WO2009074434A2 - Verfahren zur reinigung der bei der cyanurchlorid-herstellung anfallenden abgase - Google Patents

Verfahren zur reinigung der bei der cyanurchlorid-herstellung anfallenden abgase Download PDF

Info

Publication number
WO2009074434A2
WO2009074434A2 PCT/EP2008/065827 EP2008065827W WO2009074434A2 WO 2009074434 A2 WO2009074434 A2 WO 2009074434A2 EP 2008065827 W EP2008065827 W EP 2008065827W WO 2009074434 A2 WO2009074434 A2 WO 2009074434A2
Authority
WO
WIPO (PCT)
Prior art keywords
solution
hypochlorite
column
chlorine
alkaline
Prior art date
Application number
PCT/EP2008/065827
Other languages
English (en)
French (fr)
Other versions
WO2009074434A3 (de
Inventor
Helmut Tautz
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2009074434A2 publication Critical patent/WO2009074434A2/de
Publication of WO2009074434A3 publication Critical patent/WO2009074434A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/004Halogenides of cyanogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/28Only halogen atoms, e.g. cyanuric chloride

Definitions

  • the invention relates to a process for the purification of waste gases resulting from the production of cyanuric chloride.
  • cyanuric chloride The large-scale production of cyanuric chloride is carried out by reacting hydrogen cyanide and / or sodium cyanide and chlorine in the presence of water, whereby cyanogen chloride and hydrochloric acid or sodium chloride are formed. Subsequently, the cyanogen chloride is trimerized on activated carbon to cyanuric chloride. The cyanuric chloride vapors leaving the trimerization reactor, which still contain certain amounts of unreacted chlorine and cyanogen chloride, are then fed with cold air to a separator in which the cyanuric chloride is obtained in crystalline form.
  • the exhaust gases from the separator which consists essentially of air and the unreacted compounds cyanogen chloride and chlorine can not be discharged directly into the atmosphere for environmental reasons, but require aftertreatment. It is known to wash the exhaust gases leaving the separator in one or more columns with water in countercurrent. Here, a large part of the cyanogen chloride is bound and can be recycled to the chlorination reactor.
  • the residual gases, which are not bound by the water, such as chlorine and residual cyanogen chloride can either be treated with aqueous alkalis or converted according to DE-AS 28 43 383 with water and hydrogen cyanide to aqueous cyanogen chloride solution in the Chlorcy- an-reactor is returned.
  • the disadvantage of the former method is the formation of cyanate ions by reaction of cyanogen chloride with the alkali compounds.
  • the cyanate ions are known to be pollutants that require special measures to remove.
  • a disadvantage of the process of DE-AS 28 43 383 is the low reaction rate of the chlorine with the hydrogen cyanide in the workup of the residual gases and the large amounts of water that must be recycled to the cyanogen chloride reactor.
  • This object is achieved according to the invention by treating the exhaust gases in the first stage with a hypochlorite-containing, weakly alkaline, aqueous solution and in the second stage with a strongly alkaline, aqueous solution.
  • the pollutants cyanogen chloride and chlorine are bound virtually quantitatively and thus are hardly detectable in the exhaust air.
  • the content is ⁇ 100 mg of cyanogen chloride / m 3 , in particular ⁇ 10 mg / m 3 , preferably ⁇ 5 mg / m 3 .
  • virtually no cyanate ions are present in the wastewater, since these are virtually not formed in the oxidative degradation of the cyanogen chloride.
  • the content is ⁇ 1000 mg / l, in particular ⁇ 10 mg / l.
  • concentration of hypochlorite depends essentially on the cyanogen chloride content in the exhaust gas and is usually 1 to 10, preferably 2 to 4 wt .-%. It is adjusted with the C12 content in the exhaust gas. More C12 in the exhaust means more hypochlorite in the wash solution.
  • the pH of the aqueous solution should be adjusted to a value of 7 to 10.5, preferably 8 to 10. This is done by appropriate addition of sodium hydroxide solution in the second washing stage.
  • the first treatment stage is carried out in a wash column, wherein the exhaust gas is introduced in the lower part of the column and then countercurrently to the hypochlorite solution which is sprayed in the upper part of the column and then circulated.
