WO2009081598A1 - 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置 - Google Patents

画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置 Download PDF

Info

Publication number
WO2009081598A1
WO2009081598A1 PCT/JP2008/055360 JP2008055360W WO2009081598A1 WO 2009081598 A1 WO2009081598 A1 WO 2009081598A1 JP 2008055360 W JP2008055360 W JP 2008055360W WO 2009081598 A1 WO2009081598 A1 WO 2009081598A1
Authority
WO
WIPO (PCT)
Prior art keywords
carotid artery
surrounding tissue
image processing
optical flow
radial direction
Prior art date
Application number
PCT/JP2008/055360
Other languages
English (en)
French (fr)
Inventor
Yasunari Yokota
Rie Taniguchi
Yoko Kawamura
Fumio Nogata
Original Assignee
Gifu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University filed Critical Gifu University
Priority to EP08722676A priority Critical patent/EP2226012B1/en
Priority to US12/808,620 priority patent/US8249324B2/en
Priority to AU2008341770A priority patent/AU2008341770B2/en
Publication of WO2009081598A1 publication Critical patent/WO2009081598A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target

Definitions

  • the present invention relates to an image processing apparatus, an image processing program, a storage medium, and an ultrasonic diagnostic apparatus, and in particular, an image processing apparatus and an image processing program for an ultrasonic image of a carotid artery, and a storage medium and an ultrasonic wave related thereto.
  • the present invention relates to a diagnostic device.
  • Arteriosclerosis is one of the lifestyle-related diseases that is a risk factor due to uninhibition of lifestyle, and it progresses from a young age with almost no subjective symptoms, and leaving it alone may lead to cerebral infarction, myocardial infarction, angina, etc. There is a possibility of development. Because arteriosclerosis is difficult to treat, it is important to catch signs of arteriosclerosis early and encourage patients to improve their lifestyle and delay disease progression.
  • arteriosclerosis is the hardening of the artery and loses its elasticity
  • the goodness of the carotid artery movement associated with the heartbeat may be evaluated.
  • Various indices of arteriosclerosis have been proposed based on the evaluation of good arterial movement.
  • Non-Patent Document 1 and Non-Patent Document 2 propose a stiffness parameter and a modified stiffness parameter, respectively.
  • the above formula (1) shows a formula for calculating the modified stiffness parameter.
  • P s is the systolic blood pressure of the carotid artery
  • P d is the minimum blood pressure of the carotid artery
  • D s is the maximum diameter of the carotid artery during systolic
  • D d is the smallest diameter of the carotid artery at the time of minimum blood pressure is there.
  • the difference between the maximum blood pressure and the minimum blood pressure of the carotid artery is normalized by the good movement of the carotid artery. The larger the value of ⁇ *, the worse the movement of the carotid artery for the blood pressure difference, that is, the harder the carotid artery.
  • the carotid artery is assumed to be a thick cylinder having a thickness d, and the carotid artery elastic modulus E th is calculated according to the following equation (2) based on the mechanical characteristics of strain and stress. Yes.
  • d represents the thickness of the blood vessel wall.
  • an object of the present invention is to provide an image processing apparatus and an image processing program capable of calculating the elastic coefficient of the carotid artery wall more accurately by taking the surrounding tissue of the carotid artery into consideration.
  • Another object of the present invention is to provide a storage medium storing such an image processing program and an ultrasonic diagnostic apparatus used by being connected to such an image processing apparatus.
  • a moving image including a short-axis section of the carotid artery and a section of surrounding tissue around the carotid artery is acquired and acquired.
  • the optical flow of each point included in the region corresponding to the carotid artery wall and each point included in the region corresponding to the surrounding tissue is estimated from images of two temporally different frames of the moving image.
  • the first calculation means for calculating the displacement amount of the carotid artery and the surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery, and the carotid artery and the surrounding tissue are modeled by a two-layer cylinder
  • the displacement amount thus calculated and the first calculating means With the displacement calculated in As multiplication error is minimized, an image processing apparatus and a second calculating means for calculating the modulus of the elastic modulus and the surrounding tissues of the carotid artery wall is provided.
  • the first calculation means estimates an optical flow at each point on an axis extending in the radial direction of the carotid artery from the images of the two frames, and based on the estimated optical flow at each point, the carotid artery The amount of displacement of the carotid artery and the surrounding tissue with respect to the radial direction of the carotid artery according to the change in the internal pressure is calculated.
  • the computer acquires a moving image including a short-axis cross section of the carotid artery and a cross section of surrounding tissue around the carotid artery, and temporally analyzes the acquired moving image. Estimating the optical flow of each point included in the region corresponding to the carotid artery wall and the region corresponding to the surrounding tissue from the images of two different frames, and based on the estimated optical flow of each point, The first calculation means for calculating the displacement amount of the carotid artery and the surrounding tissue with respect to the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery, and the theory obtained by modeling the carotid artery and the surrounding tissue with a two-layer cylinder Based on the equation, the amount of displacement of the carotid artery and surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery is calculated, and the amount of displacement thus calculated and
  • the first calculation means estimates an optical flow at each point on an axis extending in the radial direction of the carotid artery from the images of the two frames, and based on the estimated optical flow at each point, the carotid artery The amount of displacement of the carotid artery and the surrounding tissue with respect to the radial direction of the carotid artery according to the change in the internal pressure is calculated.
  • a storage medium storing an image processing program according to the second aspect is provided.
  • an ultrasonic diagnostic apparatus connected to the image processing apparatus according to the first aspect.
  • the ultrasonic diagnostic apparatus generates an ultrasonic B-mode image based on an echo signal obtained by transmitting and receiving ultrasonic waves by the probe, and outputs the generated ultrasonic B-mode image to the image processing apparatus.
  • FIG. 1 is a schematic diagram of an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic electrical block diagram of the image processing apparatus of FIG. 1.
  • Graph showing the relationship between the distance r and the amount of displacement h of the elastic modulus E 2 are different from each other two bilayer cylinder model of elastic modulus E 1 is equal to each other and surrounding tissues of the carotid artery wall.
  • FIG. 7A shows an ultrasonic B-mode image
  • FIG. 7B shows the carotid artery with respect to the radial direction of the carotid artery at each point on the axis extending in the radial direction of the carotid artery according to the optical flow method.
  • FIG. 8A is a graph showing the displacement h (r) estimated according to the method of the present invention together with the displacement h (r) calculated according to the optical flow method
  • 9 (a) and 9 (b) are graphs showing the results when the same measurement is performed by changing the subject from the measurements shown in FIGS.
  • FIGS. 10 (a) and 10 (b) show the measurements shown in FIGS. 8 (a) and 8 (b) and the measurements shown in FIGS. 9 (a) and 9 (b). Is a graph showing the results when the same measurement was performed by changing the subject, and corresponds to FIG. 8A and FIG. 8B, respectively.
  • the image processing apparatus 11 includes a computer that functions as a first calculation unit (first calculation unit), a second calculation unit (second calculation unit), and a storage unit (storage unit). 12, a display 13, a printer 14, a keyboard 15, and an ultrasonic diagnostic apparatus 16.
  • the ultrasonic diagnostic apparatus 16 includes a probe 21, a display unit 22, and an ultrasonic generation source (not shown).
  • the probe 21 of the ultrasonic diagnostic apparatus 16 has a distal end surface that transmits a pulse wave into the living body and receives a reflected wave (echo signal) from the carotid artery 23.
  • the tip surface of the probe 21 is formed in a long square shape.
  • the ultrasound diagnostic apparatus 16 acquires an echo motion image (that is, a plurality of images) including a short-axis section of the carotid artery and a section of surrounding tissue around the carotid artery, which are acquired in the B mode based on the echo signal. Ultrasonic B-mode image) is generated. Deformations such as expansion and contraction of the subject's carotid artery 23 are displayed as moving images on the display unit 22 of the ultrasonic diagnostic apparatus 16.
