WO2009082907A1 - Procédé, système et dispositif de formation de faisceau - Google Patents

Procédé, système et dispositif de formation de faisceau Download PDF

Info

Publication number
WO2009082907A1
WO2009082907A1 PCT/CN2008/073198 CN2008073198W WO2009082907A1 WO 2009082907 A1 WO2009082907 A1 WO 2009082907A1 CN 2008073198 W CN2008073198 W CN 2008073198W WO 2009082907 A1 WO2009082907 A1 WO 2009082907A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
selection information
code sequence
beamforming
beam selection
Prior art date
Application number
PCT/CN2008/073198
Other languages
English (en)
French (fr)
Inventor
Yunbao Zeng
Yajuan Li
Yanling Lu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009082907A1 publication Critical patent/WO2009082907A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a beamforming method, system, and apparatus. Background technique
  • the base station smart antenna is an array antenna composed of a plurality of antenna elements. By adjusting the weighted amplitude and phase of each unit signal and changing the pattern of the array, interference can be suppressed and the signal-to-noise ratio can be improved.
  • the smart antenna of the base station can automatically measure the direction of the user and point the beam to the user to realize the beam and the user.
  • Figure 1 shows the structure of the smart antenna with the most single structure. In the online array structure, the array elements are generally arranged at equal intervals. The spacing between adjacent elements is d as shown in Figure 1.
  • the incident wave is a far-field source, which is a plane wave.
  • the distance difference between the incident wave of the antenna/antenna and the first antenna can be calculated, as shown by the formula (1) of 3 ⁇ 4 port,
  • phase difference between the incident wave of the antenna/antenna and the first antenna can be calculated, as shown in the formula (2).
  • the received signal of the /th antenna can be expressed as (3),
  • the purpose of beamforming is to make the signals received by the antennas add to each other as much as possible, that is, to estimate the beamforming factor ⁇ , to maximize the compensation ⁇ ( ⁇ ), and to achieve the maximum beamforming gain of 10lo g (M), M is the antenna number.
  • Smart antenna beamforming is the core of smart antenna technology.
  • One is adaptive beamforming. This method estimates the beamforming factor in real time according to the spatial response of the channel. The computational complexity is large and the complexity is high.
  • Another implementation method It is a method of switching beamforming. This method pre-sets a set of beams and their corresponding factors, and performs beamforming by beam selection. The calculation amount and complexity are very low, which is considered to be the most practical method.
  • the commonly used method is uplink detection, and the reciprocity of the channel is utilized.
  • the reciprocity of the channel is utilized.
  • This method is also known as a dedicated pilot method.
  • the downlink beamforming is performed by the uplink channel estimation selection beam, and both data and pilot are beamformed.
  • this method has the following disadvantages:
  • the base station needs to perform spatial channel estimation for each user and perform beam selection with a large amount of computation
  • Another beam selection method in the prior art is to use a common pilot method, that is, each antenna transmits a different pilot, performs spatial channel estimation at the receiving end, performs beam selection, and feeds back to the base station.
  • the common pilot does not perform beamforming and only performs beamforming on the data.
  • the common pilot method requires the user to estimate the spatial channel, and the calculation amount is large. Compared with the dedicated pilot method, the terminal has higher reception complexity, but the beam tracking effect is better.
  • the prior art has at least the following problems:
  • the dedicated pilot method is not applicable to FDD and TDD systems, and cannot track user conditions in real time;
  • the pilot method terminal has a high reception complexity. Summary of the invention
  • Embodiments of the present invention provide a beamforming method, system, and apparatus, such that the existing beamforming method is applicable to FDD and TDD systems, and the terminal receives the cartridge.
  • an embodiment of the present invention provides a beamforming method, including the following steps: a base station transmits a code sequence in each beam, and a symbol in the code sequence corresponds to the beams; The beam selection information sent by the terminal, where the beam selection information is generated by the terminal according to the received signal and the correlation of the code sequence, and the base station performs beamforming on the transmitted data according to the beam selection information.
  • the embodiment of the present invention further provides a beamforming system, including: a base station, configured to transmit a code sequence in each beam, where symbols in the code sequence are in one-to-one correspondence with the beams, and according to The beam corresponding to the beam selection information of the feedback beamforms the data sent by the beam; the terminal is configured to receive the signal transmitted by the base station, according to the received signal The correlation between the number and the code sequence generates beam selection information and feeds back the beam selection information to the base station.
