WO2009074021A1 - Appareil de traitement plasma et anneau de blindage - Google Patents

Appareil de traitement plasma et anneau de blindage Download PDF

Info

Publication number
WO2009074021A1
WO2009074021A1 PCT/CN2008/070342 CN2008070342W WO2009074021A1 WO 2009074021 A1 WO2009074021 A1 WO 2009074021A1 CN 2008070342 W CN2008070342 W CN 2008070342W WO 2009074021 A1 WO2009074021 A1 WO 2009074021A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
axial
exhaust passage
plasma
layer
Prior art date
Application number
PCT/CN2008/070342
Other languages
English (en)
French (fr)
Inventor
Jianhui Nan
Original Assignee
Beijing Nmc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Nmc Co., Ltd. filed Critical Beijing Nmc Co., Ltd.
Publication of WO2009074021A1 publication Critical patent/WO2009074021A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to a semiconductor processing apparatus, and more particularly to a plasma shielding ring of a plasma processing apparatus.
  • the invention further relates to a plasma processing apparatus using the plasma shielding ring. Background technique
  • a plasma processing apparatus is a processing apparatus widely used in the field of semiconductor manufacturing.
  • FIG. 1 is a schematic view showing the structure of a typical plasma processing apparatus in the prior art.
  • the plasma processing apparatus 1 generally includes a housing 11 having a reaction chamber 12 therein.
  • the top and bottom of the reaction chamber 12 are respectively provided with an upper plate 13 and a lower plate 14, respectively, and the upper plate 13 and the casing 11 are separated by an insulating member 15; the top of the lower plate 14 can support the to-be-processed Machined parts.
  • the above-mentioned machined parts should include wafers and glass substrates, as well as other machined parts having the same processing principles as both. The meaning of the workpiece described below is the same as this.
  • a vacuum obtaining means such as a dry pump is used to manufacture and maintain a state close to the vacuum in the reaction chamber 12.
  • a process gas is introduced into the reaction chamber 12 through a gas input device (not shown), and an appropriate RF voltage is input between the upper plate 13 and the lower plate 14 to activate the process.
  • the gas thereby creates and maintains a plasma environment on the surface of the workpiece that is placed on the top of the lower plate 14. Due to the strong etching and deposition capabilities, the plasma can be subjected to physicochemical reactions such as etching or deposition with the workpiece to obtain a desired etch pattern or deposited layer.
  • the by-product of the above physicochemical reaction is withdrawn from the reaction chamber 12 by the vacuum obtaining means.
  • the plasma has strong etching and deposition capabilities, so it can be used not only with The workpiece is reacted and can erode other components inside the plasma processing apparatus 1; obviously, the latter is extremely harmful. In order to minimize the damage of the plasma to the plasma processing apparatus 1, it is necessary to take reliable measures to constrain it to an appropriate range.
  • a shield ring 16 is typically provided in the diffusion channel of the plasma to intercept the diffusion channel of the plasma.
  • the shield ring 16 should have plasma corrosion resistance, and therefore, a plasma-resistant insulating material such as Y 2 0 3 or the like is usually sprayed on the surface thereof toward the reaction chamber 12.
  • a liner 17 may also be provided inside the reaction chamber 12 to isolate the plasma, and the like.
  • FIG. 2 is a schematic view of the axial direction of the shielding ring of FIG. 1;
  • FIG. 3 is a partial cross-sectional view of the shielding ring of FIG.
  • the body of the shield ring 16 is a conductor layer 162. After being mounted in the plasma processing apparatus 1, the conductor layer 162 can be grounded through the conductor loop 18 (shown in Figure 1).
  • the conductor layer 162 has an insulating plasma spray resistant layer 161 facing the surface of the reaction chamber 12, and its thickness is usually several tens to several hundreds of micrometers. Since the reaction product of the plasma and the workpiece must be withdrawn, the shield ring 16 is provided with at least one axially extending exhaust passage 163.
  • the exhaust passage 163 is a through hole having a rectangular cross section.
  • the length of the exhaust passage 163, i.e., the axial thickness of the conductor layer 162, is typically slightly greater than the mean free path of the charged particles in the plasma.
  • the mean free path is the linear distance traveled by two consecutive collisions of gaseous particles.
  • the above mean free path is only an average value, and the difference between the actual free paths of the specific charged particles is relatively large, and the length of the exhaust passage 163 can only be greater than the free path of the partially charged particles;
  • the limitation of the overall structure of the exhaust passage 163 is not excessively long; further, as the length of the exhaust passage 163 is increased, the manufacturing cost thereof is remarkably improved.
  • the free path occupying a considerable proportion of the charged particles will be larger than the length of the exhaust passage 163, so that it is likely not to collide with the inner wall of the exhaust passage 163, but the straight passage formed by the exhaust passage 163 Directly crossing the shield ring 16 causes plasma leakage.
  • the present invention provides a plasma shielding ring comprising two upper and lower layers fixedly connected to each other, the upper layer being a plasma resistant insulating layer and the lower layer being a conductor layer; at least one axially extending An exhaust passage extends through the insulating layer and the conductor layer; the exhaust passage is a bent passage.
  • the exhaust passage includes a first axial through hole vertically penetrating the insulating layer, and a second axial through hole obliquely penetrating the conductor layer; a bent portion of the exhaust passage Forming a communication portion between the first axial through hole and the second axial through hole.
  • the bottom of the conductor layer is further fixedly connected to the auxiliary layer;
  • the exhaust passage further includes a third axial through hole obliquely penetrating the auxiliary layer, and the tilting direction of the third axial through hole
  • the second axial through holes are inclined in opposite directions; the bent portion of the exhaust passage is also formed in a communication portion between the second axial through hole and the third axial through hole.
  • the bottom of the conductor layer is further fixedly connected to the auxiliary layer, and the exhaust passage further includes a third axial through hole vertically penetrating the auxiliary layer; the bent portion of the exhaust passage is further formed on a communication portion between the second axial through hole and the third axial through hole.
  • the exhaust passage includes a first axial through hole vertically penetrating the insulating layer, and a second axial through hole vertically penetrating the conductor layer; the first axial through hole and the first The openings of the two axial through holes are offset from each other; the bent portion of the exhaust passage is formed at a communication portion between the first axial through hole and the second axial through hole.
  • the bottom of the conductor layer is further fixedly connected to the auxiliary layer
  • the exhaust passage further includes a third axial through hole penetrating the auxiliary layer; the third axial through hole and the second axial through hole The opening of the opening is offset; the bent portion of the exhaust passage is also formed at a communication portion between the second axial through hole and the third axial through hole.
  • the exhaust passage includes a first axial through hole penetrating the insulating layer, and a second axial through hole penetrating the conductor layer; a bent portion of the exhaust passage is formed in the first Two axial through holes.
  • the bent portion of the exhaust passage is a curved hole.
  • the bent portion of the exhaust passage is a folded hole.
  • the insulating layer is a sprayed layer or an oxide layer of a plasma resistant material.
  • any one of the exhaust passage inlets is connected to any one of the exhaust ports and at least one intersection with the inner wall of the exhaust passage.
  • the ratio of the area of the exhaust passage exhaust port to the area of the top surface of the insulating layer ranges from 20% to 95%.
  • the ratio of the area of the exhaust passage exhaust port to the area of the top surface of the insulating layer ranges from 50% to 70%.
  • the present invention also provides a plasma processing apparatus including the above plasma shielding ring.
  • the plasma shielding ring and plasma treatment provided by the invention
