WO2009076793A1 - 用于小型卫星和月球上航天器的电磁弹射器 - Google Patents

用于小型卫星和月球上航天器的电磁弹射器 Download PDF

Info

Publication number
WO2009076793A1
WO2009076793A1 PCT/CN2007/003622 CN2007003622W WO2009076793A1 WO 2009076793 A1 WO2009076793 A1 WO 2009076793A1 CN 2007003622 W CN2007003622 W CN 2007003622W WO 2009076793 A1 WO2009076793 A1 WO 2009076793A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
electromagnetic
layer
layer wire
strip
Prior art date
Application number
PCT/CN2007/003622
Other languages
English (en)
French (fr)
Other versions
WO2009076793A9 (zh
Inventor
Lunhua Yang
Original Assignee
Yang, Hong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang, Hong filed Critical Yang, Hong
Priority to PCT/CN2007/003622 priority Critical patent/WO2009076793A1/zh
Publication of WO2009076793A1 publication Critical patent/WO2009076793A1/zh
Publication of WO2009076793A9 publication Critical patent/WO2009076793A9/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G5/00Ground equipment for vehicles, e.g. starting towers, fuelling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/06Ground or aircraft-carrier-deck installations for launching aircraft using catapults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems

Definitions

  • Electromagnetic catapults for small satellites and spacecraft on the moon are Electromagnetic catapults for small satellites and spacecraft on the moon
  • the invention relates to an electromagnetic ejector for a small satellite and a spacecraft on the moon.
  • the invention adopts a new magnetic circuit design to manufacture an electromagnetic acceleration thruster, and then is assembled into a small satellite by a multi-section electromagnetic acceleration thruster. And the electromagnetic catapult device of the spacecraft on the moon to achieve cold launch without ignition.
  • Electromagnetic ejection technology not only has low noise, large thrust, but also is easy and safe to shoot.
  • the technical field belongs to the basic theory discipline, that is, the exploration of the current element in the electromagnetic field in the electromagnetic field, the simple design can not only make this kind of ampere work well, but also make the current element in the new magnetic circuit design.
  • the ampere-forming force forms a symmetrical structure, and the direction in which the group performs its work force can make a long-distance driving force along the linearity to move rapidly.
  • the purpose of the present invention is to provide an electromagnetic ejector for small satellites and spacecraft on the moon.
  • the use of electromagnetic ejector to launch satellites makes satellite launching simple and easy to control, enabling cold launch without ignition.
  • the explosion factor is reduced to zero.
  • the satellite launching expenses can be reduced.
  • the launch of the same size satellite with the electromagnetic catapult is less than one tenth of the rocket launching satellite. Not only many devices can be reused, not Will be damaged, can also greatly reduce energy consumption.
  • Electromagnetic catapults require a large amount of current when launching a satellite, but the time is very short. The action time is less than one second, and the total energy consumption is very low.
  • the technical solution of the present invention As a satellite electromagnetic catapult - the technology must have a very large external force for the large thrust operation process (unlike the rocket launching, the fuel is generated by the self-ignition after the fuel is burned) In fact, there must be a period of acceleration, this acceleration process must be external The greater the force, the better. The longer the external force is, the better the effect will be.
  • the satellite launching shaft considered by the present invention is composed of a plurality of (four or eight, etc.) electromagnetic catapults, and the plurality of electromagnetic catapults are further connected by a multi-section electromagnetic acceleration pusher.
  • the complete structure of an electromagnetic acceleration thruster should include a pair of multi-layer wire packages that form two space frame structures with magnetic lines of force and are free to move up and down.
  • a single-section electromagnetic acceleration thruster should refer to a pair of (ie, 2) side-by-side multi-layer wire packages. Packed into a group of magnetic line space frame structures by multiple pairs of multi-layer wires, it is equivalent to a multi-section electromagnetic acceleration thruster series combination, and some other accessories are an electromagnetic catapult.
  • the electromagnetic accelerating thruster of the present invention has a pair of side-by-side multi-layer wire packages in terms of the shape of a simple structure.
  • the two multi-layer wire packages are respectively sleeved in a multilayer rare earth permanent magnet. Between the strip and the high-magnetic strip, the high-magnetic strip is attached to the outermost four sides of the two multi-layer strips.
  • the electromagnetic accelerating propeller of the present invention can also be viewed by the following magnetic field space frame structure: two high-magnetic magnetic strips are respectively square central columns, and the width is reduced from small to large on four sides of one central column.
  • the order of the rare earth permanent magnet strips in the same direction of magnetic field lines is respectively attached, and the magnetic lines of the same direction in the opposite direction are respectively attached to the four sides of the other center column. Between every two layers of rare earth permanent magnet strips, and between the rare earth permanent strips and the highly magnetically long strips, or between the rare earth permanent strips and the highly magnetic long strips They are all padded with non-magnetic pads. Make their gaps parallel and equidistant. Each of the rare earth permanent magnet strips, the high magnetic thin strips and the high magnetic strips are respectively brazed by their short material and gradually spliced into the strip material. In the present invention, the length of the long strip, the thin plate and the stem are up to 250 meters.
  • the length of the conductive magnetic sheet between the adjacent pair of multi-layer wire packages is the same as the length of the multi-layer wire package, and is tightly bonded to the two multi-layer wire packages, during movement, and with the wire package Exercise together.
  • the length is the same, and the width of each layer is different, which is the narrow outer layer width of the inner layer.
  • one of the magnetic lines of force starts from the high-permeability long-length core column, and is radiated to the outermost four-sided high-magnetic strip by multi-layer rare earth permanent magnet sheets and multi-layer wire packages or directly through the gap space. Above the thin plate.
  • the magnetic lines of force are extruded from the four-sided high-magnetic thin strip through a multi-layer rare earth permanent magnet strip and a multi-layer wire package or directly through the interstitial space onto the high-permeability long column.
  • the magnetic lines of force are in the same direction in the vicinity of the two frame structures.
  • the N pole and the S pole are overlapped by a high magnetic permeability stride plate to form a magnetic closed loop "0 or more space frame joints juxtaposed together"