  • the ultrasonic B-mode image is output from the video output of the ultrasonic diagnostic apparatus 16 and is video-captured at a predetermined resolution (m ⁇ n pixels) and a predetermined number of frames per second by a DV converter (not shown), and then computerized as an IEEE 1394 signal. 12 is input.
  • a predetermined resolution m ⁇ n pixels
  • a predetermined number of frames per second by a DV converter (not shown), and then computerized as an IEEE 1394 signal. 12 is input.
  • 30 frames / second is selected as the predetermined number of frames per second, but this value is not limited as long as it is a value that can clearly observe the variation of the carotid artery due to heartbeat. .
  • the echo moving image acquired by the ultrasonic diagnostic apparatus 16 is input to the computer 12 and then stored in a storage device 44 (see FIG. 2) included in the computer 12.
  • the storage device 44 is composed of, for example, a hard disk or a semiconductor storage device, and can read and write various kinds of information.
  • the computer 12 includes a central processing unit (CPU) 41, a ROM 42, and a RAM 43, and executes an image processing program stored in the ROM 42 as a storage medium.
  • the RAM 43 is a working memory when executing the program.
  • the carotid artery repeatedly expands and contracts due to heartbeat. Surrounding tissues such as fat around the carotid artery expand and contract as the carotid artery expands and contracts. In general, the relationship between stress and strain of such materials is considered from the viewpoint of material mechanics.
  • FIG. 3 shows an ultrasonic B-mode image including a short-axis section of the carotid artery.
  • a carotid artery K having a circular shape is shown at approximately the center in FIG.
  • the carotid artery lumen Ka hatched in FIG. 3 is drawn in black, and the carotid artery wall Kb is drawn in white.
  • the carotid artery is surrounded by surrounding tissues such as fat.
  • the carotid artery and surrounding tissue can be modeled by a uniform two-layered cylinder (also referred to as a two-layered thick cylinder in terms of material mechanics) as shown in FIG.
  • the inner radius of the carotid artery wall is represented by r 1 and the outer radius is represented by r 2 .
  • the surrounding tissue is assumed to exist from a position r 2 away from the center of the carotid artery to infinity. It represents an elastic coefficient of the carotid artery wall at E 1, represent the elastic coefficient of the surrounding tissue at E 2.
  • Any Poisson's ratio v 2 of the Poisson's ratio v 1 and surrounding tissues of the carotid artery wall is regarded as 0.5.
  • the displacement amount h (r) can be expressed by the following theoretical formula (3) of the two-layer cylindrical model.
  • P represents the amount of change in internal pressure from the reference state.
  • the tissue located at a distance r from the center of the carotid artery moves to a position at a distance r + h (r) from the center of the carotid artery in accordance with a change in internal pressure.
  • the change amount P of the internal pressure is positive
  • the displacement amount h is positive, that is, indicates expansion
  • the change amount P of the internal pressure is negative
  • the displacement amount h is negative, that is, indicates contraction.
  • Figure 6 shows the relationship between the distance r and the displacement amount h from the center of the carotid artery in the modulus of elasticity E 2 are two different double-layer cylinder model of elastic modulus E 1 is equal to each other and surrounding tissues of the carotid artery wall.
  • the internal pressure of the reference carotid artery is the same as each other.
  • the displacement amount h becomes the maximum at the position where the distance r from the center of the carotid artery is equal to the inner radius r 1 of the carotid artery wall, that is, the inner surface of the carotid artery wall. Becomes smaller as r exceeds r 1 .
  • the time variation of the displacement amount h of tissue distance r from the center of the carotid artery is located at a position equal to r 1, i.e. the displacement amount h (r 1) It can be seen as a time change.
  • the heart rate variability of the carotid artery is affected by elastic modulus E 2 of the surrounding tissue, it is the case the elastic coefficient E 2 of the surrounding tissue of 150kPa indicates the displacement amount h (r) is different between the case of 0kPa It is clear from the result of FIG. Therefore, in order to estimate the elastic modulus E 1 of the carotid artery wall (vessel wall) more accurately, it is necessary to estimate together elasticity coefficient E 2 of the surrounding tissues.
  • the operator reads out the moving image stored in the storage device 44 by the input from the keyboard 15 and displays it on the screen of the display 13.
  • the center of the carotid artery and the radius of the carotid artery on the displayed moving image. Specifies the axis extending in the direction.
  • the CPU 41 sets the designated center and radial axis as the origin of the reference coordinates and the reference axis, respectively.
  • step S10 the CPU 41 calculates the displacement amount of the carotid artery and surrounding tissue with respect to the radial direction of the carotid artery at each point on the designated radial axis according to the optical flow method.
  • the arrow shown in FIG. 7A represents a designated radial axis.
  • ⁇ f / ⁇ x in the formula (5) represents ⁇ f / ⁇ y, the ⁇ f / ⁇ t f x, respectively, f y, in f t, further dividing the both sides of the equation (5) in Delta] t, The following equation (6) is obtained.
  • ⁇ x / ⁇ t and ⁇ y / ⁇ t represent the speed of motion in the x direction and the speed of motion in the y direction, that is, the velocity vector, respectively.
  • ⁇ x / ⁇ t and ⁇ y / ⁇ t are represented by u and v, respectively, the above equation (6) can be rewritten by the following equation (7).
  • equation (7) includes two unknowns, it cannot be solved as it is. Therefore, a region D in the vicinity of a certain point of interest is determined, and the number of equations is increased on the assumption that the velocity field is constant in the region D. In this case, since there is no solution that satisfies all the equations, the velocity field is such that the square integral J of the difference between the right side and the left side of the equation (7) expressed by the following equation (8) is minimized. Is estimated.
  • the velocity vector (u, v) at each point (each pixel) on the specified axis extending in the radial direction of the carotid artery is obtained.
  • the displacement amount is obtained by multiplying the velocity vector (u, v) at each point by the time difference between the frames of the image used to obtain the velocity vector. More specifically, of the images captured at several tens of frames / second, the image of the frame where the carotid artery is most contracted at the time of the lowest blood pressure, that is, the carotid artery is the most dilated at the highest blood pressure.
  • the optical flow of each point on the specified radial axis is estimated from the images of the two frames. Based on the estimated optical flow of each point, the amount of displacement of the carotid artery and surrounding tissue with respect to the radial direction of the carotid artery is calculated at each point on the designated radial axis.
  • step S20 the CPU 41 determines the displacement amount of the carotid artery and surrounding tissue with respect to the radial direction of the carotid artery at each point on the designated radial axis, and the above theoretical formula (2) as the square error between the displacement amount h of the carotid artery and the surrounding tissue with respect to the radial direction of the carotid artery, which is calculated based on 3) is minimized, the elastic coefficient E 1 of the carotid artery wall, the elastic modulus of the surrounding tissue E 2 Calculate the inner radius r 1 and the outer radius r 2 of the carotid artery.
  • the difference between the maximum blood pressure and the minimum blood pressure measured from the subject using a blood pressure measurement device (not shown) is substituted into the change amount P of the internal pressure in the theoretical formula (3).
  • the CPU 41 displays the carotid artery wall elastic coefficient E 1 , the peripheral tissue elastic coefficient E 2 , the carotid artery inner radius r 1 and the outer radius r 2 calculated in step S20, on the display 13 or the printer 14. Output to. Thereafter, the CPU 41 ends the image processing program.
  • the computer 12 functions as the first calculation unit, so that a moving image including a short-axis section of the carotid artery and a section of surrounding tissue around the carotid artery is included.
  • An image is acquired, and the optical flow of each point included in the region corresponding to the carotid artery wall and each region included in the region corresponding to the surrounding tissue is obtained from two temporally different frames of the acquired moving image.
  • the amount of displacement of the carotid artery and surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery is calculated.
  • the computer 12 also functions as a second calculation means, and based on a theoretical formula obtained by modeling the carotid artery and surrounding tissue with a two-layer cylinder, the carotid artery according to the change in the internal pressure of the carotid artery
