WO2009071847A1 - Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale - Google Patents

Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale Download PDF

Info

Publication number
WO2009071847A1
WO2009071847A1 PCT/FR2008/052140 FR2008052140W WO2009071847A1 WO 2009071847 A1 WO2009071847 A1 WO 2009071847A1 FR 2008052140 W FR2008052140 W FR 2008052140W WO 2009071847 A1 WO2009071847 A1 WO 2009071847A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
less
weight
order
alloy according
Prior art date
Application number
PCT/FR2008/052140
Other languages
English (en)
Inventor
Jean-Luc Bernard
Patrice Berthod
Ludovic Hericher
Christophe Liebaut
Sylvain Michon
Original Assignee
Saint-Gobain Isover
Saint-Gobain Seva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA201008139A priority Critical patent/UA98183C2/uk
Priority to DK08856969.4T priority patent/DK2222885T3/da
Priority to CA2706450A priority patent/CA2706450C/fr
Priority to EP08856969.4A priority patent/EP2222885B1/fr
Priority to SI200831173T priority patent/SI2222885T1/sl
Priority to ES08856969.4T priority patent/ES2453499T3/es
Priority to CN200880118426.XA priority patent/CN101878318B/zh
Priority to EA201000913A priority patent/EA017210B1/ru
Application filed by Saint-Gobain Isover, Saint-Gobain Seva filed Critical Saint-Gobain Isover
Priority to JP2010535433A priority patent/JP5461418B2/ja
Priority to PL08856969T priority patent/PL2222885T3/pl
Priority to AU2008333024A priority patent/AU2008333024B2/en
Priority to US12/744,496 priority patent/US8262964B2/en
Priority to BRPI0819639A priority patent/BRPI0819639B8/pt
Publication of WO2009071847A1 publication Critical patent/WO2009071847A1/fr
Priority to EG2010050806A priority patent/EG26118A/en
Priority to ZA2010/03834A priority patent/ZA201003834B/en
Priority to HRP20140302AT priority patent/HRP20140302T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Definitions