  • the embodiment of the present invention further provides a base station, including: a transmitting module, configured to transmit a code sequence in each beam, where a symbol in the code sequence corresponds to the beams; a beamforming module, The beam is used for beamforming according to the beam corresponding to the beam selection information fed back by the terminal.
  • a transmitting module configured to transmit a code sequence in each beam, where a symbol in the code sequence corresponds to the beams
  • a beamforming module The beam is used for beamforming according to the beam corresponding to the beam selection information fed back by the terminal.
  • the embodiment of the present invention further provides a terminal, including: a receiving module, configured to receive a signal transmitted by a base station; and an information generating module, connected to the receiving module, configured to receive a signal and a received according to the receiving module
  • the correlation of the code sequence generates beam selection information
  • the feedback module is connected to the information generation module, and is configured to feed back beam selection information generated by the information generation module to the base station.
  • the embodiment of the present invention has the following advantages: According to the embodiment of the present invention, the terminal generates beam selection information through correlation calculation, and feeds back to the base station, where the base station performs beam on the transmitted data according to the beam selection information fed back by the terminal. Forming, thereby reducing the amount of calculation of the base station, and the complexity of the terminal is not high, and is suitable for both FDD and TDD systems.
  • FIG. 1 is a schematic diagram of a general structure of a prior art smart antenna line array
  • FIG. 2 is a schematic diagram of an array output structure of a prior art smart antenna
  • FIG. 3 is a flowchart of a method for beamforming according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a system for beamforming according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a beamforming method, which mainly solves the problem of beamforming in the downlink, and adopts downlink detection, which can overcome the inaccuracy of uplink detection by FDD and TDD systems, or the high complexity of the common pilot method. .
  • Embodiments of the present invention perform beamforming on pilot sequences with very good pilot or correlation, and pilot or correlation A very good code sequence corresponds to the beam, and the number of pilots is equal to the number of beams. Since beamforming is performed, the terminal is equivalent to receiving single antenna data, making terminal detection more compact.
  • FIG. 3 it is a flowchart of a method for beamforming according to an embodiment of the present invention, which specifically includes the following steps:
  • Step S301 the base station transmits a code sequence in each beam, and the symbols in the code sequence correspond to the respective beams.
  • the embodiment of the present invention uses a downlink detection uplink feedback format to generate an orthogonal code or a very good correlation code sequence for each downlink beam.
  • the embodiment of the present invention uses a Walsh code as an example to describe the downlink beam and the Waldorf. Code - corresponding.
  • fii3 ⁇ 4im_mm is the corresponding beam number
  • / is the corresponding antenna unit
  • X B (n is the "first" symbol of X.
  • a small block of resources needs to be reserved for transmitting a corresponding code sequence, such as a time-frequency block in an OFDMA system, and the size of the time-frequency block resource is related to the design of the code sequence.
  • Step S302 Receive beam selection information sent by the terminal, where the beam selection information is generated by the terminal according to the correlation between the received signal and the code sequence.
  • Step S303 the base station performs beamforming on the transmitted data according to the beam selection information.
  • the base station After receiving the beam selection information generated according to the correlation between the signal received by the terminal and the code sequence, the base station performs beamforming on the transmitted data.
  • the beam selection information fed back by the terminal is generated by the terminal according to the correlation between the received signal and the code sequence. Assuming that the terminal has only one antenna, the situation of multiple antennas is similar.
  • the terminal After the terminal receives the signal transmitted by the base station, the terminal calculates the correlation between the received signal and the code sequence, and selects the beam corresponding to the peak of the correlation as the optimal beam. , as shown in equation (6). One of them, for the direction
  • M is the number of antenna elements.
  • the terminal selects a beam according to the correlation between the received signal and the code sequence, detects each frame signal, performs correlation processing by the method as described in the formula (6), and then generates and updates the beam selection information according to the peak value of the correlation. If the beam selection information changes, it is fed back to the base station, otherwise feedback is not needed, which ensures the effect of beamforming. Of course, the beam selection information can be fed back to the base station every frame. The base station performs beamforming on the terminal according to the beam corresponding to the beam selection information fed back by the terminal.