  • a high magnetic permeability stride plate to form a magnetic closed loop "0 or more space frame joints juxtaposed together"
  • Assembly of an electromagnetic catapult a head of a space frame structure with magnetic lines of force is used as a starting end. The other end is the transmitter. Push multiple pairs (in the required number) of multi-layer packages one by one from the starting end on the flat ground. Then, at the starting end, a non-magnetic pad and a riveting device are used to tightly fix the gap between the rare earth permanent magnet strips and the gap between the high magnetic strip and the high magnetic strip. . Then, the N-pole and the S-pole of the two high-magnetic magnetic strips are overlapped by a high-magnetic stradding lap plate to form a magnetic closed loop.
  • a stop mechanism is installed on the corresponding ground at the starting end to overcome the strong recoil force generated when the electromagnetic catapult launches the satellite, and then the launching end is lifted by using a special lifting vehicle to form part of the vertical launch satellite platform ( One quarter or one eighth). Since the rare earth permanent magnet material and the shigang sheet are all special steel materials, the hardness is large and it is easy to make a shaft type installation. At the same time, the starting end is accurately dropped on the anti-return device. After the above installation, an electromagnetic catapult is formed. In the same way, other parts of the electromagnetic catapult that launch the satellite shaft platform are manufactured.
  • the invention uses a plurality of electromagnetic ejector to symmetrically arrange a complete satellite launching shaft platform, and the satellite device is centered.
  • the automatic hooking mechanism enables the satellite device to automatically hook up with multiple pairs of multi-layer wire packages in multiple electromagnetic ejector. After the above installation process is finished, the DC current is passed through, and the operation of a pair of multi-layer wire packages is observed: When one side of a pair of multi-layer wire packages passes a direct current in one direction, the other side is wrapped.
  • the magnetic field lines are distributed in the opposite direction in the two sets of frame structures, and the amperage generated by the current elements in the two sets of multi-layer wire packages under the strong magnetic field between the rare earth permanent magnet sheets
  • the two sets of multi-layer wire packages move in the same direction. The reason is that in the strong magnetic field space, when the current in the two-layer multi-layer wire package is cutting the magnetic field line, the right-hand rule is just positive and positive, and the negative and negative are also positive.
  • the moving direction of the two sets of multi-layer wire packages in the gap of the rare earth permanent magnet flakes is uniform, so that the current direction is adjusted in the two sets of multi-layer wire packages according to the right-handed jewel ij so that the moving direction of the multi-layer wire bag is always oriented.
  • the direction of the transmitting end According to the integral and rationality of the amperage of the current element in the strong magnetic field in the two space frame structures, it can be seen that the rare earth is always Clearance between magnetic sheets
  • the use of electromagnetic catapult technology for satellite launch is a new source of satellite launch power.
  • the satellite launch becomes noise-free, with low vibration and low risk.
  • It is also a technological technology that greatly expands the range of satellite launch platforms. Not only can the satellite be launched on the ground, but also on a long-body aircraft, that is, an electromagnetic catapult on the back of the aircraft. First let the plane fly above the high ground above the ground, and then launch the satellite on the electromagnetic ejector of the aircraft. This type of satellite has a higher kinetic energy to enter the universe. This satellite can also achieve greater load capacity.
  • this electromagnetic catapult was used for transportation on the moon, making it easy for satellites to return to Earth when developing lunar resources.
  • Figure 1 is an assembled view of an embodiment of an electromagnetic ejector for a small satellite of the present invention.
  • Fig. 1 is an electromagnetic catapult
  • 3 is a small satellite device
  • 5 is an automatic hook plate on a satellite device
  • 6 is a rare earth permanent magnet strip
  • 7 is a multi-layer wire package
  • 13 is a retreat device
  • QQ' and GG' is a high magnetic thin strip
  • Lr and L2 are large strips on the left and right sides of the QQ' high magnetic strip
  • K1 is an automatic hook on the multi-layer wire package
  • Y1 is a hook groove
  • N1 and Ml Two side-by-side high-strength strips are placed side by side.
  • Figure 2 is a cross-sectional view taken along line PP' H' H of Figure 1;
  • ⁇ and JJ' are two side-side high-magnetic thin strips
  • TT' and 00' are high-magnetic sheets between two multi-layer strands side by side
  • N1 and Ml are two high-magnetic magnetisms side by side.
  • Long strip core, 6 is rare earth permanent strip
  • 7 is multi-layer wire package
  • 12 is NN' and Sa' long strip core starting N and S pole stepping plate
  • 4 is non-magnetic pad Block
  • 2 is a concave-convex non-magnetic roller slider
  • 16 and 17 are side-by-side two multi-layer wire package start end (inner layer) bow 1 out line
  • 14 and 15 are side by side two multi-layer line package terminals (outer layer ) Lead line.
  • FIG. 3 is a schematic view showing the structure of a single-section electromagnetic acceleration thruster in the embodiment of the electromagnetic ejector of the present invention.
  • QQ' is a high-permeability long strip
  • JJ' is a two-side high-magnetic strip
  • L1 and L2 are QQ' high-magnetic strips, left and right long strips
  • K1 and D .1 for the automatic hook on the multi-layer wire package
  • Y1. and Z1 are the hook grooves respectively
  • N1 and Ml are two ⁇ magnetic conductive strip cores side by side
  • 6 is thin and thin permanent magnets Layer line package
  • 11 is the gap between the layers of the multi-layer wire package 3 ⁇ 43 ⁇ 4 pad.
  • FIG. 4 is a schematic view of a concave-convex non-magnetic roller slider (made of non-magnetic stainless steel:) in the embodiment of the electromagnetic ejector of the present invention.
  • Figure 5' is a side view of Figure 4.
  • V' and V are concave and convex portions on the concave-convex non-magnetic roller slider, respectively, U and U' are respectively two sides of the concave-convex non-magnetic roller slider, and 18 is one of the rollers. , 19 is the roller on the other side.
  • Figure 6 is a schematic view showing the structure of a two-core non-magnetic fastening ring of a multilayer wire package in the embodiment of the electromagnetic ejector of the present invention.
  • Fig. 6 20 is a gap window, 21 is a long column window, 22 is a coil bar, 23 is a pad screw hole, and 24 is an automatic hook large screw hole.
  • Figure 7 is a diagram of an embodiment of an electromagnetic ejector for a spacecraft on the moon of the present invention.
  • BB' and M' are two spacecraft orbital tracks, 1 is an electromagnetic catapult, 5 is an automatic hook plate on the spacecraft, 8 is a spacecraft, and 13 is a retracting device.