  • the device changes the structure of the exhaust passage and changes it from a vertical channel to a bend channel. It is well known that in the free path, the trajectory of charged particles in the plasma is generally straight; in the case where the exhaust channel is a bent channel, most of the charged particles will inevitably bend with them when moving in the exhaust channel. The inner wall collides, which in turn loses the charge it carries and is converted into harmless neutral particles. Therefore, the plasma shielding ring provided by the present invention has a significant effect on the plasma confinement; the internal structure of the plasma processing apparatus provided by the present invention is not easily damaged, and its service life is remarkably prolonged. As the degree of bending of the exhaust passage is further increased, the above technical effects are more prominent.
  • FIG. 1 is a schematic structural view of a typical plasma processing apparatus in the prior art
  • FIG. 2 is a schematic view showing the axial direction of the shielding ring of FIG.
  • Figure 3 is a partial cross-sectional view of the shield ring of Figure 2;
  • FIG. 4 is a partial cross-sectional view showing a first embodiment of a shield ring according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing an optimum degree of bending of an exhaust passage according to an embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a second embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing a third embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view showing a fourth embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 9 is a partial cross-sectional view showing a fifth embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view showing a sixth embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing a seventh embodiment of a shield ring according to an embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view showing an eighth embodiment of a shield ring according to an embodiment of the present invention. detailed description
  • the core of the present invention is to provide a plasma shielding ring capable of effectively confining plasma, and a plasma processing apparatus using the above plasma shielding ring.
  • FIG. 4 is a partial cross-sectional view showing a first embodiment of a shield ring according to an embodiment of the present invention.
  • the shield ring 2 provided by the embodiment of the present invention is generally a cylinder having a circular cross section, including upper and lower layers, and the upper layer is an insulating layer 21, and the material thereof can be specifically made of quartz. , ceramics and common plasma-resistant materials such as Si 3 N 4 ; the lower layer is the conductor layer 22, and specific conductor materials such as metals and metal alloys can be used.
  • the insulating layer 21 and the conductor layer 22 are fixedly connected in a conventional manner, for example, the two may be riveted together.
  • the shield ring 2 further includes at least one exhaust passage 23 extending in the axial direction thereof to discharge the reaction product in the above reaction chamber; the exhaust passage 23 penetrates the insulating layer 21 and the conductor layer 22.
  • the length of the exhaust passage 23 may be slightly larger than the mean free path of the charged particles in the confined plasma.
  • the above-mentioned “axial extension” means that the intake port 231 and the exhaust port 232 of the exhaust passage 23 are respectively located at the top surface and the bottom surface of the shield ring 2, and the overall flow direction of the gas in the exhaust passage 23 is parallel to the shield ring 2
  • the meaning of "axial extension” described below is the same.
  • the exhaust passage 23 further includes a first axial through hole 211 penetrating the insulating layer 21 and a second axial through hole 221 penetrating the conductor layer 22; the first axial through hole 211 and the second axial through hole 221 are both The straight passage, the former is vertically disposed, and the latter is disposed obliquely, so that the communicating portion of the two forms a bent portion, and the exhaust passage 23 is a bent passage.
  • the insulating layer 21 When mounted in the plasma diffusion channel, the insulating layer 21 faces the plasma-filled reaction chamber. A portion of the plasma diffused outward from the reaction chamber is blocked and returned by the insulating layer 21; the other portion enters the exhaust passage 23 and collides with the bent inner wall of the exhaust passage 23. The reaction product in the reaction chamber can then smoothly pass through the shield ring 2 via the exhaust passage 23.
  • the shield ring of the first embodiment described above changes the structure of the exhaust passage and changes it from a vertical passage to a bent passage. Since the trajectory of charged particles in the plasma in the free path is generally straight; in the case where the exhaust channel is set as a bending channel, most of the charged particles will inevitably occur with the inner wall when moving in the exhaust passage. Collision, which in turn loses the charge it carries, and turns it into harmless neutral particles. Therefore, the shielding effect of the shield ring on the plasma in the above-described first embodiment is remarkably improved; the internal structure of the plasma processing apparatus is not easily damaged, and the service life thereof is remarkably prolonged.
  • the exhaust passage 23 After the exhaust passage 23 reaches a certain degree of bending, it can be ensured that all the charged particles entering the collision with the inner wall thereof have the best plasma isolation effect; at this time, the bending of the exhaust passage 23 is further increased.
  • the degree has no practical significance, but will increase the manufacturing and manufacturing costs.
  • FIG. 5 is a schematic view showing the optimum degree of bending of the exhaust passage according to an embodiment of the present invention.
  • Point A in Fig. 5 indicates any point in the air inlet 231 of the exhaust passage 23, and point B indicates the row. Any point in the exhaust port 232 of the air passage 23; obviously, the line segment AB is a line connecting the above two points. When there is no intersection between the line segment AB and the inner wall of the exhaust passage 23, and the length of the line segment AB is smaller than its free path, the charged particles located at point A may pass through the shield ring 2 directly through the exhaust passage 23 in the direction of the ray AB.
  • the charged particles at point A are necessarily in contact with the inner wall of the exhaust passage 23 in the process of crossing the shield ring 2. Collision occurs; that is, the shield ring 2 can theoretically shield all plasma entering the exhaust passage 23.
  • the shield ring 2 in the first embodiment described above can be modified to increase the degree of bending of the exhaust passage 23 so that any point in the intake port 231 is connected to any point in the exhaust port 232.
  • the line has at least one intersection with its inner wall.
  • the exhaust passages 23 may be provided in the manner described in the above paragraph, which will not be further described below.
  • FIG. 6 is a partial cross-sectional view showing a second embodiment of a shield ring according to an embodiment of the present invention.
  • connection auxiliary layer 24 can be further fixed at the bottom of the conductive layer 22.
  • the auxiliary layer 24 may be a conductor material such as a metal or a metal alloy having a third axial through hole 241 communicating with the second axial through hole 221 of the conductor layer 22.
  • the third axial through hole 241 is a through hole vertically penetrating the auxiliary layer 24, and therefore, a portion thereof communicating with the second axial through hole 221 forms another bent portion.
  • the exhaust passage 23 includes the first axial through hole 211, the second axial through hole 221, and the third axial through hole 241 that are sequentially connected in the above-mentioned manner; Hole Two such bent portions are formed between them.
  • the exhaust passage 23 is a bending passage having two bent portions, this further increases the probability that the charged particles collide with the inner wall of the exhaust passage 23 in the plasma, and the shielding effect of the shield ring 2 on the plasma is obtained. Further improvement.
  • FIG. 7 is a partial cross-sectional view showing a third embodiment of a shield ring according to an embodiment of the present invention.
  • the shield ring 2 provided by the third embodiment of the embodiment of the present invention is an improvement based on the second embodiment described above.
  • the third axial through hole 241 in the second embodiment is changed from a vertical setting to an inclined setting; the third axial through hole 241 should have an inclined angle different from the second axial through The inclination angle of the hole 221; as shown in Fig. 7, it is preferable to set the inclination angle of the third axial through hole 241 to be opposite to the second axial through hole 221 to further increase the degree of bending of the exhaust passage 23.