  • the first treatment stage By the first treatment stage, the cyanogen chloride almost completely and the chlorine partially reacted. Since the pH of the reaction is lowered, it is necessary in a continuous procedure to add sodium hydroxide solution of the 2nd washing stage to the column and to draw off the hypochlorite-containing wastewater with an overflow.
  • a significant advantage In this case, the low concentration of cyanate ions in the wastewater (10), so that the wastewater, for example, after a sulfite treatment to destroy the excess hypochlorite can be directed to the receiving water without further action.
  • the partially purified gas mixture is treated in the second treatment stage with a strongly alkaline, aqueous solution whose pH should be at least 12.
  • a strongly alkaline solution is preferred for economic reasons sodium hydroxide in question, which is preferably used in a concentration of 2 to 30 wt .-% NaDH.
  • the supplied amount of caustic soda is basically only dependent on the residual pollutant content of the exhaust gas and is fed pH controlled.
  • the partially purified gases are passed as in the first treatment stage in the lower part of a second washing column and sprayed there in countercurrent to the alkaline solution, which is circulated. As a result, the cleaning effect is significantly increased.
  • the pollutant concentrations of chlorine and cyanogen chloride in the exhaust air amount after the second treatment stage in total less than 5 mg / m3 and can thus be released without hesitation to the atmosphere.
  • the washing liquid of the second treatment stage which consist essentially of a strongly alkaline hypochlorite and sodium chloride solution, can be returned to the first treatment stage, since there alkaline hypochlorite solution for the o xidation of the cyanogen chloride is needed. In this way, the hypochlorite cycle is closed so that you only have to supply fresh sodium hydroxide to the cleaning system.
  • the advantages of the method according to the invention are low technical complexity and thus low investment and operating costs and high efficiency of the purification steps while low exhaust and sewage pollution.
  • the column B is filled through the line 9 with water until the liquid level is about 1 m below the line 3. Then, the circulation pump PB (150 m 3 / h) is turned on and held with the LIC, the liquid level at this level. Occurs at the lower part of the column A in line 4 overflow, also the circulation pump PA (150 m 3 / h) ein ⁇
  • the resulting exhaust gas (about 12,000 m 3 / h), in addition to air still contains about 200 kg of chlorine and about 25 kg of cyanogen chloride, is introduced via line 1 in the lower part of the washing column A.
  • aqueous alkaline hypochlorite solution hypochlorite is formed immediately when chlorine is introduced in sodium hydroxide solution
  • the exhaust gas is partially freed of chlorine and almost completely of cyanogen chloride.
  • pH-regulated 30% sodium hydroxide solution (about 800 kg / h) is added so that the pH value is between 9 and 10.
  • This partially purified exhaust gas which in addition to air still contains about 60 kg of chlorine, but only about 50 g of cyanogen chloride leaves the column A head and is guided via line 3 in the second wash column B.
  • aqueous alkaline caustic soda pH> 12
  • the purified exhaust gas leaves via line 10, the column B. It contains only about 3 mg of chlorine / m 3 and ⁇ 1 mg of cyanogen chloride / m 3 and can be discharged without further treatment to the atmosphere.
  • the resulting wastewater which mainly contains sodium chloride in addition to small amounts of sodium hypochlorite, is almost cyanate-free ( ⁇ 5 mg / 1) due to this process. It can be supplied to remove the hypochlorite sulfite treatment and introduced after neutralization in the receiving water.

Abstract

Es wird ein Verfahren zur Reinigung der bei der Cyanurchlorid-Herstellung anfallenden Abgase beschrieben, wobei man die Abgase in der ersten Stufe mit einer hypochlorithaltigen, schwach alkalischen, wässrigen Lösung und in der zweiten Stufe mit einer stark alkalischen, wässrigen Lösung behandelt. Auf diese Weise werden die Schadstoffe Chlorcyan und Chlor praktisch quantitativ gebunden, ohne dass es zu großen Abwasserbelastungen kommt.

