WO2009078837A1 - Système de verrouillage d'une porte d'ascenseur - Google Patents

Système de verrouillage d'une porte d'ascenseur Download PDF

Info

Publication number
WO2009078837A1
WO2009078837A1 PCT/US2007/025783 US2007025783W WO2009078837A1 WO 2009078837 A1 WO2009078837 A1 WO 2009078837A1 US 2007025783 W US2007025783 W US 2007025783W WO 2009078837 A1 WO2009078837 A1 WO 2009078837A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
reference element
sensor
locking system
state
Prior art date
Application number
PCT/US2007/025783
Other languages
English (en)
Inventor
Barry K. Umbaugh
Original Assignee
Inventio Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio Ag filed Critical Inventio Ag
Priority to EP07863022.5A priority Critical patent/EP2234914B1/fr
Priority to ES07863022T priority patent/ES2727392T3/es
Priority to KR1020107015681A priority patent/KR20100102158A/ko
Priority to AU2007362584A priority patent/AU2007362584B2/en
Priority to BRPI0722310-2A priority patent/BRPI0722310B1/pt
Priority to MX2010006730A priority patent/MX2010006730A/es
Priority to PCT/US2007/025783 priority patent/WO2009078837A1/fr
Priority to CN200780102302.8A priority patent/CN102083731B/zh
Publication of WO2009078837A1 publication Critical patent/WO2009078837A1/fr
Priority to ZA2010/04725A priority patent/ZA201004725B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • B66B13/16Door or gate locking devices controlled or primarily controlled by condition of cage, e.g. movement or position
    • B66B13/165Door or gate locking devices controlled or primarily controlled by condition of cage, e.g. movement or position electrical