  • the exhaust passage 23 Since the inclination angles of the second axial through hole 221 and the third axial through hole 241 are opposite, the exhaust passage 23 will be more tortuous, and the probability that the charged particles in the plasma collide with the inner wall of the exhaust passage 23 is further increased. .
  • FIG. 8 is a partial cross-sectional view showing a fourth embodiment of a shield ring according to an embodiment of the present invention.
  • the shield ring 2 provided by the embodiment of the present invention is generally a cylinder having a circular cross section, including upper and lower layers, and the upper layer is an insulating layer 21 made of a plasma resistant material.
  • the lower layer is a conductor layer 22 made of a conductor material, which are fixedly connected in a conventional manner.
  • the shield ring 2 further includes at least one exhaust passage 23 extending in the axial direction thereof so that the reaction product in the above reaction chamber is discharged therefrom; the exhaust passage 23 penetrates through the insulating layer 21 and the conductor layer 22.
  • the length of the exhaust passage 23 may be slightly larger than the mean free path of the charged particles in the confined plasma.
  • the exhaust passage 23 further includes a first axial through hole 211 penetrating the insulating layer 21, and a second axial through hole 221 penetrating the conductor layer 22, both of which are straight passages, which may be vertically disposed or tilted
  • the obliquely disposed angle is disposed; the bottom opening of the first axial through hole 211 is offset from the top opening of the second axial through hole 221, that is, the two are at an appropriate distance in the lateral direction.
  • the bottom opening of the first axial through hole 211 and the top opening of the second axial through hole 221 are communicated by the first connecting hole 251, and therefore, the first axial through hole 211
  • the bottom portion, the first connecting hole 251, and the top of the second axial through hole 221 form a bent portion, and the exhaust passage 23 thus becomes a bent passage.
  • the first axial through hole 211 and the second axial through hole 221 may each be a vertically arranged straight hole; the first connecting hole 251 may be disposed between the insulating layer 21 and the conductor layer 22. Obviously, when the first axial through hole 211 and the second axial through hole 221 are only deviated by a small distance, the first connecting hole 251 can also be omitted.
  • the insulating layer 21 When mounted in a plasma processing apparatus, the insulating layer 21 faces the reaction chamber filled with plasma. A portion of the plasma diffused outward from the reaction chamber is blocked and returned by the insulating layer 21; the other portion enters the exhaust passage 23 and collides with the bent inner wall of the exhaust passage 23. The reaction product in the reaction chamber can then smoothly pass through the shield ring 2 via the exhaust passage 23.
  • FIG. 9 is a partial cross-sectional view showing a fifth embodiment of a shielding ring according to an embodiment of the present invention.
  • connection auxiliary layer 24 can be further fixed at the bottom of the conductive layer 22.
  • the auxiliary layer 24 may be a conductor material such as a metal or a metal alloy having a third axial through hole 241 communicating with the second axial through hole 221.
  • the top opening of the third axial through hole 241 is offset from the bottom opening of the second axial through hole 221, i.e., the two are laterally spaced apart by an appropriate distance.
  • the bottom opening of the second axial through hole 221 and the top opening of the third axial through hole 241 are communicated by the second connecting hole 252, and therefore, the second axial through hole 221
  • the bottom portion, the second connecting hole 252, and the top of the third axial through hole 241 form another bent portion, and the exhaust passage 23 is thus a bent passage having two bent portions.
  • the exhaust passage 23 includes the first axial through hole 211, the second axial through hole 221, and the third axial through hole 241 that are sequentially connected in the above-mentioned manner; Two of the bent portions are formed between the holes.
  • the third axial through hole 241 may be a vertically arranged straight hole; the second connecting hole 252 may be disposed between the auxiliary layer 23 of the conductor layer 22.
  • the exhaust passage 23 is a bending passage having two bent portions, this further increases the probability that the charged particles collide with the inner wall of the exhaust passage 23 in the plasma, so that the shielding effect of the shield ring 2 on the plasma is obtained. Further improvement.
  • FIG. 10 is a partial cross-sectional view showing a sixth embodiment of a shielding ring according to an embodiment of the present invention.
  • the shield ring 2 provided by the embodiment of the present invention is generally a cylinder having a circular cross section, including upper and lower layers, and the upper layer is an insulating layer 21 made of a plasma resistant material.
  • the lower layer is a conductor layer 22 made of a conductor material, which are fixedly connected in a conventional manner.
  • the shield ring 2 further includes at least one exhaust passage 23 extending in the axial direction thereof so that the reaction product in the above reaction chamber is discharged therefrom; the exhaust passage 23 penetrates through the insulating layer 21 and the conductor layer 22.
  • the length of the exhaust passage 23 may be slightly larger than the mean free path of the charged particles in the confined plasma.
  • the exhaust passage 23 further includes a first axial through hole 211 penetrating the insulating layer 21, and a second axial through hole 221 penetrating the conductor layer 22, the two communicating.
  • the exhaust passage 23 is a bent passage, and a bent portion thereof is located in the second axial through hole 221 described above.
  • the second axial through hole 221 may be an arcuate curved hole.
  • the insulating layer 21 When mounted in a plasma processing apparatus, the insulating layer 21 faces the reaction chamber filled with plasma. A portion of the plasma diffused outward from the reaction chamber is blocked and returned by the insulating layer 21; the other portion enters the exhaust passage 23 and collides with the bent inner wall of the exhaust passage 23. The reaction product in the reaction chamber can then smoothly pass through the shield ring 2 via the exhaust passage 23.
  • FIG. 11 is a partial cross-sectional view showing a seventh embodiment of a shield ring according to an embodiment of the present invention.
  • the shield ring 2 provided by the seventh embodiment of the present invention is an improvement based on the sixth embodiment described above. Specifically, it is the sixth specific implementation method described above.
  • the second axial through hole 221 in the formula is changed from a curved curved hole to a folded hole.
  • Other features are the same as the sixth embodiment, and will not be described again.
  • FIG. 12 is a partial cross-sectional view showing an eighth embodiment of a shield ring according to an embodiment of the present invention.
  • the thickness of the insulating layer 21 is remarkably larger than that of the prior art as the insulating layer or the oxide layer, and the thickness of the latter is usually only several tens to several hundreds of micrometers.
  • the thickening is for forming the first axial through hole 211 therein so that the bent portion of the exhaust passage 21 is formed at the joint portion of the first axial through hole 211 and the second axial through hole 221.
  • the bent portion of the exhaust passage 21 is formed in the second axial through hole 221 of the conductor layer 22, so that the thickness of the insulating layer 21 can be remarkably reduced.
  • the insulating layer 21 can be made into a sprayed layer or an oxide layer of a plasma resistant material, such as Y 2 0 3 , ⁇ 1 2 0 3 , based on the sixth and seventh embodiments described above.
  • the thickness can be only a few tens to several hundreds of micrometers, which significantly reduces the thickness of the entire shield ring 2, saves material, and reduces cost.
  • the second axial through hole 221 may be an arc curved hole or a folded hole.
  • the exhaust passage 3 is usually provided in plurality. Since the product in the reaction chamber of the plasma processing apparatus should be discharged in time, it is desirable to increase the number of exhaust passages 3 and the area of the inlet 231 of each exhaust passage 3; however, in order to confine the plasma, it is necessary to appropriately limit the exhaust.
  • the plasma processing apparatus provided by the present invention can be formed by disposing the shield ring 2 provided in each of the above embodiments in a plasma diffusion channel. Since the shield ring 2 can effectively restrain the diffusion of the plasma, the reliability of the plasma processing apparatus to which the shield ring 2 is applied is obtained. By significantly improving, the service life is significantly extended.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Description