  • the present invention relates to a metal alloy for use at a very high temperature, particularly used in a process for manufacturing mineral wool by fiberizing a molten mineral composition, or more generally for the constitution of tools having high temperature strength. in an oxidizing medium such as molten glass, and cobalt-based alloys that can be used at high temperature, in particular for the production of articles for producing and / or heat-transforming glass or other mineral material, such as of mineral wool making machinery.
  • a fiber drawing technique consists in continuously dropping liquid glass inside a set of revolution parts rotating at a very high speed of rotation about their vertical axis.
  • a centerpiece called “plate”, more often referred to in the art as the “spinner”, receives the glass against a so-called “band” wall pierced with holes, which the glass passes under the effect of centrifugal force for to escape from all parts in the form of melted filaments.
  • An annular burner located above the outside of the plate, producing a downward gas flow along the outer wall of the strip, deflects these filaments downwardly by stretching them. These then “solidify” in the form of glass wool.
  • the plate is a fiber-drawing tool that is very thermally stressed (thermal shocks during start-ups and shutdowns, and establishment in stabilized use of a temperature gradient along the part), mechanically (centrifugal force, erosion due to the passage of the glass) and chemically (oxidation and corrosion by the molten glass, and by the hot gases coming out of the burner around the plate). Its main modes of deterioration are: the deformation by hot creep of the vertical walls, the appearance of horizontal or vertical cracks, erosion wear of the fiberization holes, which require the pure and simple replacement of the organs. Their constituent material must therefore withstand during a production time long enough to remain compatible with the technical and economic constraints of the process.
  • materials with a certain ductility, creep resistance and resistance to corrosion and / or oxidation are sought.
  • Various known materials for the realization of these tools are superalloys based on nickel or cobalt reinforced by precipitation of carbides.
  • Particularly refractory alloys are based on chromium, cobalt (refractory element which brings to the matrix of the alloy an intrinsic strength at high temperature improved) and nickel (to stabilize the face-centered cubic crystal lattice of the Co).
  • WO-A-99/16919 discloses a cobalt-based alloy having improved mechanical properties at high temperature, comprising the following elements (in percentage by weight of the alloy):
  • the molar ratio of tantalum to carbon being of the order of 0.4 to 1.
  • the selection of carbon and tantalum proportions is intended forming in the alloy a dense but discontinuous network of intergranular carbides consisting essentially of chromium carbides in Cr 7 C 3 and (Cr, W) 2 3C 6 form and by tantalum carbides TaC. This selection gives the alloy improved mechanical and oxidation resistance properties at high temperatures, allowing the drawing of a molten glass whose temperature is 1080 ° C.
  • cobalt-based alloys likely to be used at even higher temperatures. These alloys have a good compromise between mechanical strength and resistance to oxidation from 1100 ° C through a microstructure whose intergranular zones are rich in tantalum carbide precipitates. These carbides play on the one hand the role of a mechanical reinforcement by opposing intergranular creep at very high temperature, and on the other hand have an effect on the oxidation resistance related to their oxidation in Ta 2 O 5 , which forms oxides occupying all the old volume of TaC carbides preventing the penetration of the aggressive medium (liquid glass, hot gases) in intergranular spaces.
  • the aggressive medium liquid glass, hot gases
  • a fibering plate made from the alloy described in Example 6 of WO 2005/052208 can withstand, for relatively long periods, temperatures of the molten glass of the order of 1200 to 1240 ° C., corresponding to a metal temperature of between 1160 and 1210 ° C, depending on the profile of the plate.
  • the present invention aims at providing still improved alloys whose high temperature mechanical resistance is increased, making it possible to work at a temperature (for the metal) of up to 1200 ° C., or even at higher temperatures, and having a duration improved life under such fiber drawing conditions.
  • the subject of the present invention is a cobalt-based alloy, further comprising chromium, and carbon, which contains the following elements (the proportions being indicated in percentage by weight of the alloy):
  • the alloy according to the present invention differs from the alloys incorporating Ti and Ta carbides described in the application WO 2005/052208 (see in particular Examples 6 and 7), in that the nickel content is substantially lower than those described in this publication (8.7% weight for the alloys of Examples 6 and 7).
  • the presence of such a quantity of nickel was necessary to extend the temperature stability domain of the face-centered cubic crystal structure of the cobalt matrix (see for example page 7 lines 18-21 of WO2005 / 052208 or page 8 lines 29-32 and page
  • the properties of the alloy compositions according to the present invention appeared to be greater than those of the previously described alloys.
  • the lifetimes of the plates obtained from the alloys according to the invention during a high temperature fiber drawing process appeared very substantially improved.
  • Carbon is an essential constituent of the alloy, necessary for the formation of metal carbide precipitates.
  • the carbon content directly determines the amount of carbides present in the alloy. It is at least 0.2% by weight to obtain the minimum reinforcement desired, preferably at least 0.6% by weight, but preferably limited to at most 1, 2% by weight to prevent the alloy from becoming hard and difficult to machine because of too high density of reinforcements.
  • the lack of ductility of the alloy at such levels prevents it from accommodating without breaking an imposed deformation (for example of thermal origin) and withstanding sufficiently the propagation of cracks.
  • chromium contributes to the intrinsic mechanical strength of the matrix in which it is present partly in solid solution, and in some cases also in the form of carbides essentially of Cr 2 3C 6 type in fine dispersion inside. grains where they provide resistance to intragranular creep or in the form of Cr 7 C 3 or Cr 23 C 6 type carbides present at the grain boundaries, which prevent grain-grain slippage thus also contributing to the intergranular reinforcement of the alloy.
  • Chromium contributes to the corrosion resistance as a chromium oxide precursor forming a protective layer on the surface exposed to the oxidizing medium. A minimal amount of chromium is required for the formation and maintenance of this protective layer. Too high a chromium content, however, is detrimental to strength and toughness at elevated temperatures, as it leads to too high rigidity and too low stress elongation that is incompatible with high temperature stresses.
  • the chromium content of an alloy which can be used according to the invention is 23 to 34% by weight, preferably of the order of 26 to 32% by weight, advantageously of approximately 27 to 30% by weight. .
  • the nickel, present in the alloy in the form of a solid solution with cobalt, is present in an amount of less than 5% by weight of the alloy.
  • the amount of nickel present in the alloy is less than 4%, or even less than 3% or even less than 2% by weight of the alloy.
  • the threshold at which the Ni is present only in the form of unavoidable impurities, excellent life values of plates, not yet observed so far, have also been obtained.
  • unavoidable impurities is meant within the meaning of the present invention that the nickel is not present intentionally in the composition of the alloy but that it is introduced in the form of impurities contained in at least one of the main elements of the alloy (or in at least one of the precursors of said main elements).
  • nickel was almost always present in the form of unavoidable impurities of at least 0.3% by weight and most often at least 0.5% by weight. or at least 0.7% by weight.
  • percentages of nickel in the alloy less than 0.3% by weight must also be considered as part of the invention, but the cost generated by such purity would then make the cost of the alloy too expensive to allow the commercial viability of the fiber drawing process.
  • Titanium is a more common element and less expensive than tantalum, so it penalizes less the final cost of the alloy.
  • the fact that this element is light can also be an advantage.
  • a minimum amount of titanium of 0.2 to 5% by weight of the alloy appeared preferable to produce a sufficient amount of TiC carbides, certainly due to the solubility of titanium in the cobalt cfc matrix.
  • a titanium content of the order of 0.5 to 4% seems advantageous, especially 0.6 to 3%. Excellent results have been obtained for alloys comprising Ti contents between 0.8 and 2%.
  • the alloys according to the invention comprising mixed carbides of tantalum and titanium demonstrate a still improved high temperature stability, as will be described later.
  • the tantalum present in the alloy is partly in solid solution in the cobalt matrix of which this heavy atom locally distorts the crystal lattice and hinders or even blocks the progression of the dislocations when the material is subjected to mechanical stress, thus contributing to the intrinsic strength of the matrix.