Description

Verfahren zur Reinigung der bei der Cyanurchlorid-Herstellung anfallenden Abgase
Die Erfindung betrifft ein Verfahren zur Reinigung von bei der Herstellung von Cya- nurchlorid anfallenden Abgasen.
Die großtechnische Herstellung von Cyanurchlorid erfolgt durch Umsetzung von Cy- anwasserstoff und oder Natriumcyanid und Chlor in Gegenwart von Wasser, wobei Chlorcyan und Salzsäure oder Natriumchlorid entstehen. Anschließend wird das Chlor- cyan an Aktivkohle zu Cyanurchlorid trimerisiert. Die den Trimerisierungsreaktor verlassenden Cyanurchloriddämpfe, welche noch gewisse Mengen an nicht umgesetztem Chlor und Chlorcyan enthalten, werden daraufhin mit Kaltluft einem Abscheider zugeführt, in dem das Cyanurchlorid in kristalliner Form anfällt. Die Abgase aus dem Abscheider, welche im wesentlichen aus Luft sowie den nicht umgesetzten Verbindungen Chlorcyan und Chlor können aus Umweltschutzgründen nicht direkt in die Atmosphäre abgegeben werden, sondern bedürfen einer Nachbehandlung. Es ist bekannt, die den Abscheider verlassenden Abgase in einer oder mehreren Kolonnen mit Wasser im Gegenstrom auszuwaschen. Hierbei wird ein Großteil des Chlorcyans gebunden und kann in den Chlorierungsreaktor zurückgeführt werden. Die Restgase, welche durch das Wasser nicht gebunden werden, wie Chlor und restliches Chlorcyan, können entweder mit wässrigen Alkalien behandelt oder gemäß der DE-AS 28 43 383 mit Wasser und Cyanwasserstoff zu wässriger Chlorcyanlösung umgesetzt werden, die in den Chlorcy- an-Reaktor zurückgeführt wird.
Der Nachteil bei der erstgenannten Methode ist die Bildung von Cyanat-Ionen durch Reaktion von Chlorcyan mit den Alkaliverbindungen. Die Cyanat-Ionen sind bekanntermaßen abwasserschädliche Verbindungen, zu deren Entfernung besondere Maßnah- men ergriffen werden müssen.
Nachteilig beim Verfahren der DE-AS 28 43 383 ist die geringe Reaktionsgeschwindigkeit des Chlors mit dem Cyanwasserstoff bei der Aufarbeitung der Restgase sowie die großen Wassermengen, die in den Chlorcyanreaktor zurückgeführt werden müssen.
Außerdem ist der Chlorgehalt im Abgas nicht konstant, sondern gewissen Schwankun- gen unterworfen, so dass die Zusammensetzung der entstehenden Chlorcyanlösung sehr stark variiert. Da diese Lösung jedoch in den Chlorcyan-Reaktor zurückgeführt wird, entsteht dort das Problem, dass die Reaktion nicht mehr optimal gesteuert werden kann. Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein Verfahren zur Reinigung der bei der Cyanurchlorid-Herstellung anfallenden Abgase zu entwickeln, welches die genannten Nachteile des Standes der Technik nicht aufweist, sondern es in technisch einfacher Weise erlaubt, diese Abgase praktisch vollständig von Schadstoffen zu befrei- en.
Diese Aufgabe wird erfmdungsgemäß dadurch gelöst, dass man die Abgase in der ersten Stufe mit einer hypochlorithaltigen, schwach alkalischen, wässrigen Lösung und in der zweiten Stufe mit einer stark alkalischen, wässrigen Lösung behandelt.