等离子体处理装置及其屏蔽环 技术领域
本发明涉及一种半导体处理设备, 特别涉及一种等离子体处理装置的等 离子体屏蔽环。 本发明还涉及一种应用该等离子体屏蔽环的等离子体处理装 置。 背景技术
等离子体处理装置是在半导体制造领域得到广泛应用的加工设备。
请参考图 1 , 图 1为现有技术中一种典型的等离子体处理装置的结构示 意图。
等离子体处理装置 1通常包括壳体 11 , 壳体 11中具有反应腔室 12。 反 应腔室 12的顶部和底部分别相对应地设有上极板 13和下极板 14,上极板 13 与壳体 11之间由绝缘部件 15隔离;下极板 14的顶部可以支撑待处理加工件。 众所周知, 上述加工件应当包括晶片和玻璃基板, 以及与两者具有相同加工 原理的其他加工件。 下文所述加工件的含义与此相同。
等离子体处理装置 1工作时, 通过干泵等真空获得装置 (图中未示出) 在反应腔室 12中制造并维持接近真空的状态。在此状态下,通过气体输入装 置 (图中未示出) 向反应腔室 12中输入工艺气体, 并在上极板 13和下极板 14之间输入适当的射频电压, 从而激活所述工艺气体, 从而在放置于下极板 14顶部加工件的表面产生并维持等离子体环境。 由于具有强烈的刻蚀以及淀 积能力,所述等离子体可以与所述加工件发生刻蚀或者淀积等物理化学反应, 以获得所需要的刻蚀图形或者淀积层。 上述物理化学反应的副产物由所述真 空获得装置从反应腔室 12中抽出。
如上所述, 等离子体具有强烈的刻蚀以及淀积能力, 因此其不但可以与 加工件发生反应, 而且可以腐蚀等离子体处理装置 1内部的其他部件;显然, 后者是极为有害的。 为了尽可能降低所述等离子体对等离子体处理装置 1的 破坏作用, 必须釆取可靠的措施, 将其约束于适当的范围内。
为了约束所述等离子体于反应腔室 12 中, 通常在所述等离子体的扩散 通道中设置屏蔽环 16, 从而将所述等离子体的扩散通道截断。 显然, 屏蔽环 16应当具有耐等离子体腐蚀的性能, 因此, 通常在其朝向反应腔室 12的表 面喷涂耐等离子体的绝缘材料, 比如 Y203等。 反应腔室 12 内部也可以设置 内衬 17 , 用以隔离所述等离子体, 等等。
请参考图 2及图 3 , 图 2为图 1中屏蔽环的轴测示意图; 图 3为图 1中 屏蔽环的局部剖视示意图。
屏蔽环 16的主体为导体层 162。安装于等离子体处理装置 1后, 导体层 162可以通过导体环 18 (示于图 1 中)接地。 导体层 162朝向反应腔室 12 的表面具有绝缘的耐等离子体喷涂层 161 , 其厚度通常为几十到几百微米。 由于等离子体与加工件的反应产物必须抽出,因此屏蔽环 16设有至少一个轴 向贯通的排气通道 163。
排气通道 163为直通孔, 其纵剖面为矩形。 排气通道 163的长度, 也即 导体层 162的轴向厚度,通常略大所述于等离子体中带电粒子的平均自由程。 平均自由程是指气态粒子发生两次连续碰撞所经过的直线距离。
反应腔室 12中的等离子体扩散至屏蔽环 16的设置位置时, 其中一部分 将受到喷涂层 161的阻挡而返回, 另一部分将进入排气通道 163。 所述等离 子体进入排气通道 163后, 由于排气通道 163的长度大于所述等离子体中带 电粒子的平均自由程, 因此, 多数带电粒子将与排气通道 163的内壁发生碰 撞; 加之导体层 162接地, 与排气通道 163的内壁生碰撞的带电粒子因此将 失去其所携带的电荷, 转变为无害的中性粒子, 继而从排气通道 163排出。 显然, 排气通道 163的长度越长, 与其发生碰撞的带电粒子的比例越大, 屏 蔽环 16的屏蔽效果就越好。 然而, 上述平均自由程仅为一个平均值, 各个具体带电粒子实际自由程 之间的差异比较大, 排气通道 163的长度永远只能大于部分带电粒子的自由 程; 此外, 受等离子体处理装置 1的整体结构的限制, 排气通道 163的长度 不能过长; 再者, 随着排气通道 163长度的增加, 其生产制造成本将显著提 高。
在上述因素的影响下, 占有相当大比例的带电粒子的自由程将大于排气 通道 163的长度, 因此很可能不与排气通道 163的内壁发生碰撞, 而通过排 气通道 163形成的直通道直接穿越屏蔽环 16, 导致等离子体泄露。
因此, 现有技术的屏蔽环 16不能有效地约束等离子体, 导致等离子体 处理装置 1的内部结构容易受到损坏, 其使用寿命也显著缩短。 如何将等离 子体有效地约束于反应腔室中,是本领域技术人员目前需要解决的技术问题。 发明内容
本发明的目的是提供一种能够有效地将等离子体约束于反应腔室中的 等离子体屏蔽环。 本发明的另一目的是提供一种应用上述等离子体屏蔽环的 等离子体处理装置。
为解决上述技术问题, 本发明提供一种等离子体屏蔽环, 包括固定连接 于一体的上、 下两层, 其上层为耐等离子体的绝缘层, 其下层为导体层; 至 少一个轴向延伸的排气通道贯穿所述绝缘层和导体层; 所述排气通道为弯折 通道。
优选地, 所述排气通道包括竖直地贯穿所述绝缘层的第一轴向通孔, 和 倾斜地贯穿所述导体层的第二轴向通孔; 所述排气通道的弯折部分形成于所 述第一轴向通孔与所述第二轴向通孔的连通部位。
优选地, 所述导体层的底部进一步固定连接辅助层; 所述排气通道进一 步包括倾斜地贯穿所述辅助层的第三轴向通孔, 所述第三轴向通孔的倾斜方 向与所述第二轴向通孔的倾斜方向相反; 所述排气通道的弯折部分还形成于 所述第二轴向通孔与所述第三轴向通孔的连通部位。
优选地, 所述导体层的底部进一步固定连接辅助层, 所述排气通道进一 步包括竖直地贯穿所述辅助层的第三轴向通孔; 所述排气通道的弯折部分还 形成于所述第二轴向通孔与所述第三轴向通孔的连通部位。
优选地, 所述排气通道包括竖直贯穿所述绝缘层的第一轴向通孔, 和竖 直贯穿所述导体层的第二轴向通孔; 所述第一轴向通孔与第二轴向通孔的开 口相错离; 所述排气通道的弯折部分形成于所述第一轴向通孔与所述第二轴 向通孔的连通部位。
优选地, 所述导体层的底部进一步固定连接辅助层, 所述排气通道进一 步包括贯穿所述辅助层的第三轴向通孔; 所述第三轴向通孔与第二轴向通孔 的开口相错离; 所述排气通道的弯折部分还形成于所述第二轴向通孔与第三 轴向通孔的连通部位。
优选地, 所述排气通道包括贯穿所述绝缘层的第一轴向通孔, 和贯穿所 述导体层的第二轴向通孔; 所述排气通道的弯折部分形成于所述第二轴向通 孔。
优选地, 所述排气通道的弯折部分为弯孔。
优选地, 所述排气通道的弯折部分为折孔。
优选地, 所述绝缘层为耐等离子体材料的喷涂层或者氧化层。
优选地, 所述排气通道进气口中任意一点与其排气口中任意一点的连 线, 与所述排气通道的内壁存在至少一个交点。
优选地, 所述排气通道排气口的面积占所述绝缘层顶面面积的比例范围 为 20%-95%。
优选地, 所述排气通道排气口的面积占所述绝缘层顶面面积的比例范围 为 50%-70%。
本发明还提供一种等离子体处理装置, 包括上述等离子体屏蔽环。 相对上述背景技术, 本发明所提供的等离子体屏蔽环以及等离子体处理 装置, 改变了排气通道的结构, 将其由竖直通道更改为弯折通道。 众所周知, 在自由程内, 等离子体中带电粒子的运动轨迹大体为直线; 在排气通道为弯 折通道的情况下, 绝大多数带电粒子在排气通道中运动时将不可避免地与其 弯折的内壁发生碰撞,进而失去所携带的电荷,转化为无害的中性粒子排出。 因此, 本发明所提供的等离子体屏蔽环对等离子体的约束效果显著提高; 本 发明所提供的等离子体处理装置的内部结构不易受到破坏, 其使用寿命显著 延长。 随着排气通道弯折程度的进一步加大, 上述技术效果更为突出。 附图说明