Definitions

  • the present invention relates to a locking system for a lift door, in particular for a car door of a lift car, and/or a shaft door, in the case of which locking system an interaction between a reference element and a counter element which is dependent on the position of the lift car is a condition for the unlocking of the lift door.
  • a substantial advantage of the locking system according to the invention consists in the fact that instead of a complicated unlocking mechanism there is present a simple control device which uses an actuator to transfer the locking device from the locked state into the unlocked state when the preconditions for unlocking are fulfilled at a floor stop of the lift car.
  • a locking system for a car door of a lift car comprises a locking device which in an unlocked state enables opening of the car door in a manual or mechanical fashion, and in a locked state restricts, in particular prevents opening of the car door.
  • the present invention is explained in more detail below using the example of a locking system for a car door.
  • the locking device can also restrict, in particular prevent opening of the shaft door.
  • the locking device advantageously restricts opening of the car door at least to a certain extent that a lift user cannot leave the lift car in a dangerous situation.
  • the locking device can permit opening to a specific, restricted extent in order, for example, to facilitate the exchange of air or communication between the car interior and the surroundings .
  • the locking device can likewise also completely prevent opening of the car door.
  • the locking system further comprises a control device for transferring the locking device from the locked into the unlocked state, and vice versa.
  • the control device transfers the locking device from the locked into the unlocked state as a function of a preferably electrical signal which a sensor outputs I P1711
  • Transferral from the unlocked into the locked state can likewise be performed actively by the control device, or passively by elastic elements pretensioned upon unlocking, or the like.
  • reference element and counter element can, for example, be mechanical, in which case the reference element exerts a specific force on the counter element or moves the counter element by a prescribed distance.
  • force in this case also covers a pressure exerted on the counter element.
  • reference element and counter element can, for example, also enter into interaction with one another electrically, in particular inductively or magnetically, in which case the reference element or the counter element effects in the respective other element an electrical voltage or a magnetic field of specific strength.
  • Reference element and counter element can also enter into interaction with one another acoustically or optically, in which case the reference element or the counter element detects sound waves, in particular in the audible range or in the ultrasound range, or electromagnetic waves, in particular in the region of visible light, in the ultraviolet or infrared regions, which are emitted or reflected by the respective other element.
  • Reference element and counter element are tuned to one another in this case such that their interaction lies in a prescribed region whenever the lift car is located in a permissible position relative to a shaft door.
  • a permissible position can, in particular, be a position in which a vertical spacing between the floor of the lift car and the surface of a floor which can be accessed on foot through the shaft door does not overshoot a prescribed maximum value such that it is IP1711
  • the counter element is preferably arranged on the lift car, in particular the car door to be locked.
  • the reference element is arranged on the shaft door itself, which is opposite the car door to be locked, when the lift car is located in a permissible position relative to the shaft door. If the car door to be locked can optionally be opposite various shaft doors on different floors, one reference element each can be arranged on a number of, preferably on all these shaft doors. On the one hand, this ensures, as in the known mechanical solutions, that the car door is unlocked only when it is located opposite a shaft door.
  • the arrangement of the reference elements on the shaft doors has the advantage that they can already be mounted in the course of setting up and need not be mounted and aligned on each floor during installation of the lift.
  • the reference element, the counter element I P1711 In a particularly preferred embodiment of the present invention, the reference element, the counter element I P1711
  • - 5 - and the sensor are formed by components of a coupling device which couples the car door, provided with a door drive, to a currently opposite shaft door, in order to open and to close the car door and the shaft door jointly.
  • a coupling device which couples the car door, provided with a door drive, to a currently opposite shaft door, in order to open and to close the car door and the shaft door jointly.
  • such preferably mechanical coupling devices are frequently present in order to save drive mechanisms for the shaft doors.
  • elements of these coupling devices present in any case, are therefore advantageously used at the same time as reference element and counter element, respectively. It is thereby possible to reduce the outlay on equipping or reequipping a lift with a locking system according to the invention and, in particular, reduce the number of parts required.
  • the coupling device can comprise a driver skid which can be moved for coupling purposes against a coupling roller present on the shaft door.
  • the coupling roller can function as the reference element, while the driver skid comprises the counter element.
  • reference element and counter element are then advantageously brought into interaction with one another by the coupling device only when the driver skid is moved for coupling purposes against the reference element arranged on the shaft door. An interaction, in particular mechanical wear, upon passing by closed shaft doors without a floor stop, is thereby reduced or prevented in a simple way.