  • the minimum content of tantalum for the formation of mixed carbides with the Ti according to the invention is of the order of 0.5%, preferably of the order of 1% and very preferably of the order of 1, 5% or even 2%.
  • the upper limit of the tantalum content can be chosen to be about 7%.
  • the tantalum content is preferably of the order of 2 to 6%, in particular of 1 to 5%.
  • the tantalum content is very preferably less than 5%, even 4.5% or even 4% and advantageously close to 3.
  • a small amount of tantalum has the double advantage of substantially reducing the overall cost of the alloy but also to allow easy machining of said alloy. The higher the content of tantalum, the harder the alloy is, that is to say difficult to form.
  • the alloy may contain other elements in minority proportions or in the form of unavoidable impurities. It generally includes:
  • silicon as deoxidizer of the molten metal during the preparation and molding of the alloy, in a proportion of less than 1% by weight;
  • manganese also deoxidizing, in a proportion of less than 0.5% by weight
  • the cumulative amount of the other elements introduced as impurities with the essential constituents of the alloy advantageously represents less than 1% by weight of the composition of the alloy.
  • the alloys according to the invention are preferably free of Ce, La, B, Y, Dy, Re and other rare earths.
  • the alloys that can be used according to the invention which contain highly reactive elements, can be shaped by casting, in particular by inductive melting in at least partially inert atmosphere and casting in a sand mold.
  • the casting may optionally be followed by a heat treatment at a temperature that may go beyond the fiberizing temperature.
  • the invention also relates to a method of manufacturing an article by casting from the alloys described above as an object of the invention.
  • the process may comprise at least one cooling stage, after casting and / or after or during a heat treatment, for example by cooling in air, in particular with a return to ambient temperature.
  • the alloys that are the subject of the invention can be used to manufacture all kinds of parts mechanically stressed at high temperature and / or made to work in an oxidizing or corrosive medium.
  • the invention also relates to such articles made from an alloy according to the invention, in particular by foundry. Among such applications include the manufacture of articles used for the development or hot processing of glass, for example fiber plates for the manufacture of mineral wool.
  • the subject of the invention is also a process for the manufacture of mineral wool by internal centrifugation, in which a flow of molten mineral matter is poured into a fiber-drawing plate whose peripheral band is pierced with a multitude of orifices through which filaments of molten mineral material escape, which are then drawn into wool by the action of a gas, the temperature of the mineral material in the plate being at least 1200 ° C. and the fibering plate being made of an alloy as defined above.
  • the alloys according to the invention thus make it possible to fiber glass or a similar molten mineral composition having a liquidus temperature T
  • the fibering of these molten mineral compositions can be carried out in a temperature range (for the melt composition arriving in the plate) between T hq and T
  • these compositions of mineral material it may be preferred compositions containing a significant amount of iron, which are less corrosive vis-à-vis the constituent metal of the fiberizing members.
  • the process according to the invention advantageously uses a composition of oxidizing mineral material, in particular with respect to chromium, capable of repairing or reconstituting the protective layer of Cr 2 O 3 oxide which is established on the surface.
  • compositions containing iron essentially in ferric form may be preferred, in particular with a molar ratio of the degrees FeO oxidation II and III, expressed by the ratio of the order of 0.1 to 0.3,
  • FeO + Fe 2 O 3 in particular 0.15 to 0.20.
  • the mineral material composition contains a high iron content allowing rapid kinetics of reconstitution of chromium oxide with a level of iron oxide (so-called "total iron” rate, corresponding to the total content of iron expressed conventionally in the form of Fe 2 O 3 equivalent) of at least 3%, preferably at least 4%, in particular of the order of 4 to 12%, in particular of at least 5%.
  • total iron a level of iron oxide
  • this corresponds to a ferric iron content Fe 2 O 3 alone of at least 2.7%, preferably at least 3.6%
  • compositions are known in particular from WO-99/56525 and advantageously comprise the following constituents:
  • RO (CaO + MgO) 9-26%, preferably 12-25%
  • MgO 4-20% preferably 7-16%
  • compositions known from WO-00/171 17 are particularly suitable for the process according to the invention.
  • MgO being between 0 and 5%, especially between 0 and 2% when R 2 O ⁇ 13.0%.
  • the compositions have iron oxide levels of between 5 and 12%, especially between 5 and 8%, which can make it possible to obtain a fire resistance of the mineral wool mattresses.
  • the invention can be applied to the manufacture of very diverse articles, when they must have a high mechanical strength in an oxidizing and / or corrosive medium, particularly at high temperature.
  • these alloys can be used to make any type of refractory alloy fixed or moving parts for operating or operating a high temperature heat treatment furnace (beyond
  • a heat exchanger or a reactor in the chemical industry can thus be for example hot fan blades, cooking support, charging material, etc. They can also be used to produce any type of heating resistor intended to operate in a hot oxidizing atmosphere, and to realize Turbine components, used in land, sea or air vehicle engines or in any other application that does not target vehicles, eg power plants.
  • the invention thus relates to the use in an oxidizing atmosphere at a temperature of at least 1200 ° C of an article consisting of an alloy as defined above.
  • a molten charge is prepared for the following composition which is then formed by simply casting into a mold of sand:
  • the casting is followed by a heat treatment comprising a solution phase for 2 hours at 1200 ° C. and a secondary carbide precipitation phase for 10 hours at 1000 ° C., each of these stages ending with air cooling. to room temperature.
  • a second fibering plate 400 mm in diameter and having the same characteristics is prepared from a melted filler of the following composition: Cr 28.84%
  • the capacity of the plates thus formed was evaluated in the fiberglass fiber application. More specifically the plates were placed on a industrial fiber drawing line of a basaltic glass composition:
  • the plates are used with two different shots of 10 and 12,5 tons per day until their decision is decided following the ruin of the plate, declared by a visible deterioration or by a quality of fiber produced become insufficiently good .
  • the temperature of the mineral composition arriving in the plate is of the order of 1200 to 1240 ° C.
  • the temperature of the metal according to the profile of the plate is between 1160 and 1210 ° C.
  • Table 1 The results of the lifetimes of the plates, according to their conditions of use, are reported in Table 1. In this table, for the sake of clarity and to facilitate an immediate comparison, the values of the lifetimes obtained for Plates according to the invention (Examples 1 and 2) were matched with the values obtained for the reference plates (Example 3), for identical conditions of the course.
  • the solidus temperature of the alloy constituting the plates is then measured according to conventional differential thermal analysis (DTA) techniques, after their use in the preceding fiberizing process.
  • DTA differential thermal analysis
  • solidus temperature is meant in the sense of the present description, the melting temperature of alloys in equilibrium. Due to a different method of analysis, it should be noted that the values obtained from the solidus temperatures reported in Table 2 differ somewhat from the values previously obtained in WO 2005/052208. However, the relative differences in melting temperature between the alloys according to the invention and the reference alloy remain identical, whatever the method used.
  • the solidus temperature of the alloys according to the invention is about 10 ° C higher than the alloys of the prior art in all cases, which reflects a greater refractoriness. Because of the relative proximity between the operating temperature of the plate in the fiberizing process and the melting temperature of the constituent alloy of the plate, such an improvement is extremely significant and could justify on its own the superior properties. of high temperature strength, as observed on the present alloys.
  • Example 1 The high temperature strength properties of the alloys of Example 1 according to the invention and of Example 3 according to the prior art were evaluated in tests of resistance to three-point bending at 1250 ° C. load of 31 MPa for a period of 200 hours. The tests were carried out for each alloy on a series of parallelepipedic specimens of 30 mm wide and 3 mm thick, the load being exerted in the middle of a center distance of 37 mm. The results are shown in Table 3. Table 3 shows the slope of the three-point creep curves obtained for each alloy, said slope illustrating the rate of deformation (in ⁇ m.h "1 ) of the specimen by creep.
  • Table 3 summarizes all the results obtained, giving for each alloy the average creep rates, as well as the maximum and minimum values observed over the entire set of test pieces.