图 1为现有技术中一种典型的等离子体处理装置的结构示意图; 图 2为图 1中屏蔽环的轴测示意图;
图 3为图 2中屏蔽环的局部剖视示意图;
图 4为本发明实施例所提供的屏蔽环第一种具体实施方式的局部剖视示 意图;
图 5为本发明实施例所提供排气通道最佳弯折程度的示意图;
图 6为本发明实施例所提供的屏蔽环第二种具体实施方式的局部剖视示 意图;
图 7为本发明实施例所提供的屏蔽环第三种具体实施方式的局部剖视示 意图;
图 8为本发明实施例所提供的屏蔽环第四种具体实施方式的局部剖视示 意图;
图 9为本发明实施例所提供的屏蔽环第五种具体实施方式的局部剖视示 意图;
图 10为本发明实施例所提供的屏蔽环第六种具体实施方式的局部剖视 示意图;
图 11 为本发明实施例所提供的屏蔽环第七种具体实施方式的局部剖视 示意图;
图 12为本发明实施例所提供的屏蔽环第八种具体实施方式的局部剖视 示意图。 具体实施方式
本发明的核心是提供一种能够有效约束等离子体的等离子体屏蔽环, 以 及应用上述等离子体屏蔽环的等离子体处理装置。
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具体 实施方式对本发明作进一步的详细说明。
请参考图 4, 图 4为本发明实施例所提供的屏蔽环第一种具体实施方式 的局部剖视示意图。
在第一种具体实施方式中, 本发明实施例所提供的屏蔽环 2大体为具有 环形横截面的柱体, 包括上、 下两层, 其上层为绝缘层 21 , 其材料具体可以 釆用石英、 陶瓷以及 Si3N4等常见的耐等离子体材料; 其下层为导体层 22, 具 体可以釆用常见的金属以及金属合金等导体材料。 绝缘层 21与导体层 22以 常规的方式固定连接, 比如, 可以将两者铆接于一体。
屏蔽环 2还包括至少一个在其轴向延伸的排气通道 23 ,以便将上述反应 腔室中的反应产物排出; 排气通道 23贯穿所述绝缘层 21和导体层 22。 为了 取得较好的屏蔽效果,排气通道 23长度可以略大于被约束等离子体中带电粒 子的平均自由程。
显然, 上述 "轴向延伸" 是指排气通道 23的进气口 231和排气口 232 分别位于屏蔽环 2的顶面和底面,排气通道 23中气体的总体流向平行于屏蔽 环 2的中心轴;而不能理解为排气通道 23的每一部分均与屏蔽环 2的中心轴 平行。 下文所述 "轴向延伸" 的含义与此相同。
排气通道 23进一步包括贯穿绝缘层 21的第一轴向通孔 211 , 以及贯穿 导体层 22的第二轴向通孔 221 ; 第一轴向通孔 211与第二轴向通孔 221均为 直通道, 前者竖直设置, 而后者倾斜设置, 因此两者的连通部位形成一弯折 部分, 排气通道 23即为弯折通道。
上述 "竖直设置", 显然应当理解为当屏蔽环 2水平放置时第一轴向通 孔 211处于竖直方向;此处以及下文关于相对位置关系的描述,比如"顶面"、 "底面"、 "顶部"、 "底部", 均以屏蔽环 2水平放置时所处的状态为基准。
安装于等离子体扩散通道中时, 绝缘层 21 朝向充满等离子体的反应腔 室。自所述反应腔室中向外扩散的等离子体中的一部分受到绝缘层 21阻挡并 返回; 另一部分则进入排气通道 23中, 并与排气通道 23的弯折内壁发生碰 撞。 所述反应腔室中的反应产物则可以经由排气通道 23顺利穿越屏蔽环 2。
上述第一种具体实施方式中的屏蔽环, 改变了排气通道的结构, 将其由 竖直通道更改为弯折通道。 由于在自由程内等离子体中带电粒子的运动轨迹 大体为直线; 在将排气通道设为弯折通道的情况下, 绝大多数带电粒子在排 气通道中运动时将不可避免地与其内壁发生碰撞, 进而失去所携带的电荷, 转化为无害的中性粒子。 因此, 上述第一种具体实施方式中的屏蔽环对等离 子体的约束效果显著提高; 等离子体处理装置的内部结构不易受到破坏, 其 使用寿命显著延长。
需要指出的是, 无论排气通道 23 的弯折程度如何, 将其设为弯折通道 即可以在相同通道长度下增加等离子体中带电粒子与排气通道 23 内壁发生 碰撞的概率, 实现本发明的目的; 为了进一步增大上述碰撞概率、 取得更好 的等离子体隔离效果, 应当增加排气通道 23的弯折程度。
但是, 排气通道 23 达到某一特定的弯折程度后, 已经可以保证进入其 中的全部带电粒子均与其内壁发生碰撞, 等离子体隔离效果达到最好; 此时 再增加排气通道 23的弯折程度已无实际意义, 反而会增加加工制造成本。
请参考图 5 , 图 5为本发明实施例所提供排气通道最佳弯折程度的示意 图。
图 5中点 A表示排气通道 23的进气口 231中的任意一点, 点 B表示排 气通道 23的排气口 232中的任意一点; 显然, 线段 AB为上述两点的连线。 当线段 AB与排气通道 23的内壁不存在交点,且线段 AB的长度小于其 自由程时, 位于 A点的带电粒子可能沿射线 AB方向直接经由排气通道 23 而穿越屏蔽环 2。
当线段 AB与排气通道 23的内壁存在至少一个交点时,无论线段 AB的 长度是否大于其自由程,位于 A点的带电粒子在穿越屏蔽环 2的过程中均必 然与排气通道 23的内壁发生碰撞;也即此时屏蔽环 2在理论上可以屏蔽所有 进入排气通道 23的等离子体。
基于此, 可以对上述第一种具体实施方式中的屏蔽环 2进行改进, 加大 排气通道 23的弯折程度,使其进气口 231中任意一点与其排气口 232中任意 一点的连线, 与其内壁均存在至少一个交点。 这样, 即使排气通道 23的长度 小于所述带电粒子的平均自由程, 屏蔽环 2也可以彻底屏蔽所有进入排气通 道 23的等离子体, 将上述等离子体严格约束于反应腔室中。 因此, 一方面屏 蔽环 2的厚度可以减小, 另一方面其约束效果又可以显著提高, 应用上述屏 蔽环 2的等离子体处理装置的使用寿命也将得到进一步延长。
显然, 在下面即将描述的其他具体实施方式中, 排气通道 23 均可以以 上段所描述的方式设置, 下文对此将不再另行说明。
请参考图 6, 图 6为本发明实施例所提供的屏蔽环第二种具体实施方式 的局部剖视示意图。
在上述第一种具体实施方式的基础上, 可以在导电层 22 的底部进一步 固定连接辅助层 24。 如同导体层 22, 辅助层 24可以选用金属或者金属合金 等导体材料,其具有与导体层 22的第二轴向通孔 221相连通的第三轴向通孔 241。 第三轴向通孔 241为竖直地贯穿辅助层 24的直通孔, 因此, 其与第二 轴向通孔 221相连通的部位形成另一弯折部分。
因此, 在本具体实施方式中, 排气通道 23 包括上述依次连通的第一轴 向通孔 211、第二轴向通孔 221以及第三轴向通孔 241 ; 相邻的两个轴向通孔 之间形成了两个所述弯折部分。
由于排气通道 23 为具有两处弯折部分的弯折通道, 这进一步增大了等 离子体中带电粒子与排气通道 23的内壁发生碰撞的概率,使屏蔽环 2对等离 子体的约束效果获得进一步的提升。
请参考图 7 , 图 7为本发明实施例所提供的屏蔽环第三种具体实施方式 的局部剖视示意图。
本发明实施例第三种具体实施方式所提供的屏蔽环 2, 是在上述第二种 具体实施方式的基础上所作的改进。 具体地说, 是将上述第二种具体实施方 式中的第三轴向通孔 241 , 由竖直设置更改为倾斜设置; 第三轴向通孔 241 的倾斜角度应当不同于第二轴向通孔 221的倾斜角度; 如图 7所示, 最好将 第三轴向通孔 241的倾斜角度设为与第二轴向通孔 221相反, 以进一步增加 排气通道 23的弯折程度。
由于第二轴向通孔 221与第三轴向通孔 241的倾斜角度相反, 因此排气 通道 23将更为曲折, 等离子体中带电粒子与排气通道 23的内壁发生碰撞的 概率进一步增大。
