WO2009084377A1 - Optical element manufacturing method, and optical element forming mold - Google Patents

Optical element manufacturing method, and optical element forming mold Download PDF

Info

Publication number
WO2009084377A1
WO2009084377A1 PCT/JP2008/072245 JP2008072245W WO2009084377A1 WO 2009084377 A1 WO2009084377 A1 WO 2009084377A1 JP 2008072245 W JP2008072245 W JP 2008072245W WO 2009084377 A1 WO2009084377 A1 WO 2009084377A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
optical element
core
lens
clearance
Prior art date
Application number
PCT/JP2008/072245
Other languages
French (fr)
Japanese (ja)
Inventor
Shogo Yamamoto
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2009547968A priority Critical patent/JPWO2009084377A1/en
Priority to CN2008801224360A priority patent/CN101909842A/en
Publication of WO2009084377A1 publication Critical patent/WO2009084377A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • B29C45/401Ejector pin constructions or mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method of manufacturing an optical element such as a lens and an optical element molding die used in the manufacturing method.
  • the mold is opened to retract the second mold.
  • the second mold is operated by operating the core mold, which is an ejection mechanism provided in the second mold, and ejecting the optical function part of the molded product remaining in the second mold to the first mold side.
  • the core mold which is an ejection mechanism provided in the second mold, and ejecting the optical function part of the molded product remaining in the second mold to the first mold side.
  • the core mold is advanced and retracted to project the molded product, the core mold is displaced or tilted with respect to the outer peripheral mold side for each molding shot. Since the relative shift amount and tilt amount between the optical function surfaces existing in each of the first die and the second die change from shot to shot, the shape accuracy is likely to fluctuate. There is a problem that aberrations become unstable. For example, regarding an objective lens for optical pickup, in the case of a high NA lens having an NA of 0.6 or more, coma generated due to a relative shift or a relative tilt between optical function surfaces becomes large.
  • the smaller the molded product is the smaller the area of the flange portion with which the projecting pin comes into contact, and the smaller the diameter of each projecting pin. Therefore, the total cross-sectional area of all the pins that give the necessary release force at the time of protrusion also becomes small, and excessive pressure is applied to each pin.
  • a small-diameter lens having an outer diameter of 6 mm or less is frequently used as an objective lens for an optical pickup.
  • the diameter of the pin is usually about 1 mm.
  • the pin diameter is 0.4 mm or less.
  • the present invention can stably manufacture an optical element such as a high NA lens in which the occurrence and fluctuation of coma and other aberrations are suppressed, and even a small optical element such as a small-diameter lens can be molded. It is an object of the present invention to provide a method for manufacturing an optical element that can be reliably released from a mold and is less likely to cause deterioration in shape accuracy upon release.
  • Another object of the present invention is to provide an optical element molding die suitable for carrying out the above-described optical element manufacturing method.
  • a method of manufacturing an optical element according to the present invention includes (a) a first step of molding an optical element with a pair of molds configured by a first mold and a second mold, (B) a second step of releasing the optical element from the first mold by separating the first mold and the second mold, and (c) optics of the optical element provided in the second mold.
  • the optical element is released from the core mold by projecting the flange surface formed around the optical surface of the optical element using a projecting member having an annular tip surface provided around the core mold forming the surface.
  • a third step is
  • the flange surface of the optical element is projected using the projecting member having an annular tip surface provided around the core mold of the second mold.
  • the mold When releasing the mold, it is possible to give a sufficient release force balanced to the flange portion over the outer periphery outside the optical surface of the optical element, and it is possible to increase the area where the protruding member contacts the flange surface. .
  • the optical element can be reliably released from the second mold side, which not only enables stable production of the optical element, but also applies a local force to a part of the flange surface after molding.
  • the optical surface can be prevented from being deformed unevenly.
  • an optical element is molded by injecting a resin into a cavity formed by a pair of molds.
  • a highly accurate resin optical element can be manufactured stably.
  • the projecting member in the third step, is directed from the second mold to the first mold in a state where the core mold and the outer peripheral mold provided around the projecting member are fixed to each other. Move to. In this case, the relative arrangement relationship between the core type and the outer peripheral type does not change, and the arrangement relationship between the two can be stably maintained.
  • the first mold is a fixed mold and the second mold is a movable mold.
  • a core mold and a protruding member are incorporated on the movable mold side.
  • the optical element is a lens.
  • a high-performance lens that suppresses occurrence and fluctuation of coma aberration.
  • a high-performance optical pickup objective lens specifically, a high NA lens having an image-side numerical aperture NA of 0.75 or more using a laser beam of 380 to 420 nm, the relative shift or tilt between both surfaces of the optical surface is used.
  • An optical element molding die is (a) an optical element molding die that molds an optical element with a pair of molds, and (b) an optical surface of the optical element is formed on one mold.
  • one of the molds has an annular tip surface provided around the periphery of the core mold, and can be moved forward and backward in the direction from the one mold to the other mold.
  • the molding surface on one mold side is formed by at least the core mold and the protruding member, so that the flange surface formed around the optical surface of the optical element is protruded by using the protruding member. The optical element can be released from the core mold.
  • one of the molds has an outer peripheral mold provided around the protruding member.
  • the optical element can be released from the core mold while preventing the optical element from falling by the outer peripheral guide.
  • the clearance between the core mold and the protruding member and the clearance between the protruding member and the outer peripheral mold are different in size, and the position of the leading portion of the larger clearance is the leading edge of the smaller clearance. It is comprised so that it may protrude in the other metal mold
  • the molding burr corresponding to the larger clearance can be arranged on the other mold side, and the position where the molding burr occurs can be recessed to suppress the projection of the molding burr from the optical element.
  • the clearance head has the following meaning. That is, the clearance is a gap generated between two molds, and the tip is the portion located on the other mold side. Therefore, for example, in FIG. 4, it corresponds to the edge LSb1 and the edge F11.
  • the clearance between the core mold and the protruding member is larger than the clearance between the protruding member and the outer peripheral mold.
  • the expensive core mold can be prevented from being damaged by advancing and retracting the protruding member, and the lifetime can be extended.
  • the clearance between the core mold and the protruding member is smaller than the clearance between the protruding member and the outer peripheral mold, and the shape of the annular front end surface of the protruding member is the outer peripheral mold side than the core mold side. It protrudes toward the other mold.
  • a molding burr is relatively difficult to be formed around the molding surface corresponding to the clearance between the core mold and the protruding member, or the molding burr corresponding to the clearance between the protruding member and the outer peripheral mold can be reduced.
  • the position where the molding burr occurs is recessed by being arranged on the side, and the projection of the molding burr from the optical element can be suppressed.
  • the annular tip surface of the protruding member is a molding surface for transferring and forming at least a part of the flange surface of the optical element.
  • a molding surface for forming the flange surface is constituted by at least the annular tip surface of the protruding member.
  • FIG. 2 It is a sectional side view explaining the structure of the fixed metal mold
  • FIG. 2 is a partially enlarged end view of the movable mold in FIG. 1. It is the elements on larger scale of the lens shape
  • FIG. 1 is a partial side sectional view for explaining the structure of a mold composed of a fixed mold 41 and a movable mold 42
  • FIG. 2 is an enlarged sectional view of a P1 portion in FIG.
  • FIG. 4 is a partially enlarged view of a lens that is injection-molded by the mold shown in FIG. Although a case where a horizontal molding machine is used will be described here, a vertical molding machine may be used.
  • the fixed mold 41 and the movable mold 42 can be opened and closed with the parting line PL as a boundary.
  • a cavity CV (see FIG. 2), which is a space between both molds 41 and 42, corresponds to the shape of the lens OL as an optical element that is a molded product.
  • the lens OL is made of plastic and includes a center portion OLa having an optical function and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction.
  • the outer diameter of the lens OL formed by the two molds 41 and 42 is 6 mm or less.
  • the mold according to the present embodiment increases the effect of ensuring accuracy during molding of the lens OL, and when ⁇ 2.0 mm or less, the mold according to the present embodiment. As a result, the effect of ensuring accuracy is enhanced particularly when the lens OL is molded.
  • the fixed mold 41 includes a mirror core 52 as a fixed-side core mold, and a fixed lid 53 that integrally fixes the outer peripheral mold 51 and the mirror core 52.
  • mold 51 has the end surface 51a which forms the parting line PL.
  • a core insertion hole 55 for inserting and supporting the mirror core 52 is formed in the outer peripheral mold 51.
  • the movable mold 42 has a mirror core 62 as a movable core mold, an outer peripheral mold 61 having a structure that supports the movable core mold and can be fixed integrally, and a lens OL.
  • a movable sleeve 64 as a protruding member to be released from the mold, a forward movement mechanism 67 for moving the movable sleeve 64 forward to the fixed mold 41 side, and a retraction mechanism 68 for moving the movable sleeve 64 backward are provided.
  • mold 61 has the end surface 61a which forms the parting line PL.
  • a core / sleeve insertion hole 65 for inserting and supporting the mirror core 62 and the movable sleeve 64 is formed in the outer peripheral die 61.
  • the core / sleeve insertion hole 65 has a small diameter on the fixed mold 41 side, and a large diameter on the retreat mechanism 68 side. Further, the coaxiality between the small diameter portion and the large diameter portion is about 1 ⁇ m or less. Further, the coaxiality with the large-diameter portion that forms the outer peripheral molding surface 66c of the flange portion that mainly molds the outer periphery of the flange portion OLb is set to about 5 ⁇ m or less.
  • the mirror core 62 is inserted into the core insertion hole 64d of the movable sleeve 64 on the distal end side, and is inserted into the core / sleeve insertion hole 65 of the outer peripheral mold 61 on the root side, and is fixed to the outer peripheral mold 61 on the root side.
  • the front end portion of the mirror core 62 has a cylindrical outer peripheral surface, and allows movement along the axis AX of the movable sleeve 64 to be described later within the core insertion hole 64d having the corresponding inner peripheral surface.
  • An optical surface molding surface 66a for forming a cavity CV is provided on the tip surface provided at the tip of the mirror core 62.
  • the optical surface molding surface 66a is a concave surface and molds one optical surface LSb of the center portion OLa of the lens OL.
  • the mirror core 62 is directly supported on the outer peripheral die 61 with screws or the like, so that the positional relationship between the optical surface molding surface 66a and the flange forming portion 63 is maintained precisely.
  • a spacer can be interposed between the front end surface of the root portion of the mirror core 62 and the rear end surface of the outer peripheral mold 61. Thereby, the space
  • the movable sleeve 64 is inserted into the core sleeve insertion hole 65 of the outer peripheral die 61.
  • the distal end portion of the movable sleeve 64 has a cylindrical small-diameter outer peripheral surface, and is movable along the axis AX within the core sleeve insertion hole 65 having an inner peripheral surface of a corresponding shape.
  • the root portion of the movable sleeve 64 also has a cylindrical large-diameter outer peripheral surface, and is slidable along the axis AX in the core sleeve insertion hole 65 having the corresponding inner peripheral surface. It has become.
  • the movable sleeve 64 can move forward or backward in the fixed mold 41 side within the core sleeve insertion hole 65 of the outer peripheral die 61.
  • a molding surface 66b that forms part of the flange forming portion 63 for forming the cavity CV.
  • the molding surface 66b molds the flange surface F1 of the flange portion OLb of the lens OL, that is, one annular end surface in cooperation with the molding surface 66c that forms a part of the flange forming portion 63 that is a part of the outer peripheral die 61.
  • a spacer 69 is inserted between the rear end surface of the movable sleeve 64 and the front end surface of the large-diameter base portion of the mirror core 62. By inserting spacers having different thicknesses, the molding surface 66b, The distance from the optical surface molding surface 56a facing this can be adjusted.
  • the spacer 69 can be fixed to either the movable sleeve 64 or the mirror core 62.
  • the advance mechanism 67 abuts the spacer 69 and applies a forward biasing force to the movable sleeve 64, and a pin drive that supports the rear end portion 73a of the sleeve protrude pin 73 and advances and retracts in the axial direction.
  • the sleeve protruding pin 73 is inserted in a non-contact manner into a pin hole formed so as to penetrate the mirror core 62 and the rear plate 78 of the retracting mechanism 68, and extends parallel to the axis AX of the movable sleeve 64 and along the axis AX. It is possible to advance and retreat.
  • the pin drive plate 74 is driven by an ejector rod of a molding machine (not shown) and is displaced along the axis AX by a distance necessary for mold release at an appropriate timing.
  • the retraction mechanism 68 includes a spring fixing shoulder bolt 76 fixed to the movable sleeve 64 at the tip, a return spring 77 held by the shoulder bolt 76, and a rear plate 78 for storing the shoulder bolt 76 and the like.
  • the shoulder bolt 76 is inserted in a non-contact manner into a pin hole 79b formed so as to penetrate the mirror core 62 and the rear plate 78, extends parallel to the axis AX of the movable sleeve 64, and can advance and retreat in the direction of the axis AX. It has become.
  • the return spring 77 is sandwiched between the head portion of the shoulder bolt 76 and the rear end of the specular core 62 and urges the movable sleeve 64 rearward, the movable sleeve 64 normally faces the rear plate 78 side.
  • the urging force that is retained in the retracted state is received, and the force from the pin drive plate 74 is received to project the necessary amount.
  • a spacer can be interposed between the mirror core 62 and the rear plate 78.
  • only one retracting mechanism 68 is shown in the drawing, it is preferable that about 2 to 6 shafts AX are symmetrically arranged at positions where they do not interfere with the sleeve protruding pin 73.
  • the fitting clearance (hereinafter also simply referred to as clearance) A1 of the large-diameter fitting portion between the outer peripheral mold 51 and the mirror core 52 is, for example, about 1 ⁇ m or less.
  • the clearance value indicates the difference between the outer diameter (diameter) and the inner diameter (diameter).
  • the clearance A3 of the fitting portion on the small diameter side may be reduced to about 1 ⁇ m or less, and is attached to the lens OL.
  • the clearance may be increased (for example, about 2 to 10 ⁇ m) as long as a molding burr that does not affect the thickness is generated.
  • the clearance A2 of the fitting portion on the large diameter side between the outer peripheral mold 61 and the mirror core 62 is, for example, about 1 ⁇ m or less like the clearance A1.
  • the clearance B1 corresponding to the inter-surface distance between the outer peripheral surface of the tip end portion of the mirror core 62 and the inner peripheral surface of the core insertion hole 64d of the movable sleeve 64 is, for example, The diameter is about 3 to 10 ⁇ m.
  • the diameter is, for example, about 3 to 10 ⁇ m.
  • the clearance B3 corresponding to the inter-surface distance between the large-diameter base portion of the movable sleeve 64 and the inner peripheral surface of the core sleeve insertion hole 65 on the base side of the outer peripheral die 61 is the clearance between the inside and the outside of the movable sleeve 64.
  • the range is, for example, about 1 to 5 ⁇ m.
  • the thickness t1 in the radial direction of the distal end portion of the movable sleeve 64 of the movable mold 42 is made narrower than the width t2 in the radial direction of the flange portion OLb of the lens OL.
  • the outer edge of OLb is formed. Thereby, it becomes easy to ensure shape accuracy such as the thickness of the outer edge portion of the flange portion OLb.
  • the dimensional ratio t1 / t2 is preferably about 0.5 to 0.9, for example, and more preferably about 0.7 to 0.9.
  • the dimensional ratio t1 / t2 By setting the dimensional ratio t1 / t2 to be 0.7 or more, it is possible to ensure the effect of providing a well-balanced projecting force to the entire flange portion OLb and reducing the projecting pressure, and the lens OL can be stably ejected. The deformation due to the protrusion of the lens OL can be suppressed. Further, by setting the dimensional ratio t1 / t2 to 0.9 or less, the flange forming portion is adjacent to the outer edge side of the molding surface 66b at the tip of the movable sleeve 64 of the movable mold 42 among the molding surfaces of the outer peripheral die 61. A molding surface 66d having a sufficient size for 63 can be secured.
  • the molding surface 66d corresponds to the end surface portion 66f that protrudes toward the disk side of the flange surface F1 of the flange portion OLb.
  • the front end surface of the movable sleeve 64 of the movable mold 42 is retracted from the optical surface molding surface 66a of the mirror core 62, and the leading portion of the clearance B1 between the movable sleeve 64 and the mirror core 62 is obtained.
  • 4 moves to the left side in the drawing of FIG. 4, there is a possibility that the molding burr generated in the clearance B1 may protrude from the apex of the optical surface LSb on the disc side (intersection of the optical surface LSb and the optical axis OA). .
  • the distal end surface of the movable sleeve 64 is located inside the cavity CV rather than the leading portion of the clearance between the movable sleeve 64 and the outer peripheral mold 61 and the leading portion of the clearance between the movable sleeve 64 and the mirror core 62.
  • the distance d1 is projected.
  • the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL is influenced by the molding burr.
  • the risk of fluctuation can be reduced.
  • the flange portion OLb of the lens OL is projected using the annular tip surface, that is, the molding surface 66b provided at the tip of the annular movable sleeve 64 provided around the mirror core 62 of the movable mold 42.
  • the area of the protruding portion can be increased, and a balanced release force can be applied to the entire flange portion OLb of the lens OL.
  • the lens OL can be reliably released from the movable mold 42 side, the lens OL can be stably manufactured, and the durability of the movable mold 42 including the movable sleeve 64 and the like is improved. Can do.
  • the movable sleeve 64 is displaced in the movable mold 42, but the mirror core 62 is fixed. Therefore, the relative shift between the pair of optical surfaces LSa and LSb of the lens OL and the occurrence and fluctuation of the relative tilt are suppressed. And the occurrence of coma aberration in the lens OL can be suppressed.
  • an objective lens for an optical pickup having a lens OL of NA 0.65 or more is used.
  • the relative shift can be suppressed within about ⁇ 1.0 ⁇ m, and the relative tilt Can be suppressed within about ⁇ 0.02 °, so that a high-performance objective lens with reduced coma and the like can be obtained.
  • FIG. 5 is an enlarged cross-sectional view of the mold according to the present embodiment.
  • the molding surface 66d of the outer peripheral die 61 and the distal end surface of the movable sleeve 64 are substantially matched.
  • the distal end surface of the movable sleeve 64 protrudes from the distal end position of the mirror core 62 toward the mirror core 52 by a distance d1 as in the first embodiment.
  • the molding burr formed by the clearance B2 between the outer peripheral die 61 and the movable sleeve 64 is formed at a position farther from the apex of the optical surface LSb on the disc side with respect to the direction of the optical axis OA.
  • the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL fluctuates due to the molding burr. Can be prevented.
  • the clearance B3 (see FIG. 1) is also made larger than the clearance B1, so that the contact location during the ejector operation can be limited to only between the movable sleeve 64 and the mirror core 62. Compared with the case where there are a plurality of contact locations, the number of occurrences of scratches caused by contact between members can be reduced, and molding defects such as operation failures can be reduced.
  • FIG. 6 is an enlarged cross-sectional view of the mold according to the present embodiment.
  • the molding surface 66d of the outer peripheral die 61 and the end surface on the outer peripheral side of the movable sleeve 64 are made to substantially coincide with each other, and the end surface on the inner peripheral side of the movable sleeve 64 is more than the end surface on the outer peripheral side. It is recessed by a distance d3. Further, the end surface on the inner peripheral side of the movable sleeve 64 protrudes from the outer peripheral end of the optical surface molding surface of the mirror core 62 toward the fixed mold 41 by a distance d2.
  • the flange molding surface 66 d of the outer peripheral mold 61 protrudes by a distance d 4 (> d 2) closer to the fixed mold 41 than the position of the end surface on the inner peripheral side of the mirror core 62.
  • the molding burr formed by the clearance B2 outside the movable sleeve 64 is the optical surface LSb on the disc side with the direction of the optical axis OA as a reference. It is formed at a position further away from the apex of.
  • the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL fluctuates due to the molding burr. Can be prevented.
  • the clearance B3 (see FIG. 1) is also made larger than the clearance B1, so that the contact location during the ejector operation can be limited to only between the movable sleeve 64 and the mirror core 62. Compared with the case where there are a plurality of contact locations, the number of occurrences of scratches caused by contact between members can be reduced, and molding defects such as operation failures can be reduced.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the number of cavities CV provided in the mold constituted by the fixed mold 41 and the movable mold 42 is not limited to one, and a plurality of cavities CV can be provided. That is, for example, a plurality of mirror cores 52 can be embedded in the outer peripheral mold 51, and a plurality of sets of units including the mirror core 62 and the movable sleeve 64 can be embedded in the movable mold 42 correspondingly.
  • a plurality of lenses OL can be obtained by one-shot molding using both molds 41 and 42.
  • the shape of the optical surface molding surface 56a on the distal end side of the mirror core 52 and the shape of the optical surface molding surface 66a on the distal end side of the mirror core 62 shown in FIG. 2 and the like are merely examples, and are used for applications such as a lens OL. It can be changed accordingly. For example, it is possible to mold a lens having a surface with a large curvature on the movable mold 42 side by switching the shapes of both optical surface molding surfaces 56a and 66a.
  • the distal end portion of the movable sleeve 64 has a cylindrical outer shape, but may have a cylindrical shape having various cross-sectional shapes such as a quadrangle.
  • the movable mold 42 can be easily manufactured, and the accuracy of the movable mold 42 can be increased.
  • a step whose height changes along the radial direction is provided on the distal end surface of the movable sleeve 64.
  • the present invention is not limited to this, and a step whose height changes along the circumferential direction is provided. It can also be provided.
  • the lens OL is not limited to plastic, and a glass lens can be manufactured by a molding apparatus 100 in which similar molds 41 and 42 are incorporated.