  • the displacement amounts of the carotid artery and the surrounding tissue in the radial direction are calculated, and the elastic coefficient of the carotid artery wall and the elastic modulus of the surrounding tissue are estimated so that the square error between the two displacement amounts thus calculated is minimized.
  • the elastic coefficient of the carotid artery wall can be calculated more accurately.
  • the image processing apparatus 11 estimates the optical flow of each point (each pixel) on the axis extending in the radial direction of the carotid artery from two temporally different images, and each estimated Based on the optical flow of the points, the amount of displacement of the carotid artery and surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery is calculated. In this case, the time required to estimate the optical flow is shortened as compared with the case where the optical flow of all the pixels included in the region corresponding to the carotid artery wall and the region corresponding to the surrounding tissue is estimated.
  • the image processing program acquires a moving image including a short-axis section of the carotid artery and a section of surrounding tissue around the carotid artery, and temporally analyzes the acquired moving image. Estimating the optical flow of each point included in the region corresponding to the carotid artery wall and the region corresponding to the surrounding tissue from the images of two different frames, and based on the estimated optical flow of each point, The computer 12 is caused to function so as to calculate the displacement amount of the carotid artery and the surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery.
  • the image processing program is also based on a theoretical formula obtained by modeling the carotid artery and surrounding tissue with a two-layered cylinder, and determines the carotid artery and surrounding tissue in the radial direction of the carotid artery according to changes in the internal pressure of the carotid artery.
  • the displacement amount is calculated, and the computer 12 is caused to function so as to estimate the elastic modulus of the carotid artery wall and the elastic modulus of the surrounding tissue so that the square error between the two displacement amounts thus calculated is minimized.
  • the computer can function as an image processing apparatus capable of calculating the elastic coefficient of the carotid artery wall more accurately.
  • the image processing program of the present embodiment estimates the optical flow of each point (each pixel) on the axis extending in the radial direction of the carotid artery from two temporally different images, and each estimated point Based on the optical flow, the computer 12 is caused to function to calculate the displacement amount of the carotid artery and the surrounding tissue in the radial direction of the carotid artery according to the change in the internal pressure of the carotid artery. In this case, the time required to estimate the optical flow is shortened as compared with the case where the optical flow of all the pixels included in the region corresponding to the carotid artery wall and the region corresponding to the surrounding tissue is estimated.
  • the ROM 42 of this embodiment functions as a storage medium that stores the image processing program.
  • the CPU 41 of the computer 12 executes the image processing program, the surrounding tissue of the carotid artery is taken into consideration, so that the elastic coefficient of the carotid artery wall can be calculated more accurately.
  • the ultrasonic diagnostic apparatus used in the examples is SonoAce PICO manufactured by Medison Japan.
  • a linear ultrasonic probe (7.5 MHz) was applied to the subject's carotid artery, and a B-mode short-axis cross-sectional moving image of the carotid artery was captured.
  • the captured B-mode image is output from the video output of the ultrasound diagnostic apparatus, and is video captured at a resolution of 720 ⁇ 480 pixels, 30 frames / second by a DV converter (ADVC-300 manufactured by CANOPUS), and then computerized as an IEEE1394 signal. 12 was imported.
  • the number of pixels in the ultrasonic image area displayed on the display 13 is 540 pixels in the horizontal direction and 420 pixels in the vertical direction, and the pixel size is 0.0713 mm / pixel.
  • FIG. 7B shows the result of calculating the displacement amount of the carotid artery and the surrounding tissue with respect to the radial direction of the carotid artery at each point on the axis extending in the radial direction of the carotid artery indicated by the arrow in FIG. .
  • the displacement h (r) estimated as described above and the displacement of the carotid artery and surrounding tissue in the radial direction of the carotid artery calculated based on the theoretical formula (3) given by the two-layer cylindrical model as the square error between h (r) is minimized, the elastic coefficient E 1 of the carotid artery wall, the elastic coefficient E 2 of the surrounding tissues, and calculates the value of the inner radius r 1 and an outer radius r 2 of the carotid artery.
  • the calculated values are 70 kPa for the elastic modulus E 1 of the carotid artery wall, 141 kPa for the elastic modulus E 2 of the surrounding tissue, 4.2 mm for the inner radius r 1 of the carotid artery, and the outer radius r of the carotid artery Regarding 2, it was 5.1 mm.
  • the displacement h (r) estimated at the least squares at this time is shown by a solid curve in the graph of FIG.
  • the elastic coefficient E 2 of the surrounding tissues assuming 0 kPa, where otherwise that in the same manner as described above to calculate the value of the elastic modulus E 1 of the carotid artery wall, the value of the calculated elastic modulus E 1 is at 420kPa there were.
  • the displacement h (r) estimated at least squares at this time is shown by a solid curve in the graph of FIG.
  • Such method of calculating the elastic modulus E 1 of the carotid artery wall is equivalent to the conventional methods in that it does not take into account the surrounding tissues of the carotid artery.
  • the calculated value of the elastic coefficient E 1 was 238 kPa.
  • the plot indicated by “x” indicates the displacement amount h (r) calculated according to the optical flow method.
  • a curve indicated by a solid line in the graph of FIG. 9A indicates the displacement h (r) estimated by the least square according to the method of the present invention, and is indicated by a solid line in the graph of FIG. 9B. The curve shows the displacement h (r) estimated by the least square according to the conventional method.
  • the carotid wall elastic modulus E 1 the surrounding tissue elastic modulus E 2 , the carotid inner radius r 1 and
  • the calculated values were 81 kPa, 129 kPa, 3.95 mm, and 5.46 mm, respectively.
  • the calculated value of the elastic coefficient E 1 was 260 kPa.
  • the plot indicated by “x” indicates the displacement amount h (r) calculated according to the optical flow method.
  • a curve indicated by a solid line in the graph of FIG. 10A indicates the displacement h (r) estimated by the least square according to the method of the present invention, and is indicated by a solid line in the graph of FIG. 10B.
  • the curve shows the displacement h (r) estimated by the least square according to the conventional method.
  • FIG. 8 (a) and FIG. 8 (b) show the results
  • FIG. 9 (a) and FIG. 9 (b) show the results
  • FIG. 10 (a) and FIG. 10 (b) show the results.
  • the value of the elastic modulus E 1 of the carotid wall calculated according to the conventional method is greater than the value of the elastic modulus E 1 of the carotid wall calculated according to the method of the present invention. It was big. This indicates that the conventional method may regard arteriosclerosis as progressing more than it actually is.
  • step S20 of the flowchart of FIG. 5 in the embodiment, the square error between the displacement calculated according to the optical flow method and the displacement calculated based on the theoretical formula given by the two-layer cylindrical model is minimized.
  • the elastic coefficient E 1 of the carotid artery wall, the elastic coefficient E 2 of the surrounding tissues, inner radius r 1 and an outer radius r 2 of the carotid artery is calculated.
  • the displacement amount calculated according to the optical flow method is The maximum distance r may be determined in advance as the inner radius r 1 of the carotid artery wall.
  • each point (each pixel) on the axis extending in the radial direction of the carotid artery, all included in the region corresponding to the carotid artery wall and the region corresponding to the surrounding tissue on the ultrasonic B-mode image
  • the optical flow of the pixels may be estimated.
  • the storage device 44 may be used instead of the ROM 42.
  • an image processing program may be stored in a storage medium such as a CD, a DVD, or a USB memory, and the image processing program stored in the storage medium may be read from the storage medium using a driver device and executed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 画像処理装置11のコンピュータ12は、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定する。コンピュータ12は、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。コンピュータ12はまた、頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。コンピュータ12は、こうして算出される2つの変位量の二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を算出する。