  • the terminal since the terminal performs beam selection by calculating the correlation, the calculation amount is not increased greatly, and the complexity of the terminal is not high.
  • the embodiment of the present invention not only greatly reduces the burden on the base station, but also greatly avoids the possibility of beamforming failure. Therefore, the performance of the smart antenna system can be greatly improved and the system capacity can be improved by the embodiment of the present invention.
  • the terminal only needs to calculate the correlation of the single-segment to select the optimal beam and feed back to the base station, which is more common than the public.
  • the pilot method has a large number of beam selection cylinders, and this is also advantageous for FDD and TDD systems, and has the advantages of dedicated pilot and common pilot beam selection schemes, which saves the calculation amount of the terminal.
  • the beam selection/location of the neighboring base station is also very convenient, and the location information of the neighbor base station/cell can be acquired without accessing, thereby facilitating cell handover and reducing the handover delay.
  • a structural diagram of a system for beamforming includes: a base station 1 configured to transmit a code sequence in each beam, and a symbol in the code sequence corresponds to each beam, and according to the feedback The beam corresponding to the beam selection information is beamformed by the beam; the terminal 2 is configured to receive the signal transmitted by the base station 1, and generate beam selection information according to the correlation between the received signal and the code sequence, and feed back the beam selection information.
  • the base station 1 includes: a transmitting module 11 configured to transmit a code sequence in each beam; and a beamforming module 12 configured to perform beamforming on the data transmitted according to the beam corresponding to the beam selection information fed back by the terminal 2.
  • the base station 1 further includes: a sequence generating module 13 configured to generate a transmitting module 11
  • the transmitted code sequence which may include a code sequence with a relatively good correlation such as an orthogonal code sequence or a Walsh code sequence.
  • the terminal 2 includes: a receiving module 21, configured to receive a signal transmitted by the base station 1; the information generating module 22 is connected to the receiving module 21, and configured to generate beam selection information according to the correlation between the signal received by the receiving module 21 and the code sequence;
  • the feedback module 23 is connected to the information generating module 22 and is configured to feed back the beam selection information generated by the information generating module 22 to the base station 1.
  • the information generating module 22 includes: a calculating submodule 221, configured to calculate a correlation between the signal received by the terminal 2 and the code sequence;
  • a peak determination sub-module 222 coupled to the calculation sub-module 221, for determining a peak value of the correlation calculated by the calculation sub-module 221;
  • the generating sub-module 223 is connected to the peak determining sub-module 222 for generating beam selection information according to the peak value of the correlation determined by the peak-determining stator module 222.
  • the terminal 2 further includes: an information update module 24, coupled to the information generating module 22, configured to update the beam selection information in real time according to the peak of the correlation after the information generating module 22 determines the peak of the correlation.
  • an information update module 24 coupled to the information generating module 22, configured to update the beam selection information in real time according to the peak of the correlation after the information generating module 22 determines the peak of the correlation.
  • the terminal 2 After receiving the signal transmitted by the base station 1, the terminal 2 generates beam selection information through correlation calculation and feeds back to the base station 1, and then the base station 1 transmits according to the beam pair corresponding to the beam selection information fed back by the terminal 2.
  • the beamforming of the data not only greatly reduces the amount of calculation of the base station 1, but also requires less complexity for the terminal 2.