Abstract

- Alliage, caractérisé en ce qu'il contient les éléments suivants (les proportions étant indiquées en pourcentage pondéral de l'alliage) : Cr 23 à 34% Ti 0,2 à 5 % Ta 0,5 à 7 % C 0,2 à 1,2 % Ni moins de 5% Fe moins de 3% Si moins de 1 % Mn moins de 0,5% le reste étant constitué par du cobalt et des impuretés inévitables. - Article pour la fabrication de laine minérale, notamment assiette de fibrage, réalisé en un tel alliage.

Description

ALLIAGE REFRACTAIRE, ASSIETTE DE FIBRAGE ET PROCEDE DE FABRICATION DE LAINE MINERALE
La présente invention concerne un alliage métallique pour utilisation à très haute température, notamment utilisable dans un procédé de fabrication de laine minérale par fibrage d'une composition minérale en fusion, ou plus généralement pour la constitution d'outils doués de résistance mécanique à haute température en milieu oxydant tel que le verre fondu, et des alliages à base de cobalt utilisables à haute température, notamment pour la réalisation d'articles pour l'élaboration et/ou la transformation à chaud du verre ou autre matière minérale, tels que des organes de machines de fabrication de laine minérale.
Une technique de fibrage, dite par centrifugation interne, consiste à laisser tomber continûment du verre liquide à l'intérieur d'un ensemble de pièces de révolution tournant à très grande vitesse de rotation autour de leur axe vertical. Une pièce maîtresse, dénommée « assiette », plus souvent désignée dans la technique sous le terme anglais « spinner », reçoit le verre contre une paroi dite « bande » percée de trous, que le verre traverse sous l'effet de la force centrifuge pour s'en échapper de toutes parts sous la forme de filaments fondus. Un brûleur annulaire situé au-dessus de l'extérieur de l'assiette, produisant un courant de gaz descendant longeant la paroi extérieure de la bande, dévie ces filaments vers le bas en les étirant. Ceux-ci se « solidifient » ensuite sous la forme de laine de verre. L'assiette est un outil de fibrage très sollicité thermiquement (chocs thermiques lors des démarrages et arrêts, et établissement en utilisation stabilisée d'un gradient de température le long de la pièce), mécaniquement (force centrifuge, érosion due au passage du verre) et chimiquement (oxydation et corrosion par le verre fondu, et par les gaz chauds sortant du brûleur autour de l'assiette). Ses principaux modes de détérioration sont : la déformation par fluage à chaud des parois verticales, l'apparition de fissures horizontales ou verticales, l'usure par érosion des orifices de fibrage, qui nécessitent le remplacement pur et simple des organes. Leur matériau constitutif se doit donc de résister pendant un temps de production suffisamment long pour rester compatible avec les contraintes techniques et économiques du procédé. On recherche à cet effet des matériaux doués d'une certaine ductilité, de résistance au fluage et résistance à la corrosion et/ou oxydation. Différents matériaux connus pour la réalisation de ces outils sont des superalliages à base de nickel ou de cobalt renforcés par précipitation de carbures. Des alliages particulièrement réfractaires sont à base de chrome, de cobalt (élément réfractaire qui apporte à la matrice de l'alliage une résistance mécanique intrinsèque à haute température améliorée) et de nickel (pour stabiliser le réseau cristallin cubique face centrée du Co).
On connaît ainsi de WO-A-99/16919 un alliage à base de cobalt ayant des propriétés mécaniques améliorées à haute température, comprenant les éléments suivants ( en pourcentage pondéral de l'alliage ) :
Cr 26 à 34% Ni 6 à 12%
W 4 à 8%
Ta 2 à 4%
C 0,2 à 0,5%
Fe moins de 3% Si moins de 1 %
Mn moins de 0,5%
Zr moins de 0,1 % le reste étant constitué par du cobalt et des impuretés inévitables, le rapport molaire du tantale par rapport au carbone étant de l'ordre de 0,4 à 1. La sélection des proportions en carbone et tantale est destinée à former dans l'alliage un réseau dense mais discontinu de carbures intergranulaires constitués essentiellement par des carbures de chrome sous forme Cr7C3 et (Cr,W)23C6 et par des carbures de tantale TaC. Cette sélection confère à l'alliage des propriétés mécaniques et de résistance à l'oxydation améliorées à haute température, permettant le fibrage d'un verre fondu dont la température est de 1080°C.
On connaît également de WO 01/90429, des alliages à base de cobalt susceptibles d'être employés à des températures encore plus élevées. Ces alliages présentant un bon compromis entre la résistance mécanique et la résistance à l'oxydation à partir de 1 100°C grâce à une microstructure dont les zones intergranulaires sont riches en précipités de carbure de tantale. Ces carbures jouent d'une part le rôle d'un renfort mécanique en s'opposant au fluage intergranulaire à très haute température, et d'autre part ont un effet sur la tenue à l'oxydation lié à leur oxydation en Ta2O5, qui forme des oxydes occupant tout l'ancien volume des carbures TaC empêchant la pénétration du milieu agressif (verre liquide, gaz chauds) dans les espaces intergranulaires. Plus récemment, il a été décrit, dans la demande WO2005/052208, un alliage doué d'une forte résistance mécanique à haute température en milieu oxydant, sur la base d'une matrice cobalt stabilisée par du nickel et renfermant du chrome, renforcée par précipitation de carbures, notamment de titane et de tantale. Les alliages décrits dans les demandes de brevet précédentes peuvent notamment être utilisés en conditions industrielles pour le fibrage de nouvelles compositions de verre, en particulier basaltiques, dont la température de fusion est supérieure à celle des compositions classiquement utilisées dans les procédés d'obtention de laine de verre. De telles compositions sont décrites dans la suite de la présente description.
Par exemple une assiette de fibrage faite à partir de l'alliage décrit dans l'exemple 6 de WO 2005/052208 peut supporter sur des durées relativement grandes des températures du verre en fusion de l'ordre de 1200 à 1240 °C, correspondant à une température du métal comprise entre 1 160 et 1210 °C, suivant le profil de l'assiette.
La production industrielle de fibres de verres de type basaltique ne peut cependant être économiquement intéressante que si la résistance mécanique de l'assiette, et donc de l'alliage constitutif, est suffisante aux températures de fibrages mentionnées précédemment. En particulier la durée de vie de l'assiette au sein du dispositif de fibrage, qui est l'un des facteurs de coût les plus importants dans le procédé global de fibrage, sera d'autant plus longue que la résistance mécanique de l'alliage, combiné à sa résistance à la corrosion, sera importante.
La présente invention vise à fournir des alliages encore améliorés dont la résistance mécanique à haute température est accrue, permettant de travailler à une température (pour le métal) pouvant aller jusqu'à 1200 °C, voire à des températures supérieures, et présentant une durée de vie améliorée dans de telles conditions de fibrage.
En particulier, la présente invention a pour objet un alliage à base de cobalt, comprenant en outre du chrome, et du carbone, qui contient des éléments suivants (les proportions étant indiquées en pourcentage pondéral de l'alliage) :
Cr 23 à 34%
Ti 0,2 à 5 %
Ta 0,5 à 7 %
C 0,2 à 1 ,2% Ni moins de 5%
Fe moins de 3%
Si moins de 1 %