Abstract

Provided is an optical element manufacturing method, which can stably manufacture an optical element such as a high-NA lens having suppressed the occurrence or fluctuation of an aberration and which can release even the optical lens of a small size such as a small-diameter lens reliably from a forming mold. An annular movable sleeve (64a) formed around the mirror core (62) of a movable mold (42) is used to protrude the flange portion (OLb) of a lens (OL). Therefore, when this lens (OL) is released from the mirror core (62), a balanced force of a sufficient force can be applied to the entirety of the flange portion (OLb) of the lens (OL). As a result, the lens (OL) can be reliably released from the side of the movable mold (42). Thus, the lens (OL) can be stably manufactured, and a local force can be prevented from being applied to a portion of the flange portion (OLb), so that formed optical faces (LSa and LSb) can be prevented from being heterogeneously deformed.

Description

光学素子の製造方法及び光学素子成形金型Optical element manufacturing method and optical element molding die
 本発明は、レンズ等の光学素子の製造方法及びかかる製造方法に用いられる光学素子成形金型に関する。 The present invention relates to a method of manufacturing an optical element such as a lens and an optical element molding die used in the manufacturing method.
 光学素子の第1の製造方法として、第1の金型と第2の金型とによって形成されたキャビティ内に樹脂を射出し成形した後に、第2の金型を後退させる型開きを行うとともに、第2の金型に設けた突き出し機構であるコア金型を動作させて第2の金型に残った成形品の光学機能部を第1の金型側に突き出すことにより、第2の金型から成形品を離型させるものが存在する。(例えば特許文献1、2参照)。 As the first manufacturing method of the optical element, after the resin is injected into the cavity formed by the first mold and the second mold and molded, the mold is opened to retract the second mold. The second mold is operated by operating the core mold, which is an ejection mechanism provided in the second mold, and ejecting the optical function part of the molded product remaining in the second mold to the first mold side. There are those that release a molded product from a mold. (For example, refer to Patent Documents 1 and 2).
 また、第2の製造方法として、第1の金型部から第2の金型部を離間させる型開きの後に、第2の金型部に設けた複数の突き出し部である複数のピンを突出させて第2の金型部に残った成形品の光学機能面の外周に形成されたフランジ部を第1の金型側に押すことにより、第2の金型から成形品を離型させるものも存在する。(例えば特許文献3参照)。
特開2002-200654号公報 特開2002-200638号公報 特開2007-196665号公報
Further, as a second manufacturing method, after the mold opening for separating the second mold part from the first mold part, a plurality of pins as a plurality of protruding parts provided in the second mold part are projected. The molded product is released from the second mold by pushing the flange formed on the outer periphery of the optical functional surface of the molded product remaining in the second mold part to the first mold side. Is also present. (For example, refer to Patent Document 3).
Japanese Patent Laid-Open No. 2002-200654 Japanese Patent Laid-Open No. 2002-200508 JP 2007-196665 A
 しかし、上記第1の製造方法では、コア金型を進退させて成形品を突き出す構造のため、成形のショット毎にコア金型が外周型側に対して変位したり傾いたりしてしまい、第1の金型と第2の金型の各々に存在する光学機能面の間の相対シフト量やチルト量がショット毎に変化するため形状精度が変動しやすく、成形品がレンズである場合、コマ収差が安定しなくなるという問題がある。例えば光ピックアップ用の対物レンズについては、NA0.6以上の高NAレンズの場合、光学機能面間の相対シフトや相対チルトに起因して発生するコマ収差が大きくなってしまう。特にNA0.80以上のBD(Blu-Ray Disc)用対物レンズの場合、相対シフトを約±1.0μm以内に抑え相対チルトを約±0.02°以内に抑え込む必要があり、コア金型を外周型側に対して変位又は傾斜させるおそれがある上述のような突き出しは望ましくない。 However, in the first manufacturing method, since the core mold is advanced and retracted to project the molded product, the core mold is displaced or tilted with respect to the outer peripheral mold side for each molding shot. Since the relative shift amount and tilt amount between the optical function surfaces existing in each of the first die and the second die change from shot to shot, the shape accuracy is likely to fluctuate. There is a problem that aberrations become unstable. For example, regarding an objective lens for optical pickup, in the case of a high NA lens having an NA of 0.6 or more, coma generated due to a relative shift or a relative tilt between optical function surfaces becomes large. In particular, in the case of an objective lens for BD (Blu-Ray Disc) with NA of 0.80 or more, it is necessary to keep the relative shift within about ± 1.0μm and the relative tilt within about ± 0.02 °. Such protrusions that may be displaced or inclined with respect to the outer peripheral mold side are undesirable.
 また、上記第2の製造方法では、成形品が小さな光学素子になればなるほど、突き出し用のピンを当接させるフランジ部の面積が小さくなり、突き出し用の各ピンの径を小さくせざるを得ないため、突き出し時に必要な離型力を与える全ピンの総断面積も小さくなり、各ピンに過剰な圧力がかかってしまう。例えば光ピックアップ用の対物レンズについては、外径6mm以下の小径レンズが多用されているが、この場合、例えば外径が5mm程度の小径レンズでは、ピンの直径は通常1mm程度となり、特に外径3.5mm程度の小径レンズでは、ピンの直径が0.4mm以下となる。そのため、フランジ部のうちピンの当接箇所に局所的に大きな力が加わることになり、レンズの光学機能面が不均一に変形するおそれがあるという問題がある。また、ピンの耐久性が落ちたり、場合によってはピンが変形してレンズを突き出せなくなるという問題も発生する。 Further, in the second manufacturing method, the smaller the molded product is, the smaller the area of the flange portion with which the projecting pin comes into contact, and the smaller the diameter of each projecting pin. Therefore, the total cross-sectional area of all the pins that give the necessary release force at the time of protrusion also becomes small, and excessive pressure is applied to each pin. For example, as an objective lens for an optical pickup, a small-diameter lens having an outer diameter of 6 mm or less is frequently used. In this case, for example, in a small-diameter lens having an outer diameter of about 5 mm, the diameter of the pin is usually about 1 mm. In a small diameter lens of about 3.5 mm, the pin diameter is 0.4 mm or less. Therefore, a large force is locally applied to the contact portion of the pin in the flange portion, and there is a problem that the optical functional surface of the lens may be deformed unevenly. In addition, there is a problem that the durability of the pin is lowered, or in some cases, the pin is deformed and the lens cannot be protruded.
 そこで、本発明は、コマ収差その他の収差の発生や変動を抑えた高NAレンズ等の光学素子を安定して製造することができ、小径なレンズ等の小形の光学素子であっても成形金型からの離型を確実に行うことができ、離型に際して形状的な精度劣化が生じにくい光学素子の製造方法を提供することを目的とする。 Therefore, the present invention can stably manufacture an optical element such as a high NA lens in which the occurrence and fluctuation of coma and other aberrations are suppressed, and even a small optical element such as a small-diameter lens can be molded. It is an object of the present invention to provide a method for manufacturing an optical element that can be reliably released from a mold and is less likely to cause deterioration in shape accuracy upon release.
 また、本発明は、上記光学素子の製造方法の実施に適する光学素子成形金型を提供することを目的とする。 Another object of the present invention is to provide an optical element molding die suitable for carrying out the above-described optical element manufacturing method.
 上記課題を解決するため、本発明に係る光学素子の製造方法は、(a)第1金型と第2金型とで構成される一対の金型で光学素子を成形する第1工程と、(b)第1金型と第2金型とを離間することにより、第1金型から光学素子を離型する第2工程と、(c)第2金型に設けられた光学素子の光学面を形成するコア型の周囲にわたって設けられた環状の先端面を有する突き出し部材を用いて、光学素子の光学面の周囲に形成されたフランジ面を突き出すことにより、コア型から光学素子を離型する第3工程とを備えることを特徴とする。 In order to solve the above-described problems, a method of manufacturing an optical element according to the present invention includes (a) a first step of molding an optical element with a pair of molds configured by a first mold and a second mold, (B) a second step of releasing the optical element from the first mold by separating the first mold and the second mold, and (c) optics of the optical element provided in the second mold. The optical element is released from the core mold by projecting the flange surface formed around the optical surface of the optical element using a projecting member having an annular tip surface provided around the core mold forming the surface. And a third step.
 上記製造方法によれば、第3工程で、第2金型のコア型の周囲にわたって設けられた環状先端面を有する突き出し部材を用いて、光学素子のフランジ面を突き出すので、コア型から光学素子を離型する際に、光学素子の光学面より外側の外周にわたってフランジ部にバランスのとれた十分な離型力を与えることができ、突き出し部材がフランジ面に当接する面積を増加させることができる。これにより、光学素子を第2金型側から確実に離型することができ、光学素子の安定した製造が可能になるだけでなく、フランジ面の一部に局所的な力が加わって成形後の光学面が不均一に変形することを防止できる。また、コア型から光学素子を離型する際に、コア型を変位させる必要がないので、第2金型中でコア型が成形のショット毎に変位することを防止でき、第1金型の成形面と第2金型の成形面とが相対的にシフトやチルトするような位置ズレする要因を減少させることができる。よって、各種収差の発生や変動を抑えた高性能の光学素子を大量に製造することができる。 According to the manufacturing method described above, in the third step, the flange surface of the optical element is projected using the projecting member having an annular tip surface provided around the core mold of the second mold. When releasing the mold, it is possible to give a sufficient release force balanced to the flange portion over the outer periphery outside the optical surface of the optical element, and it is possible to increase the area where the protruding member contacts the flange surface. . As a result, the optical element can be reliably released from the second mold side, which not only enables stable production of the optical element, but also applies a local force to a part of the flange surface after molding. The optical surface can be prevented from being deformed unevenly. Further, since it is not necessary to displace the core mold when releasing the optical element from the core mold, it is possible to prevent the core mold from being displaced at every molding shot in the second mold. It is possible to reduce the cause of positional deviation such that the molding surface and the molding surface of the second mold are relatively shifted or tilted. Therefore, it is possible to manufacture a large amount of high-performance optical elements that suppress the occurrence and fluctuation of various aberrations.
 本発明の具体的な態様又は観点では、上記製造方法の第1工程において、一対の金型で形成されるキャビティ内に樹脂を注入することにより、光学素子の成形を行う。この場合、高精度の樹脂製の光学素子を安定して製造することができる。 In a specific aspect or viewpoint of the present invention, in the first step of the manufacturing method, an optical element is molded by injecting a resin into a cavity formed by a pair of molds. In this case, a highly accurate resin optical element can be manufactured stably.
 本発明のさらに別の態様では、第3工程において、コア型と突き出し部材の周囲にわたって設けられた外周型とを互いに固定した状態で、突き出し部材を第2金型から第1金型に向かう方向に移動させる。この場合、コア型と外周型との相対的な配置関係が変動せず、両者の配置関係を安定して維持することができる。 In yet another aspect of the present invention, in the third step, the projecting member is directed from the second mold to the first mold in a state where the core mold and the outer peripheral mold provided around the projecting member are fixed to each other. Move to. In this case, the relative arrangement relationship between the core type and the outer peripheral type does not change, and the arrangement relationship between the two can be stably maintained.