  • a software product can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (may It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computer device may It is a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

一种波束成形的方法、 系统和装置 本申请要求于 2007年 11月 28日提交中国专利局, 申请号为 200710195422.9, 发明名称为 "一种波束成形的方法、 系统和装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 特别涉及一种波束成形的方 法、 系统和装置。 背景技术
基站智能天线是一种由多个天线单元组成的阵列天线,通过调节 各单元信号的加权幅度和相位, 改变阵列的方向图, 可以抑制干扰, 提高信噪比。基站智能天线可以自动测出用户的方向, 并将波束指向 用户, 实现了波束跟用户走。 图 1为智能天线最筒单的结构一一线阵 结构, 在线阵结构中, 一般设定阵元为等间距, 如图 1所示相邻阵元 的间距为 d。
在智能天线应用中, 一般假设入射波为远场源, 即为平面波。 根 据图 1 , 可以计算出第 /根天线的入射波相对第一根天线到达的距离 差, : ¾口公式( 1 )所示,
D(l) = (l-l)dcos(0)
(1)
进而可以计算出第 /根天线的入射波相对第一根天线到达的相位 差, 如公式(2)所示,
(2)
则第 /根天线的接收信号可以表示成(3) 式,
y(l,t) = x(t)ei,p l) +n(t)
(3) 其中 《为每根天线的信道响应, 由每根天线对应的 e jH 的 a(&) = [e-j"m e -
Figure imgf000004_0001
, 为阵列流矢量或者称为空间阵列响 应, 它和天线阵列的结构相关, 其中 Γ表示共轭转置。 对于圓阵, 其 原理也一样,由此,从( 3 )式可以看出,各天线接收信号差别就是 w 不同。
从(3 ) 式可以看出, 各天线接收信号差别就是相位不同和天线 噪声不一样。 阵列的输出是对各阵元的接收信号向量) (Z, 在各阵元 上分量的加权和, 如图 2所示, 输出可写作
y(t) = wH x(m) = j wm (e) - y(l, t)
1=1
( 4 )
波束成形的目的是尽可能使各天线接收的信号能够同相相加,即 估计波束成形因子^ , 最大限度地补偿^(^) , 进而实现最大的波束成 形增益 10log(M) , M为天线数。
智能天线波束成形是智能天线技术的核心, 主要有两种实现方 式, 一是自适应波束成形, 该方法根据信道空间响应实时估计波束成 形因子, 计算量大, 复杂度高; 另一种实现方式是切换波束成形, 该 方法预先设定好一组波束及其对应的因子,通过波束选择的方法进行 波束成形, 计算量和复杂度都非常低, 是一个被认为最有实用价值的 方法。
目前对于下行链路的波束选择, 常用的方法是上行检测, 利用信 道的互易性, 通过对上行链路的空间信道估计, 根据某种准则选择下 行波束, 并选择该波束作为下行链路成形波束。 该方法也称为专用导 频方法。 通过上行信道估计选择波束进行下行波束成形, 对数据和导 频都进行波束成形。 但是该方法具有以下缺点:
( 1 )基站需要对每个用户进行空间信道估计, 并进行波束选择, 运算量大;
( 2 ) 由于上下行信道的差异性, 尤其是对于 FDD ( Frequency Division Duplex , 频分双工模式)和 TDD ( Time Division Duplexing , 时分复用模式)系统, 通过基站上行检测进行下行波束成形, 可靠性 差;
( 3 ) 不能实时跟踪用户的状况, 尤其是当用户方向发生巨大变 化时。 因为, 在实际情况中一旦确定波束成形因子后连续很多帧可能 都不需要进行波束更新, 但是, 如果要实时跟踪用户的话则每帧都需 要进行波束选择, 运算量太大。
现有技术另一种波束选择方法是采用公共导频方法,即每根天线 发射不同的导频, 在接收端进行空间信道估计, 并进行波束选择, 反 馈给基站。 公共导频不进行波束成形, 只对数据进行波束成形。 公共 导频方法要求用户对空间信道进行估计, 计算量大, 相对于专用导频 方法, 终端接收复杂度更高, 不过波束跟踪效果更好。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题: 在现有的波束成形方法中, 专用导频方法, 对于 FDD和 TDD系 统不适用, 不能实时地跟踪用户状况; 而公共导频方法终端的接收复 杂度较高。 发明内容
本发明实施例提供一种波束成形的方法、 系统和装置, 以使现有 的波束成形方法适用于 FDD和 TDD系统, 终端接收筒单。
为达到上述目的, 本发明实施例一方面提供一种波束成形的方 法, 包括以下步骤: 基站在各波束中发射码序列, 所述码序列中的码 元与所述各波束——对应; 接收终端发送的波束选择信息, 所述波束 选择信息由所述终端根据接收的信号和所述码序列的相关度生成,所 述基站根据所述波束选择信息对发送的数据进行波束成形。