Mn moins de 0,5% le reste étant constitué par du cobalt et des impuretés inévitables. L'alliage selon la présente invention se différencie des alliages incorporant des carbures de Ti et de Ta décrits dans la demande WO 2005/052208 (voir en particulier les exemples 6 et 7), en ce que la teneur en nickel est sensiblement inférieure à celles décrites dans cette publication (8,7% poids pour les alliages des exemples 6 et 7). On pensait jusqu'à présent que la présence d'une telle quantité de nickel était nécessaire pour étendre le domaine de stabilité en température de la structure cristalline cubique à faces centrées de la matrice de Cobalt (voir par exemple page 7 lignes 18-21 de WO2005/052208 ou page 8 lignes 29-32 et page
17 lignes 25-30 de WO 2001/90429). En outre, des essais menés sur les alliages de la demande WO99/16919 avaient montré que la présence d'une quantité substantielle de Nickel apparaissait préférable pour limiter l'oxydation de tels alliages lors de leur utilisation dans un procédé de fibrage à haute température.
De façon inattendue et même au contraire de ce qu'on pouvait attendre, les propriétés des compositions d'alliage selon la présente invention, c'est-à-dire présentant une proportion de nickel beaucoup plus faible que précédemment décrit, sont apparues supérieures à celles des alliages précédemment décrits. En particulier, les durées de vie des assiettes obtenues à partir des alliages selon l'invention durant un procédé de fibrage à haute température sont apparues très sensiblement améliorées.
On pourra se reporter à la demande WO 2005/052208 pour une description complète des avantages et de la microstructure présente dans les alliages selon la présente invention. En effet les microstructures des nouveaux alliages, observées en microscopie électronique, sont pour l'essentiel quasiment identiques à ceux déjà décrits dans la demande WO 2005/052208. En particulier, on observe des carbures mixtes de Ta et de Ti (Ta1Ti)C disposés au joints de grains des alliages, qui présentent une microstructure améliorée à haute température : moins de fragmentation et moins de raréfaction des carbures (Ta1Ti)C. Mieux, l'addition de Ti aux carbures TaC stabilise tellement ces derniers à haute température que de fins carbures secondaires (Ta,Ti)C, très utiles pour la résistance au fluage intragranulaire, précipitent spontanément dans la matrice (alors que généralement les précipités secondaires obtenus par traitement thermique spécial ont plutôt tendance à disparaître dans les mêmes conditions). Cette stabilité vis-à-vis des hautes températures, rend ces carbures (Ta1Ti)C particulièrement avantageux.
Il est avantageux de privilégier les carbures (Ta1Ti)C comme principale phase durcissante, en respectant un rapport des teneurs atomiques de la somme des métaux (Ta+Ti) au carbone proche de 1 , mais pouvant être supérieur, notamment de l'ordre de 0,9 à 2. En particulier un léger écart inférieur à l'unité reste admissible dans le sens que les quelques carbures supplémentaires qui pourraient être générés (carbures de chrome) ne sont pas gênants pour l'ensemble des propriétés à toutes températures. Une plage de rapport avantageuse est généralement de 0,9 à 1 ,5.
Le carbone est un constituant essentiel de l'alliage, nécessaire à la formation des précipités de carbures métalliques. En particulier, la teneur en carbone détermine directement la quantité de carbures présente dans l'alliage. Elle est d'au moins 0,2% poids pour obtenir le renfort minimum désiré, de préférence d'au moins 0,6% poids, mais préférentiellement limitée à au plus 1 ,2% poids pour éviter que l'alliage ne devienne dur et difficile à usiner en raison d'une trop grande densité de renforts. Le manque de ductilité de l'alliage à de telles teneurs l'empêche d'accommoder sans se rompre une déformation imposée (par exemple d'origine thermique) et de résister suffisamment à la propagation des fissures.
De façon déjà décrite, le chrome contribue à la résistance mécanique intrinsèque de la matrice dans laquelle il est présent en partie en solution solide, et dans certains cas aussi sous forme de carbures essentiellement de type Cr23C6 en dispersion fine à l'intérieur des grains où ils apportent une résistance au fluage intragranulaire ou sous forme de carbures de type Cr7C3 ou Cr23C6 présents aux joints de grains, qui empêchent le glissement grain sur grain contribuant ainsi également au renforcement intergranulaire de l'alliage. Le chrome contribue à la résistance à la corrosion en tant que précurseur d'oxyde de chrome formant une couche protectrice à la surface exposée au milieu oxydant. Une quantité minimale de chrome est nécessaire pour la formation et le maintien de cette couche protectrice. Une teneur en chrome trop élevée est cependant néfaste à la résistance mécanique et à la ténacité aux températures élevées, car elle conduit à une rigidité trop élevée et une aptitude à l'allongement sous contrainte trop faible incompatible avec les contraintes à haute température.
De façon générale, la teneur en chrome d'un alliage utilisable selon l'invention est de 23 à 34% en poids, de préférence de l'ordre de 26 à 32% en poids, avantageusement d'environ 27 à 30% en poids.
Le nickel, présent dans l'alliage sous forme d'une solution solide avec le cobalt, est présent dans une quantité inférieure à 5% en poids de l'alliage. De préférence la quantité de nickel présente dans l'alliage est inférieure à 4%, voire même inférieure à 3% ou encore inférieure à 2% en poids de l'alliage. En dessous de 1 % en poids de l'alliage, seuil sous lequel le Ni n'est présent que sous la forme d'impuretés inévitables, d'excellentes valeurs de durée de vie des assiettes, non encore observées jusqu'ici, ont également été obtenues. Par impuretés inévitables, on entend au sens de la présente invention que le Nickel n'est pas présent de façon intentionnelle dans la composition de l'alliage mais qu'il est introduit sous la forme d'impuretés contenues dans au moins un des éléments principaux de l'alliage (ou dans au moins un des précurseurs desdits éléments principaux).
Le plus généralement, les essais effectués par le demandeur ont montré que le Nickel était quasiment toujours présent sous la forme d'impuretés inévitables à hauteur d'au moins 0,3% poids et le plus souvent d'au moins 0,5% poids, voire d'au moins 0,7% poids. Des pourcentages de Nickel dans l'alliage inférieurs à 0,3% poids doivent cependant également être considérés comme compris dans le cadre de l'invention, mais le coût engendré par une telle pureté rendrait alors le coût de l'alliage trop onéreux pour permettre la viabilité commerciale du procédé de fibrage.
Le titane étant un élément plus courant et moins coûteux que le tantale, il pénalise donc moins le coût final de l'alliage. Le fait que cet élément soit léger peut aussi être un avantage. Une quantité minimale de titane de 0,2 à 5 % en poids de l'alliage est apparue préférable pour produire une quantité de carbures TiC suffisante, certainement en raison de la solubilité du titane dans la matrice cfc du cobalt. Une teneur en titane de l'ordre de 0,5 à 4% semble avantageuse, notamment 0,6 à 3%. D'excellents résultats ont été obtenus pour des alliages comprenant des teneurs en Ti comprises entre 0,8 et 2%.