Description

画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
 本発明は、画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置に関し、特に、頸動脈の超音波画像のための画像処理装置及び画像処理プログラム、並びにそれらに関連する記憶媒体及び超音波診断装置に関する。
 動脈硬化症は、生活習慣の不摂生が危険因子となる生活習慣病の一つであり、自覚症状がほとんどないまま若年層から進行し、放っておくと脳梗塞、心筋梗塞、狭心症などに発展する可能性がある。動脈硬化症は治療が困難であるため、早期に動脈硬化の兆候を捉えて患者に生活習慣の改善を促し、病気の進行を遅らせることが重要である。
 動脈硬化症の検査には様々な診断方法があり、なかでも超音波エコー検査は、非侵襲に血管を直接観察できることから、現在の臨床診断において必要不可欠な検査となっている。動脈硬化症診断のための頸動脈超音波エコー検査では、プラークの有無や内膜中膜複合体厚(intima-media complex thickness(IMT))を評価している。しかし、動脈硬化初期にはプラークもなく、IMTも薄いことから超音波エコー検査による形態学的観察では、動脈硬化の初期の兆候を捉えることが困難である。
 これに対して、動脈硬化は動脈が硬化して弾力性を失うことであるから、心拍動に伴う頸動脈の動きの良さを評価すればよいとの考えがある。動脈の動きの良さに関する評価に基づく様々な動脈硬化度の指標が提案されている。
 例えば、非特許文献1及び非特許文献2ではそれぞれ、スティフネスパラメータ及び修正スティフネスパラメータが提案されている。
Figure JPOXMLDOC01-appb-M000001
 上式(1)は、修正スティフネスパラメータの算出式を示す。式(1)中、Pは頸動脈の最高血圧、Pは頸動脈の最低血圧、Dは最高血圧時の頸動脈の最大直径、Dは最低血圧時の頸動脈の最小直径である。式(1)では、頸動脈の最高血圧と最低血圧の差を頸動脈の動きの良さで正規化している。βの値が大きくなるほど、血圧差の割に頸動脈の動きが悪いこと、すなわち頸動脈が硬いことを表す。
 特許文献1では、頸動脈を厚みdの厚肉円筒と仮定し、歪みと応力の機械的特性に基づいて、次式(2)に従って頸動脈の弾性係数Ethを算出することが提案されている。式(2)中、dは血管壁の厚みを表す。
Figure JPOXMLDOC01-appb-M000002
 上記の文献のいずれでも、頸動脈の周囲に存在する脂肪などの周辺組織は無視されている。しかし、頸動脈の動きは、周辺組織の影響を少なからず受けるものである。従来の方法では、頸動脈の動きが悪いときにその原因が、頸動脈に硬化が生じたからなのか、それとも頸動脈の周辺組織が硬いからなのか区別することができない。
特許第3882084号 ハヤシ K,ナガサワ S,ナルト Y,モリタケ K,オクムラ A,:「パラメトリック ディスクリプション オブ メカニカル ビィヘイビア オブ アーテリアル ウォールズ(Parametric description of mechanical behavior of arterial walls)」,日本バイオレオロジー学会論文集,3(1980),pp75-78 カワサキ T,ササヤマ S,ヤギ S,アサカワ T,ヒライ T,「ノンインバシブ アセスメント オブ ジィ エイジ リレイテッド チェンジズ イン スティフネス オブ メジャー ブランチズ オブ ザ ヒューマン アルテリーズ(Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries )」,Cardiovasc Res,21,9(1987),pp678-687.
 従って、本発明の目的は、頸動脈の周辺組織を考慮に加えることにより、より正確に頸動脈壁の弾性係数を算出することができる画像処理装置及び画像処理プログラムを提供することにある。
 又、本発明の他の目的は、そのような画像処理プログラムを記憶した記憶媒体及びそのような画像処理装置に接続して使用される超音波診断装置を提供することにある。
 上記の目的を達成するために、本発明の第1の態様では、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する第1算出手段と、頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される変位量と前記第1算出手段で算出される変位量との二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を算出する第2算出手段とを備える画像処理装置が提供される。
 好ましくは、前記第1算出手段は、前記2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。
 本発明の第2の態様では、コンピュータを、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する第1算出手段、及び頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される変位量と前記第1算出手段で算出される変位量との二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を算出する第2算出手段として機能させる画像処理プログラムが提供される。
 好ましくは、前記第1算出手段は、前記2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。
 本発明の第3の態様では、上記第2の態様に係る画像処理プログラムを記憶した記憶媒体が提供される。
 本発明の第4の態様では、上記第1の態様に係る画像処理装置に接続される超音波診断装置が提供される。超音波診断装置は、探触子による超音波の送受信により得られるエコー信号を基に超音波Bモード画像を生成し、生成した超音波Bモード画像を画像処理装置に出力する。
本発明の一実施形態の画像処理装置の概略図。 図1の画像処理装置の概略電気ブロック図。 超音波Bモード画像を示す図。 二層円筒モデルの概念図。 コンピュータが実行する画像処理プログラムのフローチャート。 頸動脈壁の弾性係数Eが互いに等しく且つ周辺組織の弾性係数Eが互いに異なる2つの二層円筒モデルにおける距離rと変位量hの関係を示すグラフ。 図7(a)は、超音波Bモード画像を示す図、図7(b)は、オプティカルフロー法に従って、頸動脈の半径方向に延びる軸上の各点において頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出した結果を示すグラフ。 図8(a)は、本発明の方法に従って最小二乗推定された変位量h(r)を、オプティカルフロー法に従って算出された変位量h(r)と一緒に示すグラフ、図8(b)は、従来の方法に従って最小二乗推定された変位量h(r)を、オプティカルフロー法に従って算出された変位量h(r)と一緒に示すグラフ。 図9(a)及び図9(b)は、図8(a)及び図8(b)に結果を示している測定とは被験者を変えて同じ測定を行ったときの結果を示すグラフであり、図8(a)及び図8(b)とそれぞれ対応する。 図10(a)及び図10(b)は、図8(a)及び図8(b)に結果を示している測定及び図9(a)及び図9(b)に結果を示している測定とは被験者を変えて同じ測定を行ったときの結果を示すグラフであり、図8(a)及び図8(b)とそれぞれ対応する。
 以下、本発明の一実施形態を図1~図10(b)を参照して説明する。
 図1に示すように、本実施形態の画像処理装置11は、第1算出手段(第1算出部)、第2算出手段(第2算出部)、及び記憶手段(記憶部)として機能するコンピュータ12と、ディスプレイ13と、プリンタ14と、キーボード15と、超音波診断装置16とを備えている。
 超音波診断装置16は、探触子21、表示部22、及び図示しない超音波発生源を備えている。超音波診断装置16の探触子21は、生体内にパルス波を送波して頸動脈23からの反射波(エコー信号)を受波する先端面を有する。探触子21の先端面は長四角形状に形成されている。超音波診断装置16は、前記エコー信号に基づいてBモードで取得される、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれているエコー動画像(すなわち、複数の超音波Bモード画像)を生成する。超音波診断装置16の表示部22には、被検者の頸動脈23の拡張及び収縮などの変形が動画像で表示される。
 超音波Bモード画像は、超音波診断装置16のビデオ出力から出力され、図示しないDVコンバータにより所定の解像度(m×n画素)及び所定の毎秒フレーム数でビデオキャプチャされた後、IEEE1394信号としてコンピュータ12に入力される。本実施形態では、所定の毎秒フレーム数として30フレーム/秒を選定しているが、この値は限定されるものではなく、心拍動に伴う頸動脈の変動を明確に観測できる値であればよい。