另一方面, 本发明实施例还提供一种波束成形的系统, 包括: 基 站, 用于在各波束中发射码序列, 所述码序列中的码元与所述各波束 一一对应,并根据反馈的波束选择信息对应的波束对发送的数据进行 波束成形; 终端, 用于接收所述基站发射的信号, 根据所述接收的信 号和所述码序列的相关度生成波束选择信息,并将所述波束选择信息 反馈给所述基站。
再一方面, 本发明实施例还提供一种基站, 包括: 发射模块, 用 于在各波束中发射码序列,所述码序列中的码元与所述各波束——对 应; 波束成形模块, 用于根据终端反馈的波束选择信息对应的波束对 发送的数据进行波束成形。
再一方面, 本发明实施例还提供一种终端, 包括: 接收模块, 用 于接收基站发射的信号; 信息生成模块, 与所述接收模块连接, 用于 根据所述接收模块接收的信号和所述码序列的相关度生成波束选择 信息; 反馈模块, 与所述信息生成模块连接, 用于将所述信息生成模 块生成的波束选择信息反馈给所述基站。
与现有技术相比, 本发明实施例具有以下优点: 通过本发明实施 例, 终端通过相关度计算生成波束选择信息, 并反馈给基站, 基站根 据终端反馈的波束选择信息对发送的数据进行波束成形,从而降低了 基站的计算量, 并且对终端的复杂度要求不高, 同时适用于 FDD和 TDD系统。 附图说明
图 1为现有技术智能天线线阵的一般结构原理图;
图 2为现有技术智能天线的阵列输出结构的示意图;
图 3为本发明实施例波束成形的方法的流程图;
图 4为本发明实施例波束成形的系统的结构图。 具体实施方式
本发明实施例提供一种波束成形的方法,主要解决的是下行链路 的波束成形问题, 采用下行检测, 能够克服由于 FDD和 TDD系统上 行检测不准确, 或者公共导频方法的高复杂度问题。 本发明实施例对 于各个导频或相关性非常好的码序列都进行波束成形,且导频或相关 性非常好的码序列同波束 对应, 导频数与波束数相等, 由于进行 了波束成形, 因此终端相当于接收单天线数据, 使终端检测变得更加 筒单。
如图 3所示, 为本发明实施例波束成形的方法的流程图, 具体包 括以下步骤:
步骤 S301, 基站在各波束中发射码序列, 该码序列中的码元与 各波束——对应。 本发明实施例采用下行检测上行反馈的形式, 针对 每一个下行波束生成一个正交码或者相关性非常好的码序列,本发明 实施例以沃尔什码为例进行说明, 下行波束与沃尔什码——对应。 殳 设基站侧有 β£ Μ_Μ/ ί个波束,则需要有 fiEA f _ / f个沃尔什码与 各个波束相对应, 例如: 设 =[^^2,'",^ ] , 为一 沃尔什码序列 ·> Beam num的取值为 1 ~ BEAM _ NUM ,其中 Beam _ num为 对应的波束号, 则每个天线单元 Z发射的信号为:
Figure imgf000007_0001
其中 fii¾im_mm为对应波束号, /为对应的天线单元, XB (n、为 X的第"个码元。
本发明实施例在帧设计的时候只需要预留出一小块资源用于传 输对应的码序列,如 OFDMA系统中的一个时频块,该时频块资源的 大小同码序列的设计相关。
步骤 S302, 接收终端发送的波束选择信息, 该波束选择信息由 终端根据接收的信号和码序列的相关度生成。
步骤 S303, 基站根据波束选择信息对发送的数据进行波束成形。 在收到根据终端接收的信号和码序列的相关度生成的波束选择 信息后, 基站对发送的数据进行波束成形。 该终端反馈的波束选择信 息是终端根据接收到的信号和码序列的相关度生成的。假设终端只有 一根天线, 多天线的情况与之类似, 在终端接收到基站发射的信号之 后, 终端计算接收的信号和码序列的相关度, 并选择相关度的峰值对 应的波束为最优波束, 如式(6)所示。 其中 一 , 为行向
Figure imgf000008_0001
量, M为天线阵元数。
终端根据接收的信号和码序列的相关度选择波束,对每帧信号都 检测, 并通过如公式(6 )所述的方法进行相关处理, 然后根据相关 度的峰值生成并实时更新波束选择信息,如果该波束选择信息有变化 则反馈给基站, 否则不需要反馈, 这保证了波束成形的效果, 当然也 可以每帧都反馈波束选择信息给基站。基站根据终端反馈的波束选择 信息对应的波束对该终端进行波束成形。
在本发明实施例中, 由于终端通过计算相关度进行波束选择, 计 算量增加不大, 对终端复杂度的要求不高。 本发明实施例不仅大大降 低了基站的负担, 且极大地避免了波束成形失败的可能, 因此, 通过 本发明实施例可以大大提高智能天线系统的性能, 提高系统容量。
本发明实施例通过设计一个专门的时频块,同时在各个方向对码 序列进行波束成形,终端只需要做筒单的相关度计算就可以选择出最 优波束, 并反馈给基站, 这比公共导频方法的波束选择筒单很多, 而 且这对于 FDD和 TDD系统来说也是有利的,同时具有了专用导频和 公共导频波束选择方案的优点, 节省了终端的计算量。 而且采用本 发明实施例, 对于相邻基站的波束选择 /定位也非常便利, 不需要进 行接入就可以获取邻居基站 /小区的方位信息, 从而更加有利于小区 的切换, 降低了切换时延。