 本発明のさらに別の態様では、第1金型が固定金型であり、第2金型が可動金型である。この場合、可動金型側にコア型や突き出し部材が組み込まれることになる。 In still another aspect of the present invention, the first mold is a fixed mold and the second mold is a movable mold. In this case, a core mold and a protruding member are incorporated on the movable mold side.
 本発明のさらに別の態様では、光学素子がレンズである。この場合、コマ収差の発生や変動を抑えた高性能のレンズを提供することができる。特に、高性能の光ピックアップ用の対物レンズ、具体的には380~420nmのレーザ光を用い像側開口数NA0.75以上の高NAレンズでは、光学面の両面間の相対的なシフトやチルトが僅かに生じても光学性能劣化が著しいという問題があるが、これを効果的に防止することが可能となる。 In yet another aspect of the present invention, the optical element is a lens. In this case, it is possible to provide a high-performance lens that suppresses occurrence and fluctuation of coma aberration. In particular, in a high-performance optical pickup objective lens, specifically, a high NA lens having an image-side numerical aperture NA of 0.75 or more using a laser beam of 380 to 420 nm, the relative shift or tilt between both surfaces of the optical surface is used. Although there is a problem that the optical performance is significantly deteriorated even if a slight amount of is generated, this can be effectively prevented.
 本発明に係る光学素子成形金型は、(a)一対の金型により光学素子を成形する光学素子成形金型であって、(b)一方の金型に、光学素子の光学面を形成するコア型と、(c)コア型の周囲にわたって設けられた環状の先端面を有し光学素子の光学面の周囲に形成されたフランジ面を突き出すために一方の金型から他方の金型に向かう方向に進退可能な突き出し部材とを有することを特徴とする。 An optical element molding die according to the present invention is (a) an optical element molding die that molds an optical element with a pair of molds, and (b) an optical surface of the optical element is formed on one mold. A core mold and (c) an annular tip surface provided over the periphery of the core mold, and directed from one mold to the other mold in order to project a flange surface formed around the optical surface of the optical element And a protruding member capable of moving back and forth in the direction.
 上記光学素子成形金型によれば、一方の金型が、コア型の周囲にわたって設けられた環状の先端面を有し前記一方の金型から他方の金型に向かう方向に進退可能な突き出し部材を有し、一方の金型側の成形面が、少なくもコア型と突き出し部材とによって形成されるので、突き出し部材を用いて光学素子の光学面の周囲に形成されたフランジ面を突き出すことにより、コア型から光学素子を離型することができる。この際、光学素子の光学面より外側の外周にわたってフランジ部にバランスのとれた十分な離型力を与えることができるので、光学素子を一方の金型側から確実に離型することができ、光学素子の安定した製造が可能になるだけでなく、フランジ面の一部に局所的な力が加わって成形後の光学面が不均一に変形することを防止できる。また、コア型から光学素子を離型する際に、コア型を変位させる必要がないので、一方の金型中でコア型が成形のショット毎に変位することを防止でき、一方の金型の成形面と他方の金型の成形面とが相対的にシフトやチルトするような位置ズレする要因を減少させることができ、各種収差の発生や変動を抑えた高性能の光学素子を大量に製造することができる。 According to the above optical element molding die, one of the molds has an annular tip surface provided around the periphery of the core mold, and can be moved forward and backward in the direction from the one mold to the other mold. And the molding surface on one mold side is formed by at least the core mold and the protruding member, so that the flange surface formed around the optical surface of the optical element is protruded by using the protruding member. The optical element can be released from the core mold. At this time, since it is possible to give a sufficient release force balanced to the flange portion over the outer periphery outside the optical surface of the optical element, it is possible to reliably release the optical element from one mold side, In addition to enabling stable production of the optical element, it is possible to prevent the optical surface after molding from being deformed unevenly due to a local force applied to a part of the flange surface. In addition, since it is not necessary to displace the core mold when releasing the optical element from the core mold, it is possible to prevent the core mold from being displaced every molding shot in one mold. Produces a large amount of high-performance optical elements that can reduce the occurrence of various aberrations and fluctuations by reducing the cause of misalignment between the molding surface and the molding surface of the other mold. can do.
 本発明の具体的な態様では、上記光学素子成形金型において、一方の金型が、突き出し部材の周囲にわたって設けられた外周型を有する。この場合、外周型の案内によって光学素子の落下を防止しつつ光学素子をコア型から離型することができる。 In a specific aspect of the present invention, in the optical element molding die, one of the molds has an outer peripheral mold provided around the protruding member. In this case, the optical element can be released from the core mold while preventing the optical element from falling by the outer peripheral guide.
 本発明の別の態様では、コア型と突き出し部材とのクリアランスと、突き出し部材と外周型とのクリアランスとは大きさが異なり、大きい方のクリアランスの先頭部の位置は、小さい方のクリアランスの先頭部の位置よりも他方の金型側に突出するように構成されている。この場合、大きい方のクリアランスに対応する成形バリを他方の金型側に配置することができ、成形バリが生ずる位置を凹ませて光学素子からの成形バリの突出を抑えることができる。 In another aspect of the present invention, the clearance between the core mold and the protruding member and the clearance between the protruding member and the outer peripheral mold are different in size, and the position of the leading portion of the larger clearance is the leading edge of the smaller clearance. It is comprised so that it may protrude in the other metal mold | die side rather than the position of the part. In this case, the molding burr corresponding to the larger clearance can be arranged on the other mold side, and the position where the molding burr occurs can be recessed to suppress the projection of the molding burr from the optical element.
 なお、クリアランスの先頭部とは下記の意味である。即ち、クリアランスとは二つの金型の間に生ずる間隙であって、先端部とは最も他方の金型側に位置する部所である。従って、例えば図4においては、エッジLSb1及びエッジF11に相当する。 Note that the clearance head has the following meaning. That is, the clearance is a gap generated between two molds, and the tip is the portion located on the other mold side. Therefore, for example, in FIG. 4, it corresponds to the edge LSb1 and the edge F11.
 本発明のさらに別の態様では、コア型と突き出し部材とのクリアランスは、突き出し部材と外周型とのクリアランスよりも大きい。この場合、突き出し部材を進退させることによって高価なコア型を傷つけることを抑制でき、その寿命を延ばすことができる。 In yet another aspect of the present invention, the clearance between the core mold and the protruding member is larger than the clearance between the protruding member and the outer peripheral mold. In this case, the expensive core mold can be prevented from being damaged by advancing and retracting the protruding member, and the lifetime can be extended.
 本発明のさらに別の態様では、コア型と突き出し部材とのクリアランスは、突き出し部材と外周型とのクリアランスよりも小さく、突き出し部材の環状の先端面の形状は、コア型側よりも外周型側で他方の金型に向かって突起している。この場合、コア型と突き出し部材とのクリアランスに対応する成形面の周囲に成形バリが相対的に形成されにくく或いは小さくでき、突き出し部材と外周型とのクリアランスに対応する成形バリを他方の金型側に配置して成形バリが生ずる位置を凹ませ、光学素子からの成形バリの突出を抑えることができる。 In yet another aspect of the present invention, the clearance between the core mold and the protruding member is smaller than the clearance between the protruding member and the outer peripheral mold, and the shape of the annular front end surface of the protruding member is the outer peripheral mold side than the core mold side. It protrudes toward the other mold. In this case, a molding burr is relatively difficult to be formed around the molding surface corresponding to the clearance between the core mold and the protruding member, or the molding burr corresponding to the clearance between the protruding member and the outer peripheral mold can be reduced. The position where the molding burr occurs is recessed by being arranged on the side, and the projection of the molding burr from the optical element can be suppressed.
 本発明のさらに別の態様では、突き出し部材の環状の先端面は、光学素子のフランジ面の少なくとも一部を転写形成するための成形面である。この場合、少なくとも突き出し部材の環状の先端面によってフランジ面を形成するための成形面を構成することになる。 In yet another aspect of the present invention, the annular tip surface of the protruding member is a molding surface for transferring and forming at least a part of the flange surface of the optical element. In this case, a molding surface for forming the flange surface is constituted by at least the annular tip surface of the protruding member.
第1実施形態の固定金型及び可動金型の構造を説明する側断面図である。It is a sectional side view explaining the structure of the fixed metal mold | die of 1st Embodiment, and a movable metal mold | die. 図1の金型の一部拡大断面図である。It is a partially expanded sectional view of the metal mold | die of FIG. 図1の可動金型の一部拡大端面図である。FIG. 2 is a partially enlarged end view of the movable mold in FIG. 1. 図1の金型によって成形されるレンズの部分拡大図である。It is the elements on larger scale of the lens shape | molded by the metal mold | die of FIG. 第2実施形態の製造方法等を説明する正面図である。It is a front view explaining the manufacturing method etc. of 2nd Embodiment. 第3実施形態の製造方法等を説明する正面図である。It is a front view explaining the manufacturing method etc. of 3rd Embodiment.
符号の説明Explanation of symbols
 41…固定金型
 42…可動金型
 51…外周型
 52…鏡面コア
 53…固定蓋
 56…成形鏡面
 56a…光学面成形面
 56b…成形面
 61…外周型
 62…鏡面コア
 64…可動スリーブ
 64d…コア挿通孔
 65…コア・スリーブ挿通孔
 66a…光学面成形面
 66b…成形面
 66c…成形面
 67…前進機構
 68…後退機構
 69…スペーサ
 73…スリーブ突き出しピン
 74…ピン駆動板
 76…ショルダーボルト
 77…バネ
 AX…軸
 CV…キャビティ
 LSa,LSb…光学面
 OL…成形品
 OA…光軸
 OL…レンズ
 OLa…中心部
 OLb…フランジ部
 PL…パーティングライン
DESCRIPTION OF SYMBOLS 41 ... Fixed mold 42 ... Movable mold 51 ... Peripheral mold 52 ... Mirror surface core 53 ... Fixed lid 56 ... Molding mirror surface 56a ... Optical surface molding surface 56b ... Molding surface 61 ... Outer peripheral mold 62 ... Mirror surface core 64 ... Movable sleeve 64d ... Core insertion hole 65 ... Core / sleeve insertion hole 66a ... Optical surface molding surface 66b ... Molding surface 66c ... Molding surface 67 ... Advance mechanism 68 ... Retraction mechanism 69 ... Spacer 73 ... Sleeve ejecting pin 74 ... Pin drive plate 76 ... Shoulder bolt 77 ... Spring AX ... Shaft CV ... Cavity LSa, LSb ... Optical surface OL ... Molded product OA ... Optical axis OL ... Lens OLa ... Center part OLb ... Flange part PL ... Parting line
 〔第1実施形態〕
 以下、本発明の第1実施形態である光学素子の製造方法について、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, a method for manufacturing an optical element according to a first embodiment of the present invention will be described with reference to the drawings.