  • the driver skid is of multipartite design and has a support skid in relation to which the counter element can move.
  • the counter element can in this case preferably be fastened elastically on the support skid, and is moved during coupling by the reference element towards the support skid or away from the support skid.
  • the sensor outputs the signal for transferring the locking device into the unlocked state when there is a spacing or a force between the support skid and the counter element in a prescribed range. Wear and the risk of damage to the sensor are advantageously reduced by this design, in which the sensor does not itself come into contact with the reference element.
  • the interaction, detected by the sensor, between reference element and counter element can, in particular, comprise a mechanical interaction, that is to say a force or a pressure between reference element and counter element.
  • the sensor can comprise a force sensor which outputs the preferably electrical signal when a force acting between reference element and counter element lies in a prescribed range.
  • a force sensor can, for example, as a diaphragm switch, comprise a piezosensor, a pressure-dependent resistor or a pressure-dependent capacitor, and be arranged, for I P1711
  • the force sensor can output the signal when a force detected by it or a pressure detected by it on its sensor surface overshoots a prescribed value, that is to say when the reference element and the counter element are pressed against one another with a minimum force.
  • Such a mechanical interaction can also be detected indirectly by a preferably contactless distance sensor, in particular an inductive, capacitive, optical and/or acoustic distance sensor, or by a magnetic reed sensor which detects a movement of the counter element, for example relative to a support skid, produced by interaction with the reference element.
  • a preferably contactless distance sensor in particular an inductive, capacitive, optical and/or acoustic distance sensor, or by a magnetic reed sensor which detects a movement of the counter element, for example relative to a support skid, produced by interaction with the reference element.
  • a distance sensor can also be used to detect other interactions between reference element and counter element.
  • the sensor can comprise a distance sensor, in particular a mechanical, inductive, capacitive, optical and/or acoustic distance sensor, or a magnetic reed sensor which outputs the signal when a spacing of the counter element from the reference element lies in a prescribed range.
  • An inductive or capacitive distance sensor in this case detects an electrical interaction
  • a magnetic reed sensor detects a magnetic interaction
  • an optical sensor detects an optical interaction
  • an acoustic sensor detects an acoustic interaction.
  • the sensor is preferably at least partially of flat, in particular of thin and flat design. This facilitates its arrangement in a coupling device, for example between counter element and support skid, or on the I P1711
  • the measure of the interaction between reference element and counter element can be prescribed in such a way that the sensor outputs the signal when the interaction between reference element and counter element undershoots or overshoots a prescribed limiting value.
  • the sensor can, for example, output the preferably electrical signal when a force exerted by the reference element on the counter element, or a force between support skid and counter element pressed thereagainst overshoots a maximum value, or a spacing between the support skid and the counter element pressed thereagainst undershoots a specific minimum value.
  • Maximum and minimum values can in this case advantageously be selected such that random interactions, for example owing to dirt deposits touched by the counter element, or to inertial forces, do not lead to the signal being output.
  • the control device can comprise an electrical switch which is switched over directly or indirectly by the signal output by the sensor.
  • the counter element itself can close or open an electrical circuit and thus function as a switch to be switched over directly. This simplifies the control device and raises its fault tolerance and failsafety.
  • an electrical switch which transfers the locking device from the locked into the unlocked state can also be switched over indirectly, for example by a microprocessor, a lift controller or car controller, or the like. This renders it possible, in particular, to carry out further steps before, during or after transfer into the unlocked state, for example in order to check how long the signal has been output, whether I P1711
  • the control device can advantageously also be actuated by remote control. In this case, it transfers the locking device from the locked into the unlocked state when it receives a corresponding remote control signal, for example a radio signal. This facilitates maintenance, evacuation and the like.
  • the locking device preferably has a bistable, in particular an electromagnetically actuated bistable bolt for locking the car door such that the locking device remains stable, that is to say without being fed energy, both in the unlocked and in the locked state.
  • a bistable bolt can be embodied, for example, by means of a bistable, electromagnetically actuated solenoid.
  • the stabilization of the locked and unlocked' states can also be accomplished in another way, in particular mechanically, for example by means of spring latching elements acting on the bolt in the end positions thereof. Owing to such a bistable bolt, energy, in particular electrical energy, is advantageously required only for transferring from the locked into the unlocked state, and vice versa.
  • a bistable bolt, or a bolt actuated by a bistable actuator furthermore ensures that, even in the event of failure of an energy supply, the locked or unlocked state assumed at the instant of power failure is maintained.