如图 4所示, 为本发明实施例波束成形的系统的结构图, 包括: 基站 1 , 用于在各波束中发射码序列, 码序列中的码元与各波束—— 对应,并根据反馈的波束选择信息对应的波束对发送的数据进行波束 成形; 终端 2, 用于接收基站 1发射的信号, 并根据接收的信号和码 序列的相关度生成波束选择信息,并将该波束选择信息反馈给基站 1 其中, 基站 1包括: 发射模块 11 , 用于在各波束中发射码序列; 波束成形模块 12, 用于根据终端 2反馈的波束选择信息对应的 波束对发送的数据进行波束成形。
其中, 基站 1还包括: 序列生成模块 13 , 用于生成发射模块 11 发射的码序列,该码序列可以包括正交码序列或者沃尔什码序列等相 关性比较好的码序列。
其中, 终端 2包括: 接收模块 21 , 用于接收基站 1发射的信号; 信息生成模块 22, 与接收模块 21 连接, 用于根据接收模块 21 接收的信号和码序列的相关度生成波束选择信息;
反馈模块 23 , 与信息生成模块 22连接, 用于将信息生成模块 22 生成的波束选择信息反馈给基站 1。
其中, 信息生成模块 22包括: 计算子模块 221 , 用于计算终端 2 接收的信号和码序列的相关度;
峰值确定子模块 222, 与计算子模块 221连接, 用于确定计算子 模块 221计算的相关度的峰值;
生成子模块 223 , 与峰值确定子模块 222连接, 用于根据峰值确 定子模块 222确定的相关度的峰值生成波束选择信息。
其中, 终端 2还包括: 信息更新模块 24, 与信息生成模块 22连 接, 用于在信息生成模块 22确定相关度的峰值之后, 根据该相关度 的峰值实时更新波束选择信息。
上述波束成形的系统, 终端 2在接收到基站 1发射的信号之后, 通过相关度计算生成波束选择信息, 并反馈给基站 1 , 然后基站 1根 据该终端 2反馈的波束选择信息对应的波束对发送的数据进行波束 成形, 不仅大大降低了基站 1的计算量, 且对终端 2复杂度的要求不 高。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可以通过硬件实现,也可以可借助软件加必要的通用硬件平 台的方式来实现基于这样的理解,本发明的技术方案可以以软件产品 的形式体现出来, 该软件产品可以存储在一个非易失性存储介质(可 以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一 台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例所述的方法。 总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种波束成形的方法, 其特征在于, 包括以下步骤: 基站在各波束中发射码序列,所述码序列中的码元与所述各波束 一一对应;
接收终端发送的波束选择信息,所述波束选择信息由所述终端根 据接收的信号和所述码序列的相关度生成;
所述基站根据所述波束选择信息对发送的数据进行波束成形。
2、 如权利要求 1所述波束成形的方法, 其特征在于, 所述基站 根据所述波束选择信息对发送的数据进行波束成形包括:在下行链路 波束成形中, 所述基站对发送给所述终端的下行数据进行波束成形。
3、 如权利要求 1所述波束成形的方法, 其特征在于, 所述基站 在各波束中发射的码序列是所述基站生成的正交码序列或者沃尔什 码序列。
4、 如权利要求 1所述波束成形的方法, 其特征在于, 所述波束 选择信息由所述终端根据接收的信号和所述码序列的相关度生成,具 体包括以下步骤:
计算所述终端接收的信号和所述码序列的相关度;
确定所述相关度的峰值;
根据所述相关度的峰值生成所述波束选择信息。
5、 如权利要求 1所述波束成形的方法, 其特征在于, 所述基站 根据所述波束选择信息对发送的数据进行波束成形具体包括:所述基 站根据所述波束选择信息对应的波束对所述发送的数据进行波束成 形。
6、 如权利要求 4所述波束成形的方法, 其特征在于, 在根据所 述相关度的峰值生成所述波束选择信息之后, 还包括: 根据所述相关 度的峰值实时更新所述波束选择信息。
7、 一种波束成形的系统, 其特征在于, 包括:
基站, 用于在各波束中发射码序列, 所述码序列中的码元与所述 各波束——对应 ,并根据反馈的波束选择信息对应的波束对发送的数 据进行波束成形;
终端, 用于接收所述基站发射的信号, 根据所述接收的信号和所 述码序列的相关度生成波束选择信息,并将所述波束选择信息反馈给 所述基站。
8、 如权利要求 7所述波束成形的系统, 其特征在于, 所述基站 包括:
发射模块, 用于在各波束中发射所述码序列;
波束成形模块,用于根据所述终端反馈的波束选择信息对应的波 束对所述发送的数据进行波束成形。
9、 如权利要求 7所述波束成形的系统, 其特征在于, 所述终端 包括:
接收模块, 用于接收所述基站发射的信号;
信息生成模块, 与所述接收模块连接, 用于根据所述接收模块接 收的信号和所述码序列的相关度生成所述波束选择信息;
反馈模块, 与所述信息生成模块连接, 用于将所述信息生成模块 生成的波束选择信息反馈给所述基站。
10、 一种基站, 其特征在于, 包括:
发射模块, 用于在各波束中发射码序列, 所述码序列中的码元与 所述各波束——对应;
波束成形模块,用于根据终端反馈的波束选择信息对应的波束对 发送的数据进行波束成形。
11、 如权利要求 10所述基站, 其特征在于, 还包括: 序列生成 模块, 用于生成所述发射模块发射的码序列, 所述码序列包括正交码 序列或者沃尔什码序列。