 図1は、固定金型41と可動金型42とで構成される金型の構造を説明する部分側断面図であり、図2は、図1のP1部分の拡大断面図であり、図3は、可動金型42をA方向から見た矢視図である。また、図4は、図1の金型によって射出成形されるレンズの部分拡大図である。なお、ここでは、横型成形機を使用した場合を説明するが、竪型成形機を使用してもよい。 FIG. 1 is a partial side sectional view for explaining the structure of a mold composed of a fixed mold 41 and a movable mold 42, and FIG. 2 is an enlarged sectional view of a P1 portion in FIG. These are the arrow views which looked at the movable metal mold | die 42 from the A direction. FIG. 4 is a partially enlarged view of a lens that is injection-molded by the mold shown in FIG. Although a case where a horizontal molding machine is used will be described here, a vertical molding machine may be used.
 固定金型41と可動金型42とは、パーティングラインPLを境として開閉可能になっている。両金型41,42に挟まれた空間であるキャビティCV(図2参照)は、成形品である光学素子としてのレンズOLの形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する中心部OLaと、中心部OLaから外径方向に延伸する環状のフランジ部OLbとを備える。ここで、両金型41,42によって形成されるレンズOLの外径は、6mm以下としている。レンズOLの外径については、例えば、φ3.5mm以下の場合、本実施形態の金型によりレンズOLの成形時における精度確保の効果が高まり、φ2.0mm以下の場合、本実施形態の金型により特にレンズOLの成形時における精度確保の効果が高まる。 The fixed mold 41 and the movable mold 42 can be opened and closed with the parting line PL as a boundary. A cavity CV (see FIG. 2), which is a space between both molds 41 and 42, corresponds to the shape of the lens OL as an optical element that is a molded product. The lens OL is made of plastic and includes a center portion OLa having an optical function and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction. Here, the outer diameter of the lens OL formed by the two molds 41 and 42 is 6 mm or less. As for the outer diameter of the lens OL, for example, when φ3.5 mm or less, the mold according to the present embodiment increases the effect of ensuring accuracy during molding of the lens OL, and when φ2.0 mm or less, the mold according to the present embodiment. As a result, the effect of ensuring accuracy is enhanced particularly when the lens OL is molded.
 固定金型41は、固定側のコア型としての鏡面コア52と、外周型51及び鏡面コア52を一体に固定する固定蓋53とを備える。なお、外周型51は、パーティングラインPLを形成する端面51aを有する。また、外周型51内部には、鏡面コア52を挿入支持するためのコア挿通孔55が形成されている。 The fixed mold 41 includes a mirror core 52 as a fixed-side core mold, and a fixed lid 53 that integrally fixes the outer peripheral mold 51 and the mirror core 52. In addition, the outer periphery type | mold 51 has the end surface 51a which forms the parting line PL. In addition, a core insertion hole 55 for inserting and supporting the mirror core 52 is formed in the outer peripheral mold 51.
 可動金型42は、可動側のコア型としての鏡面コア62と、可動側のコア型を支持し、かつ一体に固定することを可能とした構造を有する外周型61と、レンズOLを突き出して離型する突き出し部材としての可動スリーブ64と、可動スリーブ64を固定金型41側に前進移動させるための前進機構67と、可動スリーブ64を後退移動させるための後退機構68とを備える。 The movable mold 42 has a mirror core 62 as a movable core mold, an outer peripheral mold 61 having a structure that supports the movable core mold and can be fixed integrally, and a lens OL. A movable sleeve 64 as a protruding member to be released from the mold, a forward movement mechanism 67 for moving the movable sleeve 64 forward to the fixed mold 41 side, and a retraction mechanism 68 for moving the movable sleeve 64 backward are provided.
 外周型61は、パーティングラインPLを形成する端面61aを有する。また、外周型61内部には、鏡面コア62及び可動スリーブ64を挿入支持するためのコア・スリーブ挿通孔65が形成されている。なお、コア・スリーブ挿通孔65のうち固定金型41側は小径に形成されており、後退機構68側は大径に形成されている。また、小径部と大径部との同軸度は1μm以下程度に収められている。さらに、フランジ部OLbの主に外周を成形するフランジ部の外周成形面66cを形成する大径部との同軸度は、5μm以下程度に収められている。 The outer periphery type | mold 61 has the end surface 61a which forms the parting line PL. A core / sleeve insertion hole 65 for inserting and supporting the mirror core 62 and the movable sleeve 64 is formed in the outer peripheral die 61. The core / sleeve insertion hole 65 has a small diameter on the fixed mold 41 side, and a large diameter on the retreat mechanism 68 side. Further, the coaxiality between the small diameter portion and the large diameter portion is about 1 μm or less. Further, the coaxiality with the large-diameter portion that forms the outer peripheral molding surface 66c of the flange portion that mainly molds the outer periphery of the flange portion OLb is set to about 5 μm or less.
 鏡面コア62は、先端側において可動スリーブ64のコア挿通孔64dに挿入され、根元側において外周型61のコア・スリーブ挿通孔65に挿入され外周型61に根元側で固定されている。鏡面コア62の先端部は、円柱状の外周面を有しており、対応する形状の内周面を有するコア挿通孔64d内で、後述する可動スリーブ64の軸AXに沿った移動を許容する。鏡面コア62の先端部に設けた先端面には、キャビティCVを形成するための光学面成形面66aが設けられている。この光学面成形面66aは、凹面であり、レンズOLの中心部OLaの一方の光学面LSbを成形する。鏡面コア62は、ネジ等によって外周型61に直接的に支持されており、光学面成形面66aとフランジ形成部63との位置関係が精密に保たれるようになっている。なお、図面では省略しているが、鏡面コア62の根元部前端面と外周型61後端面との間にはスペーサを介在させることができる。これにより、鏡面コア62の光学面成形面66aと、これに対向する鏡面コア52の光学面成形面56aとの間隔を調整できるようになっている。 The mirror core 62 is inserted into the core insertion hole 64d of the movable sleeve 64 on the distal end side, and is inserted into the core / sleeve insertion hole 65 of the outer peripheral mold 61 on the root side, and is fixed to the outer peripheral mold 61 on the root side. The front end portion of the mirror core 62 has a cylindrical outer peripheral surface, and allows movement along the axis AX of the movable sleeve 64 to be described later within the core insertion hole 64d having the corresponding inner peripheral surface. . An optical surface molding surface 66a for forming a cavity CV is provided on the tip surface provided at the tip of the mirror core 62. The optical surface molding surface 66a is a concave surface and molds one optical surface LSb of the center portion OLa of the lens OL. The mirror core 62 is directly supported on the outer peripheral die 61 with screws or the like, so that the positional relationship between the optical surface molding surface 66a and the flange forming portion 63 is maintained precisely. Although omitted in the drawings, a spacer can be interposed between the front end surface of the root portion of the mirror core 62 and the rear end surface of the outer peripheral mold 61. Thereby, the space | interval of the optical surface molding surface 66a of the mirror surface core 62 and the optical surface molding surface 56a of the mirror surface core 52 which opposes this can be adjusted now.
 可動スリーブ64は、外周型61のコア・スリーブ挿通孔65に挿入されている。可動スリーブ64の先端部は、円柱状の小径の外周面を有しており、対応する形状の内周面を有するコア・スリーブ挿通孔65内で軸AXに沿って移動可能になっている。また、可動スリーブ64の根元部も、円柱状の大径の外周面を有しており、対応する形状の内周面を有するコア・スリーブ挿通孔65内で軸AXに沿って摺動可能になっている。つまり、可動スリーブ64は、外周型61のコア・スリーブ挿通孔65内で固定金型41側に前進したり反対側に後退したりすることができる。可動スリーブ64の先端には、キャビティCVを形成するためのフランジ形成部63の一部を形成する成形面66bが設けられている。この成形面66bは、外周型61の一部であるフランジ形成部63の一部を形成する成形面66cと協働して、レンズOLのフランジ部OLbのフランジ面F1すなわち一方の環状端面を成形する。なお、可動スリーブ64の後端面と鏡面コア62の大径の根元部前端面との間には、スペーサ69が挿入されており、厚さが異なるスペーサを挿入することにより、成形面66bと、これに対向する光学面成形面56aとの間隔を調整できるようになっている。このスペーサ69は、可動スリーブ64と鏡面コア62とのいずれか一方に固定することもできる。 The movable sleeve 64 is inserted into the core sleeve insertion hole 65 of the outer peripheral die 61. The distal end portion of the movable sleeve 64 has a cylindrical small-diameter outer peripheral surface, and is movable along the axis AX within the core sleeve insertion hole 65 having an inner peripheral surface of a corresponding shape. Further, the root portion of the movable sleeve 64 also has a cylindrical large-diameter outer peripheral surface, and is slidable along the axis AX in the core sleeve insertion hole 65 having the corresponding inner peripheral surface. It has become. That is, the movable sleeve 64 can move forward or backward in the fixed mold 41 side within the core sleeve insertion hole 65 of the outer peripheral die 61. At the tip of the movable sleeve 64, there is provided a molding surface 66b that forms part of the flange forming portion 63 for forming the cavity CV. The molding surface 66b molds the flange surface F1 of the flange portion OLb of the lens OL, that is, one annular end surface in cooperation with the molding surface 66c that forms a part of the flange forming portion 63 that is a part of the outer peripheral die 61. To do. A spacer 69 is inserted between the rear end surface of the movable sleeve 64 and the front end surface of the large-diameter base portion of the mirror core 62. By inserting spacers having different thicknesses, the molding surface 66b, The distance from the optical surface molding surface 56a facing this can be adjusted. The spacer 69 can be fixed to either the movable sleeve 64 or the mirror core 62.
 前進機構67は、スペーサ69に当接して可動スリーブ64に対して前進方向の付勢力を与えるスリーブ突き出しピン73と、スリーブ突き出しピン73の後端部73aを支持して軸方向に進退させるピン駆動板74とを備える。スリーブ突き出しピン73は、鏡面コア62と後退機構68の後部板78とを貫通するように形成されたピン孔に非接触で挿入され、可動スリーブ64の軸AXに平行に延びるとともに軸AXに沿って進退可能になっている。なお、スリーブ突き出しピン73は図面では1本のみ図示しているが、軸AXを軸対称にして2~6本程度配置されている方が好ましい。ピン駆動板74は、不図示の成形機のエジェクタロッドによって駆動されて軸AXに沿って適当なタイミングで離型に必要な距離だけ変位する。 The advance mechanism 67 abuts the spacer 69 and applies a forward biasing force to the movable sleeve 64, and a pin drive that supports the rear end portion 73a of the sleeve protrude pin 73 and advances and retracts in the axial direction. Plate 74. The sleeve protruding pin 73 is inserted in a non-contact manner into a pin hole formed so as to penetrate the mirror core 62 and the rear plate 78 of the retracting mechanism 68, and extends parallel to the axis AX of the movable sleeve 64 and along the axis AX. It is possible to advance and retreat. Although only one sleeve protruding pin 73 is shown in the drawing, it is preferable that about 2 to 6 sleeves are arranged with the axis AX being symmetrical. The pin drive plate 74 is driven by an ejector rod of a molding machine (not shown) and is displaced along the axis AX by a distance necessary for mold release at an appropriate timing.
 後退機構68は、先端部で可動スリーブ64に固定されるバネ固定用のショルダーボルト76と、ショルダーボルト76に保持される戻しバネ77と、ショルダーボルト76等を収納する後部板78とを備える。ショルダーボルト76は、鏡面コア62と後部板78とを貫通するように形成されたピン孔79bに非接触で挿入され、可動スリーブ64の軸AXに平行に延びるとともに軸AXの方向に進退可能になっている。ただし、戻しバネ77がショルダーボルト76のヘッド部分と鏡面コア62の後端との間に挟まれて可動スリーブ64を後方に付勢するので、可動スリーブ64は、通常時、後部板78側に後退した状態に保持される付勢力を受け、ピン駆動板74からの力を受けて必要量だけ突き出される。なお、図面では省略しているが、鏡面コア62と後部板78との間にはスペーサを介在させることができる。また、図面では後退機構68は1個のみしか図示していないが、スリーブ突き出しピン73に干渉しない位置に、軸AXを軸対称にして2~6本程度配置されている方が好ましい。 The retraction mechanism 68 includes a spring fixing shoulder bolt 76 fixed to the movable sleeve 64 at the tip, a return spring 77 held by the shoulder bolt 76, and a rear plate 78 for storing the shoulder bolt 76 and the like. The shoulder bolt 76 is inserted in a non-contact manner into a pin hole 79b formed so as to penetrate the mirror core 62 and the rear plate 78, extends parallel to the axis AX of the movable sleeve 64, and can advance and retreat in the direction of the axis AX. It has become. However, since the return spring 77 is sandwiched between the head portion of the shoulder bolt 76 and the rear end of the specular core 62 and urges the movable sleeve 64 rearward, the movable sleeve 64 normally faces the rear plate 78 side. The urging force that is retained in the retracted state is received, and the force from the pin drive plate 74 is received to project the necessary amount. Although omitted in the drawing, a spacer can be interposed between the mirror core 62 and the rear plate 78. Although only one retracting mechanism 68 is shown in the drawing, it is preferable that about 2 to 6 shafts AX are symmetrically arranged at positions where they do not interfere with the sleeve protruding pin 73.