  • bistable locking device which can be transferred by an electrical signal from the unlocked into the locked state, or from the locked into the unlocked state, according to a second design of the present invention, which can be combined with one or I P1711
  • a locking system for a car door of a lift car has a bistable locking device which in a stable unlocked state enables opening of the car door, and in a stable locked state restricts, in particular prevents opening of the car door.
  • a control device transfers the locking device from one to the respective other state as a function of a preferably electrical signal which specifies whether the lift car is located in a permissible position relative to a shaft door and, consequently, a reference element and a counter element are interacting with one another or not, in particular mechanically, electrically, magnetically, acoustically and/or optically in a prescribed measure.
  • the control device comprises a first switch which is switched into a presence state when reference element and counter element have entered into interaction with one another in the prescribed measure, and into an absence state when reference element and counter element are not interacting with one another in the prescribed measure and a second switch which is switched into a lock state when the locking device is transferred into the locked state, and is switched into an unlock state when the locking device is transferred into the unlocked state.
  • the locking device is supplied with energy for transferral into the unlocked state as long as the first switch is in the presence state and the second switch in the lock state, and it is supplied with energy for transferral into the locked state as long as the first switch is in the absence state and the second switch in the unlock state.
  • a sensor detects that a reference element and the counter element are interacting with one another in the prescribed measure. Consequently, the first switch is - 11 - switched into the presence state. Since, because of the still locked car door, the second switch is still located in the lock state, the locking device is now supplied with energy for transferral into the unlocked state.
  • the second switch is switched into the unlock state and the locking device is no longer supplied with energy.
  • the first switch is switched into the absence state. Since, because of the unlocked car door, the second switch is still located in the unlock state, the locking device is now supplied with energy for transferral into the unlocked state .
  • the second switch is switched into the lock state, and the locking device is no longer supplied with energy.
  • a bistable locking device is thereby implemented in a simple, reliable way.
  • Figures IA, IB show a part of a lift car with a car door and a locking system according to a design of the present invention.
  • Figure IA shows the closed car door, locked by a locking device
  • Figure IB shows the unlocked and partially open car door,- I P1711
  • Figures 2A, 2B show a coupling device, forming a part of the locking system from Figure 1, for transferring the door movements from a car door to a shaft door.
  • Figure 2A shows the coupling device in the decoupled state, which effects the transfer of the locking device into its locked state
  • Figure 2B shows the coupling device in the coupling state in which the transfer of the locking device into its locked state is effected;
  • Figures 3A, 3B show a modified coupling device of the locking system from Figure 1;
  • Figures 4A, 4B show a further modified coupling device of the locking system from Figure 1;
  • Figures 5A- 5D show a control device of the locking system from Figure 1 in the case of transition between various states.
  • Figures IA, IB show a lift car 1 with a lift door drive device 2 and a door opening 4 which can be sealed by a laterally closing single-leaf door 5.
  • the lift door drive device 2 is constructed on a door support 3 fastened on the lift car 1.
  • the car door 5 is fastened on a suspension carriage 7 which can be displaced sideways along a guide rail 6 fixed on the door support, and is moved by a drive unit 8 between a door open position and a door closed position via a linearly acting, circulating drive means 9.
  • the coupling device 14 comprises two driver skids 15.1, 15.2 which are aligned parallel to the direction of motion of the lift car and are supported on two adjusting elements 17.1, 17.2 which can pivot about one pivoting axis 16 each, I P1711
  • the reference numeral 12 designates a locking device which can be switched over by an actuator in the form of a solenoid from a locked state, illustrated in Figure IA, into an unlocked state shown in Figure IB, and vice versa.
  • Pivoting the adjusting elements 17.1, 17.2, and thus adjusting the spacing between the driver skids 15.1, 15.2 is likewise performed by the drive unit 8 via the linearly acting drive means 9.
  • Figure IA shows the position of the coupling device 14 during a journey of the lift car 1, that is to say with the car door 5 locked by the locking device 12.
  • the driver skids 15.1, 15.2 assume their decoupling position (unspread position) , in which they can move through in a vertical direction between the coupling rollers 18 fitted next to one another on the shaft doors .
  • I P1711
  • Figure IB shows the situation in which the lift car 1 is located at the level of a floor opposite a shaft door, and the driver skids 15.1, 15.2 have been spread
  • the right-hand driver skid 15.1 is designed in two parts with a support skid 151 and a counter element 152 connected to the latter via piezo force sensors 20.
  • the support skid 151 and the left-hand driver skid 15.2 are drawn by the adjusting elements 17.1, 17.2 into the decoupling or unspread position shown in Figure 2A such that they pass without making contact between the coupling rollers 18 as long as the car door is not to be opened .