  • the following implementation process has a long length, a large weight, and a large size. It is considered to be divided into three parts: First preparation work, second multilayer wire wrapping and assembly work, and third embodiment evaluation.
  • the winding of the winding machine is 110cm in length and 70cm in width.
  • the winding machine can be made by itself.
  • the rare earth permanent magnet material is also a special alloy steel, and its hardness is better than that of the 45 steel. It is not easily deformed during use and is not susceptible to the surrounding environment. - Chong. Magnetic is best to use a dedicated continuous punch before the a is punched. —— ' - 1 - 3 high magnetic thin strip production. Purchase a certain amount of ⁇ large magnetic permeability - piece of steel. Referring to Figure 3, the width of the four sides is not cut, and the short side after the cutting is butt welded to the short side, and the welding is continued until 250 meters. The strips after soldering are overlapped, and the number of laminations is generally 7 to 10 sheets. Appropriate amount of adhesive is applied between the layers, and the laminates are pressed tightly by a hydraulic press.
  • Two high-conductivity long strip cores with a square shape in cross section are made.
  • the side length of the square is determined. In the present embodiment, the length of the square is determined to be 4 cm.
  • the outer steel sheet is cut, and the width of each piece is 4 cm.
  • the short sides of each piece of 4 cm are butt welded to the short side, and the length of the butt joint is 250 meters. Then, a small amount of adhesive was applied to both sides of each piece of the steel sheet, and then several pieces were stacked and pressed with a hydraulic press to a thickness of 4 cm.
  • the first type is a concave-convex non-magnetic roller slider made of non-magnetic stainless steel. As shown in Fig. 4 and Fig. 5, the slider has four rollers 18 and 19 on each side, and the slider has protrusions and depressions in front and rear, so that it can fall together in rapid motion and run out of the transmitting end together.
  • the thickness of the slider is generally 3. 8mm and 7.
  • the length of the slider is 5cm
  • the width of the slider that is, the distance between the sides U and U' is generally 3/3 of the width of each gap
  • the width of the slider is With the increase of the gap width
  • the second non-magnetic pad is a coil bonding pad for the gap between the coils of each layer in the multi-layer wire package (as shown by 11 in FIG. 3), and has two functions, one It is the connection between the coil and the coil, and the connection between the two ends of the multi-layer wire package and the fastening of the multi-layer wire package.
  • the third type is a non-magnetic pad for each gap at the beginning of the frame structure, the purpose of which is to fasten the starting rare earth permanent magnet flakes, the long studs and the long strips together.
  • “3 ⁇ 4 is divided into four corners on the center of the four sides.
  • the first layer of rare earth permanent magnet sheet template is coated with mold release oil on both sides. After four non-magnetic mats (put the two ends of the non-magnetic crucible through the screw holes on both sides of the tightening ring, and tighten the four mats with the non-magnetic nut on the top and bottom
  • the layer coils may be coated with a cured adhesive on both sides.)
  • Four long strip templates are required and the square stems - the mold bars are very flat. The distance between the two is 3mm. If it is not reached, use a cardboard strip to make it meet the requirements. If it exceeds 3mm, use external force to make it meet the requirements.
  • Assembly work of a single electromagnetic ejector Since the rare earth permanent magnet strips are assembled after the pulsing, the assembly is in the paramagnetic direction and does not need to be bundled, but it must be placed in the position. Place the two high-conductivity long strips on the two turning positioning tools by the robot. Then, a plurality of multi-layer wire packages are paired, and two multi-layer wire packages in the multi-layer wire package are paired into a pair of multi-layer wire packages in different directions, and then respectively inserted into the start ends of the two long-length core columns. Section (ie, 10 pairs) of multi-layer wire package, and between every two sections of the multi-layer wire package, on the center line of the long-side core column, a thickness of 3.
  • the second layer of the rare earth permanent magnet strip and the second layer of the roller slider were placed in the same way, and placed on the 49th layer.
  • the two long strip cores are flipped 180 degrees together with the prepared layers of rare earth permanent magnet strips by the two turning and positioning tools, and the above work is repeated, through the multi-layer wire package.
  • the first layer to the 49th layer of the rare earth permanent magnet strips and the same thickness roller slider are installed in the gaps of the layers. After installation, turn the two turning and positioning tools to 90 degrees respectively. Also use the same method to install a rare earth permanent magnet strip of 3 ⁇ 4 pieces and the roller slider i ⁇ SJ 49 layer at the relevant position.
  • the other space frame structure is slowly lifted from the second tooling frame by the robot and placed in an aligned position from the top, and placed on the frame structure of the first tool frame on which the roller slider and the evening steel plate are placed. Above, carry out the collapse.
  • the two frame structures are brought together by the suction of the spatial magnetic forces of the two. (At this point, note: Pre-consideration before closing, two multi-layer wire packs with one side of the automatic hook on the same side, one on top and one on the bottom), and two multi-layer wire packs
  • the layer leads are connected together. Use the right-hand rule in the two outer lead wires to make the positive and negative signs (to make the multi-layer wire package run to the transmitting end). After the merging, put a roller slider of 3.
  • the above assembly process is a single electromagnetic ejector assembly process, and multiple electromagnetic ejectors can be assembled in the same manner. In this embodiment, eight electromagnetic ejector are used. After the installation of the electromagnetic ejection device and the installation of each automatic hook are completed by using the hoisting vehicle as shown in Fig. 1, a complete satellite launching shaft platform is formed.
  • the embodiment estimates.
  • F is the force
  • L is the length of the stream element
  • each section of the electromagnetic acceleration thruster has two multi-layer wire packages.
  • the satellite launching platform uses eight electromagnetic catapults, each of which is used in the electromagnetic catapult.
  • the 10-section electromagnetic accelerating stacker in this embodiment, has a satellite launch weight of 2 tons (which contains the weight of the multi-layer wire package). Take the first cosmic speed of 11 X10 3 / msec, and substitute the above values into the formula.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Hard Magnetic Materials (AREA)