请参考图 8, 图 8为本发明实施例所提供的屏蔽环第四种具体实施方式 的局部剖视示意图。
在第四种具体实施方式中, 本发明实施例所提供的屏蔽环 2大体为具有 环形横截面的柱体, 包括上、 下两层, 其上层为由耐等离子体材料制成的绝 缘层 21 ; 其下层为导体材料制成的导体层 22, 两者以常规的方式固定连接。
屏蔽环 2还包括至少一个在其轴向延伸的排气通道 23 ,以便于上述反应 腔室中的反应产物从中排出; 排气通道 23贯穿所述绝缘层 21和导体层 22。 为了取得较好的屏蔽效果,排气通道 23长度可以略大于被约束等离子体中带 电粒子的平均自由程。
排气通道 23进一步包括贯穿绝缘层 21的第一轴向通孔 211 , 以及贯穿 导体层 22的第二轴向通孔 221 , 两者均为直通道, 可以竖直设置, 也可以倾 斜适当的角度设置; 第一轴向通孔 211的底部开口与第二轴向通孔 221的顶 部开口相错离, 即, 两者在横向相距适当的距离。 为了保证排气通道 23的畅 通, 第一轴向通孔 211的底部开口与第二轴向通孔 221的顶部开口之间由第 一连接孔 251连通, 因此, 第一轴向通孔 211的底部、 第一连接孔 251以及 第二轴向通孔 221的顶部形成一弯折部分, 排气通道 23因此成为弯折通道。
为了方便加工, 上述第一轴向通孔 211与第二轴向通孔 221均可以是竖 直设置的直孔;上述第一连接孔 251可以设置于绝缘层 21与导体层 22之间。 显然, 当上述第一轴向通孔 211与第二轴向通孔 221仅偏离一个较小的距离 时 , 第一连接孔 251也可以省略。
安装于等离子体处理装置中时, 绝缘层 21 朝向充满等离子体的反应腔 室。自所述反应腔室中向外扩散的等离子体中的一部分受到绝缘层 21阻挡并 返回; 另一部分则进入排气通道 23中, 并与排气通道 23的弯折内壁发生碰 撞。 所述反应腔室中的反应产物则可以经由排气通道 23顺利穿越屏蔽环 2。
请参考图 9, 图 9为本发明实施例所提供的屏蔽环第五种具体实施方式 的局部剖视示意图。
在上述第四种具体实施方式的基础上, 可以在导电层 22 的底部进一步 固定连接辅助层 24。 如同导体层 22, 辅助层 24可以选用金属或者金属合金 等导体材料, 其具有与第二轴向通孔 221连通的第三轴向通孔 241。 第三轴 向通孔 241的顶部开口与第二轴向通孔 221的底部开口相错离, 即, 两者在 横向相距适当的距离。为了保证排气通道 23的畅通,第二轴向通孔 221的底 部开口与第三轴向通孔 241的顶部开口之间由第二连接孔 252连通, 因此, 第二轴向通孔 221的底部、 第二连接孔 252以及第三轴向通孔 241的顶部形 成另一弯折部分, 排气通道 23因此为具有两个弯折部分的弯折通道。
因此, 在本具体实施方式中, 排气通道 23 包括上述依次连通的第一轴 向通孔 211、第二轴向通孔 221以及第三轴向通孔 241 ; 相邻的两个轴向通孔 之间形成了两个所述弯折部分。 为了方便加工, 上述第三轴向通孔 241可以是竖直设置的直孔; 上述第 二连接孔 252可以设置于导体层 22辅助层 23之间。
由于排气通道 23 为具有两处弯折部分的弯折通道, 这进一步增大了等 离子体中带电粒子与排气通道 23的内壁发生碰撞的概率,使屏蔽环 2对等离 子体的约束效果得到进一步的提升。
请参考图 10, 图 10为本发明实施例所提供的屏蔽环第六种具体实施方 式的局部剖视示意图。
在第六种具体实施方式中, 本发明实施例所提供的屏蔽环 2大体为具有 环形横截面的柱体, 包括上、 下两层, 其上层为由耐等离子体材料制成的绝 缘层 21 ; 其下层为导体材料制成的导体层 22, 两者以常规的方式固定连接。
屏蔽环 2还包括至少一个在其轴向延伸的排气通道 23 ,以便于上述反应 腔室中的反应产物从中排出; 排气通道 23贯穿所述绝缘层 21和导体层 22。 为了取得较好的屏蔽效果,排气通道 23长度可以略大于被约束等离子体中带 电粒子的平均自由程。
排气通道 23进一步包括贯穿绝缘层 21的第一轴向通孔 211 , 以及贯穿 导体层 22的第二轴向通孔 221 , 两者相连通。 排气通道 23为弯折通道, 其 弯折部分位于上述第二轴向通孔 221中。
具体地, 第二轴向通孔 221可以是弧形弯孔。
安装于等离子体处理装置中时, 绝缘层 21 朝向充满等离子体的反应腔 室。自所述反应腔室中向外扩散的等离子体中的一部分受到绝缘层 21阻挡并 返回; 另一部分则进入排气通道 23中, 并与排气通道 23的弯折内壁发生碰 撞。 所述反应腔室中的反应产物则可以经由排气通道 23顺利穿越屏蔽环 2。
请参考图 11 , 图 11为本发明实施例所提供的屏蔽环第七种具体实施方 式的局部剖视示意图。
本发明实施例第七种具体实施方式所提供的屏蔽环 2, 是在上述第六种 具体实施方式的基础上所作的改进。 具体地说, 是将上述第六种具体实施方 式中的第二轴向通孔 221 , 由弧形弯孔更改为折孔。 其他特征均与第六种具 体实施方式相同, 不再赘述。
请参考图 12, 图 12为本发明实施例所提供的屏蔽环第八种具体实施方 式的局部剖视示意图。
在上述第一至五种具体实施方式中, 绝缘层 21 的厚度显著大于现有技 术中作为绝缘层的喷涂层或者氧化层,后者的厚度通常仅为几十到几百微米。 将其加厚是为了在其中形成上述第一轴向通孔 211 ,从而在第一轴向通孔 211 与第二轴向通孔 221的连接部位形成排气通道 21的弯折部分。
然而, 在上述第六、 第七种具体实施方式中, 排气通道 21 的弯折部分 形成于导体层 22的第二轴向通孔 221中, 因此绝缘层 21的厚度可以显著减 小。
基于此, 可以在上述第六以及第七种具体实施方式的基础上, 将绝缘层 21 设为耐等离子体材料的喷涂层或者氧化层, 比如 Y203, Α1203。 其厚度可 以仅为几十到几百微米, 这显著降低了整个屏蔽环 2的厚度, 节省了材料, 降低了成本。 本具体实施方式中, 第二轴向通孔 221可以为弧形弯孔, 也可 以是折孔。
如前所述, 排气通道 3通常设置多个。 由于等离子体处理装置反应腔室 中的产物应当及时排出, 因此希望增加排气通道 3数目以及每一排气通道 3 进气口 231的面积; 然而, 为了约束等离子体, 又需要合理限制排气通道 3 数目以及每一排气通道 3进气口 231的面积。 综合考虑上述两者, 可以将所 有排气通道 3进气口 231的面积之和, 占屏蔽环 2顶面总面积的比例, 设置 于 20%至 95%的范围内, 最好进一步将其设置于 50%-70%, 以便使屏蔽环 2 在有效约束等离子体的同时, 能够将所述反应腔室中的产物及时排出。
将上述各具体实施方式所提供的屏蔽环 2设置于等离子体扩散通道中, 即可形成本发明所提供的等离子体处理装置。 由于上述屏蔽环 2可以有效地 约束等离子体的扩散, 应用了上述屏蔽环 2的等离子体处理装置的可靠性得 到显著提高, 使用寿命得到显著延长。
以上对本发明所提供的等离子体屏蔽环以及应用了该屏蔽环的等离子 方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核 心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明 原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落 入本发明权利要求的保护范围内。