 以上の金型のうち固定金型41中において、外周型51と鏡面コア52との間の大径側の嵌め合い部の嵌め合いクリアランス(以下単にクリアランスとも称す)A1は、例えば1μm以下程度とする。(以下クリアランスの値は外径(直径)と内径(直径)の差を示す。)また、小径側の嵌め合い部のクリアランスA3は、1μm以下程度まで小さくしても良いし、レンズOLにおいて取り付けに影響しない位の成形バリが出る程度までならクリアランスを大きくしても良い(例えば2から10μm程度)。また、可動金型42中において、外周型61と鏡面コア62との大径側の嵌め合い部のクリアランスA2は、上記クリアランスA1と同様に例えば1μm以下程度とする。 Among the above molds, in the fixed mold 41, the fitting clearance (hereinafter also simply referred to as clearance) A1 of the large-diameter fitting portion between the outer peripheral mold 51 and the mirror core 52 is, for example, about 1 μm or less. To do. (Hereinafter, the clearance value indicates the difference between the outer diameter (diameter) and the inner diameter (diameter).) Further, the clearance A3 of the fitting portion on the small diameter side may be reduced to about 1 μm or less, and is attached to the lens OL. The clearance may be increased (for example, about 2 to 10 μm) as long as a molding burr that does not affect the thickness is generated. Further, in the movable mold 42, the clearance A2 of the fitting portion on the large diameter side between the outer peripheral mold 61 and the mirror core 62 is, for example, about 1 μm or less like the clearance A1.
 以上の金型のうち可動金型42中において、鏡面コア62の先端部外周面と、可動スリーブ64のコア挿通孔64dの内周面との間の面間距離に相当するクリアランスB1は、例えば直径で3~10μm程度とする。また、可動金型42中において、可動スリーブ64の先端部外周面と、外周型61のフランジ形成部63におけるコア・スリーブ挿通孔65の内周面との間の面間距離に相当するクリアランスB2は、上記クリアランスB1と同様に例えば直径で3~10μm程度とする。さらに、可動スリーブ64の大径の根元部と外周型61の根元側におけるコア・スリーブ挿通孔65の内周面との間の面間距離に相当するクリアランスB3は、可動スリーブ64の内外のクリアランスB1,B2よりも小さく設定した中で、範囲としては例えば1~5μm程度とする。クリアランスB1,B2をクリアランスB3よりもある程度大きくすることにより、小径部62aや可動スリーブ64が周囲の部品と接触して傷が発生することを防止できることで、レンズOLに傷起因の外観上の不良の発生を防ぐことができる。また、3~10μm程度のクリアランスであれば、レンズOLにクリアランスに起因するバリが発生したとしても無視できる程度の大きさに抑えることができる。 Among the above molds, in the movable mold 42, the clearance B1 corresponding to the inter-surface distance between the outer peripheral surface of the tip end portion of the mirror core 62 and the inner peripheral surface of the core insertion hole 64d of the movable sleeve 64 is, for example, The diameter is about 3 to 10 μm. Further, in the movable mold 42, a clearance B2 corresponding to the inter-surface distance between the outer peripheral surface of the distal end portion of the movable sleeve 64 and the inner peripheral surface of the core sleeve insertion hole 65 in the flange forming portion 63 of the outer peripheral die 61. As with the clearance B1, the diameter is, for example, about 3 to 10 μm. Further, the clearance B3 corresponding to the inter-surface distance between the large-diameter base portion of the movable sleeve 64 and the inner peripheral surface of the core sleeve insertion hole 65 on the base side of the outer peripheral die 61 is the clearance between the inside and the outside of the movable sleeve 64. Within a range smaller than B1 and B2, the range is, for example, about 1 to 5 μm. By making the clearances B1 and B2 somewhat larger than the clearance B3, it is possible to prevent the small diameter portion 62a and the movable sleeve 64 from coming into contact with surrounding parts and causing scratches, thereby causing defects in the appearance due to scratches on the lens OL. Can be prevented. In addition, if the clearance is about 3 to 10 μm, even if burrs due to the clearance occur in the lens OL, it can be suppressed to a level that can be ignored.
 なお、本実施形態では、可動金型42の可動スリーブ64の先端部の半径方向に関する厚みt1をレンズOLのフランジ部OLbの半径方向に関する幅t2よりも狭くしており、外周型61によってフランジ部OLbの外縁部が形成されるようにしている。これにより、フランジ部OLbの外縁部の厚み等の形状精度確保が容易になる。ここで、寸法比t1/t2は、例えば0.5~0.9程度が好ましく、0.7~0.9程度がより好ましい。寸法比t1/t2を0.7以上とすることで、フランジ部OLb全体にバランス良い突き出し力を与え突き出しの圧力を低減できる効果を確実なものとでき、レンズOLの安定した突き出しが可能になり、レンズOLの突き出しによる変形を抑えることができる。また、寸法比t1/t2を0.9以下とすることで、外周型61の成形面のうち、可動金型42の可動スリーブ64先端の成形面66bの外縁側に隣接して、フランジ形成部63に十分なサイズの成形面66dを確保することができる。この成形面66dは、フランジ部OLbのフランジ面F1のうちディスク側に突出した端面部66fに対応するものとなっている。このような成形面66dを設けることで、可動スリーブ64が外周型61のフランジ形成部63へ接触することを防ぐことができ、可動スリーブ64による突き出し動作の可動性を高めることができる。 In the present embodiment, the thickness t1 in the radial direction of the distal end portion of the movable sleeve 64 of the movable mold 42 is made narrower than the width t2 in the radial direction of the flange portion OLb of the lens OL. The outer edge of OLb is formed. Thereby, it becomes easy to ensure shape accuracy such as the thickness of the outer edge portion of the flange portion OLb. Here, the dimensional ratio t1 / t2 is preferably about 0.5 to 0.9, for example, and more preferably about 0.7 to 0.9. By setting the dimensional ratio t1 / t2 to be 0.7 or more, it is possible to ensure the effect of providing a well-balanced projecting force to the entire flange portion OLb and reducing the projecting pressure, and the lens OL can be stably ejected. The deformation due to the protrusion of the lens OL can be suppressed. Further, by setting the dimensional ratio t1 / t2 to 0.9 or less, the flange forming portion is adjacent to the outer edge side of the molding surface 66b at the tip of the movable sleeve 64 of the movable mold 42 among the molding surfaces of the outer peripheral die 61. A molding surface 66d having a sufficient size for 63 can be secured. The molding surface 66d corresponds to the end surface portion 66f that protrudes toward the disk side of the flange surface F1 of the flange portion OLb. By providing such a molding surface 66d, the movable sleeve 64 can be prevented from coming into contact with the flange forming portion 63 of the outer peripheral die 61, and the movability of the protruding operation by the movable sleeve 64 can be enhanced.
 また、製造の際の誤差によっては、可動金型42の可動スリーブ64の先端面が鏡面コア62の光学面成形面66aよりも後退し、可動スリーブ64と鏡面コア62とのクリアランスB1の先頭部が図4の図面上で左側に移動することで、そのクリアランスB1に生じた成形バリがディスク側の光学面LSbの頂点(光学面LSbと光軸OAとの交点)よりも突出する虞がある。このために、本実施形態では、可動スリーブ64と外周型61とのクリアランスの先頭部及び可動スリーブ64と鏡面コア62とのクリアランスの先頭部よりも、可動スリーブ64の先端面をキャビティCV内部に間隔d1だけ突出させている。これにより、成形後のレンズOLにおいて、成形バリの起点の一つが光学面LSbの最外周側のエッジLSb1の全周、もう一つが凹んだフランジ面F1の最外周側のエッジF11の全周になることから、ディスク側の光学面LSbの頂点よりも成形バリが突出することを確実に防止し、成形バリがレンズOLの取り付けに影響すること、すなわちレンズOLのワーキングディスタンスが成形バリの影響で変動するおそれを低減できる。 Further, depending on manufacturing errors, the front end surface of the movable sleeve 64 of the movable mold 42 is retracted from the optical surface molding surface 66a of the mirror core 62, and the leading portion of the clearance B1 between the movable sleeve 64 and the mirror core 62 is obtained. 4 moves to the left side in the drawing of FIG. 4, there is a possibility that the molding burr generated in the clearance B1 may protrude from the apex of the optical surface LSb on the disc side (intersection of the optical surface LSb and the optical axis OA). . For this reason, in the present embodiment, the distal end surface of the movable sleeve 64 is located inside the cavity CV rather than the leading portion of the clearance between the movable sleeve 64 and the outer peripheral mold 61 and the leading portion of the clearance between the movable sleeve 64 and the mirror core 62. The distance d1 is projected. Thereby, in the lens OL after molding, one of the starting points of the molding burr is on the entire circumference of the outermost edge LSb1 of the optical surface LSb and the other is on the entire circumference of the outermost edge F11 of the recessed flange surface F1. Therefore, it is possible to reliably prevent the molding burr from protruding beyond the top of the optical surface LSb on the disk side, and the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL is influenced by the molding burr. The risk of fluctuation can be reduced.
 なお、本実施形態においては、可動スリーブ64と外周型61とのクリアランスの先頭部の位置と、可動スリーブ64と鏡面コア62とのクリアランスの先頭部の位置が同じ位置である場合の例を示したが、それらクリアランスの先頭部の位置が異なる場合には、他方の金型(固定金型41)の側により近い方に位置するクリアランスの先頭部に対し、そのクリアランスの先頭部の位置よりもキャビティCV内部に間隔d1だけ可動スリーブ64の先端面を突出させればよい。 In the present embodiment, an example is shown in which the position of the leading portion of the clearance between the movable sleeve 64 and the outer peripheral mold 61 and the position of the leading portion of the clearance between the movable sleeve 64 and the mirror core 62 are the same position. However, if the positions of the heads of the clearances are different, the clearance head located closer to the other mold (fixed mold 41) side is positioned more than the position of the head of the clearance. What is necessary is just to protrude the front end surface of the movable sleeve 64 in the cavity CV by the distance d1.
 以上の金型を用いて光学素子を製造する。これによれば、可動金型42の鏡面コア62の周囲にわたって設けられた環状の可動スリーブ64の先端に設けた環状の先端面すなわち成形面66bを用いて、レンズOLのフランジ部OLbを突き出すので、鏡面コア62からレンズOLを離型する際に、突き出し部分の面積を増加させることができ、レンズOLのフランジ部OLb全体にバランスのとれた十分な離型力を加えることができる。これにより、レンズOLを可動金型42側から確実に離型することができ、レンズOLの安定した製造が可能になるとともに、可動スリーブ64等を含む可動金型42の耐久性を向上させることができる。また、フランジ部OLbの一部に局所的な力が加わって成形後の光学面LSa,LSbが不均一に変形することを防止できる。また、鏡面コア62からレンズOLを離型する際に、鏡面コア62を変位させる必要がないので、可動金型42中で鏡面コア62が成形のショット毎に変位することを防止でき、固定金型41の光学面成形面56aと可動金型42の光学面成形面66aとが相対的にシフト又はチルトする要因を減少させることができる。よって、各種収差の発生や変動を抑えた高性能のレンズOLを大量に製造することができる。 An optical element is manufactured using the above molds. According to this, the flange portion OLb of the lens OL is projected using the annular tip surface, that is, the molding surface 66b provided at the tip of the annular movable sleeve 64 provided around the mirror core 62 of the movable mold 42. When releasing the lens OL from the mirror core 62, the area of the protruding portion can be increased, and a balanced release force can be applied to the entire flange portion OLb of the lens OL. Thereby, the lens OL can be reliably released from the movable mold 42 side, the lens OL can be stably manufactured, and the durability of the movable mold 42 including the movable sleeve 64 and the like is improved. Can do. Further, it is possible to prevent the optical surfaces LSa and LSb after molding from being deformed unevenly due to a local force applied to a part of the flange portion OLb. Further, since it is not necessary to displace the mirror core 62 when releasing the lens OL from the mirror core 62, it is possible to prevent the mirror core 62 from being displaced every molding shot in the movable mold 42. It is possible to reduce a factor that the optical surface molding surface 56a of the mold 41 and the optical surface molding surface 66a of the movable mold 42 are relatively shifted or tilted. Therefore, it is possible to manufacture a large number of high-performance lenses OL that suppress the occurrence and fluctuation of various aberrations.