Description

用于小型卫星和月球上航天器的电磁弹射器 技术领域
本发明涉及一种用于小型卫星和月球上航天器的电磁弹射器, 本发明采用 一种新的磁路设计制造成电磁加速推进器,然后由多节电磁加速推进器串接组装 成小型卫星和月球上航天器的电磁弹射器设备, 以实现无需点火的冷发射。电磁 弹射技术不仅噪声小、推力大, 而且弹射方便、十分安全。其技术领域属于基础 理论学科中即电磁学中电流元在强磁场中产生安培力的探索,通过简单设计不但 能使此种安培力进行良好的群体做功,而且能让新磁路设计中电流元所受安培力 形成对称性的结构,其群体做功力的方向能够沿着直线性做长距离大推动力快速 运动。
背景技术
电磁场存在于整个宇宙空间, 人们不断利用空间电磁场, 例如应用光伏效应 就能不断地把光能转变成电能,在月球上也只能使用光能转变成电能却无法制造 出液态氢和液态氧, 因此开发电磁弹射器技术是当前航天技术中具有前景的技 术。 目前世界好些国家如日本、 印度都在积极加盟开发月球丰富资源。这当然是 我们国家更不能落后的了。另外人们都知道电磁作用速度极限是光速,而其它的, 例如液态燃料燃烧时, 喷射速度就远低于光速。
发明内容
. 本 明的目的是提供一种用于小型卫星和月球上航天器的电磁弹射器,应用 电磁弹射器发射卫星,使卫星发射变得简单易行, 易于控制, 实现无需点火的冷 发射, 把地面发射卫星时的爆炸因素减少到零, 同时也可以降低卫星发射经费, 发射同样大小的卫星用电磁弹射器发射的经费不到火箭发射卫星的十分之一,不 仅很多设备可以重复使用,不会被损坏掉,也可以大大降低能源的损耗。 电磁弹 射器发射卫星时需要电流很大, 但时间很短,.作用时间不到一秒, 总能量消耗很 低, 用火箭发射卫星单就制造液态氢和氧就花费巨大的电能。 - " " 本发明的技术方案: 作为一个卫星电磁弹射器一技术必然有一个非常大的外 力进行大推力运作过程 (不像火箭发射时那样靠自身点火后燃料燃烧时喷射产生 推力前进), 具体来讲必然有一段进行加速时一间, 这种加速过程必然是外部作用 力越大越好,外力作用距离越长效菓肯定也越好。本发明考虑的卫星发射竖井是 由多架(四架或八架等)电磁弹射器组合成, 多架电磁弹射器又由多节电磁加速 推迸器串接而成。以下就以单节电磁加速推进器进行详细描述:作为一节电磁加 速推进器的完整结构应包括构成带磁力线的二个空间框架结构,并在其中能上下 自由活动的一对多层线包。但由于本发明中串接的多节电磁加速推进器是共用一 组带磁力线的空间框架结构。 因此单节电磁加速推进器应当是指一对(即 2个) 并排多层线包。由多对多层线包装进一组带磁力线空间框架结构之内,就等于多 节电磁加速推进器串接组合, 再加一些其他配件就是一架电磁弹射器。
本发明电磁加速推进器从简单结构的形状来看, 每节电磁加速推进器在结 构上都有一对并排的多层线包,这 2个多层线包是分别套在多层稀土永磁长条薄 片和高导磁长条芯柱之间,在 2个多层线包的最外边四个侧面上再分别贴上高导 磁长条薄板。 本发明电磁加速推进器也可以用以下带磁力线空间框架结构来看: 以两根高导磁长条芯柱分别为方形中心柱,在其中一根中心柱的四个侧面上按宽 度从小到大的顺序分别贴上同一个磁力线方向的稀土永磁长条薄片,而在另一根 中心柱四个侧面上也分别按宽度从小到大顺序分别贴上同样反方向的磁力线稀 土永磁长条薄片,在每两层稀土永磁长条薄片之间, 以及稀土永磁长条薄片与高 导磁长条薄板之间,或稀土永磁长条薄片与高导磁长条芯柱之间的间隙都分别用 无磁垫块垫紧。使它们的间隙做到平行等距离。每个稀土永磁长条薄片, 高导磁 长条薄板和高导磁长条芯柱都分别由它们的短片材料采用铜焊技术,逐渐地对接 成长条材料。本发明中长条薄片、薄板、芯柱等长度都要达到 250米。而相邻的 一对多层线包之间的髙导磁薄片的长度与多层线包长度一样,并与两个多层线包 紧紧地粘接在一起,运动时, 并与线包一起运动。再从整个空间框架结构的多层 叠片来看, 长度都一样, 各层宽度不一样, 是里层窄外层宽。再从磁力线走向来 看,其中一个的磁力线一起从高导磁长条芯柱出发,通过多层稀土永磁薄片和多 层线包或直接通过间隙空间散发到最外层四面高导磁长条薄板之上。而在另一个 框架结构中磁力线是从四面高导磁长条薄板出发通过多层稀土永磁长条薄片和 多层线包或直接通过间隙空间被压缩到高导磁长 柱之上。在两个—框架结构相 邻地方磁力线是同方向的。在两根长条芯柱起始端的 N极和 S极之间用高导磁率 跨步搭接板把 N极和 S极搭接成磁闭合迴路 "0以上两个并列在一起的空间框架结 构一个重要特点是两个相邻并列在一起的两个空间框架结构之中,有一面即高导 磁长条薄板两边开两个长条形较大窗口,便于将框架结构内部多层线包快速运动 的动能通过这两个窗口(也称长条大间隙)传递到外面。其他另外三面的髙导磁 长条薄板之间是闭合的,不留间隙也同样用于磁闭合迴路。在框架结构中每一层 的四个稀土永磁薄片相邻的两片之间也留有间隙,这些间隙的用途在于每个多层 线包中每两层线圈之间通过它们之间的间隙粘接垫条牢固地互相连接在一起,使 各层线圈相互之间形成一个多层线包牢固的整体结构。
一架电磁弹射器的组装:把带有磁力线的空间框架结构的一头作为起始端。 而另一头就是发射端了。在平地上从起始端逐个地推进多对(按所需的个数)多 层线包。然后在起始端使用无磁垫块和有关铆合装置把稀土永磁长条薄片之间的 间隙和高导磁长条芯柱以及高导磁长条薄板之间的间隙紧紧地固定在一起。再用 高导磁跨步搭接板把两根高导磁长条芯柱的 N极和 S极搭接起来,形成磁闭合迴 路。同时在起始端相应的地面上安装好止退机构,用以克服电磁弹射器发射卫星 时产生的强大后座力,接着使用专用吊装车把发射端吊起,形成竖井式发射卫星 平台的一部分(四分之一或八分之一)。 由于稀土永磁材料和夕钢片等都是特种 钢材,硬度很大,容易做成竖井式安装。同时把起始端准确地落到止退装置之上,. 经过以上安装后就形成了一架电磁弹射器。再用同样的办法制造出发射卫星竖井 平台的其他部分电磁弹射器。
本发明使用多架电磁弹射器对称排列组成完整的卫星发射竖井平台,卫星装 置居中。通过自动掛钩机构,使卫星装置与多架电磁弹射器中的多对多层线包实 现自动掛钩。 由以上安装过程结束后, 接着通以直流电流,单看一对多层线包运 行情况: 当一对多层线包的一边线包通过某一方向直流电流时,而让另一边线包 通以相反方向的直流电流,这时在两组框架结构中磁力线分布刚好相反,在两组 多层线包中的电流元在稀土永磁薄片之间的间隙强磁场作甩下产生的安培力使 两组多层线包朝着同一方向运动。其原因是:在强磁场空间中两组多层线包中电 流在切割磁力线时,用右手定则刚好是正正为正, 负负也为正。因此两组多层线 包在稀土永磁薄片间隙中运动方向是一致的,这样 以根据右手定贝 ij在两组多 层线包中把电流方向调正为使多层线包运动方向一直朝向发射端的方向。再根据 两个空间框架结构中电流元在强磁场中所受安培力的积分原、理,就可看出稀土永 磁薄片之间的间隙