Es hat sich nämlich überraschenderweise gezeigt, dass mit Hilfe des erfindungsgemäßen Verfahrens die Schadstoffe Chlorcyan und Chlor praktisch quantitativ gebunden werden und somit in der Abluft kaum mehr nachweisbar sind. Der Gehalt liegt bei <100mg Chlorcyan/m3, insbesondere bei <10mg/m3, bevorzugt bei <5mg / m3. Darüber hinaus sind auch im Abwasser praktisch keine Cyanat-Ionen vorhanden, da diese beim oxidativen Abbau des Chlorcyans so gut wie nicht gebildet werden. Der Gehalt liegt bei <1000mg/l, insbesondere bei <10mg/l.
Gemäß der vorliegenden Erfindung werden die Abgase, die bei der Herstellung des Cy- anurchlorids entstehen und beispielsweise neben Luft als Hauptbestandteil Chlor und Chlorcyan enthalten, in eine Waschkolonne geleitet, in der die erste Behandlungsstufe mit einer hypochlorithaltigen, schwach alkalischen, wässrigen Lösung vorgenommen wird. Die Konzentration des Hypochlorits richtet sich im wesentlichen nach dem Chlor- cyan-Gehalt im Abgas und beträgt in der Regel 1 bis 10, vorzugsweise 2 bis 4 Gew.-%. Sie wird mit dem C12-Gehalt im Abgas eingestellt. Mehr C12 im Abgas bedeutet mehr Hypochlorit in der Waschlösung. Der pH- Wert der wässrigen Lösung sollte auf einen Wert von 7 bis 10,5, vorzugsweise 8 bis 10 eingestellt werden. Dies geschieht durch entsprechende Zugabe von Natronlauge in der zweiten Waschstufe.
In einer bevorzugten Ausführungsform wird die erste Behandlungsstufe in einer Waschkolonne durchgeführt, wobei das Abgas im unteren Teil der Kolonne eingeleitet wird und dann im Gegenstrom auf die Hypochlorit-Lösung trifft, die im oberen Teil der Kolonne versprüht und anschließend im Kreis geführt wird. Auf diese Weise wird eine besonders wirkungsvolle Behandlung der Abgase erreicht. Durch die erste Behandlungsstufe werden das Chlorcyan fast vollständig und das Chlor teilweise umgesetzt. Da sich durch die Reaktion der pH- Wert erniedrigt, ist es bei kontinuierlicher Verfahrensweise erforderlich, Natronlauge der 2. Waschstufe der Kolonne zuzuführen und das hypochlorithaltige Abwasser mit einem Überlauf abzuziehen. Ein wesentlicher Vorteil hierbei ist die geringe Konzentration an Cyanat-Ionen im Abwasser (10), so dass das Abwasser bspw. nach einer Sulfitbehandlung zur Zerstörung des überschüssigen Hypochlorits ohne weitere Maßnahmen zum Vorfluter geleitet werden kann.
Nach der ersten Behandlungsstufe wird das teilgereinigte Gasgemisch in der zweiten Behandlungsstufe mit einer stark alkalischen, wässrigen Lösung behandelt, deren pH- Wert mindestens 12 betragen sollte. Als alkalische Lösung kommt aus wirtschaftlichen Gründen bevorzugt Natronlauge in Frage, welche bevorzugt in einer Konzentration von 2 bis 30 Gew.-% NaDH eingesetzt wird.
Die zugeführte Menge der Natronlauge ist im Grunde nur von dem Restschadstoffgehalt des Abgases abhängig und wird pH-geregelt zugeführt. In einer bevorzugten Ausführungsform werden die teilgereinigten Gase wie in der ersten Behandlungsstufe in den unteren Teil einer zweiten Waschkolonne geleitet und dort im Gegenstrom von der alkalischen Lösung besprüht, welche im Kreis geführt wird. Dadurch wird der Reinigungseffekt erheblich gesteigert.
