアニリン組成物。
    The water-immiscible organic solvent is selected from aromatic solvents, halogen-containing solvents, ester solvents, ketones having 4 or more carbon atoms, alcohols having 5 or more carbon atoms, and acrylic derivatives.
    The conductive polyaniline composition according to claim 11, wherein the water-soluble organic solvent is selected from water-soluble alcohols, water-soluble ketones, water-soluble oxygen-containing ring derivatives, and aprotic polar solvents.
  13.  置換又は未置換アニリンを、有機酸又はその塩、及び無機酸又はその塩と共に、-10℃~20℃の温度において第一段の工程で重合し、さらに前記温度から5℃以上高い温度において4~2000w/mの撹拌動力で第二段以降の工程で重合する、有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体の製造方法。 The substituted or unsubstituted aniline is polymerized in the first step at a temperature of −10 ° C. to 20 ° C. together with an organic acid or a salt thereof and an inorganic acid or a salt thereof. ~ 2000 W / m 3 of stirring power polymerized in the second stage and subsequent steps, the production method of the substituted or unsubstituted polyaniline complex is doped with organic and inorganic acids.
  14.  実質的に水と混和しない有機溶剤と水溶液の二相系で、ポリアニリン複合体を製造する請求項13に記載のポリアニリン複合体の製造方法。 The method for producing a polyaniline complex according to claim 13, wherein the polyaniline complex is produced in a two-phase system of an organic solvent substantially immiscible with water and an aqueous solution.
  15.  前記有機酸又はその塩が、下記一般式(I’)
        M(XARn)m                   (I’)
    {式中、
     Mは、水素原子又は有機若しくは無機遊離基であり、
     Xは、酸性基であり、
     Aは、置換基を含んでもよい炭化水素基であり、
     Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は-CO(COOR)[ここで、Rは置換基を含んでもよい炭素数が4以上の炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR(Rはアルキレン基、Rはそれぞれ同一でも異なってもいてもよい炭化水素基であり、xは1以上の整数である)である]であり、
     nは2以上の整数であり、
     mは、Mの価数である}
    で示される有機プロトン酸又はその塩である請求項13又は14記載のポリアニリン複合体の製造方法。
    The organic acid or a salt thereof is represented by the following general formula (I ′)
    M (XARn) m (I ′)
    {Where
    M is a hydrogen atom or an organic or inorganic free radical;
    X is an acidic group,
    A is a hydrocarbon group which may contain a substituent,
    Each R is independently —R 1 , —OR 1 , —COR 1 , —COOR 1 , —CO (COR 1 ), or —CO (COOR 1 ) [wherein R 1 may include a substituent; Good hydrocarbon group having 4 or more carbon atoms, silyl group, alkylsilyl group, — (R 2 O) x—R 3 group, or — (OSiR 3 2 ) x—OR 3 (R 2 is an alkylene group, R 3 Are each a hydrocarbon group which may be the same or different, and x is an integer of 1 or more.
    n is an integer greater than or equal to 2,
    m is the valence of M}
    The method for producing a polyaniline complex according to claim 13 or 14, which is an organic protonic acid represented by the formula (1) or a salt thereof.
  16.  式(I)で示される有機プロトン酸又はその塩が、下記式(II’)
        M(XCR(CR COOR)COOR     (II’)
    {式中、
     Mは、水素原子又は有機若しくは無機遊離基であり、
     Xは、酸性基であり、
     R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)であり、
     R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]であり、pは、Mの価数である}
    で示される有機プロトン酸又はその塩である請求項15記載のポリアニリン複合体の製造方法。
    The organic protonic acid represented by the formula (I) or a salt thereof is represented by the following formula (II ′)
    M (XCR 4 (CR 5 2 COOR 6 ) COOR 7 ) p (II ′)
    {Where,
    M is a hydrogen atom or an organic or inorganic free radical;
    X is an acidic group,