越多,也就是线包的层数越多,多层线包中较大电流在强磁场中所受的安培力就 越大。
本发明的有益效果: 卫星发射采用电磁弹射器技术是一种全新的卫星发射 动力源。使卫星发射变得无噪声, 振动小, 风险也小。而且是一种具有开创性航 天技术, 使卫星发射平台大大地扩充了范围。不仅在地面上能发射卫星, 也可以 在长机身的飞机上,也就是把电磁弹射器装在飞机背上。先让飞机飞离地面很高 的高空之上,然后由飞机的电磁弹射器上的发射卫星。这种卫星就具有更高的动 能进入宇宙航行。这种卫星也可以做到更大的载重量。周时,.这种电磁弹射器在 月球上作运输之用, 在开发月球资源时使卫星很容易返回地球。
附图说明
图 1是本发明用于小型卫星的电磁弹射器实施例的装配图。
图 1中, 1为电磁弹射器, 3为小型卫星装置, 5为卫星装置上自动掛钩板, 6为稀土永磁长条薄片, 7为多层线包, 13为止退装置, QQ'和 GG'为高导磁长条 薄板, Lr和 L2为 QQ'高导磁长条薄板左右两边长条形大窗口, K1为多层线包上 自动掛钩, Y1为掛钩槽, N1和 Ml为并排两根高导磁长条芯柱。
图 2是图 1的 PP' H' H剖视图。 ' 图 2中, ΙΓ和 JJ'为两个侧面高导磁长条薄板, TT'和 00'为并排两个多层 线包之间高导磁薄片, N1和 Ml为并排两根高导磁长条芯柱, 6为稀土永磁长条 薄片, 7为多层线包, 12为 NN'和薩'长条芯柱起始端 N极和 S极跨步搭接板, 4 为无磁垫块, 2为凹凸形无磁滚轮滑块, 16和 17分别为并排两个多层线包起始 端(里层) 弓 1出线, 14和 15分别为并排两个多层线包终端(外层) 引出线。
图 3是本发明的电磁弹射器实施例中的单节电磁加速推进器结构示意图。 图 3 中, QQ'为高导磁长条薄板, JJ'为两侧面高导磁长条薄板,. L1和 L2 为 QQ'高导磁长条薄板左右两边长条形大窗口, K1和 D.1,为多层线包上的自动掛 钩, Y1.和 Z1分别为掛钩槽, N1和 Ml为并排两根髙导磁长条芯柱, 6为稀入永 磁长条薄 为多层线包, 11为多层线包各层线圈之间间隙¾¾接垫条。 :: —一图 4是本发明的电磁弹射器实施例中凹凸—形无磁滚轮滑块 (无磁不锈钢做成:) 的^ S示意图。 图 5'是图 4的侧视图。
图 4和图 5中, V'和 V分别为凹凸形无磁滚轮滑块上的凹、 凸部分, U和 U' 分别为凹凸形无磁滚轮滑块的两个侧面, 18为其中一面滚轮, 19为另一面上滚 轮。
图 6是本发明的电磁弹射器实施例中多层线包两头无磁紧固圈的结构示意 图。
图 6中, 20为间隙窗口, 21为长条芯柱窗口, 22为线圈档条, 23为垫条螺 钉孔, 24为自动掛钩大螺钉孔。
图 7是本发明用于月球上航天器的电磁弹射器实施例的装.配图。
图 7中, BB'和 M'为两根航天器轨道跑道, 1为电磁弹射器, 5为航天器上 自动掛钩板, 8为航天器, 13为止退装置。
具体实施方式
以下结合附图对本发明方案做更详细说明。
. 以下实施过程因长度较长, 重量偏大, 尺寸也较大, 考虑分三个部分: 第一 准备工作, 第二多层线包绕制与装配工作, ·第三对实施例估算。
第一准备工作 (材料的准备和部件加工)
1、 要有较好的能自动排线的绕线机和技术熟练的绕线工人。 绕线机的绕制 线圈长度 110cm, 宽度 70cm, 绕线机可以自制。
2、 购买各技术参数较优的稀土永磁材料, 参考图 2和图 3所示的各种稀土 永磁薄片的厚度、宽度和长度后,确定加工稀土永磁材料各规格的薄片,加工时 取统一厚度为 2mm。稀土永磁材料的烧结一般都在真空玻璃管中进行, 电烧结以 后产品大部分是圆柱形,圆柱的高度大部分都能满足薄片宽度的要求。把加工以 后稀土永磁薄片能够满足薄片宽度要求的进行分类。然后把同类(即满足薄片宽 度要求) 的薄片短边之间 (即短边对着短边)进行铜焊, 一直悍到长度 250米。 因为稀土永磁长条薄片在使用中是垂直于地面的,稀土永磁材料也是一种特种合 金钢, 其硬度比 45号钢还好。 在使用中不易变形, 也不易受周围环境影响。—冲. 磁最好在装 a 前采用专用连续冲磁机进行冲磁。 —— ' - 一— 3 高导磁长条薄板制作。 购买一定数量的髙导磁率大—片夕钢片。 参照图 3 中—四不侧面宽度进行剪裁,把剪裁以后的短边对着短边进 点焊对接,一直焊到 250米。 焊接以后的长条几层重叠在一起, 叠层数一般为 7片至 10片。 各层之 间适量涂上少许粘合剂, 用液压机把各层压紧后便用。
4、 截面形状为正方形的两根高导磁长条芯柱制作。 制作前先确定正方形的 边长, 在本实施例中先确定为 4cm, 把夕钢片经过剪裁, 各片宽度为 4cm, 把各 片 4cm的短边对接短边进行点焊,对接长度 250米,然后把各片夕钢片两面也涂 少量粘合剂, 再把数片叠在一起, 用液压机压紧, 厚度 4cm。
5、 在框架结构中三种无磁垫块的备用。 第一种是凹凸形无磁滚轮滑块, 用 无磁不锈钢做成。如图 4和图 5所示滑块两面各带有四个滚轮 18和 19, 滑块前 后都有凸出和凹陷, 便于在快速运动中能落在一起, 并一起跑出发射端。滑块的 厚度一般为 3. 8mm和 7. 8mm两种,滑块长度为 5cm,滑块宽度即侧面 U和 U'之间 距离一般为各个间隙宽度的 5分之 3,并且滑块宽度随着间隙宽度的增加而增加, 第二种无磁垫块为多层线包中各层线圈之间的间隙用的线圈粘结垫条(如图 3 中 11所示)其功能有二, 一是线圈与线圈之间连接, 二与多层线包两头紧固圈 连接对多层线包起紧固作用。第三种是框架结构起始端各个间隙的无磁垫块,其 目的是把起始端稀土永磁薄片, 长条芯柱和长条薄板紧固在一起。
6、 用镀锌板制作成各种规格稀土永磁獰片的模板。 作为绕线圈之用。 长度 为 110cm, 其厚度和宽度都比同一规格的稀土永磁薄片都大出 0. 8mm。
7、 用硬木做成高导磁芯柱两根方形模棒, 规格是 120cmX 40. 8mmX40. 8mm。.
8、 因重量大, 长度很长。 要制作两部以长条芯柱为中心的翻身定位工装。 一部半自动长距离同步机械手和一部吊装车。
第二绕制多层线包和装配工作。