Durch die zweite Behandlungsstufe werden die restlichen Verunreinigungen an Chlor praktisch vollständig entfernt. Die Schadstoffkonzentrationen an Chlor und Chlorcyan in der Abluft betragen nach der zweiten Behandlungsstufe in Summe weniger als 5 mg/m3 und können somit ohne Bedenken an die Atmosphäre abgegeben werden.
Die Waschflüssigkeit der zweiten Behandlungsstufe, die im wesentlichen aus einer stark alkalischen Hypochlorit- und Natriumchlorid-Lösung bestehen, kann in die erste Behandlungsstufe zurückgeführt werden, da dort alkalische Hypochloritlösung für die O- xidation des Chlorcyans benötigt wird. Auf diese Weise wird der Hypochlorit-Kreislauf geschlossen, so dass man nur frische Natronlauge dem Reinigungssystem zuführen muss.
Die Vorteile des erfindungsgemäßen Verfahrens sind geringer technischer Aufwand und somit niedrige Investitions- und Betriebskosten sowie hohe Effektivität der Reinigungsschritte bei gleichzeitiger geringer Abluft- und Abwasserbelastung.
Das nachfolgende Ausführungsbeispiel, welches anhand der Abbildung 1 erläutert wird, soll die Erfindung näher erläutern, ohne sie jedoch darauf zu beschränken. Beispiel:
Die Kolonne B wird über die Leitung 9 mit Wasser soweit befüllt bis der Flüssigkeitstand ca. 1 m unter der Leitung 3 liegt. Dann wird die Umwälzpumpe PB (150 m3/h) eingeschaltet und mit dem LIC der Flüssigkeitsstand bei diesem Niveau gehalten. Tritt am unteren Teil der Kolonne A bei Leitung 4 Überlauf ein, wird auch die Umwälzpumpe PA (150 m3/h) ein¬
geschaltet. Nun wird die Wasserzulaufmenge auf 4 m3/h eingestellt und solange 30 % Natronlauge zugegeben, bis der pH- Wert in Kolonne A > 10 ist. Nun kann mit der Einleitung der bei der Cyanurchlorid-Herstellung anfallenden Abgase begonnen werden.
Das anfallende Abgas (ca. 12.000 m3/h), das neben Luft noch ca. 200 kg Chlor und ca. 25 kg Chlorcyan enthält, wird über die Leitung 1 in den unteren Teil der Waschkolonne A eingeleitet. Mit der in Leitung 2 umgepumpten wässrigen, alkalischen Hypochloritlösung (Hypochlorit bildet sich sofort, wenn Chlor in Natronlauge eingeleitet wird) wird das Abgas teilweise von Chlor und fast vollständig von Chlorcyan befreit. Über Leitung 8 wird pH-geregelt 30%ige Natronlauge (ca. 800 kg/h) so zugegeben, dass sich der pH- Wert zwischen 9 und 10 einstellt. Dieses teilgereinigte Abgas, das neben Luft noch ca. 60 kg Chlor, aber nur noch ca. 50 g Chlorcyan enthält, verlässt die Kolonne A kopfsetig und wird über Leitung 3 in die zweite Waschkolonne B geführt. Mit der in Leitung 6 umgepumpten, wässrigen stark alkalischen Natronlauge (pH- Wert > 12) wird das Abgas sowohl vom restlichen Chlor als auch noch von den geringen Mengen Chlorcyan befreit. Das gereinigte Abgas verlässt über Leitung 10 die Kolonne B. Es enthält nur noch ca. 3 mg Chlor/m3 und < 1 mg Chlorcyan/m3 und kann so ohne weitere Nachbehandlung an die Atmosphäre abgegeben werden.
Das anfallende Abwasser, das hauptsächlich Natriumchlorid neben geringen Mengen Natriumhypochlorit enthält, ist aufgrund dieses Verfahrens nahezu cyanatfrei (< 5 mg/1). Es kann zur Entfernung des Hypochlorits einer Sulfitbehandlung zugeführt und nach der Neutralisation in den Vorfluter eingeleitet werden.