 ディスプレイ13で表示される超音波画像領域の画素数は、水平方向に関してはNx、垂直方向に関してはNyである。本実施形態では、Nx=540(pixel)及びNy=420(pixel)を選定しているが、この数値は限定されるものではない。
 超音波診断装置16により取得されたエコー動画像は、コンピュータ12に入力された後、コンピュータ12が備える記憶装置44(図2参照)に格納される。記憶装置44は、例えばハードディスク又は半導体記憶装置からなり、各種の情報の読み出し及び書き込みが可能である。
 図2に示すように、コンピュータ12は、中央処理装置(CPU)41、ROM42、及びRAM43を備え、記憶媒体としてのROM42に格納された画像処理プログラムを実行する。RAM43は、前記プログラムを実行する際の作業用メモリである。
 (実施形態の作用)
 次に、上記のように構成された画像処理装置11において、CPU41が実行する画像処理プログラムの処理を説明するが、プログラム処理の説明の前にまず、「頸動脈及び周辺組織の応力及び歪み特性」及び「二層円筒モデル」について説明する。
 (頸動脈及び周辺組織の応力及び歪み特性)
 頸動脈は心拍動により拡張及び収縮を繰り返す。頸動脈の周辺にある脂肪などの周辺組織は、頸動脈の拡張及び収縮に伴って伸縮する。一般にこうした物質の応力と歪みの関係は材料力学の見地から考察される。
 図3は、頸動脈の短軸断面が含まれている超音波Bモード画像を示す。図3中のほぼ中央に円形をした頸動脈Kが示されている。超音波Bモード画像においては、図3中でハッチングされている頸動脈内腔Kaは黒く描かれ、頸動脈壁Kbは白く描かれる。頸動脈は周囲を脂肪などの周辺組織によって囲まれている。
 (二層円筒モデル)
 頸動脈及び周辺組織は、図4に示すような一様な二層円筒(材料力学的には二層厚肉円筒ともいう)でモデル化することができる。頸動脈壁の内半径をrで表し、外半径をrで表す。周辺組織は、頸動脈の中心からrだけ離れた位置から無限遠まで存在するものと仮定する。頸動脈壁の弾性係数をEで表し、周辺組織の弾性係数をEで表す。頸動脈壁のポアソン比v及び周辺組織のポアソン比vはいずれも0.5とみなす。頸動脈壁の内半径がr、外半径がrで表される特定の基準状態から頸動脈の内圧(血圧)に変化があったときの頸動脈の径方向に関する頸動脈及び周辺組織の変位量h(r)は、以下の二層円筒モデルの理論式(3)で表すことができる。式(3)中、Pは基準状態からの内圧の変化量を表す。
Figure JPOXMLDOC01-appb-M000003
 頸動脈の中心からrの距離にある組織は、内圧の変化に応じて、頸動脈の中心からr+h(r)の距離の位置に移動する。内圧の変化量Pが正の場合には変位量hは正であって、つまり拡張を表し、内圧の変化量Pが負の場合には、変位量hは負であって、すなわち収縮を表す。
 (頸動脈及び周辺組織の弾性係数と変位量の関係)
 頸動脈及び周辺組織の弾性係数E,Eと変位量h(r)の関係について次に説明する。
 頸動脈壁の弾性係数Eが互いに等しく且つ周辺組織の弾性係数Eが互いに異なる2つの二層円筒モデルにおける頸動脈の中心からの距離rと変位量hの関係を図6に示す。2つの二層円筒モデルでは、基準状態の頸動脈の内圧は互いに同じである。図6に示すように、いずれのモデルでも、変位量hは、頸動脈の中心からの距離rが頸動脈壁の内半径rに等しい位置、すなわち頸動脈壁内面において最大になり、距離rがrを超えて大きくなるにつれて小さくなる。
 心拍動に伴う頸動脈の変動(頸動脈の心拍変動)は、頸動脈の中心からの距離rがrに等しい位置にある組織の変位量hの時間変化、すなわち変位量h(r)の時間変化と見ることができる。頸動脈の心拍変動が周辺組織の弾性係数Eの影響を受けることは、周辺組織の弾性係数Eが150kPaの場合とそれが0kPaの場合とで変位量h(r)が異なることを示す図6の結果から明らかである。従って、頸動脈壁(血管壁)の弾性係数Eをより正確に推定するためには、周辺組織の弾性係数Eを併せて推定する必要がある。
 (画像処理プログラムの処理)
 続いて、画像処理装置11のCPU41が実行する画像処理プログラムの処理を、図5のフローチャートを参照して説明する。
 予め、オペレータは、キーボード15からの入力により、記憶装置44に格納されている動画像を読み出してディスプレイ13の画面上に表示し、表示された動画像上で頸動脈の中心及び頸動脈の半径方向に延びる軸を指定する。CPU41は、指定された中心及び径方向軸をそれぞれ、基準座標の原点及び基準軸として設定する。
 続いて、オペレータは、画像処理プログラムの処理の開始を、キーボード15を通じてCPU41に指令する。
 指令に応じてCPU41は、ステップS10において、オプティカルフロー法に従って、指定された径方向軸上の各点において頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。図7(a)中に示す矢印は、指定された径方向軸を表す。
 (オプティカルフロー法)
 ここでオプティカルフロー法について説明する。
 画像上の点(x,y)の時刻tにおける輝度をf(x,y,t)で表す。微小時間Δt後に対象が(Δx,Δy)だけ移動する場合、次式(4)が成立する。
Figure JPOXMLDOC01-appb-M000004
 ここで、ずれ量(Δx,Δy)が小さく、かつ局所的に一定であると仮定したうえで、上式(4)の右辺を1次までのテーラー(Taylor)級数で近似すると、次式(5)が得られる。
Figure JPOXMLDOC01-appb-M000005
 上式(5)中の∂f/∂x,∂f/∂y,∂f/∂tをそれぞれf,f,fで表し、さらに式(5)の両辺をΔtで割ると、次の方程式(6)が得られる。
Figure JPOXMLDOC01-appb-M000006
 上式(6)中のΔx/Δt及びΔy/Δtはそれぞれ、x方向の動きの速さ及びy方向の動きの速さ、すなわち速度ベクトルを表す。Δx/Δt及びΔy/Δtをそれぞれu及びvで表すと、上式(6)は次式(7)で書き換えられる。
Figure JPOXMLDOC01-appb-M000007
 f,f,fを計測して方程式(7)を解くことにより、速度場(u,v)を求めることができる。ただし、方程式(7)は未知数を2つ含むため、このままでは解くことができない。そこで、ある着目点に対してその近傍の領域Dを定め、領域D内において速度場が一定であると仮定して方程式の数を増やす。この場合、全ての方程式を満足する解は存在しなくなるため、次式(8)で表される、方程式(7)の右辺と左辺の差の2乗積分Jが最小になるように、速度場を推定する。
Figure JPOXMLDOC01-appb-M000008
 2乗積分Jをu,vに関して微分してゼロと置くと、以下の正規方程式(9)が得られる。
Figure JPOXMLDOC01-appb-M000009
 正規方程式(9)中、サフィックス付きのSはそれぞれ次式(10)で計算される微分の積の積分値を表わす。
Figure JPOXMLDOC01-appb-M000010
 上式(10)で計算される値を式(9)に代入して式(9)を解くと、次式(11)で表わされるオプティカルフロー、すなわち速度ベクトル(u,v)が求まる(すなわち、推定される)。こうした手法は、局所最小二乗法と呼ばれる。
Figure JPOXMLDOC01-appb-M000011
 本実施形態では、頸動脈の半径方向に延びる指定された軸上の各点(各画素)における速度ベクトル(u,v)が求められる。その後、各点における速度ベクトル(u,v)に対して、速度ベクトルを求めるために使用した画像のフレーム間の時間差を掛けることにより変位量が求められる。より具体的には、数十フレーム/秒でビデオキャプチャされた画像のうちから、最低血圧時、すなわち頸動脈が最も収縮しているフレームの画像と、最高血圧時、すなわち頸動脈が最も拡張しているフレームの画像とを取り出し、その2つのフレームの画像から指定された径方向軸上の各点のオプティカルフローが推定される。推定された各点のオプティカルフローに基づいて、指定された径方向軸上の各点において頸動脈の径方向に関する頸動脈及び周辺組織の変位量が算出される。
 ステップS10に続くステップS20では、CPU41は、指定された径方向軸上の各点における頸動脈の径方向に関する頸動脈及び周辺組織の変位量と、二層円筒モデルで与えられる上記の理論式(3)に基づいて算出される頸動脈の径方向に関する頸動脈及び周辺組織の変位量hとの二乗誤差が最小になるように、頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rを算出する。その際、理論式(3)中の内圧の変化量Pには、図示しない血圧測定装置を使って被験者から測定される最高血圧と最低血圧の差が代入される。
 続くステップS30では、CPU41は、ステップS20で算出された頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rを、ディスプレイ13又はプリンタ14に出力する。CPU41はその後、画像処理プログラムを終了する。