先把方形芯柱模棒四个侧面涂上脱膜油后,在模棒两头套上 2个线圈的紧固 圈, 并且注意到两片紧固圏上让自动掛钩大螺钉孔应放在相同方向上。使用 lmm 线径高强度漆包线绕线, 先做好引出线(如图 2中的 16和 17),:接着开始绕线, 绕线过程不能重叠, 饶线长度为 100cm, 绕完一层后涂上快干固化胶一次, 不要 太多, 然后再绕第二层, 长度也是 100cm, 再涂固化股一次, 用同样方法绕第三. 层。绕完三 Βί —定要很平整,「¾别是在四个侧面上的中心部位 四个角上分, 「别放:]第一层稀土永磁薄片模板 两面都涂上脱模油 Τ和四条无磁垫条之后 (把 无磁 ϋ两头穿过两边紧固圈螺钉孔,并用无磁螺母拧紧 在四个垫条与上下两 层线圈可能接触到的两面都涂上固化粘合剂)要求四个长条薄片模板与方形芯柱- 模棒十分平整。 两者之间距离为 3mm, 如果达不到就用硬纸条垫紧, 使之达到要 求,如果超出 3mm就用外力使之达到要求。使每层模板与模板之间距离都要等于 3mm (一般情况下线径 Iran, 绕三层, 加少许粘合剂帮忙, 是不会超出 3mm的线 圈厚度)。往下用同样的办法绕制第二, 第三层直至最后一层第 50层。在绕制完 多层线包之后经过一段时间稳定固化,再逐个取出多层线包中模板和硬纸条以及 模棒,把多层线包中各层间隙都能达到要求的作为合格品拿来使用, 同时做好引 出线 (如图 2中的 14和. 15)。 接着把自动掛钩两头穿过紧固圈上的大螺钉孔, 再 用无磁螺母拧紧,同时使用固化粘合剂将自动掛钩与多层线包接触面紧紧地固化 在一起
单个电磁弹射器的装配工作: 由于稀土永磁长条薄片都是在冲磁以后进行组 装, 组装时都是顺磁方向, 无须捆绑, 但要认准位置放进。把二根高导磁长条芯 柱通过机械手分别放在两部翻身定位工装之上。 然后把多个多层线包进行配对, 把多层线包中两个自动掛钩在不同方向的多层线包配成一对,接着在二根长条芯 柱起始端逐个分别套进 10节(即 10对)多层线包,并在每隔两节多层线包之间, 于长条芯柱朝上一面中心线上放一块厚度 3. 8mm凹凸形滚轮滑块,并把凸出部分 朝向发射端。 随后在 10节多层线包之外往发射端方向在长条芯柱朝上一面中心 线上每隔 3米处放一块 3. 8mm厚度滚轮滑块,一直到发射端, 同样把凸出部分都 朝向发射端。接着把稀土永磁长条薄片通过机械手逐渐地穿过各节多层线包朝上 一面的第一层间隙, 并落到各个滚轮滑块之上, 并与长条芯柱对齐。接着在第一 层稀土永磁长条薄片之上相同位置上放好同样厚度的滚轮滑块 (放的位置与上面 相同)。 以后就以相同的办法应用机械手放好第二层的稀土永磁长条薄片和第二 层的滚轮滑块, 一直放到 49层。 在做好以上安装工作之后, 通过二部翻身定位 工装分别将两根长条柱芯连同已装好的各层稀土永磁长条薄片一起各翻转 180 度再重复以上工作, 通过多层线包各层间隙安装好第一层至 49层的稀土永磁长 条薄片和同样厚度滚轮滑块。安装好之后再把二部翻身定位工装分别翻转 90度,. 也用同样的办法安 层稀土永磁长条一¾片和相关位置上的滚轮滑块 i^SJ 49 层。 -接着把二部工装再分别翻转 180度 最后安装好各层稀土永磁长条薄片和滚 轮滑块。这时在 部工装架上能够看到多层线包 50层线圈和 49—层 土永磁长条 薄片。然后进行二部工装架上空间框架结构并拢工作。先在第一部翻身定位工装 架上的框架结构朝上一面相关位置上放上 7. 8mm厚度的滚轮滑块,同时在各个多 层线包 '朝上一面分别放上与线包朝上一面大小一样的厚度为 1mm的夕钢片,一共 10片。 接着用机械手将另一个空间框架结构从第二部工装架上慢慢地提起并对 准位置从上放下,安放在已放好滚轮滑块和夕钢片的第一部工装架上的框架结构 之上, 进行合拢。 二个框架结构利用两者空间磁力的吸力拢合在一起。 (这时应 注意: 在合拢之前预先考虑好, 两个多层线包带有自动掛钩的一面放在同一边, 并且一个在上, 另一个在下), 并把二个多层线包里层引出线连结在一起。在两 根外层引出线中用右手定则做好(使多层线包跑向发射端的)正负标识。.在合栊 之后, 再在上面一个框架结构朝上一面相关位置上放上 3. 8mm厚度的滚轮滑块, 再接着用机械手放好第一块侧面高导磁长条薄板。利用翻身定位工装翻转 90度, 让自动掛钩都朝上,并且在两边稀土永磁长条薄片朝上一面相关位置上都分别放 好 3. 8mm厚度的滚轮滑块, 再用机械手放好(如图 3中 QQ' ) 高导磁长条薄板, 并让 QQ'长条薄板两边留出相等宽度的大间隙, 同时让各个多层线包上的自动掛 钩露出两个大间隙之外。 接着再让工装架翻转 90度, 再放好 3. 8mm厚度的滚轮 滑块, 再用机械手放上第二块侧面高导磁长条薄板。.接着在同方向翻转 90度工 装架, 在朝上一面相关位置上也同样放好 3. 8mm滚轮滑块, 再用机械手放好 GG' 高导磁长条薄板。做好以上工作之后紧接着在空间框架结构的起始端于各个稀土 永磁薄片之间,稀土永磁薄片与长条芯柱之间以及稀土永磁薄片与四面高导磁薄 板之间的间隙安放好 3. 8mm厚度无磁固定垫块,并用固化粘合剂做好固化稳定工 作。同时安放好两根长条芯柱 N极 S极跨步搭接板。以上组装过程为单个电磁弹 射器装配过程,用同样的办法可以组装多架电磁弹射器,在本实施例中采用八架 电磁弹射器。利用吊装车如图 1中所示做好各架电磁弹射器止退装置的安装和各 个自动掛钩的安装工作之后,.就形成 部完整的卫星发射竖井平台。
第三, 实施例估算。 所用的量纲为米、 秒, 安培、 牛顿、 特斯拉, 千克。 根据电流元在磁场中所受安培力的公式: dF = H . „. ,
. F为所受的力, B— ¾¾强度, L为 流元的长度, LX B为两者矢量 ¾V 此公式来自北一京大学赵凯华编电 ί兹学第 387页。在设讦甲磁场方向 垂直于电 流方向。 并对电流元进行积分: F = jldL x B
Figure imgf000010_0001
对电流和磁场强度取恒定值。 再分析各种有关数值, 并代入公式。 绕制漆包 线的线径 lmm, 短时间内通过电流强度 6安培, 磁场强度为 3特斯拉, 每个间隙 中的线圈绕 3层, 多层线包长度 1米, 线圈 50层, 线圈宽度平均值 0.29米, 线 圈 4面都垂直于磁场方向,每节电磁加速推进器都有 2个多层线包,本实施例中 卫星发射平台采用八架电磁弹射器, 每架电磁弹射器中都用 10节电磁加速堆进 器, 本实施例中卫星发射重量 2吨(其中含有多层线包的重量)。 取第一宇宙速 度为 11 X103/米秒, 将以上数值代入公式后。
F=6X3X3X (1/0.001) X2X4X50X0.29X8X 10=50112X104牛顿 对 2吨卫星产生的加速度 a=F/m=50112X 104/2X 103=2505, 6X 102米 /秒。 取初速度为零时, 要达到第一宇宙速度 Ut=llX103米 /秒, 需要的加速的作 用力距离 S= Ut2/2a。
即 S=UtV2a= (11 X 103) 72 X 2505.6 X 102=241米。
取 250米高度, 类似一般电视塔形状, 但比电视塔制作更简单。