  • the two piezosensors 20 thereupon detect that a mechanical interaction in the form of a force between counter element 152 and reference element 18 overshoots a specific minimum value, which means that counter element and reference element interact with one another in the prescribed measure.
  • an electrical signal is output which switches over a first switch 100 of a control device of the locking system from an absence state ( Figure 5A) into a presence state ( Figure 5B) .
  • the solenoid 300 shown in Figures IA, IB, of the locking device 12 is located in a stable locking position (lower position of the magnet armature of the solenoid 300 in Figure 5) and thus prevents the car door from opening.
  • a second switch 200 is switched into a lock state ( Figure 5A) .
  • switching over the first switch 100 into the presence state while the second switch 200 is located in the lock state closes an electrical circuit and connects a current source 500 of a lift controller (not illustrated) to the solenoid 300 in such a way that the latter moves into a stable unlocking position (upper position of the magnet armature of the solenoid in Figure 5) , and thus enables opening of the car door.
  • the locking device is thus supplied with energy for transferral into its unlocked state as long as the first switch is located in the presence state and the second switch in the lock state
  • switching over the first switch 100 into the absence state while the second switch 200 is located in the unlock state closes another electrical circuit and connects the current source 500 to the solenoid 300 in such a way that it moves into its stable locking position.
  • the locking device is thus supplied with energy for transferral into the locked state as long as the first switch is located in the absence state and the second switch in the unlock state ( Figure 5D) .
  • the bistable solenoid 300 assumes its stable locking position ( Figure 5A)
  • the second switch 200 is switched into the lock state such that the other electrical circuit is interrupted again.
  • this locked state there is thus likewise no need for electrical energy to maintain the state, and the locking system is again located in the state, explained at the beginning with reference to Figure 5A, with a locked car door, - 17 - counter element and reference element 152, 18 not interacting with one another.
  • an energy- store for example a capacitor 400, a storage battery or the like is provided in parallel with the current source 500.
  • Figures 3A, 3B show a modified coupling device of the locking system from Figure 1. Identical elements are designated by identical reference numerals, and so only the differences from the design explained above are examined below.
  • the right-hand driver skid 15.1 is also configured in one part and forms the counter element .
  • a force sensor in the form of a diaphragm switch 20 is arranged on the contact surface, facing the reference element, that is to say the right- hand coupling roller 18, of the driver skid such that a sensor surface 21 comes into contact with the right- hand coupling roller 18 when the driver skids 15.1, 15.2 of the coupling device 14 are spread against the coupling rollers 18.
  • conductive bodies (not illustrated) arranged in the sensor surface 21 between two surface layers touch one another and in so doing make an electrical contact.
  • the diaphragm switch 20 thus functions as the first switch 100 which is explained with reference to Figure 5 and which is switched into a presence state (closed electrical contact) as long as reference element 18 and counter element 15.1 are interacting with one another in the prescribed measure, that is to say exert sufficient pressure on one another.
  • sensor surface 21 diaphragm-type force and pressure sensors in the case of which there is arranged between two metal foils a layer made from electrically conducting foam whose electrical resistance is reduced by compression.
  • a further example of diaphragm-type force sensors which can be applied according to the invention as sensor surface 21 are force sensors which include metal foils which are arranged in parallel in a diaphragm in a fashion separated by thin elastic plastics. Pressure exerted on the diaphragm varies at least partially the spacings between the metal foils, thus giving rise to a variation in the electrical capacitance of the metal foil arrangement which can be evaluated.
  • Diaphragm-type force sensors which include a multiplicity of piezoresistive elements are a further example of force and pressure sensors which can be applied in an inventive locking system as sensor surface 21.
  • Figures 4A, 4B show a further modified coupling device of the locking system from Figure 1. Identical elements are designated by identical reference numerals, and so only the differences from the designs explained above will be examined below.
  • the counter element 152 is supported elastically, by means of springs 22, on the support skid 151 of the bipartite right-hand driver skid 15.1.
  • a distance sensor 20, which can operate mechanically ( Figure 4) , but also without making contact, for example, optically, inductively or capacitively, (not illustrated) , detects the spacing between counter element 152 and support skid 151.
  • the right-hand coupling roller 18 moves the counter element 152 towards the support skid 151 under elastic deformation of the springs 22, the spacing between counter element 152 and support skid 151 being reduced, and this is detected by the distance sensor 20. If this spacing undershoots a prescribed minimum value, the distance sensor 20 generates an appropriate signal, which has the effect that the first switch 100 explained with reference to Figure 5 is switched into a presence state, as long as the reference element 18 and the counter element 152 interact with one another in the prescribed measure, that is to say exert a sufficient force on one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Lock And Its Accessories (AREA)
  • Elevator Door Apparatuses (AREA)