    R 4 and R 5 are each independently a hydrogen atom, a hydrocarbon group or an R 8 3 Si— group (where R 8 is a hydrocarbon group, and three R 8 may be the same or different). ) And
    R 6 and R 7 are each independently a hydrocarbon group or — (R 9 O) q —R 10 group [wherein R 9 is a hydrocarbon group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon A group or R 11 3 Si— (R 11 is a hydrocarbon group, three R 11 may be the same or different), q is an integer of 1 or more], and p is M Is the valence of
    The method for producing a polyaniline complex according to claim 15, wherein the organic protonic acid is represented by the formula:
  17.  式(II)で示される有機プロトン酸又はその塩が、下記式(III’)
        M(OSCH(CHCOOR12)COOR13   (III’)
    {式中、Mは、水素原子又は有機若しくは無機遊離基であり、R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]であり、mは、Mの価数である}で示されるスルホコハク酸誘導体である請求項16記載のポリアニリン複合体の製造方法。
    The organic protonic acid represented by the formula (II) or a salt thereof is represented by the following formula (III ′)
    M (O 3 SCH (CH 2 COOR 12 ) COOR 13 ) m (III ′)
    {Wherein M is a hydrogen atom or an organic or inorganic free radical, and R 12 and R 13 are each independently a hydrocarbon group or a — (R 14 O) r —R 15 group [wherein R 14 Is a hydrocarbon group or a silylene group, R 15 is a hydrogen atom, a hydrocarbon group or an R 16 3 Si— group (where R 16 is a hydrocarbon group, and three R 16 s may be the same or different) And r is an integer of 1 or more], and m is a valence of M}. The method for producing a polyaniline complex according to claim 16.
  18.  請求項13~17のいずれか記載の製造方法により得られる有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体。 A substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid obtained by the production method according to any one of claims 13 to 17.
  19.  請求項18記載の有機酸と無機酸でドープされている置換若しくは非置換ポリアニリン複合体とフェノール性水酸基を有する化合物とを反応させる導電性ポリアニリン組成物の製造方法。 A process for producing a conductive polyaniline composition comprising reacting a substituted or unsubstituted polyaniline complex doped with an organic acid and an inorganic acid according to claim 18 with a compound having a phenolic hydroxyl group.
  20.  請求項1~12のいずれか記載の導電性ポリアニリン組成物を成形してなる導電性成形体。 A conductive molded article obtained by molding the conductive polyaniline composition according to any one of claims 1 to 12.
  21.  請求項1~12のいずれか記載の導電性ポリアニリン組成物を成形してなる導電性フィルム。 A conductive film formed by molding the conductive polyaniline composition according to any one of claims 1 to 12.
  22.  請求項1~12のいずれか記載の導電性ポリアニリン組成物を、基材に塗布してなる表面導電性物品。 A surface conductive article obtained by applying the conductive polyaniline composition according to any one of claims 1 to 12 to a substrate.
  23.  基材が樹脂フィルムである請求項22記載の表面導電性物品。 The surface conductive article according to claim 22, wherein the substrate is a resin film.
  24.  請求項1~12のいずれか記載の導電性ポリアニリン組成物を、基材と混合してなる導電性物品。 A conductive article obtained by mixing the conductive polyaniline composition according to any one of claims 1 to 12 with a base material.
  25.  請求項1~12のいずれか記載の導電性ポリアニリン組成物を、基材にエレクトロスピニングしてなる導電性物品。 A conductive article obtained by electrospinning a conductive polyaniline composition according to any one of claims 1 to 12 to a base material.
PCT/JP2008/072803 2007-12-27 2008-12-16 Polyaniline complex, and composition and molded article each comprising the same WO2009084419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547986A JPWO2009084419A1 (en) 2007-12-27 2008-12-16 Polyaniline composite, composition thereof and molded product