Claims

权利要求书
1、 一种用于小型卫星的电磁弹射器, 包括居中的小型卫星 (3), 所述小型 卫星(3)外周通过自动掛钩与多架电磁弹射器(1 )相连接, 以利用电磁弹射器 强大外力把小型卫星送入太空,其特征是:所述电磁弹射器是使用一种新的磁路 设计,能使电磁弹射器中的多层线包在带磁力线的空间框架结构中作直线性快速 运动, 同时利用自动掛钩将电磁弹射器内部多层线包运动的动能传递到外面,将 小型卫星送入太空中。
2、 如权利要求 ί所述的电磁弹射器, 其特征是: 由多对电磁加速推进器串 接组成,在二个空间框架结构中,都分别以方形长条芯柱为中心柱, 外周四面向 外排列多层稀土永磁长条薄片, 多层线包是套在各层稀土永磁薄片的间隙之间, 在框架结构的最外面再贴以高导磁长条薄板,并在两个长条芯柱的起始端 Ν极和 S极之间用跨步搭接板, 与相邻两个框架结构之间所用的高导磁长条薄板一样, 形成磁闭合迴路。
3、 如权利要求 1或 2所述的电磁弹射器, 其特征是: 二个带磁力线空间框 架结构之中磁力线走向是:其中一个是从中心方形长条芯柱出发通过多层稀土永 磁长条薄片和多层线包(没有多层线包的地方就直接通过间隙空间)散发到外周 四面高导磁长条薄板之上,而在另一个空间框架结构之中磁力线是从外周四面高 导磁长条薄板出发通过多层稀土永磁长条薄片和多层线包 (或直接通过间隙空间) 被压縮到高导磁长条芯柱之上,在二个相邻的空间框架之间磁力线走向是同一个 方向,在二个高导磁长条芯柱的起始端 Ν极和 S极之间用高导磁跨步搭接板形成 磁闭合迴路,在二个框架结构相邻的地方,直接由高导磁长条薄板的自身也一样 形成磁闭合迴路。
4、 如权利要求 1或 2所述的电磁弹射器, 其特征是: 在二个带磁力线的空 '间框架结构的各个间隙中用三种无磁垫块和二对无磁紧固圈,第一是在二个空间 框孥结 _构的起始端间 ^中鄣使用无磁垫块(4)并配合 1^1 置将两者起始端固一 稳定在地面上, 第二是各层稀土永磁薄片间隙之中多层线包是通过间隙垫条 — ( 11 )将务层线圈连结在一起形成整个多房线包,再与多层线包两头紧固圈一起 粘接固化形成牢固的整体结构, 第三是各个间隙之间凹凸形无磁滚轮滑块(2), ' 使多层线包在运动中保持各个间隙距离不变。
5、 如权利要求 1或 3所述的电磁加速推进器, 其特征是: 在二个空间框架 结构之中磁力线走向是相反的,在二个多层线包之中直流电流的走向也应当是相 反的, 二个多层线包绕法是一样的,把二个里层的引出线相连结,一个直流电流 从外层引出线进去,而在另一个多层线包中必然是从里层引出线进去,这样的结 果显然是在二个多层线包之中直流电流走向刚好相反,用右手定则判断二 多层 线包运动方向是一致的,再用右手定则确定出直流电流的方向,使各对多层线包 运动方向都能指向发射端。
6、 如权利要求 1所述的电磁弹射器, 其特征是: 在月球上光能资源丰富却 无法制造出液态氢和氧的情况下,在月球上装一个轨道跑道,把电磁弹射器放在 轨道中间位置以把开发月球资源后的航天器发射回地球。
PCT/CN2007/003622 2007-12-17 2007-12-17 用于小型卫星和月球上航天器的电磁弹射器 WO2009076793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003622 WO2009076793A1 (zh) 2007-12-17 2007-12-17 用于小型卫星和月球上航天器的电磁弹射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003622 WO2009076793A1 (zh) 2007-12-17 2007-12-17 用于小型卫星和月球上航天器的电磁弹射器