Claims

利 要 求 书
1、 一种等离子体屏蔽环, 包括固定连接于一体的上、 下两层, 其上层 为耐等离子体的绝缘层(21 ), 其下层为导体层(22); 至少一个轴向延伸的 排气通道 ( 23 )贯穿所述绝缘层 ( 21 )和导体层 ( 22 ), 其特征在于, 所述排 气通道(23)为弯折通道。
2、 如权利要求 1 所述的等离子体屏蔽环, 其特征在于, 所述排气通道 (23) 包括竖直地贯穿所述绝缘层(21 ) 的第一轴向通孔(211 ), 和倾斜地 贯穿所述导体层(22) 的第二轴向通孔(221 ); 所述排气通道(23) 的弯折 部分形成于所述第一轴向通孔(211 )与所述第二轴向通孔(221 ) 的连通部 位。
3、如权利要求 2所述的等离子体屏蔽环,其特征在于,所述导体层(22) 的底部进一步固定连接辅助层(24); 所述排气通道(23)进一步包括倾斜地 贯穿所述辅助层(24)的第三轴向通孔(241 ), 所述第三轴向通孔(241 )的 倾斜方向与所述第二轴向通孔(221 ) 的倾斜方向相反; 所述排气通道(23) 的弯折部分还形成于所述第二轴向通孔(221 )与所述第三轴向通孔(241 ) 的连通部位。
4、如权利要求 2所述的等离子体屏蔽环,其特征在于,所述导体层(22) 的底部进一步固定连接辅助层 ( 24 ), 所述排气通道 ( 23 )进一步包括竖直地 贯穿所述辅助层(24) 的第三轴向通孔(241 ); 所述排气通道(23) 的弯折 部分还形成于所述第二轴向通孔(221 )与所述第三轴向通孔(241 ) 的连通 部位。 如权利要求 1 所述的等离子体屏蔽环, 其特征在于, 所述排气通道 (23) 包括竖直贯穿所述绝缘层(21 ) 的第一轴向通孔(211 ), 和竖直贯穿 所述导体层(22)的第二轴向通孔(221 ); 所述第一轴向通孔(211 )与第二 轴向通孔(221 )的开口相错离; 所述排气通道(23)的弯折部分形成于所述 第一轴向通孔(211 )与所述第二轴向通孔(221 ) 的连通部位。
6、如权利要求 5所述的等离子体屏蔽环,其特征在于,所述导体层 ( 22 ) 的底部进一步固定连接辅助层 ( 24 ), 所述排气通道 ( 23 )进一步包括贯穿所 述辅助层(24)的第三轴向通孔(241 ); 所述第三轴向通孔(241 )与第二轴 向通孔(221 )的开口相错离; 所述排气通道(23)的弯折部分还形成于所述 第二轴向通孔(221 )与第三轴向通孔(241 ) 的连通部位。
7、 如权利要求 1 所述的等离子体屏蔽环, 其特征在于, 所述排气通道 (23) 包括贯穿所述绝缘层(21 ) 的第一轴向通孔(211 ), 和贯穿所述导体 层(22) 的第二轴向通孔(221 ); 所述排气通道(23) 的弯折部分形成于所 述第二轴向通孔(221 )。
8、 如权利要求 7所述的等离子体屏蔽环, 其特征在于, 所述排气通道 (23) 的弯折部分为弯孔。 9、 如权利要求 7所述的等离子体屏蔽环, 其特征在于, 所述排气通道
(23) 的弯折部分为折孔。
10、 如权利要求 1至 9中任一项所述的等离子体屏蔽环, 其特征在于, 所述绝缘层(21 )为耐等离子体材料的喷涂层或者氧化层。
11、 如权利要求 1至 9中任一项所述的等离子体屏蔽环, 其特征在于, 所述排气通道(23 )进气口中任意一点与其排气口中任意一点的连线, 与所 述排气通道(23 ) 的内壁存在至少一个交点。
12、 如权利要求 1至 9中任一项所述的等离子体屏蔽环, 其特征在于, 所述排气通道(23 )排气口的面积占所述绝缘层(21 )顶面面积的比例范围 为 20%-95%。
13、 如权利要求 12所述的等离子体屏蔽环, 其特征在于, 所述排气通 道( 23 )排气口的面积占所述绝缘层( 21 )顶面面积的比例范围为 50%-70%。
14、 一种等离子体处理装置, 其特征在于, 包括如权利要求 1至 9中任 一项所述的等离子体屏蔽环(2 )。
PCT/CN2008/070342 2007-12-07 2008-02-22 Appareil de traitement plasma et anneau de blindage WO2009074021A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101789842A CN101452821B (zh) 2007-12-07 2007-12-07 等离子体处理装置及其屏蔽环
CN200710178984.2 2007-12-07