 具体的には、可動金型42において可動スリーブ64を変位させるが鏡面コア62を固定しているので、レンズOLの一対の光学面LSa,LSb間の相対シフトや相対チルトの発生や変動を抑えることができ、レンズOLのコマ収差の発生を抑えることができる。以上のようなコア精度の金型41,42を用いることにより、例えばレンズOLがNA0.65以上の光ピックアップ用の対物レンズ(具体例として、NA0.65のHD DVD用対物レンズを含む)であって、特にNA0.75以上の用対物レンズ(具体例として、NA0.85のBD用対物レンズ等を含む)である場合、相対シフトを約±1.0μm以内に抑えることができ、相対チルトを約±0.02°以内に抑え込むことができるので、コマ収差等を低減した高性能の対物レンズとできる。 Specifically, the movable sleeve 64 is displaced in the movable mold 42, but the mirror core 62 is fixed. Therefore, the relative shift between the pair of optical surfaces LSa and LSb of the lens OL and the occurrence and fluctuation of the relative tilt are suppressed. And the occurrence of coma aberration in the lens OL can be suppressed. By using the core precision molds 41 and 42 as described above, for example, an objective lens for an optical pickup having a lens OL of NA 0.65 or more (specifically, including an objective lens for HD DVD with NA 0.65) is used. In particular, in the case of an objective lens for NA of 0.75 or higher (including a BD objective lens for NA of 0.85 as a specific example), the relative shift can be suppressed within about ± 1.0 μm, and the relative tilt Can be suppressed within about ± 0.02 °, so that a high-performance objective lens with reduced coma and the like can be obtained.
 〔第2実施形態〕
 以下、第2実施形態に係る光学素子の製造方法について説明する。なお、第2実施形態に係る製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, a method for manufacturing an optical element according to the second embodiment will be described. The manufacturing method according to the second embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
 図5は、本実施形態の金型の拡大断面図である。図からも明らかなように、可動金型42において、外周型61の成形面66dと可動スリーブ64の先端面とを略一致させている。ただし、可動スリーブ64の先端面は、第1実施形態と同様に、鏡面コア62の先端位置よりも鏡面コア52側に間隔d1だけ突出している。この場合、外周型61と可動スリーブ64との間のクリアランスB2によって形成される成形バリが光軸OAの方向を基準としてディスク側の光学面LSbの頂点からより離れた位置に形成されることになる。よって、可動スリーブ64の外側のクリアランスB2を内側のクリアランスB1よりも大きくした場合でも、成形バリがレンズOLの取り付けに影響すること、すなわちレンズOLのワーキングディスタンスが成形バリの影響で変動することを防止できる。また、このような場合に、クリアランスB3(図1参照)もクリアランスB1よりも大きくすることにより、エジェクタ動作時の接触箇所を可動スリーブ64と鏡面コア62との間のみに限定することができ、接触箇所が複数ある場合に比べて、部材同士の接触によって発生する傷の発生箇所を少なくでき、動作不良といった成形不良を低減することができる。 FIG. 5 is an enlarged cross-sectional view of the mold according to the present embodiment. As is apparent from the figure, in the movable mold 42, the molding surface 66d of the outer peripheral die 61 and the distal end surface of the movable sleeve 64 are substantially matched. However, the distal end surface of the movable sleeve 64 protrudes from the distal end position of the mirror core 62 toward the mirror core 52 by a distance d1 as in the first embodiment. In this case, the molding burr formed by the clearance B2 between the outer peripheral die 61 and the movable sleeve 64 is formed at a position farther from the apex of the optical surface LSb on the disc side with respect to the direction of the optical axis OA. Become. Therefore, even when the outer clearance B2 of the movable sleeve 64 is made larger than the inner clearance B1, the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL fluctuates due to the molding burr. Can be prevented. In such a case, the clearance B3 (see FIG. 1) is also made larger than the clearance B1, so that the contact location during the ejector operation can be limited to only between the movable sleeve 64 and the mirror core 62. Compared with the case where there are a plurality of contact locations, the number of occurrences of scratches caused by contact between members can be reduced, and molding defects such as operation failures can be reduced.
 〔第3実施形態〕
 以下、第3実施形態に係る光学素子の製造方法について説明する。なお、第3実施形態に係る製造方法は、第2実施形態を変形したものであり、特に説明しない部分については、第2実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, a method for manufacturing an optical element according to the third embodiment will be described. Note that the manufacturing method according to the third embodiment is a modification of the second embodiment, and parts that are not particularly described are the same as those in the second embodiment.
 図6は、本実施形態の金型の拡大断面図である。この場合、可動金型42において、外周型61の成形面66dと可動スリーブ64の外周側の端面とを略一致させ、かつ、可動スリーブ64の内周側の端面を、外周側の端面よりも間隔d3だけ窪ませている。また、可動スリーブ64の内周側の端面は、鏡面コア62の光学面成形面の外周端よりも、固定金型41側に間隔d2だけ突出させている。よって、外周型61のフランジ成形面66dは、鏡面コア62の内周側の端面の位置よりも固定金型41側に間隔d4(>d2)だけ突起していることになる。この第3実施形態の場合には、第2実施形態の場合に比較して、可動スリーブ64の外側のクリアランスB2によって形成される成形バリが光軸OAの方向を基準としてディスク側の光学面LSbの頂点からさらに離れた位置に形成されることになる。よって、可動スリーブ64の外側のクリアランスB2を内側のクリアランスB1より更に大きくした場合でも、成形バリがレンズOLの取り付けに影響すること、すなわちレンズOLのワーキングディスタンスが成形バリの影響で変動することを防止できる。また、このような場合に、クリアランスB3(図1参照)もクリアランスB1よりも大きくすることにより、エジェクタ動作時の接触箇所を可動スリーブ64と鏡面コア62との間のみに限定することができ、接触箇所が複数ある場合に比べて、部材同士の接触によって発生する傷の発生箇所を少なくでき、動作不良といった成形不良を低減することができる。 FIG. 6 is an enlarged cross-sectional view of the mold according to the present embodiment. In this case, in the movable mold 42, the molding surface 66d of the outer peripheral die 61 and the end surface on the outer peripheral side of the movable sleeve 64 are made to substantially coincide with each other, and the end surface on the inner peripheral side of the movable sleeve 64 is more than the end surface on the outer peripheral side. It is recessed by a distance d3. Further, the end surface on the inner peripheral side of the movable sleeve 64 protrudes from the outer peripheral end of the optical surface molding surface of the mirror core 62 toward the fixed mold 41 by a distance d2. Therefore, the flange molding surface 66 d of the outer peripheral mold 61 protrudes by a distance d 4 (> d 2) closer to the fixed mold 41 than the position of the end surface on the inner peripheral side of the mirror core 62. In the case of the third embodiment, compared to the case of the second embodiment, the molding burr formed by the clearance B2 outside the movable sleeve 64 is the optical surface LSb on the disc side with the direction of the optical axis OA as a reference. It is formed at a position further away from the apex of. Therefore, even when the outer clearance B2 of the movable sleeve 64 is made larger than the inner clearance B1, the molding burr affects the mounting of the lens OL, that is, the working distance of the lens OL fluctuates due to the molding burr. Can be prevented. In such a case, the clearance B3 (see FIG. 1) is also made larger than the clearance B1, so that the contact location during the ejector operation can be limited to only between the movable sleeve 64 and the mirror core 62. Compared with the case where there are a plurality of contact locations, the number of occurrences of scratches caused by contact between members can be reduced, and molding defects such as operation failures can be reduced.
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、固定金型41及び可動金型42で構成される金型に設けるキャビティCVは1つに限らず、複数とすることができる。つまり、例えば外周型51中に鏡面コア52を複数埋め込むことができ、これに対応させて、可動金型42中に鏡面コア62及び可動スリーブ64からなるユニットを複数組埋め込むことができる。この場合、両金型41,42を利用した1ショットの成形によって複数個のレンズOLを得ることができる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, the number of cavities CV provided in the mold constituted by the fixed mold 41 and the movable mold 42 is not limited to one, and a plurality of cavities CV can be provided. That is, for example, a plurality of mirror cores 52 can be embedded in the outer peripheral mold 51, and a plurality of sets of units including the mirror core 62 and the movable sleeve 64 can be embedded in the movable mold 42 correspondingly. In this case, a plurality of lenses OL can be obtained by one-shot molding using both molds 41 and 42.
 また、図2等に示す鏡面コア52の先端側の光学面成形面56aの形状や、鏡面コア62の先端側の光学面成形面66aの形状は、単なる例示であり、レンズOLの用途等に応じて適宜変更することができる。例えば両光学面成形面56a,66aの形状を入れ替えて可動金型42側に曲率が大きい面が形成されたレンズを成形することもできる。 Further, the shape of the optical surface molding surface 56a on the distal end side of the mirror core 52 and the shape of the optical surface molding surface 66a on the distal end side of the mirror core 62 shown in FIG. 2 and the like are merely examples, and are used for applications such as a lens OL. It can be changed accordingly. For example, it is possible to mold a lens having a surface with a large curvature on the movable mold 42 side by switching the shapes of both optical surface molding surfaces 56a and 66a.
 また、図3等に示すように、可動スリーブ64の先端部は、円筒状の外形を有するが、四角形等の各種断面形状の筒状とすることができる。ただし、円形断面の筒状とすることで、可動金型42の製造を容易にすることができ、可動金型42の精度を高めることができる。 Further, as shown in FIG. 3 and the like, the distal end portion of the movable sleeve 64 has a cylindrical outer shape, but may have a cylindrical shape having various cross-sectional shapes such as a quadrangle. However, by using a cylindrical shape with a circular cross section, the movable mold 42 can be easily manufactured, and the accuracy of the movable mold 42 can be increased.
 また、上記第3実施形態では、可動スリーブ64の先端面に半径方向に沿って高さの変化する段差を設けているが、これに限らず、周方向に沿って高さの変化する段差を設けることもできる。 Further, in the third embodiment, a step whose height changes along the radial direction is provided on the distal end surface of the movable sleeve 64. However, the present invention is not limited to this, and a step whose height changes along the circumferential direction is provided. It can also be provided.
 また、レンズOLは、プラスチック製に限らず、同様の金型41,42等を組み込んだ成形装置100によってガラスレンズを製造することができる。 Further, the lens OL is not limited to plastic, and a glass lens can be manufactured by a molding apparatus 100 in which similar molds 41 and 42 are incorporated.