En comparaison des alliages décrits dans la demande WO2005/052208, les alliages selon l'invention comprenant des carbures mixtes de tantale et de titane démontrent une stabilité à haute température encore améliorée, comme il sera décrit par la suite. Le tantale présent dans l'alliage se trouve en partie en solution solide dans la matrice de cobalt dont cet atome lourd distord localement le réseau cristallin et gêne, voire bloque, la progression des dislocations quand le matériau est soumis à un effort mécanique, contribuant ainsi à la résistance intrinsèque de la matrice. La teneur minimale en tantale permettant la formation de carbures mixtes avec le Ti selon l'invention est de l'ordre de 0,5 %, de préférence de l'ordre de 1 % et de manière très préférée de l'ordre de 1 ,5%, voire 2%. La limite supérieure de la teneur en tantale peut être choisie à environ 7 %. La teneur en tantale est de préférence de l'ordre de 2 à 6%, en particulier de 1 ,5 à 5%. La teneur en tantale est de manière très préférée inférieure à 5%, voire 4,5% ou même 4% et avantageusement proche de 3. Une faible quantité de tantale présente le double avantage de diminuer substantiellement le coût global de l'alliage mais également de permettre un usinage facilité dudit alliage. Plus la teneur en tantale est élevée plus l'alliage est dur, c'est à dire difficile à mettre en forme.
L'alliage peut contenir d'autres éléments dans des proportions minoritaires ou sous forme d'impuretés inévitables. Il comporte en général :
- du silicium en tant que désoxydant du métal fondu lors de l'élaboration et du moulage de l'alliage, à raison de moins de 1 % en poids ;
- du manganèse également désoxydant, à raison de moins de 0,5% en poids ;
- du fer, en une proportion pouvant aller jusqu'à 3% en poids sans altération des propriétés du matériau et de préférence en une proportion inférieure ou égale à 2% poids, par exemple inférieure ou égale à 1 % poids ;
- la quantité cumulée des autres éléments introduits à titre d'impuretés avec les constituants essentiels de l'alliage (« impuretés inévitables ») représente avantageusement moins de 1 % en poids de la composition de l'alliage.
Les alliages selon l'invention sont de préférence exempts de Ce, La, B, Y, Dy, Re et autres terres rares.
Les alliages utilisables selon l'invention, qui contiennent des éléments hautement réactifs, peuvent être mis en forme par fonderie, notamment par fusion inductive sous atmosphère au moins partiellement inerte et coulée en moule de sable. La coulée peut éventuellement être suivie d'un traitement thermique à une température pouvant aller au-delà de la température de fibrage.
L'invention a également pour objet un procédé de fabrication d'un article par fonderie à partir des alliages décrits précédemment comme objet de l'invention. Le procédé peut comprendre au moins une étape de refroidissement, après la coulée et/ou après ou au courant d'un traitement thermique, par exemple par refroidissement à l'air, notamment avec un retour à la température ambiante. Les alliages objets de l'invention peuvent être utilisés pour fabriquer toutes sortes de pièces sollicitées mécaniquement à haute température et/ou amenées à travailler en milieu oxydant ou corrosif. L'invention a encore pour objets de tels articles fabriqués à partir d'un alliage selon l'invention, notamment par fonderie. Parmi de telles applications on peut citer notamment la fabrication d'articles utilisables pour l'élaboration ou la transformation à chaud du verre, par exemple des assiettes de fibrage pour la fabrication de laine minérale.
Ainsi l'invention a-t-elle également pour objet un procédé de fabrication de laine de minérale par centrifugation interne, dans lequel on déverse un débit de matière minérale en fusion dans une assiette de fibrage dont la bande périphérique est percée d'une multitude d'orifices par lesquels s'échappent des filaments de matière minérale fondue qui sont ensuite étirés en laine sous l'action d'un gaz, la température de la matière minérale dans l'assiette étant d'au moins 1200°C et l'assiette de fibrage étant constituée d'un alliage tel que défini ci- dessus.
Les alliages selon l'invention permettent donc de fibrer du verre ou une composition minérale fondue similaire ayant une température de liquidus T|iq de l'ordre de 1 130°C ou plus, par exemple de 1 130 à 1200 °C, notamment 1 170°C ou plus. En général, le fibrage de ces compositions minérales fondues peut être effectué dans une plage de températures (pour la composition fondue parvenant dans l'assiette) comprise entre Thq et T|0g2,5 où T|0g2,5 est la température à laquelle la composition fondue présente une viscosité de 102'5 poise (dPa.s), typiquement de l'ordre de 1200 °C ou plus, par exemple de 1240 à 1250°C ou plus. Parmi ces compositions de matière minérale, on peut préférer des compositions renfermant une quantité de fer significative, qui sont moins corrosives vis-à-vis du métal constitutif des organes de fibrage.
Ainsi, le procédé selon l'invention utilise avantageusement une composition de matière minérale oxydante notamment vis-à-vis du chrome, capable de réparer ou reconstituer la couche protectrice d'oxyde Cr2O3 qui s'établit en surface. A cet égard, on peut préférer des compositions renfermant du fer essentiellement sous forme ferrique (oxyde Fe2O3), notamment avec un rapport molaire des degrés FeO d'oxydation II et III, exprimé par le rapport de l'ordre de 0,1 à 0,3,
FeO+ Fe2O3 notamment 0,15 à 0,20.
Avantageusement, la composition de matière minérale renferme une teneur en fer élevée permettant une cinétique rapide de reconstitution de l'oxyde de chrome avec un taux d'oxyde de fer (taux dit « fer total », correspondant à la teneur totale en fer exprimée conventionnellement sous forme de Fe2O3 équivalent) d'au moins 3%, de préférence d'au moins 4%, notamment de l'ordre de 4 à 12%, en particulier d'au moins 5%. Dans la plage de redox ci-dessus, cela correspond à une teneur en fer ferrique Fe2O3 seul d'au moins 2,7%, de préférence au moins 3,6%
De telles compositions sont connues notamment de WO-99/56525 et comprennent avantageusement les constituants suivants :
SiO2 38-52%, de préférence 40-48%
AI2O3 17-23%
SiO2+ AI2O3 56-75%, de préférence 62-72%
RO (CaO+MgO) 9-26%, de préférence 12-25%
MgO 4-20%, de préférence 7-16%
MgO/CaO > 0,8 , de préférence > 1 ,0 ou > 1 , 15
R2O (Na2O+K2O) > 2%
P2O5 0-5%
Fer total (Fe2O3) > 1 ,7%, de préférence > 2%
B2O3 0-5%
MnO 0-4%
TiO2 0-3%
D'autres compositions connues de WO-00/171 17 se révèlent particulièrement appropriées pour le procédé selon l'invention.
Elles sont caractérisées par les pourcentages pondéraux suivants : SiO2 39-55%, de préférence 40-52%
AI2O3 16-27%, -- 16-25%
CaO 3-35%, - 10-25%
MgO 0-15%, -- 0-10% Na2O 0-15%, -- 6-12%
K2O 0-15%, -- 3-12%
R2O ( Na2O + K2O) 10-17%, - 12-17%
P2O5 0-3%, - 0-2% Fer total (Fe2O3) 0-15%, -- 4-12%
B2O3 0-8%, - 0-4%
TiO2 0-3%,
MgO étant compris entre O et 5%, notamment entre O et 2% lorsque R2O ≤ 13,0%.
Selon un mode de réalisation, les compositions possèdent des taux d'oxyde de fer compris entre 5 et 12%, notamment entre 5 et 8%, ce qui peut permettre d'obtenir une tenue au feu des matelas de laines minérales.
Bien que l'invention ait été décrite principalement dans ce cadre de la fabrication de laine minérale, elle peut être appliquée à l'industrie verrière en général pour réaliser des éléments ou accessoires de four, de filière, ou de feeder notamment pour la production de fils de verre textile, de verre d'emballage.
En dehors de l'industrie verrière, l'invention peut s'appliquer à la fabrication d'articles très divers, lorsque ceux-ci doivent présenter une résistance mécanique élevée en milieu oxydant et/ou corrosif, en particulier à haute température.