Claims

Patentansprüche
1. Verfahren zur Reinigung der bei der Cyanurchlorid-Herstellung anfallenden Abgase in mindestens zwei Stufen, dadurch gekennzeichnet, dass man die Abgase in der ersten Stufe mit einer hypochlorithaltigen, schwach alkalischen, wässrigen Lösung und in der zweiten Stufe mit einer stark alkalischen, wässri- gen Lösung behandelt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an Hypochlorit 1 bis 10 Gew.-%, vorzugsweise 2 - 4 Gew.-%, beträgt.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der pH- Wert der schwach alkalischen, wässrigen Hypochlorit-Lösung 7 - 10,5, vorzugsweise 8 - 10 beträgt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Umlauf-Menge der hypochlorithaltigen Lösung und der stark alkalischen Lösung 5 bis 50 m3, vorzugsweise 10 bis 30 m3 pro 1000 m3 Abluft beträgt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man die
Abgase in der ersten Wasch-Stufe in den unteren Teil einer Waschkolonne einleitet und die im Kreis geführte Hypochlorit-Lösung im Gegenstrom dazu im oberen Teil der Kolonne versprüht.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass in der stark alkalischen Lösung in der zweiten Waschstufe der pH- Wert mindestens 12 beträgt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man als stark alkalische Lösung eine wässrige Natronlauge mit einem Gehalt an 2 bis 30 Gew.-% NaDH verwendet.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass man die zweite Behandlungsstufe in einer Waschkolonne durchführt, wobei man die Gase in den unteren Teil dieser Kolonne einleitet und diese im Gegenstrom dazu von oben mit der alkalischen Lösung besprüht.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die alkalische Lö- sung im Kreis geführt wird.
PCT/EP2008/065827 2007-12-12 2008-11-19 Verfahren zur reinigung der bei der cyanurchlorid-herstellung anfallenden abgase WO2009074434A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710059863 DE102007059863A1 (de) 2007-12-12 2007-12-12 Verfahren zur Reinigung der bei der Cyanurchlorid-Herstellung anfallenden Abgase
DE102007059863.9 2007-12-12

Publications (2)

Publication Number Publication Date
WO2009074434A2 true WO2009074434A2 (de) 2009-06-18
WO2009074434A3 WO2009074434A3 (de) 2009-07-30

Family

ID=40474175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/065827 WO2009074434A2 (de) 2007-12-12 2008-11-19 Verfahren zur reinigung der bei der cyanurchlorid-herstellung anfallenden abgase

Country Status (3)

Country Link
CN (1) CN101455937A (de)
DE (1) DE102007059863A1 (de)
WO (1) WO2009074434A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785955A (zh) * 2010-03-03 2010-07-28 中国石油大学(华东) 井下压裂弹爆燃产生毒气的吸收装置
CN108126518B (zh) * 2017-12-25 2018-11-02 营创三征(营口)精细化工有限公司 一种三聚氯氰尾气无害化处理工艺
CN111195511B (zh) * 2020-01-17 2021-05-11 中国航空工业集团公司济南特种结构研究所 一种氰酸酯树脂的环保合成系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567406A (en) * 1967-02-17 1971-03-02 Geigy Chem Corp Method and apparatus for producing cyanogen chloride using a flooded reactor
US3763157A (en) * 1971-06-18 1973-10-02 Ciba Geigy Corp Recovery and recirculation of chlorine in cyanuric chloride production
US3925377A (en) * 1973-06-27 1975-12-09 Degussa Process for production of cyanuric chloride
US3984523A (en) * 1974-03-20 1976-10-05 Bayer Aktiengesellschaft Selective absorption of chloride from gases which contain chlorine and carbon dioxide
DE2843383A1 (de) * 1978-10-05 1980-04-10 Degussa Aufarbeitung des bei der herstellung von cyanurchlorid anfallenden restgases
DE19739154A1 (de) * 1997-09-06 1999-03-11 Vinnolit Monomer Gmbh & Co Kg Chlorabsorption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567406A (en) * 1967-02-17 1971-03-02 Geigy Chem Corp Method and apparatus for producing cyanogen chloride using a flooded reactor
US3763157A (en) * 1971-06-18 1973-10-02 Ciba Geigy Corp Recovery and recirculation of chlorine in cyanuric chloride production
US3925377A (en) * 1973-06-27 1975-12-09 Degussa Process for production of cyanuric chloride
US3984523A (en) * 1974-03-20 1976-10-05 Bayer Aktiengesellschaft Selective absorption of chloride from gases which contain chlorine and carbon dioxide
DE2843383A1 (de) * 1978-10-05 1980-04-10 Degussa Aufarbeitung des bei der herstellung von cyanurchlorid anfallenden restgases
DE19739154A1 (de) * 1997-09-06 1999-03-11 Vinnolit Monomer Gmbh & Co Kg Chlorabsorption