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-336696 2007-12-27
JP2007336696 2007-12-27
JP2008-120322 2008-05-02
JP2008120322 2008-05-02
JP2008205301 2008-08-08
JP2008-205301 2008-08-08

Publications (1)

Publication Number Publication Date
WO2009084419A1 true WO2009084419A1 (en) 2009-07-09

Family

ID=40824140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072803 WO2009084419A1 (en) 2007-12-27 2008-12-16 Polyaniline complex, and composition and molded article each comprising the same

Country Status (3)

Country Link
JP (1) JPWO2009084419A1 (en)
TW (1) TW200948898A (en)
WO (1) WO2009084419A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132425A1 (en) * 2010-04-22 2011-10-27 出光興産株式会社 Organic thin-film transistor
WO2012102017A1 (en) * 2011-01-27 2012-08-02 出光興産株式会社 Polyaniline composite, method for producing same, and composition
JP2012533657A (en) * 2009-07-15 2012-12-27 ザ ユニバーシティ オブ アクロン Manufacture of multifunctional conductive / transparent / flexible membranes
JP5701761B2 (en) * 2009-09-07 2015-04-15 出光興産株式会社 Conductive composition
JP2015199969A (en) * 2009-06-12 2015-11-12 出光興産株式会社 π-CONJUGATED POLYMER COMPOSITION
JP2020059791A (en) * 2018-10-09 2020-04-16 国立大学法人 東京大学 Composition for formation of thermally cured body, thermally cured body and structure having thermally cured body
JP2020107840A (en) * 2018-12-28 2020-07-09 出光興産株式会社 Molding or stretching film, molded body, and stretched film
JP2020145278A (en) * 2019-03-05 2020-09-10 出光興産株式会社 Electromagnetic wave absorption sheet and manufacturing method of the same
JP2020143202A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Conductive polymer-containing liquid and production method thereof, and conductive film and production method thereof
CN114015173A (en) * 2021-11-19 2022-02-08 广东腐蚀科学与技术创新研究院 Modified polyaniline/polyamide filler doped composite conductive blend and preparation method thereof
WO2022210825A1 (en) * 2021-03-31 2022-10-06 出光興産株式会社 Polyaniline composite body, solution composition, rust inhibitor, rust preventive coating material, rust preventive coating film, method for producing rust preventive coating film, and structure
EP4095188A4 (en) * 2020-01-20 2024-01-24 Idemitsu Kosan Co Polyaniline composition, coating film, polyaniline-containing porous body, and method for manufacturing coating film or polyaniline-containing porous body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037522A (en) 2012-07-17 2014-02-27 Tech Taiyo Kogyo Co Ltd Rust-preventive coating material composition precursor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508390A (en) * 1991-06-12 1994-09-22 ユニアックス コーポレイション Conductive polyaniline in processable form and conductive products formed therefrom
JPH107795A (en) * 1996-06-24 1998-01-13 Hitachi Chem Co Ltd Conductive resin sheet
JPH10110030A (en) * 1996-10-08 1998-04-28 Nitto Chem Ind Co Ltd Production of high-purity soluble aniline based conductive polymer
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
WO2008018420A1 (en) * 2006-08-10 2008-02-14 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition and method for producing the same
WO2008038609A1 (en) * 2006-09-25 2008-04-03 Idemitsu Kosan Co., Ltd. Method for producing conductive polyaniline composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508390A (en) * 1991-06-12 1994-09-22 ユニアックス コーポレイション Conductive polyaniline in processable form and conductive products formed therefrom
JPH107795A (en) * 1996-06-24 1998-01-13 Hitachi Chem Co Ltd Conductive resin sheet
JPH10110030A (en) * 1996-10-08 1998-04-28 Nitto Chem Ind Co Ltd Production of high-purity soluble aniline based conductive polymer
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
WO2008018420A1 (en) * 2006-08-10 2008-02-14 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition and method for producing the same
WO2008038609A1 (en) * 2006-09-25 2008-04-03 Idemitsu Kosan Co., Ltd. Method for producing conductive polyaniline composite