Publications (1)

Publication Number Publication Date
WO2009074021A1 true WO2009074021A1 (fr) 2009-06-18

Family

ID=40734990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070342 WO2009074021A1 (fr) 2007-12-07 2008-02-22 Appareil de traitement plasma et anneau de blindage

Country Status (2)

Country Link
CN (1) CN101452821B (zh)
WO (1) WO2009074021A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550130A (zh) * 2009-08-31 2012-07-04 朗姆研究公司 用于执行等离子体约束的多外围环装置
CN102237246B (zh) * 2010-04-26 2013-06-05 北京北方微电子基地设备工艺研究中心有限责任公司 一种排气板及等离子体处理设备
CN105132882B (zh) * 2015-10-20 2019-05-14 河南卓金光电科技股份有限公司 一种等离子体物理面控制系统
CN106507576A (zh) * 2016-11-04 2017-03-15 中国工程物理研究院流体物理研究所 金属氢化物离子源的离子过滤装置、方法及中子发生器
CN108538745B (zh) * 2017-03-01 2022-01-07 北京北方华创微电子装备有限公司 反应腔室
CN110544645B (zh) * 2018-05-28 2022-05-27 北京北方华创微电子装备有限公司 工艺腔室用匀流件、工艺腔室和半导体处理设备
CN111383884B (zh) * 2018-12-27 2023-03-10 中微半导体设备(上海)股份有限公司 等离子体约束系统及方法
CN109920717B (zh) * 2019-03-08 2022-06-17 拓荆科技股份有限公司 晶圆处理装置
CN113130282B (zh) * 2019-12-31 2023-10-20 中微半导体设备(上海)股份有限公司 一种等离子体约束结构及其制造方法、等离子体处理装置
CN113745083B (zh) * 2020-05-28 2023-09-29 中微半导体设备(上海)股份有限公司 一种等离子体处理装置
CN114551199A (zh) * 2020-11-19 2022-05-27 中微半导体设备(上海)股份有限公司 一种限制环及其制作方法、以及等离子体处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176969B1 (en) * 1998-04-22 2001-01-23 Samsung Electronics Co., Ltd. Baffle plate of dry etching apparatus for manufacturing semiconductor devices
WO2002070779A1 (en) * 2001-03-02 2002-09-12 Applied Materials, Inc. Apparatus and method for sequential deposition of films
US20050225248A1 (en) * 2004-03-30 2005-10-13 Tokyo Electron Limited Honeycomb optical window deposition shield and method for a plasma processing system
US20060225654A1 (en) * 2005-03-29 2006-10-12 Fink Steven T Disposable plasma reactor materials and methods
CN1948550A (zh) * 2005-10-14 2007-04-18 中微半导体设备(上海)有限公司 等离子体处理装置
CN101089220A (zh) * 2005-10-31 2007-12-19 应用材料股份有限公司 用于衬底处理室的处理配件和靶材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176969B1 (en) * 1998-04-22 2001-01-23 Samsung Electronics Co., Ltd. Baffle plate of dry etching apparatus for manufacturing semiconductor devices
WO2002070779A1 (en) * 2001-03-02 2002-09-12 Applied Materials, Inc. Apparatus and method for sequential deposition of films
US20050225248A1 (en) * 2004-03-30 2005-10-13 Tokyo Electron Limited Honeycomb optical window deposition shield and method for a plasma processing system
US20060225654A1 (en) * 2005-03-29 2006-10-12 Fink Steven T Disposable plasma reactor materials and methods
CN1948550A (zh) * 2005-10-14 2007-04-18 中微半导体设备(上海)有限公司 等离子体处理装置
CN101089220A (zh) * 2005-10-31 2007-12-19 应用材料股份有限公司 用于衬底处理室的处理配件和靶材

Also Published As

Publication number Publication date
CN101452821A (zh) 2009-06-10
CN101452821B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2009074021A1 (fr) Appareil de traitement plasma et anneau de blindage
US10541113B2 (en) Chamber with flow-through source
US11728139B2 (en) Process chamber for cyclic and selective material removal and etching
US20200111643A1 (en) Plasma etching systems and methods with secondary plasma injection
TW201715578A (zh) 包括沉積設備的半導體製造系統
US9293353B2 (en) Faraday shield having plasma density decoupling structure between TCP coil zones
CN112951697A (zh) 基板处理设备
CN100573816C (zh) 反应腔室内衬及包含该内衬的反应腔室
WO2009065303A1 (fr) Dispositif de confinement de plasma et appareil de traitement de semi-conducteur l'utilisant
KR102129867B1 (ko) 플라즈마 필터링을 위한 시스템들 및 프로세스들
JP2002540622A (ja) プラズマ放電ガスを処理室へ導入する高電力rf電極を絶縁する方法および装置
CN113308681B (zh) 半导体工艺设备中的承载装置和半导体工艺设备
KR20220162772A (ko) 반도체 반응 챔버 및 원자층 플라즈마 에칭 장비
KR20190109556A (ko) 다중 압력 방식들을 위한 동심 펌핑을 갖는 장치
KR102459959B1 (ko) 플라즈마 시스템 및 필터 장치
KR20180076325A (ko) 가스 공급 장치, 플라스마 처리 장치 및 가스 공급 장치의 제조 방법
US20050224179A1 (en) Baffle plate and plasma etching device having same
WO2009115005A1 (zh) 等离子体处理装置及其屏蔽环
US20180190475A1 (en) Focus ring and plasma-processing apparatus including the same
US11035040B2 (en) Showerhead and substrate processing apparatus
WO2020243289A1 (en) Apparatus for improved flow control in process chambers
TWI821771B (zh) 限制環及其製作方法、以及等離子體處理裝置
US20230360895A1 (en) Trap device and semiconductor manufacturing device
CN115283152B (zh) 喷头
CN113906159A (zh) 用于改进底部净化气流均匀性的挡板实现

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706715

Country of ref document: EP

Kind code of ref document: A1