Claims (11)

  1.  第1金型と第2金型とで構成される一対の金型で光学素子を成形する第1工程と、
     前記第1金型と前記第2金型とを離間することにより、前記第1金型から前記光学素子を離型する第2工程と、
     前記第2金型に設けられた前記光学素子の光学面を形成するコア型の周囲にわたって設けられた環状の先端面を有する突き出し部材を用いて、前記光学素子の光学面の周囲に形成されたフランジ面を突き出すことにより、前記コア型から前記光学素子を離型する第3工程とを備えることを特徴とする光学素子の製造方法。
    A first step of molding an optical element with a pair of molds composed of a first mold and a second mold;
    A second step of releasing the optical element from the first mold by separating the first mold and the second mold;
    Using a protruding member having an annular tip surface provided around the core mold that forms the optical surface of the optical element provided in the second mold, formed around the optical surface of the optical element. And a third step of releasing the optical element from the core mold by protruding a flange surface.
  2.  前記第1工程において、前記一対の金型で形成されるキャビティ内に樹脂を注入することにより、前記光学素子の成形を行うことを特徴とする請求の範囲第1項に記載の光学素子の製造方法。 2. The optical element manufacturing method according to claim 1, wherein in the first step, the optical element is molded by injecting a resin into a cavity formed by the pair of molds. Method.
  3.  前記第3工程において、前記コア型と前記突き出し部材の周囲にわたって設けられた外周型とを互いに固定した状態で、前記突き出し部材を前記第2金型から前記第1金型に向かう方向に移動させることを特徴とする請求の範囲第1項に記載の光学素子の製造方法。 In the third step, the protruding member is moved in the direction from the second mold toward the first mold in a state where the core mold and the outer peripheral mold provided around the protruding member are fixed to each other. The method for manufacturing an optical element according to claim 1, wherein:
  4.  前記第1金型は、固定金型であり、前記第2金型は、可動金型であることを特徴とする請求の範囲第1項乃至請求の範囲第3項のいずれか一項に記載の光学素子の製造方法。 The said 1st metal mold | die is a fixed metal mold | die, The said 2nd metal mold | die is a movable metal mold | die, The any one of Claim 1 thru | or Claim 3 characterized by the above-mentioned. Of manufacturing the optical element.
  5.  前記光学素子は、レンズであることを特徴とする請求の範囲第1項から請求の範囲第4項までのいずれか一項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to any one of claims 1 to 4, wherein the optical element is a lens.
  6.  一対の金型により光学素子を成形する光学素子成形金型であって、
     一方の金型に、前記光学素子の光学面を形成するコア型と、前記コア型の周囲にわたって設けられた環状の先端面を有し前記光学素子の光学面の周囲に形成されたフランジ面を突き出すために前記一方の金型から他方の金型に向かう方向に進退可能な突き出し部材とを有することを特徴とする光学素子成形金型。
    An optical element molding die for molding an optical element by a pair of molds,
    One mold includes a core mold that forms an optical surface of the optical element, and a flange surface that is formed around the optical surface of the optical element having an annular tip surface provided around the core mold. An optical element molding die comprising: a projecting member capable of advancing and retreating in the direction from the one mold to the other mold in order to project.
  7.  前記一方の金型は、前記突き出し部材の周囲にわたって設けられた外周型を有することを特徴とする請求の範囲第6項に記載の光学素子成形金型。 The optical element molding die according to claim 6, wherein the one mold has an outer peripheral mold provided around the protruding member.
  8.  前記コア型と前記突き出し部材とのクリアランスと、前記突き出し部材と前記外周型とのクリアランスとは大きさが異なり、大きい方のクリアランスの先頭部の位置は、小さい方のクリアランスの先頭部の位置よりも前記他方の金型側に突出するように構成されていることを特徴とする請求の範囲第7項に記載の光学素子成形金型。 The clearance between the core mold and the protruding member is different from the clearance between the protruding member and the outer peripheral mold, and the position of the leading portion of the larger clearance is more than the position of the leading portion of the smaller clearance. The optical element molding die according to claim 7, wherein the optical element molding die is also configured to protrude toward the other mold side.
  9.  前記コア型と前記突き出し部材とのクリアランスは、前記突き出し部材と前記外周型とのクリアランスよりも大きいことを特徴とする請求の範囲第7項及び請求の範囲第8項のいずれか一項に記載の光学素子成形金型。 9. The clearance between the core mold and the protruding member is larger than the clearance between the protruding member and the outer peripheral mold, and is defined in any one of claims 7 and 8. Optical element molding die.
  10.  前記コア型と前記突き出し部材とのクリアランスは、前記突き出し部材と前記外周型とのクリアランスよりも小さく、
     前記突き出し部材の前記環状の先端面の形状は、前記コア型側よりも前記外周型側で前記他方の金型に向かって突起していることを特徴とする請求の範囲第8項に記載の光学素子成形金型。
    The clearance between the core mold and the protruding member is smaller than the clearance between the protruding member and the outer peripheral mold,
    The shape of the annular front end surface of the protruding member protrudes toward the other mold on the outer peripheral mold side rather than the core mold side. Optical element molding die.
  11.  前記突き出し部材の前記環状の先端面は、前記光学素子の前記フランジ面の少なくとも一部を転写形成するための成形面であることを特徴とする請求の範囲第6項乃至請求の範囲第10項のいずれか一項に記載の光学素子成形金型。 11. The annular surface of the projecting member is a molding surface for transferring and forming at least a part of the flange surface of the optical element. The optical element shaping | molding die as described in any one of these.
PCT/JP2008/072245 2007-12-28 2008-12-08 Optical element manufacturing method, and optical element forming mold WO2009084377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009547968A JPWO2009084377A1 (en) 2007-12-28 2008-12-08 Optical element manufacturing method and optical element molding die
CN2008801224360A CN101909842A (en) 2007-12-28 2008-12-08 Optical element manufacturing method, and optical element forming mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007341445 2007-12-28
JP2007-341445 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084377A1 true WO2009084377A1 (en) 2009-07-09