Also Published As

Publication number Publication date
WO2009074434A3 (de) 2009-07-30
DE102007059863A1 (de) 2009-06-18
CN101455937A (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
EP0604904B1 (de) Verfahren zur Abwasserbehandlung durch chemische Oxidation
EP0586998B1 (de) Verfahren zur Behandlung von organischen Stoffen, insbesondere chlororganische Verbindungen enthaltenden Abwässern aus der Epichlorhydrinherstellung
EP0696261B1 (de) Verfahren zur behandlung von organische und anorganische verbindungen enthaltenden abwässern aus der epichlorhydrin-herstellung
WO2000078682A1 (de) Verfahren zum abbau organischer verbindungen in wasser
EP3527696A1 (de) Verfahren zur aufarbeitung und wiederverwendung von salzhaltigem prozesswasser
EP2603461B1 (de) Verfahren zur aufreinigung von abwässern aus der aufarbeitung von rohen aromatischen nitroverbindungen
DE10329303A1 (de) Verfahren zur Aufarbeitung des bei der Herstellung von Dinitrotoluol anfallenden Abwassers
DE3306664C2 (de)
WO2009074434A2 (de) Verfahren zur reinigung der bei der cyanurchlorid-herstellung anfallenden abgase
EP2365865B1 (de) Entfernung von ammoniak-stickstoff, ammonium-stickstoff und harnstoff-stickstoff durch oxidation mit hypochlorit-haltigen lösungen aus abluft in anlagen zur ammoniak- und harnstoffproduktion
EP0584502A2 (de) Verfahren zur spontanen Fällung von in Wasser gelösten Sulfaten als Calciumaluminiumsulfat und Anwendung dieses Verfahrens zur Herstellung eines chloridarmen, aluminiumoxidhaltigen Gips-Anhydrits
DE2823972A1 (de) Verfahren und vorrichtung zur abtrennung von stickstofftrichlorid aus chlor
EP0411162B1 (de) Verfahren zur Entfernung von Chlor aus Abgasen
DE2627705C3 (de) Verfahren zur Entfernung von Schwefeldioxid aus Abgasen
EP3159308B1 (de) Aufarbeitung des abwassers aus der isophoron (ip) produktion mit neutralisation, filtration und nachgeschaltetem chemischen oxidationsverfahren
DE3002932A1 (de) Verfahren zur behandlung einer ablauge
WO2013020798A1 (de) Verfahren zur aufreinigung von abwässern aus der aufarbeitung von rohen aromatischen nitroverbindungen
EP2742003A1 (de) Verfahren zur aufreinigung von abwässern aus der aufarbeitung von rohen aromatischen nitroverbindungen
DE2953595C2 (de) Verfahren zur Rückgewinnung von Brom aus einer Flüssigkeit
AT404033B (de) Verfahren zur herstellung einer wässrigen lösung von n-methylmorpholin-n-oxid
DE3129473A1 (de) Verfahren zum reinigen fluoridhaltiger abwaesser
DE2125874B2 (de) Verfahren zum Steuern des Gehaltes an Verunreinigungen von Zinksulfatlösungen
DE2843383C3 (de) Aufarbeitung des bei der Herstellung von Cyanurchlorid anfallenden Restgases
EP0053265B1 (de) Verfahren zur Aufbereitung von Kondensat aus Harnstoff-Produktionsanlagen
WO1992011076A1 (de) VERFAHREN ZUR SELEKTIVEN HF-ABTRENNUNG AUS EINEM HF UND HCl UND GEGEBENENFALLS ANDERE KOMPONENTEN ENTHALTENDEN GAS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08859711

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08859711

Country of ref document: EP

Kind code of ref document: A2