 本実施形態によれば以下の利点が得られる。
 (1) 本実施形態の画像処理装置11は、コンピュータ12が、第1算出手段として機能することにより、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。コンピュータ12はまた、第2算出手段として機能することにより、頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される2つの変位量の二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を推定する。この結果、頸動脈の周辺組織が考慮加わるために、より正確に頸動脈壁の弾性係数を算出することができる。
 (2) 本実施形態の画像処理装置11は、時間的に異なる2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点(各画素)のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する。この場合、頸動脈壁に対応する領域及び周辺組織に対応する領域に含まれる全ての画素のオプティカルフローを推定する場合に比べて、オプティカルフローの推定に要する時間が短縮される。
 (3) 本実施形態の画像処理プログラムは、頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出するようにコンピュータ12を機能させる。画像処理プログラムはまた、頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される2つの変位量の二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を推定するようにコンピュータ12を機能させる。この結果、頸動脈の周辺組織が考慮に加わるために、より正確に頸動脈壁の弾性係数を算出することができる画像処理装置としてコンピュータを機能させることができる。
 (4) 本実施形態の画像処理プログラムは、時間的に異なる2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点(各画素)のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出するようにコンピュータ12を機能させる。この場合、頸動脈壁に対応する領域及び周辺組織に対応する領域に含まれる全ての画素のオプティカルフローを推定する場合に比べて、オプティカルフローの推定に要する時間が短縮される。
 (5) 本実施形態のROM42は、上記の画像処理プログラムを記憶した記憶媒体として機能する。コンピュータ12のCPU41が画像処理プログラムを実行することにより、頸動脈の周辺組織が考慮に加わるために、より正確に頸動脈壁の弾性係数を算出することができる。
 (6) 本実施形態の超音波診断装置16は、画像処理装置11に接続されているため、上記(1)及び(2)の効果を容易に実現することができる。
 実施例で使用した超音波診断装置は、メディソン・ジャパン社製のSonoAce PICOである。リニア型超音波探触子(7.5MHz)を被験者の頸動脈部に当てて、頸動脈のBモード短軸断面の動画像を撮像した。撮像したBモード画像は、超音波診断装置のビデオ出力から出力され、DVコンバータ(CANOPUS社製ADVC-300)により解像度720×480画素、30フレーム/秒でビデオキャプチャされた後、IEEE1394信号としてコンピュータ12に取り込んだ。ディスプレイ13で表示される超音波画像領域の画素数は水平方向540画素、垂直方向420画素であり、画素サイズは0.0713mm/pixelである。
 取得した動画像から、最低血圧時のフレームと最高血圧時のフレームを取り出し、両フレームの画像から、オプティカルフロー法に従って、頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出した。図7(a)中に矢印で示される頸動脈の半径方向に延びる軸上の各点において頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出した結果を図7(b)に示す。
 以上のようにして推定される変位量h(r)と、二層円筒モデルで与えられる上記の理論式(3)に基づいて算出される頸動脈の径方向に関する頸動脈及び周辺組織の変位量h(r)との二乗誤差が最小になるように、頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rの値を算出した。その結果、算出された値は、頸動脈壁の弾性係数Eに関しては70kPa、周辺組織の弾性係数Eに関しては141kPa、頸動脈の内半径rに関しては4.2mm、頸動脈の外半径rに関しては5.1mmであった。このとき最小二乗推定された変位量h(r)を図8(a)のグラフ中に実線の曲線で示す。
 一方、周辺組織の弾性係数Eを0kPaと仮定し、それ以外は上記と同様にして頸動脈壁の弾性係数Eの値を算出したところ、算出された弾性係数Eの値は420kPaであった。このとき最小二乗推定された変位量h(r)を図8(b)のグラフ中に実線の曲線で示す。このような頸動脈壁の弾性係数Eの算出の仕方は、頸動脈の周辺組織を考慮に入れていないという点で従来の方法に相当する。
 別の被験者で同じ測定を行ったときの結果を図9(a)及び図9(b)を示し、さらに別の被験者で同じ測定を行ったときの結果を図10(a)及び図10(b)に示す。
 図9(a)及び図9(b)に結果を示している測定において、本発明の方法に従って頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rの値を算出したときには、算出された値はそれぞれ、40kPa、186kPa、3.8mm、5.3mmであった。一方、従来の方法に従って頸動脈壁の弾性係数Eの値を算出したときには、算出された弾性係数Eの値は238kPaであった。なお、図9(a)及び図9(b)のグラフ中、“×”で示されるプロットは、オプティカルフロー法に従って算出された変位量h(r)を示す。一方、図9(a)のグラフ中、実線で示される曲線は、本発明の方法に従って最小二乗推定された変位量h(r)を示し、図9(b)のグラフ中、実線で示される曲線は、従来の方法に従って最小二乗推定された変位量h(r)を示す。
 図10(a)及び図10(b)に結果を示している測定において、本発明の方法に従って頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rの値を算出したときには、算出された値はそれぞれ、81kPa、129kPa、3.95mm、5.46mmであった。一方、従来の方法に従って頸動脈壁の弾性係数Eの値を算出したときには、算出された弾性係数Eの値は260kPaであった。なお、図10(a)及び図10(b)のグラフ中、“×”で示されるプロットは、オプティカルフロー法に従って算出された変位量h(r)を示す。一方、図10(a)のグラフ中、実線で示される曲線は、本発明の方法に従って最小二乗推定された変位量h(r)を示し、図10(b)のグラフ中、実線で示される曲線は、従来の方法に従って最小二乗推定された変位量h(r)を示す。
 図8(a)及び図8(b)に結果を示している測定、図9(a)及び図9(b)に結果を示している測定、図10(a)及び図10(b)に結果を示している測定のいずれにおいても、従来の方法に従って算出された頸動脈壁の弾性係数Eの値は、本発明の方法に従って算出された頸動脈壁の弾性係数Eの値よりも大きかった。このことは、従来の方法では、実際よりも動脈硬化が進行していると見なしてしまう可能性があることを示している。
 前記実施形態を次のように変更して構成することもできる。
 図5のフローチャートのステップS20において、前記実施形態では、オプティカルフロー法に従って算出される変位量と、二層円筒モデルで与えられる理論式に基づいて算出される変位量との二乗誤差が最小になるように、頸動脈壁の弾性係数E、周辺組織の弾性係数E、頸動脈の内半径r及び外半径rが算出される。しかしながら、頸動脈の中心からの距離rが頸動脈壁の内半径rに等しい位置において変位量が最大になることから(図7(b)参照)、オプティカルフロー法に従って算出された変位量が最大になる距離rを頸動脈壁の内半径rとして予め決定してもよい。
 頸動脈の半径方向に延びる軸上の各点(各画素)のオプティカルフローを推定する代わりに、超音波Bモード画像上の頸動脈壁に対応する領域及び周辺組織に対応する領域に含まれる全ての画素のオプティカルフローを推定するようにしてもよい。
 画像処理プログラムを記憶する記憶媒体として、ROM42の代わりに記憶装置44を用いてもよい。或いは、CDやDVD、USBメモリ等の記憶媒体に画像処理プログラムを格納し、記憶媒体に格納された画像処理プログラムを当該記憶媒体からドライバ装置を用いて読込みして実行するようにしてもよい。