Family

ID=40824098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072245 WO2009084377A1 (en) 2007-12-28 2008-12-08 Optical element manufacturing method, and optical element forming mold

Country Status (3)

Country Link
JP (1) JPWO2009084377A1 (en)
CN (1) CN101909842A (en)
WO (1) WO2009084377A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122090A1 (en) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 Moulding die, optical element, and method for manufacturing optical element
WO2014010560A1 (en) * 2012-07-09 2014-01-16 オリンパス株式会社 Metal die structure for molding molded article, and method for producing molded article
JP2014044423A (en) * 2012-08-24 2014-03-13 Genius Electronic Optical Co Plastic lens with improved eccentricity and method for manufacturing the same
JP5883989B2 (en) * 2013-03-26 2016-03-15 富士フイルム株式会社 Mold
JP2017185759A (en) * 2016-04-08 2017-10-12 キヤノン株式会社 Plastic lens and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826002B2 (en) * 2017-06-16 2021-02-03 オリンパス株式会社 Molding mold
JP2019012112A (en) * 2017-06-29 2019-01-24 日本電産サンキョー株式会社 Manufacturing method of plastic lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196612A (en) * 1986-02-25 1987-08-31 Olympus Optical Co Ltd Method for forming optical parts
JPH0772312A (en) * 1993-09-06 1995-03-17 Fuji Photo Film Co Ltd Apparatus and method for producing fresnel lens
JP2004314545A (en) * 2003-04-18 2004-11-11 Konica Minolta Opto Inc Method and equipment for manufacturing optical element, and optical element
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196612A (en) * 1986-02-25 1987-08-31 Olympus Optical Co Ltd Method for forming optical parts
JPH0772312A (en) * 1993-09-06 1995-03-17 Fuji Photo Film Co Ltd Apparatus and method for producing fresnel lens
JP2004314545A (en) * 2003-04-18 2004-11-11 Konica Minolta Opto Inc Method and equipment for manufacturing optical element, and optical element
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122090A1 (en) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 Moulding die, optical element, and method for manufacturing optical element
CN102821924A (en) * 2010-03-30 2012-12-12 柯尼卡美能达先进多层薄膜株式会社 Moulding die, optical element, and method for manufacturing optical element
JP5163832B2 (en) * 2010-03-30 2013-03-13 コニカミノルタアドバンストレイヤー株式会社 Optical element
JPWO2011122090A1 (en) * 2010-03-30 2013-07-08 コニカミノルタアドバンストレイヤー株式会社 Optical element
CN102821924B (en) * 2010-03-30 2015-10-14 柯尼卡美能达先进多层薄膜株式会社 The manufacture method of mould, optical element and optical element
WO2014010560A1 (en) * 2012-07-09 2014-01-16 オリンパス株式会社 Metal die structure for molding molded article, and method for producing molded article
US9925705B2 (en) 2012-07-09 2018-03-27 Olympus Corporation Molding die structure of molded article and manufacturing method of molded article
JP2014044423A (en) * 2012-08-24 2014-03-13 Genius Electronic Optical Co Plastic lens with improved eccentricity and method for manufacturing the same
JP5883989B2 (en) * 2013-03-26 2016-03-15 富士フイルム株式会社 Mold
JP2017185759A (en) * 2016-04-08 2017-10-12 キヤノン株式会社 Plastic lens and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2009084377A1 (en) 2011-05-19
CN101909842A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4525868B2 (en) Optical pickup objective lens manufacturing method, optical pickup objective lens molding die, and optical pickup objective lens
WO2009084377A1 (en) Optical element manufacturing method, and optical element forming mold
JP4992105B2 (en) Resin molding die and optical element manufacturing method
JP4508274B2 (en) Resin lens and resin lens molding method
JP5704172B2 (en) Molding equipment
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
JP5713021B2 (en) Optical element manufacturing method
JP5120525B2 (en) Optical element manufacturing method and optical element
JP2012056321A (en) Mold for resin molding, objective lens for optical pickup device and method for manufacturing optical element
JP4873054B2 (en) Molded lens
WO2014073323A1 (en) Molding device and molding method
JP4495585B2 (en) Resin lens mold
WO2013094173A1 (en) Objective lens, optical pickup, optical disc device, mold for resin forming, and method for manufacturing objective lens
JP5733388B2 (en) Objective lens, objective lens manufacturing method, and molding die
JP2010083025A (en) Method for manufacturing optical element and metallic mold for molding optical element
WO2012118041A1 (en) Optical element, molding die, and method for producing optical element
JP5383581B2 (en) Resin lens and resin lens molding method
WO2012133596A1 (en) Optical element, molding die, and method for manufacturing optical element
JP2007265617A (en) Molded lens and die for molded lens
JP2010080012A (en) Objective lens for optical pickup, method of manufacturing the same, and forming mold
JP5716754B2 (en) Objective lens manufacturing method and mold
JP2013208884A (en) Molding mold and method of manufacturing optical element
JP2013169692A (en) Molding equipment, and method for manufacturing optical element
JP2014117906A (en) Molding apparatus and molding method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122436.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547968

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08868272

Country of ref document: EP

Kind code of ref document: A1