De manière générale, ces alliages peuvent servir à réaliser tout type de pièces fixes ou mobiles en alliage réfractaire servant au fonctionnement ou à l'exploitation d'un four de traitement thermique à haute température (au-delà de
1200°C), d'un échangeur de chaleur ou d'un réacteur de l'industrie chimique. Il peut ainsi s'agir par exemple de pales de ventilateur chaud, de support de cuisson, de matériel d'enfournement... Ils peuvent aussi servir à réaliser tout type de résistance chauffante destinée à fonctionner en atmosphère chaude oxydante, et à réaliser des éléments de turbine, entrant dans des moteurs de véhicule terrestre, maritime ou aérien ou dans toute autre application ne visant pas des véhicules, par exemple des centrales de production d'énergie.
L'invention a ainsi pour objet l'utilisation en atmosphère oxydante à une température d'au moins 1200°C d'un article constitué d'un alliage tel que défini précédemment. Les exemples qui suivent, nullement restrictifs des compositions selon l'invention ou des conditions de la mise en œuvre des assiettes de fibrage selon l'invention, illustrent les avantages de la présente invention.
EXEMPLE 1
Par la technique de fusion inductive sous atmosphère inerte (notamment argon) on prépare une charge fondue de la composition suivante que l'on met ensuite en forme par simple coulée en moule de sable :
Cr 27,83% Ni 1 ,33%
C 0,36%
Ta 3,08%
Ti 1 ,34%
Fe 2,00% Mn < 0,5%
Si < 0,3%
Zr < 0,1 % somme autres impuretés < 1 %, le reste étant constitué par du cobalt. La coulée est suivie par un traitement thermique comportant une phase de mise en solution pendant 2 heures à 1200°C et une phase de précipitation des carbures secondaires pendant 10 heures à 1000°C, chacun de ces paliers finissant par un refroidissement à l'air jusqu'à la température ambiante.
De cette manière, une assiette de fibrage de 400 mm de diamètre de forme classique a été fabriquée.
EXEMPLE 2 :
Selon un procédé de fabrication identique à l'exemple 1 , on prépare une deuxième assiette de fibrage de 400 mm de diamètre et présentant les mêmes caractéristiques, à partir d'une charge fondue de la composition suivante : Cr 28,84%
Ni 0,78%
C 0,41 %
Ta 2,95%
Ti 1 ,21 %
Fe 0,66%
Mn < 0,5%
Si < 0,3%
Zr < 0,1 % somme autres impuretés < 1 %, le reste étant constitué par du cobalt.
EXEMPLE 3 (comparatif) :
Selon les mêmes conditions que pour les exemples 1 à 2 qui précédent, on prépare à titre de comparaison deux assiettes de diamètres 400 mm identiques aux précédentes par leurs caractéristiques de forme mais obtenues à partir de la composition d'alliage selon l'exemple 6 de WO 2005/052208 :
Cr 28,3%
Ni 8,7%
C 0,4%
Ta 3,0%
Ti 1 ,5%
Fe <2%
Mn < 0,5%
Si < 0,3%
Zr < 0,1 % somme autres impuretés < 1 %, le reste étant constitué par du cobalt.
La capacité des assiettes ainsi formées a été évaluée dans l'application de fibrage de laine de verre. Plus précisément les assiettes ont été placées sur une ligne industrielle de fibrage d'un verre basaltique de composition :
Figure imgf000015_0001
II s'agit d'un verre relativement oxydant par rapport à un verre classique en raison de sa teneur élevée en fer et d'un redox de 0,15. Sa température de liquidus est de 1 140°C.
Les assiettes sont utilisées avec deux tirées différentes de 10 et 12,5 tonnes par jour jusqu'à ce que leur arrêt soit décidé suite à la ruine de l'assiette, déclarée par une détérioration visible ou par une qualité de fibre produite devenue insuffisamment bonne.
Mises à part les variations de tirée, les conditions de fibrage sont restées identiques d'une assiette à l'autre : la température de la composition minérale arrivant dans l'assiette est de l'ordre de 1200 à 1240°C. La température du métal suivant le profil de l'assiette est comprise entre 1 160 et 1210°C. Les résultats des durées de vie des assiettes, en fonction de leurs conditions d'utilisation, sont reportées dans le tableau 1. Dans ce tableau, dans un souci de clarté et pour faciliter une comparaison immédiate, les valeurs des durées de vie obtenues pour les assiettes selon l'invention (exemples 1 et 2) ont été mises en correspondance avec les valeurs obtenues pour les assiettes de référence (exemple 3), pour des conditions de la tirée identiques.
Figure imgf000016_0001
Tableau 1
On voit dans le tableau 1 que les assiettes selon la présente invention présentent toujours, pour des conditions d'utilisation comparables, les durées de vie les plus longues.
On mesure ensuite selon les techniques conventionnelles d'analyse thermique différentielle (ATD) la température de solidus de l'alliage constitutif des assiettes, après leur utilisation dans le procédé de fibrage précédent. Par le terme « température de solidus », on entend au sens de la présente description, la température de fusion des alliages à l'équilibre. En raison d'une méthode d'analyse différente, il faut noter que les valeurs obtenues des températures de solidus reportées dans le tableau 2 diffèrent un peu des valeurs précédemment obtenues dans WO 2005/052208. Cependant, les écarts relatifs de température de fusion entre les alliages selon l'invention et l'alliage de référence restent identiques, quelque soit la méthode utilisée.
Les résultats obtenus sont reportés dans le tableau 2 :
Figure imgf000017_0001
On voit que la température de solidus des alliages selon l'invention est supérieure d'environ 10°C aux alliages de l'art antérieur dans tous les cas, ce qui traduit une plus grande réfractai rite. Du fait de la relative proximité entre la température de fonctionnement de l'assiette dans le procédé de fibrage et la température de fusion de l'alliage constitutif de l'assiette, une telle amélioration est extrêmement significative et pourrait justifier à elle seule les propriétés supérieures de résistance mécanique à haute température, telles qu'observées sur les présents alliages.
Les propriétés de résistance mécanique à haute température des alliages de l'exemple 1 selon l'invention et de l'exemple 3 selon l'art antérieur ont été évaluées dans des essais de tenue au fluage en flexion trois points à 1250°C sous une charge de 31 MPa pendant une durée de 200 heures. Les essais ont porté pour chaque alliage sur une série d'éprouvettes parallélépipédiques de 30 mm de large et de 3 mm d'épaisseur, la charge étant exercée au milieu d'un entraxe de 37 mm. Les résultats sont reportés dans le tableau 3. Dans le tableau 3 est reportée la pente des courbes de fluage trois points obtenues pour chaque alliage, ladite pente illustrant la vitesse de déformation (en μm.h"1) de l'éprouvette par fluage.
Le tableau 3 résume l'ensemble des résultats obtenus, en donnant pour chaque alliage la moyenne des vitesses de fluage, ainsi que les valeurs maximales et minimales observées sur toute la série d'éprouvettes.
Figure imgf000018_0001
Tableau 3
Par la comparaison des données reportées dans le tableau 3, on observe, pour l'alliage selon l'invention, une résistance au fluage sous contrainte à haute température sensiblement améliorée. Combinée à l'augmentation de la température de solidus des alliages selon l'invention, cette amélioration de la résistance au fluage conduit à l'augmentation de la durée de vie d'une assiette fabriquée à partir d'un alliage selon l'invention lorsque celle-ci est mise en œuvre sur une ligne industrielle de fibrage d'un verre basaltique, tel que reporté précédemment.