Claims (6)

  1.  頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する第1算出手段と、
     頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される変位量と前記第1算出手段で算出される変位量との二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を算出する第2算出手段と
    を備えることを特徴とする画像処理装置。
  2.  前記第1算出手段は、前記2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出することを特徴とする請求項1に記載の画像処理装置。
  3.  コンピュータを、
     頸動脈の短軸断面と頸動脈の周囲の周辺組織の断面とが含まれている動画像を取得して、取得された動画像の時間的に異なる2つのフレームの画像から頸動脈壁に対応する領域に含まれる各点及び周辺組織に対応する領域に含まれる各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出する第1算出手段、及び
     頸動脈及び周辺組織を二層円筒でモデル化することにより得られる理論式に基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出し、こうして算出される変位量と前記第1算出手段で算出される変位量との二乗誤差が最小になるように、頸動脈壁の弾性係数及び周辺組織の弾性係数を算出する第2算出手段
    として機能させることを特徴とする画像処理プログラム。
  4.  前記第1算出手段は、前記2つのフレームの画像から頸動脈の半径方向に延びる軸上の各点のオプティカルフローを推定し、推定された各点のオプティカルフローに基づいて、頸動脈の内圧の変化に応じた頸動脈の径方向に関する頸動脈及び周辺組織の変位量を算出することを特徴とする請求項3に記載の画像処理プログラム。
  5.  請求項3又は請求項4に記載の画像処理プログラムを記憶した記憶媒体。
  6.  請求項1又は請求項2に記載の画像処理装置に接続され、探触子による超音波の送受信により得られるエコー信号を基に超音波Bモード画像を生成し、生成した超音波Bモード画像を画像処理装置に出力することを特徴とする超音波診断装置。
PCT/JP2008/055360 2007-12-20 2008-03-24 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置 WO2009081598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08722676A EP2226012B1 (en) 2007-12-20 2008-03-24 Image processing apparatus, image processing program, storage medium, and ultrasonic diagnostic apparatus
US12/808,620 US8249324B2 (en) 2007-12-20 2008-03-24 Image processing apparatus, image processing program, storage medium, and ultra-sonic diagnostic apparatus
AU2008341770A AU2008341770B2 (en) 2007-12-20 2008-03-24 Image processing apparatus, image processing program, storage medium, and ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007328326A JP5158690B2 (ja) 2007-12-20 2007-12-20 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
JP2007-328326 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081598A1 true WO2009081598A1 (ja) 2009-07-02