Abstract

L'invention porte sur un système de verrouillage d'une porte d'ascenseur, particulièrement une porte de cabine (5) d'une cabine d'ascenseur (1) et/ou une porte de cage d'ascenseur, qui comprend un dispositif de verrouillage qui, dans un état non verrouillé, permet d'ouvrir la porte d'ascenseur, et qui, dans un état verrouillé, limite, en particulier empêche, l'ouverture de la porte d'ascenseur ; un élément de référence (18) ; un contre-élément (15.1 ; 152) qui interagit avec l'élément de référence (18), en particulier mécaniquement, électriquement, magnétiquement, acoustiquement et/ou optiquement, suivant une mesure prescrite lorsque la cabine d'ascenseur (1) est située dans une position autorisée par rapport à une porte de cage d'ascenseur ; un capteur (20) destiné à émettre un signal de préférence électrique lorsque l'élément de référence et le contre-élément (15.1 ; 152) interagissent l'un avec l'autre ; et un dispositif de commande destiné à faire passer le dispositif de verrouillage d'un état verrouillé à un état déverrouillé en fonction du signal du capteur, l'élément de référence (18) étant de préférence disposé sur la porte de cage d'ascenseur.
PCT/US2007/025783 2007-12-18 2007-12-18 Système de verrouillage d'une porte d'ascenseur WO2009078837A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP07863022.5A EP2234914B1 (fr) 2007-12-18 2007-12-18 Système de verrouillage d'une porte d'ascenseur
ES07863022T ES2727392T3 (es) 2007-12-18 2007-12-18 Sistema de bloqueo para una puerta de ascensor
KR1020107015681A KR20100102158A (ko) 2007-12-18 2007-12-18 승강기 문을 위한 잠금 시스템
AU2007362584A AU2007362584B2 (en) 2007-12-18 2007-12-18 Locking system for a lift door
BRPI0722310-2A BRPI0722310B1 (pt) 2007-12-18 2007-12-18 Sistema de travamento para uma porta de elevador e elevador
MX2010006730A MX2010006730A (es) 2007-12-18 2007-12-18 Sistema de bloqueo para una puerta levadiza.
PCT/US2007/025783 WO2009078837A1 (fr) 2007-12-18 2007-12-18 Système de verrouillage d'une porte d'ascenseur
CN200780102302.8A CN102083731B (zh) 2007-12-18 2007-12-18 用于电梯门的闭锁系统
ZA2010/04725A ZA201004725B (en) 2007-12-18 2010-07-05 Locking system for a lift door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/025783 WO2009078837A1 (fr) 2007-12-18 2007-12-18 Système de verrouillage d'une porte d'ascenseur

Publications (1)

Publication Number Publication Date
WO2009078837A1 true WO2009078837A1 (fr) 2009-06-25

Family

ID=40795790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/025783 WO2009078837A1 (fr) 2007-12-18 2007-12-18 Système de verrouillage d'une porte d'ascenseur

Country Status (9)