12、 一种终端, 其特征在于, 包括:
接收模块, 用于接收基站发射的信号;
信息生成模块, 与所述接收模块连接, 用于根据所述接收模块接 收的信号和所述码序列的相关度生成波束选择信息; 反馈模块, 与所述信息生成模块连接, 用于将所述信息生成模块 生成的波束选择信息反馈给所述基站。
13、 如权利要求 12所述终端, 其特征在于, 所述信息生成模块 包括:
计算子模块,用于计算所述终端接收的信号和所述码序列的相关 度;
峰值确定子模块, 与所述计算子模块连接, 用于确定所述计算子 模块计算的相关度的峰值;
生成子模块, 与所述峰值确定子模块连接, 用于根据所述峰值确 定子模块确定的相关度的峰值生成所述波束选择信息。
14、 如权利要求 12所述终端, 其特征在于, 还包括: 信息更新 模块, 与所述信息生成模块连接, 用于在所述信息生成模块确定所述 相关度的峰值之后,根据所述相关度的峰值实时更新所述波束选择信 息。
PCT/CN2008/073198 2007-11-28 2008-11-26 Procédé, système et dispositif de formation de faisceau WO2009082907A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007101954229A CN101453255A (zh) 2007-11-28 2007-11-28 一种波束成形的方法、系统和装置
CN200710195422.9 2007-11-28

Publications (1)

Publication Number Publication Date
WO2009082907A1 true WO2009082907A1 (fr) 2009-07-09

Family

ID=40735303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073198 WO2009082907A1 (fr) 2007-11-28 2008-11-26 Procédé, système et dispositif de formation de faisceau

Country Status (2)

Country Link
CN (1) CN101453255A (zh)
WO (1) WO2009082907A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548385B2 (en) * 2009-12-16 2013-10-01 Intel Corporation Device, system and method of wireless communication via multiple antenna assemblies
CN103001674B (zh) * 2011-09-14 2015-04-08 华为技术有限公司 一种设置权值反馈粒度的方法、设备及系统
KR101995266B1 (ko) * 2012-08-17 2019-07-02 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
CN104469688B (zh) * 2013-09-22 2018-10-26 中国移动通信集团公司 一种预编码的方法、设备和系统
CN104734805A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 波束质量信息反馈方法和系统
CN104734760A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端
CN104617998A (zh) * 2015-01-15 2015-05-13 电子科技大学 一种闭环mimo非合作接收方法及其装置
WO2016154856A1 (zh) * 2015-03-30 2016-10-06 华为技术有限公司 多用户传输的方法及装置
CN108347272B (zh) 2017-01-25 2020-12-15 华为技术有限公司 一种基于波束组进行通信的方法及设备
CN109302720B (zh) * 2017-07-25 2021-03-23 华为技术有限公司 一种选择波束的方法及设备
CN109309519B (zh) * 2017-07-28 2021-05-11 华为技术有限公司 一种通信方法及其装置
WO2019061325A1 (zh) * 2017-09-29 2019-04-04 富士通株式会社 传输配置指示的发送和接收方法、装置及通信系统
EP3687081A4 (en) 2017-09-30 2020-07-29 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSFER METHOD AND DEVICE
CN113875163A (zh) * 2019-05-13 2021-12-31 谷歌有限责任公司 与协调基站进行并行波束成形训练