Family

ID=40800915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055360 WO2009081598A1 (ja) 2007-12-20 2008-03-24 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置

Country Status (5)

Country Link
US (1) US8249324B2 (ja)
EP (1) EP2226012B1 (ja)
JP (1) JP5158690B2 (ja)
AU (1) AU2008341770B2 (ja)
WO (1) WO2009081598A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639064A (zh) * 2010-10-08 2012-08-15 松下电器产业株式会社 超声波诊断装置、以及超声波诊断方法
JPWO2011118267A1 (ja) * 2010-03-26 2013-07-04 国立大学法人徳島大学 頸動脈プラークの性状判定方法及び評価装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998197B2 (ja) * 2012-02-20 2016-09-28 株式会社デンソー 生体の血管径連続測定装置
FR3002672B1 (fr) * 2013-02-22 2016-10-07 Univ Joseph Fourier - Grenoble 1 Procede de generation d'une image d'elasticite
CN107832688B (zh) * 2017-10-27 2020-08-11 浙江农林大学 一种交通路口视频监控的交通模式和异常行为的检测方法
US20210161503A1 (en) * 2018-06-07 2021-06-03 Healthcare Technology Innovation Centre Multi-modal ultrasound probe for calibration-free cuff-less evaluation of blood pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176233A (ja) * 1997-09-01 1999-03-23 Terumo Corp 循環器情報計測システム
JP2002209857A (ja) * 2001-01-10 2002-07-30 Ge Medical Systems Global Technology Co Llc 血管弾性率計測方法、血管弾性率計算装置および超音波診断装置
JP2006263128A (ja) * 2005-03-24 2006-10-05 Citizen Watch Co Ltd 血管弾性率測定方法及び血管弾性率測定装置
JP3882084B2 (ja) * 2003-12-25 2007-02-14 国立大学法人岐阜大学 動脈硬化解析システム、動脈硬化解析方法及び動脈硬化解析プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471655B1 (en) * 1999-06-29 2002-10-29 Vitalwave Corporation Method and apparatus for the noninvasive determination of arterial blood pressure
US6554774B1 (en) * 2000-03-23 2003-04-29 Tensys Medical, Inc. Method and apparatus for assessing hemodynamic properties within the circulatory system of a living subject
JP2007268303A (ja) * 2003-06-19 2007-10-18 Saraya Kk エコーを用いた血管径測定装置
JP4655616B2 (ja) 2004-12-13 2011-03-23 パナソニック株式会社 超音波診断装置
US20090012399A1 (en) * 2005-02-07 2009-01-08 Kazuhiro Sunagawa Ultrasonic diagnostic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176233A (ja) * 1997-09-01 1999-03-23 Terumo Corp 循環器情報計測システム
JP2002209857A (ja) * 2001-01-10 2002-07-30 Ge Medical Systems Global Technology Co Llc 血管弾性率計測方法、血管弾性率計算装置および超音波診断装置
JP3882084B2 (ja) * 2003-12-25 2007-02-14 国立大学法人岐阜大学 動脈硬化解析システム、動脈硬化解析方法及び動脈硬化解析プログラム
JP2006263128A (ja) * 2005-03-24 2006-10-05 Citizen Watch Co Ltd 血管弾性率測定方法及び血管弾性率測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAYASHI K; NAKAGAWA S; NARUTO Y; MORITAKE K; OKUMURA A: "Parametric description of mechanical behavior of arterial walls", JOURNAL OF JAPANESE SOCIETY OF BIORHEOLOGY, vol. 3, 1980, pages 75 - 78
KAWASAKI T; SASAYAMA S; YAGI S; ASAKAWA T; HIRAI T: "Noninvasive assessment of the age related changes in stiffness of major branches of the human arteries", CARDIOVASC RES, vol. 21, no. 9, 1987, pages 678 - 687
See also references of EP2226012A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011118267A1 (ja) * 2010-03-26 2013-07-04 国立大学法人徳島大学 頸動脈プラークの性状判定方法及び評価装置
JP5765823B2 (ja) * 2010-03-26 2015-08-19 国立大学法人徳島大学 頸動脈プラークのエコー画像生成方法及び評価装置
CN102639064A (zh) * 2010-10-08 2012-08-15 松下电器产业株式会社 超声波诊断装置、以及超声波诊断方法
JP5265810B2 (ja) * 2010-10-08 2013-08-14 パナソニック株式会社 超音波診断装置、及び体内観察方法

Also Published As

Publication number Publication date
AU2008341770B2 (en) 2011-07-14
JP5158690B2 (ja) 2013-03-06
US8249324B2 (en) 2012-08-21
EP2226012A4 (en) 2011-04-27
EP2226012B1 (en) 2012-06-20
JP2009148396A (ja) 2009-07-09
EP2226012A1 (en) 2010-09-08
AU2008341770A1 (en) 2009-07-02
US20110105901A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP6160487B2 (ja) 超音波診断装置およびその制御方法
JP6041350B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
JP5158679B2 (ja) 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
US9186125B2 (en) Ultrasonic diagnostic apparatus for generating three dimensional cardiac motion image by setting line segmented strain gauges
JP5158880B2 (ja) 超音波診断装置
US20090227867A1 (en) Ultrasonograph
JP2005342006A (ja) 超音波診断装置、超音波画像処理装置、及び超音波信号処理プログラム
WO2009081598A1 (ja) 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
JPWO2006043528A1 (ja) 超音波診断装置および超音波診断装置の制御方法
US20190000415A1 (en) Ultrasound system and method for acquisition parameter determination
JP5384919B2 (ja) 超音波診断装置
JP4879872B2 (ja) 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
US10016180B2 (en) Ultrasonic image processing device
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
JP6621015B2 (ja) 動脈血管検出装置および動脈血管評価装置
JP5346555B2 (ja) 動脈硬化リスク表示機能を備えた超音波診断装置
JP2022517640A (ja) 血管特性を調査するための方法及びシステム
JP5462474B2 (ja) 超音波診断装置
JP2008212548A (ja) 超音波診断装置
JP2008049043A (ja) 超音波診断装置
AU2004260558A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12808620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008341770

Country of ref document: AU

Ref document number: 2008722676

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008341770

Country of ref document: AU

Date of ref document: 20080324

Kind code of ref document: A