Country Link
EP (1) EP2234914B1 (fr)
KR (1) KR20100102158A (fr)
CN (1) CN102083731B (fr)
AU (1) AU2007362584B2 (fr)
BR (1) BRPI0722310B1 (fr)
ES (1) ES2727392T3 (fr)
MX (1) MX2010006730A (fr)
WO (1) WO2009078837A1 (fr)
ZA (1) ZA201004725B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247267A (zh) * 2013-05-28 2016-01-13 因温特奥股份公司 具有门接触开关的电梯门
WO2019096756A1 (fr) 2017-11-17 2019-05-23 Inventio Ag Ascenseur à mécanisme de déverrouillage simplifié destiné à déverrouiller des portes palières
WO2019096755A1 (fr) 2017-11-17 2019-05-23 Inventio Ag Ascenseur avec mécanisme d'actionnement à commander activement pour le déverrouillage des portes palières
EP3464148A4 (fr) * 2016-06-07 2020-03-04 KONE Corporation Procédé et système d'ouverture du verrou d'une porte palière d'un ascenseur
US11286134B2 (en) 2018-05-09 2022-03-29 Otis Elevator Company Elevator car door coupling systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10503216B2 (en) * 2014-03-28 2019-12-10 Intel Corporation Adjustment of magnetic force in a computing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266860A1 (fr) * 2001-06-14 2002-12-18 Inventio Ag Dispositif de couplage entre porte de cabine et porte palière
US20050139429A1 (en) * 2003-12-08 2005-06-30 Daniel Bisang Equipment at an elevator car for temporarily coupling a car door leaf with a shaft door leaf for actuation of a car door unlocking means
US20060157305A1 (en) * 2003-06-30 2006-07-20 Romeo Deplazes Safety system for an elevator structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1466716A (en) * 1974-06-11 1977-03-09 Wabco Westinghouse Gmbh Electropneumatic or electrohydraulic control apparatus
JPS61188385A (ja) * 1985-02-15 1986-08-22 株式会社東芝 エレベ−タ戸の開閉装置
ES2031644T3 (es) * 1988-03-18 1992-12-16 Inventio Ag Dispositivo de accionamiento de puerta con mecanismo de enclavamiento para ascensores.
JPH0455284A (ja) * 1990-06-21 1992-02-21 Mitsubishi Electric Corp エレベータ扉の安全装置
JPH0687588A (ja) * 1992-08-27 1994-03-29 Otis Elevator Co ホームエレベーター用ドアロック装置
US5655627A (en) * 1995-08-08 1997-08-12 Advanced Microcontrols, Inc. Elevator door restrictor
DE19815249C2 (de) * 1997-04-15 2000-11-23 Plaettner Elektronik Gmbh Sensorgesteuerter elektrischer Schalter
US5918705A (en) * 1997-11-10 1999-07-06 Friend; Jeff Building elevator door restrictor
CN2349663Y (zh) * 1998-09-30 1999-11-17 李锐锋 双稳态继电器
JP2000211862A (ja) * 1999-01-19 2000-08-02 Mitsubishi Electric Building Techno Service Co Ltd エレベ―タ―のドア―装置
CN1303811A (zh) * 1999-12-14 2001-07-18 中国建筑科学研究院建筑机械化研究分院 电梯自动门的门联结器和开闭力传递方法
FR2823495B1 (fr) * 2001-04-13 2004-08-20 Otis Elevator Co Dispositif de couplage entre les portes de cabine et les portes palieres d'un ascenseur, avec securite d'ouverture
JP2003020173A (ja) * 2001-07-05 2003-01-21 Mitsubishi Electric Building Techno Service Co Ltd エレベータ機械室の遠隔施錠・解錠装置
EP1400480A1 (fr) * 2002-09-18 2004-03-24 Inventio Ag Dispositif de couplage entre les portes de cabine et les portes palières d'un ascenseur, avec dispositif de verrouillage
CN2588517Y (zh) * 2002-10-29 2003-11-26 张居平 一种双稳态触发继电器电路
EP1514831B1 (fr) * 2003-09-15 2015-12-09 Inventio AG Ensemble d'étanchéité pour ascenseur avec un joint de vantail rétractable électromagnétiquement
US7097001B2 (en) * 2003-11-12 2006-08-29 Inventio Ag Elevator car door movement restrictor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266860A1 (fr) * 2001-06-14 2002-12-18 Inventio Ag Dispositif de couplage entre porte de cabine et porte palière
US20060157305A1 (en) * 2003-06-30 2006-07-20 Romeo Deplazes Safety system for an elevator structure
US20050139429A1 (en) * 2003-12-08 2005-06-30 Daniel Bisang Equipment at an elevator car for temporarily coupling a car door leaf with a shaft door leaf for actuation of a car door unlocking means