Publications (2)

Publication Number Publication Date
WO2009076793A1 true WO2009076793A1 (zh) 2009-06-25
WO2009076793A9 WO2009076793A9 (zh) 2009-10-15

Family

ID=40795158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003622 WO2009076793A1 (zh) 2007-12-17 2007-12-17 用于小型卫星和月球上航天器的电磁弹射器

Country Status (1)

Country Link
WO (1) WO2009076793A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823562A (zh) * 2009-10-29 2010-09-08 杨伦华 用于小型卫星和月球上航天器的电磁弹射器
FR2979617A1 (fr) * 2011-09-01 2013-03-08 Stephane Raphael Teboul Solution d'ascenseur spatial munis de groupes de cables et d'un canon magnetique
CN102975860A (zh) * 2012-12-09 2013-03-20 魏伯卿 航母舰载机用多级磁力弹射器
CN103786895A (zh) * 2014-02-11 2014-05-14 胡晋青 飞机弹射器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040007B (zh) * 2009-10-19 2014-05-14 李家春 旁路汽缸汽动闭合拉链蜂窝动密封蒸汽弹射器
CN102427318B (zh) * 2011-09-28 2014-09-03 杨伦华 军用战斗机备用发动机
CN106143940A (zh) * 2015-03-17 2016-11-23 王元知 电磁弹射器
CN106516149A (zh) * 2017-01-03 2017-03-22 上海量明科技发展有限公司 飞行器电磁弹射系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589300A (en) * 1968-10-25 1971-06-29 North American Rockwell Magnetic suspension system
DE3835154A1 (de) * 1988-02-16 1989-08-24 Friedhelm Bier Startvorrichtung und landevorrichtung fuer raumfaehren
DE4017170A1 (de) * 1990-05-28 1991-12-12 Priebe Klaus Peter Raumtransportsystem
US6311926B1 (en) * 1999-05-04 2001-11-06 James R. Powell Space tram
CN1461723A (zh) * 2002-05-31 2003-12-17 刘忠 电磁场微动力在太空人造物体上的应用
CN1477029A (zh) * 2003-07-09 2004-02-25 哈尔滨工业大学 无接触板状发射体电磁推进系统
US20040069900A1 (en) * 2002-07-09 2004-04-15 Hawthorne Jimmy T. Reverse velocity, differential pressure, hydraulic, travel from earth to outer space and back

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589300A (en) * 1968-10-25 1971-06-29 North American Rockwell Magnetic suspension system
DE3835154A1 (de) * 1988-02-16 1989-08-24 Friedhelm Bier Startvorrichtung und landevorrichtung fuer raumfaehren
DE4017170A1 (de) * 1990-05-28 1991-12-12 Priebe Klaus Peter Raumtransportsystem
US6311926B1 (en) * 1999-05-04 2001-11-06 James R. Powell Space tram
CN1461723A (zh) * 2002-05-31 2003-12-17 刘忠 电磁场微动力在太空人造物体上的应用
US20040069900A1 (en) * 2002-07-09 2004-04-15 Hawthorne Jimmy T. Reverse velocity, differential pressure, hydraulic, travel from earth to outer space and back
CN1477029A (zh) * 2003-07-09 2004-02-25 哈尔滨工业大学 无接触板状发射体电磁推进系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823562A (zh) * 2009-10-29 2010-09-08 杨伦华 用于小型卫星和月球上航天器的电磁弹射器
FR2979617A1 (fr) * 2011-09-01 2013-03-08 Stephane Raphael Teboul Solution d'ascenseur spatial munis de groupes de cables et d'un canon magnetique
CN102975860A (zh) * 2012-12-09 2013-03-20 魏伯卿 航母舰载机用多级磁力弹射器
CN103786895A (zh) * 2014-02-11 2014-05-14 胡晋青 飞机弹射器

Also Published As

Publication number Publication date
WO2009076793A9 (zh) 2009-10-15

Similar Documents

Publication Publication Date Title
WO2009076793A1 (zh) 用于小型卫星和月球上航天器的电磁弹射器
US10892672B2 (en) Dual-rotor synchronous electrical machines
CN101823562A (zh) 用于小型卫星和月球上航天器的电磁弹射器
US7309934B2 (en) Linear electric generator having an improved magnet and coil structure, and method of manufacturing
Widmer et al. Solar plane propulsion motors with precompressed aluminum stator windings
CN102792571B (zh) 线性电机
CN102431657B (zh) 用于航母上战斗机的电磁弹射器
WO2014209918A3 (en) Method and apparatus for radial elecromagnetic power arrays
Kaye et al. Applications of coilgun electromagnetic propulsion technology
CN105610261B (zh) 一种模块化矩阵式直线感应电机
CN106571745A (zh) 静态超级电能机及其应用
WO2020140178A1 (zh) 一种在轨发射装置
CN106849603A (zh) 一种基于功率分段的长行程直线电机
CN102410784B (zh) 电磁动力炮
US20140103746A1 (en) Electromagnetic rail launchers and associated projectile-launcing method
CN110190675A (zh) 一种基于超导材料的瞬时储能方法
CN207274996U (zh) 一种三段折叠式固定翼航测无人机弹射装置
Perin et al. The first, industry made, model magnet for the CERN Large Hadron Collider
JP2023540516A (ja) 変調極機械のための巻線配置
CN109878753B (zh) 飞行器磁悬浮助推与捕获装置
CN112951584A (zh) 一种超导磁体单根不断线连续绕制塑形装置的使用方法
JP2007502099A (ja) 界力機械
CN101819859A (zh) 壳式变压器用卷铁芯及方法
CN205385398U (zh) 一种电磁推进装置
JPS54151073A (en) Step motor for crystal watches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07845954

Country of ref document: EP

Kind code of ref document: A1