CN116801189B (zh) * 2023-08-25 2023-11-07 深圳华云时空技术有限公司 一种UWB的AoD的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886915A (zh) * 2003-12-22 2006-12-27 艾利森电话股份有限公司 用于确定发射权的方法
WO2007092539A2 (en) * 2006-02-09 2007-08-16 Intel Corporation Mimo communication system and method for beamforming using polar-cap codebooks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886915A (zh) * 2003-12-22 2006-12-27 艾利森电话股份有限公司 用于确定发射权的方法
WO2007092539A2 (en) * 2006-02-09 2007-08-16 Intel Corporation Mimo communication system and method for beamforming using polar-cap codebooks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASOUD SHARIF ET AL.: "On the Capacity of MIMO Broadcast Channels With Partial Side Information.", IEEE TRANSACTIONS ON INFORMATION THEORY., 28 February 2005 (2005-02-28), pages 507 - 508 *

Also Published As

Publication number Publication date
CN101453255A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2009082907A1 (fr) Procédé, système et dispositif de formation de faisceau
US10734722B2 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
JP4091601B2 (ja) 移動通信システムにおけるスマートアンテナの順方向伝送ビーム形成装置及び方法
CN110518961B (zh) 大规模mimo卫星移动通信方法及系统
EP2050216A2 (en) System and method for improving the robustness of spatial division multiple access via nulling
WO2011131117A1 (zh) 天线校准信息的上报、天线校准因子的确定方法及设备
KR20110024219A (ko) 간섭 정렬을 수행하는 통신 시스템 및 그 방법
WO2008042527A2 (en) Mobile assisted downlink beamforming with antenna weight feedback
JP2001144677A (ja) 無線通信システム
JP2014030205A (ja) Mimo−ofdma初期レンジングプロセスのためのレンジング信号の設計及び伝送の方法
WO2011079655A1 (zh) 实现多点联合传输的方法、终端及系统
WO2014035412A1 (en) Methods and apparatus for beamforming
WO2014173301A1 (zh) 波束赋形方法和设备
US20180088201A1 (en) Radio-wave arrival-direction estimation device and radio-wave arrival-direction estimation method
WO2016015282A1 (zh) 数据传输的方法和装置
TW201034416A (en) Method and apparatus for equalization in clustered channels
WO2019010714A1 (zh) 一种波束成形方法及设备
WO2018059002A1 (zh) 一种波束选择方法及相关设备
WO2009097739A1 (zh) 一种基于双极化阵列天线的下行发射处理方法及装置
WO2014071737A1 (zh) 阵列天线及发射接收信号方法、装置
JP2005236686A (ja) 適応アレーアンテナによる通信システムおよび通信方法
WO2015165070A1 (zh) 信道测量方法、信道测量装置、用户设备及系统
JP3423275B2 (ja) ドップラー周波数推定回路およびドップラー周波数推定回路を用いた無線装置
WO2015079726A1 (ja) 無線通信装置および無線通信方法
JP2014060616A (ja) 通信装置、および信号検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08867533

Country of ref document: EP

Kind code of ref document: A1