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2234914A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247267A (zh) * 2013-05-28 2016-01-13 因温特奥股份公司 具有门接触开关的电梯门
CN105247267B (zh) * 2013-05-28 2017-12-01 因温特奥股份公司 具有门接触开关的电梯门
EP3464148A4 (fr) * 2016-06-07 2020-03-04 KONE Corporation Procédé et système d'ouverture du verrou d'une porte palière d'un ascenseur
WO2019096756A1 (fr) 2017-11-17 2019-05-23 Inventio Ag Ascenseur à mécanisme de déverrouillage simplifié destiné à déverrouiller des portes palières
WO2019096755A1 (fr) 2017-11-17 2019-05-23 Inventio Ag Ascenseur avec mécanisme d'actionnement à commander activement pour le déverrouillage des portes palières
US11286134B2 (en) 2018-05-09 2022-03-29 Otis Elevator Company Elevator car door coupling systems

Also Published As

Publication number Publication date
ES2727392T3 (es) 2019-10-15
CN102083731A (zh) 2011-06-01
AU2007362584B2 (en) 2015-05-14
BRPI0722310A2 (pt) 2014-04-22
EP2234914A4 (fr) 2014-02-05
BRPI0722310B1 (pt) 2019-02-12
CN102083731B (zh) 2016-06-01
AU2007362584A1 (en) 2009-06-25
KR20100102158A (ko) 2010-09-20
EP2234914B1 (fr) 2019-03-13
ZA201004725B (en) 2011-11-30
EP2234914A1 (fr) 2010-10-06
MX2010006730A (es) 2010-08-31

Similar Documents

Publication Publication Date Title
US8820485B2 (en) Locking system for a lift door
EP2234914B1 (fr) Système de verrouillage d'une porte d'ascenseur
AU2003209906B2 (en) Shaft monitoring system for an elevator
US7446645B2 (en) Device for operating electrical or electromechanical entry or access systems on or in a vehicle
FI96676C (fi) Hissin korinoven lukituslaitteisto ja menetelmä korinoven lukitsemiseksi ja vapauttamiseksi
US20040232710A1 (en) Outside door handle, in particular for motor vehicles
US8607937B2 (en) Elevator door system comprising a car door locking mechanism
US20060214515A1 (en) Safety switch for reliably switching off a dangerous device
WO2013163124A1 (fr) Dispositif d'alimentation de fermeture architecturale
US20170326973A1 (en) Actuating device for a movable part
US11053710B2 (en) Locking device
JP7038423B2 (ja) 補助解除制御装置の駆動を検出する安全スイッチ
CN114555898B (zh) 门把手总成和用于门把手总成的把手体的操作速度的准许性检查的方法
AU2014273209A1 (en) Elevator door with a door contact switch
KR101376821B1 (ko) 엘리베이터 장치
US10487538B2 (en) Door arrangement having a motor-driven locking device
CN209468006U (zh) 一种电梯光幕
CN110984707A (zh) 电插锁、售卖机及控制电插锁的方法
EP0896565A1 (fr) Dispositif de couplage et dispositif de verrouillage de porte
CN211369859U (zh) 电插锁及售卖机
CN210438236U (zh) 一种轿厢意外移动装置检测系统
WO2008041332A1 (fr) Système d'ascenseur
JP2010189086A (ja) エレベータ安全装置及びその制御方法
CN115223806A (zh) 行程开关及蒸汽灭菌器
EP2212231A1 (fr) Système d'ascenseur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780102302.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07863022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/006730

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007362584

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007863022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4220/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107015681

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007362584

Country of ref document: AU

Date of ref document: 20071218

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: PI0722310

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100618