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199969A (en) * 2009-06-12 2015-11-12 出光興産株式会社 π-CONJUGATED POLYMER COMPOSITION
JP2012533657A (en) * 2009-07-15 2012-12-27 ザ ユニバーシティ オブ アクロン Manufacture of multifunctional conductive / transparent / flexible membranes
KR101807325B1 (en) 2009-09-07 2017-12-08 이데미쓰 고산 가부시키가이샤 Electrically conductive composition
JP5701761B2 (en) * 2009-09-07 2015-04-15 出光興産株式会社 Conductive composition
WO2011132425A1 (en) * 2010-04-22 2011-10-27 出光興産株式会社 Organic thin-film transistor
CN102844875A (en) * 2010-04-22 2012-12-26 出光兴产株式会社 Organic thin film transistor
JP5701861B2 (en) * 2010-04-22 2015-04-15 出光興産株式会社 Organic thin film transistor
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
JP2016172847A (en) * 2011-01-27 2016-09-29 出光興産株式会社 Polyaniline composite, method for producing the same and composition
US9384866B2 (en) 2011-01-27 2016-07-05 Idemitsu Kosan Co., Ltd. Polyaniline composite, method for producing same, and composition
JP5894089B2 (en) * 2011-01-27 2016-03-23 出光興産株式会社 Polyaniline composite, production method and composition thereof
WO2012102017A1 (en) * 2011-01-27 2012-08-02 出光興産株式会社 Polyaniline composite, method for producing same, and composition
JP2020059791A (en) * 2018-10-09 2020-04-16 国立大学法人 東京大学 Composition for formation of thermally cured body, thermally cured body and structure having thermally cured body
JP2020107840A (en) * 2018-12-28 2020-07-09 出光興産株式会社 Molding or stretching film, molded body, and stretched film
JP2020145278A (en) * 2019-03-05 2020-09-10 出光興産株式会社 Electromagnetic wave absorption sheet and manufacturing method of the same
JP2020143202A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Conductive polymer-containing liquid and production method thereof, and conductive film and production method thereof
JP7178295B2 (en) 2019-03-05 2022-11-25 信越ポリマー株式会社 CONDUCTIVE POLYMER-CONTAINING LIQUID AND METHOD FOR MANUFACTURING THEREOF, AND CONDUCTIVE FILM AND METHOD FOR MANUFACTURING THE SAME
JP7256036B2 (en) 2019-03-05 2023-04-11 出光興産株式会社 Electromagnetic wave absorbing sheet and manufacturing method thereof
EP4095188A4 (en) * 2020-01-20 2024-01-24 Idemitsu Kosan Co Polyaniline composition, coating film, polyaniline-containing porous body, and method for manufacturing coating film or polyaniline-containing porous body
WO2022210825A1 (en) * 2021-03-31 2022-10-06 出光興産株式会社 Polyaniline composite body, solution composition, rust inhibitor, rust preventive coating material, rust preventive coating film, method for producing rust preventive coating film, and structure
CN114015173A (en) * 2021-11-19 2022-02-08 广东腐蚀科学与技术创新研究院 Modified polyaniline/polyamide filler doped composite conductive blend and preparation method thereof

Also Published As

Publication number Publication date
TW200948898A (en) 2009-12-01
JPWO2009084419A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2009084419A1 (en) Polyaniline complex, and composition and molded article each comprising the same
JP4959192B2 (en) Conductive polyaniline composition, method for producing the same, and molded article comprising the same
KR101807325B1 (en) Electrically conductive composition
TWI451968B (en) Conductive polymer laminates
WO2012102017A1 (en) Polyaniline composite, method for producing same, and composition
WO2009084418A1 (en) Polyaniline complex, and composition and molded article each comprising the same
JP6069420B2 (en) π-conjugated polymer composition
JP5710388B2 (en) Polyaniline conductive composition
JP5303107B2 (en) Method for producing conductive polyaniline composite
JP5492413B2 (en) Conductive polyaniline composition and method for producing the same
JP5099816B2 (en) Polyaniline complex solution and cured product thereof
JP2009120762A (en) Polyaniline complex, composition of the same, and formed article
TW200307954A (en) Transparent polythiophene layers of high conductivity
JP4225820B2 (en) Alkylenedioxythiophenes and poly (alkylenedioxythiophenes) having urethane-containing side groups, processes and starting compounds for the preparation of the thiophenes, cross-linked products obtained using the thiophenes and the use of new compounds and cross-linked products
JP2009084554A (en) Conductive polyaniline composition
JP2009138020A (en) Polyaniline complex, its composition, and molding
JP2009126949A (en) Conductive polyaniline composition, method for producing the same and molded article formed therefrom
JP5731974B2 (en) Conductive composition
US20240084134A1 (en) Electric conductive polymer composition
JP2004292505A (en) Proton conductive polyelectrolyte and method for producing proton conductive polyelectrolyte membrane
JP2011102376A (en) Method for producing electrically conductive polymer and its dispersion liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08868869

Country of ref document: EP

Kind code of ref document: A1