Claims

REVENDICATIONS
1. Alliage, caractérisé en ce qu'il contient les éléments suivants, (les proportions étant indiquées en pourcentage pondéral de l'alliage) : Cr 23 à 34%
Ti 0,2 à 5 %
Ta 0,5 à 7 %
C 0,2 à 1 ,2 %
Ni moins de 5% Fe moins de 3%
Si moins de 1 %
Mn moins de 0,5% le reste étant constitué par du cobalt et des impuretés inévitables.
2. Alliage selon la revendication 1 , caractérisé en ce qu'il comprend moins de 4% poids de Ni, de préférence moins de 3% poids de Ni et de manière très préférée moins de 2% poids de Ni.
3. Alliage selon la revendication 1 ou 2, caractérisé en ce qu'il comprend au moins 0,2% et préférentiellement au moins 0,6% en poids de carbone.
4. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les métaux Ti et Ta, dans un rapport molaire au carbone (Ti+Ta)/C de l'ordre de 0,9 à 2, en particulier de 0,9 à 1 ,5.
5. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend 0,5 à 4 % en poids de titane, de préférence de l'ordre de 0,6 à 3% en poids de titane.
6. Alliage selon l'une des revendications précédentes, caractérisé en ce que la teneur en tantale est de l'ordre de 1 à 7%, en particulier de l'ordre de 2 à 6%.
7. Alliage selon l'une des revendications précédentes, caractérisé en ce que la teneur en chrome est de l'ordre de 26 à 32%, en particulier de l'ordre de 27 à 30%.
8. Article pour la fabrication de laine minérale réalisé en un alliage selon l'une quelconque des revendications 1 à 7, notamment par fonderie.
9. Assiette de fibrage pour la fabrication de laine minérale réalisé en un alliage selon l'une quelconque des revendications 1 à 8, notamment par fonderie.
10. Procédé de fabrication de laine minérale par centrifugation interne, dans lequel on déverse un débit de matière minérale en fusion dans une assiette de fibrage selon la revendication 9 dont la bande périphérique est percée d'une multitude d'orifices par lesquels s'échappent des filaments de matière minérale fondue qui sont ensuite étirés en laine sous l'action d'un gaz, la température de la matière minérale dans l'assiette étant d'au moins 1200°C.
1 1. Procédé selon la revendication 10, caractérisé en ce que la matière minérale fondue a une température de liquidus de l'ordre de 1130°C ou plus, notamment 1 170 °C ou plus.
PCT/FR2008/052140 2007-11-30 2008-11-27 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale WO2009071847A1 (fr)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2010535433A JP5461418B2 (ja) 2007-11-30 2008-11-27 耐火合金、繊維形成板、および鉱物ウールを製造する方法
DK08856969.4T DK2222885T3 (da) 2007-11-30 2008-11-27 Legering af kobolt, fibreringsspinder og fremgangsmåde til fremstilling af mineraluld
PL08856969T PL2222885T3 (pl) 2007-11-30 2008-11-27 Stop kobaltowy, tarcza do formowania włókien i sposób wytwarzania wełny mineralnej
SI200831173T SI2222885T1 (sl) 2007-11-30 2008-11-27 Kobaltova zlitina, predilni kroĹľnik in postopek za pripravo mineralne volne
ES08856969.4T ES2453499T3 (es) 2007-11-30 2008-11-27 Aleación de cobalto, plato de formación de fibras y procedimiento de fabricación de lana mineral
CN200880118426.XA CN101878318B (zh) 2007-11-30 2008-11-27 耐火合金、拉制旋转器及矿棉的生产方法
EA201000913A EA017210B1 (ru) 2007-11-30 2008-11-27 Жаропрочный сплав, тарелка для формирования волокна и способ изготовления минеральной ваты
UAA201008139A UA98183C2 (uk) 2007-11-30 2008-11-27 Жароміцний сплав, виріб для виготовлення мінеральної вати, тарілка для формування волокна і спосіб виготовлення мінеральної вати
CA2706450A CA2706450C (fr) 2007-11-30 2008-11-27 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale
EP08856969.4A EP2222885B1 (fr) 2007-11-30 2008-11-27 Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale
AU2008333024A AU2008333024B2 (en) 2007-11-30 2008-11-27 Refractory alloy, fibre-forming plate and method for producing mineral wool
US12/744,496 US8262964B2 (en) 2007-11-30 2008-11-27 Refractory alloy, fibre-forming plate and method for producing mineral wool
BRPI0819639A BRPI0819639B8 (pt) 2007-11-30 2008-11-27 liga, artigo e fieira de formação de fibra para a fabricação de lã mineral e processo de fabricação de lã mineral.
EG2010050806A EG26118A (en) 2007-11-30 2010-05-17 Heat-resistant alloy, fiber panel and mineral wool production method
ZA2010/03834A ZA201003834B (en) 2007-11-30 2010-05-28 Refractory alloy, fibre-forming plate and method for producing mineral wood
HRP20140302AT HRP20140302T1 (en) 2007-11-30 2014-03-28 Cobalt alloy, fibre-forming plate and method for producing mineral wool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759451 2007-11-30
FR0759451A FR2924442B1 (fr) 2007-11-30 2007-11-30 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale

Publications (1)

Publication Number Publication Date
WO2009071847A1 true WO2009071847A1 (fr) 2009-06-11

Family

ID=39758463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/052140 WO2009071847A1 (fr) 2007-11-30 2008-11-27 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale

Country Status (20)

Country Link
US (1) US8262964B2 (fr)
EP (1) EP2222885B1 (fr)
JP (1) JP5461418B2 (fr)
KR (1) KR101571143B1 (fr)
CN (1) CN101878318B (fr)
BR (1) BRPI0819639B8 (fr)
CA (1) CA2706450C (fr)
CL (1) CL2010000574A1 (fr)
CO (1) CO6210750A2 (fr)
DK (1) DK2222885T3 (fr)
EA (1) EA017210B1 (fr)
EG (1) EG26118A (fr)
ES (1) ES2453499T3 (fr)
FR (1) FR2924442B1 (fr)
HR (1) HRP20140302T1 (fr)
PL (1) PL2222885T3 (fr)
SI (1) SI2222885T1 (fr)
UA (1) UA98183C2 (fr)
WO (1) WO2009071847A1 (fr)
ZA (1) ZA201003834B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894132A1 (fr) 2014-01-14 2015-07-15 Sager AG Composition de fibres minérales
WO2019096619A1 (fr) 2017-11-20 2019-05-23 Stm Technologies S.R.L. Alliage à base de cobalt présentant une résistance élevée à de hautes températures, dispositif de filage pour la production de fibres minérales comprenant ledit alliage et procédé pour la production de fibres minérales qui utilise un tel dispositif de filage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990249B2 (ja) * 2017-02-28 2022-01-12 サン-ゴバン セバ 繊維形成用プレートのための合金

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength
JP2002256363A (ja) * 2001-03-06 2002-09-11 Kawasaki Steel Corp 耐ピックアップ性・耐高温摩耗特性に優れた表面被覆材料
WO2005052208A1 (fr) * 2003-11-26 2005-06-09 Saint-Gobain Isover Alliage refractaire et procede de fabrication de laine minerale

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881918A (en) * 1974-05-09 1975-05-06 Owens Corning Fiberglass Corp Cobalt-base superalloy
US20030221756A1 (en) 1997-09-29 2003-12-04 Isover Saint Gobain Cobalt based alloy, article made from said alloy and method for making same
US6266979B1 (en) * 1999-09-02 2001-07-31 Johns Manville International, Inc. Spinner disc alloy
US6361836B1 (en) * 1999-12-09 2002-03-26 Johns Manville International, Inc. Method of making spinner discs for rotary fiberization processes
FR2809387B1 (fr) 2000-05-23 2002-12-20 Saint Gobain Isover Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
JP4128832B2 (ja) * 2002-09-09 2008-07-30 大平洋特殊鋳造株式会社 ガラス繊維成形スピナ−用耐熱合金およびスピナ−

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength
JP2002256363A (ja) * 2001-03-06 2002-09-11 Kawasaki Steel Corp 耐ピックアップ性・耐高温摩耗特性に優れた表面被覆材料
WO2005052208A1 (fr) * 2003-11-26 2005-06-09 Saint-Gobain Isover Alliage refractaire et procede de fabrication de laine minerale

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
19000101, 1 January 1900 (1900-01-01), XP009106171 *
19000101, 1 January 1900 (1900-01-01), XP009106271 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894132A1 (fr) 2014-01-14 2015-07-15 Sager AG Composition de fibres minérales
WO2019096619A1 (fr) 2017-11-20 2019-05-23 Stm Technologies S.R.L. Alliage à base de cobalt présentant une résistance élevée à de hautes températures, dispositif de filage pour la production de fibres minérales comprenant ledit alliage et procédé pour la production de fibres minérales qui utilise un tel dispositif de filage
US11420896B2 (en) 2017-11-20 2022-08-23 Stm Technologies S.R.L. Cobalt-based alloy with a high resistance at high temperatures, spinner for the production of mineral fibers comprising said alloy and process for the production of mineral fibers which uses such a spinner

Also Published As

Publication number Publication date
EA201000913A1 (ru) 2010-10-29
CL2010000574A1 (es) 2010-12-10
EP2222885A1 (fr) 2010-09-01
JP5461418B2 (ja) 2014-04-02
ZA201003834B (en) 2011-02-23
CN101878318B (zh) 2014-02-19
AU2008333024A1 (en) 2009-06-11
FR2924442A1 (fr) 2009-06-05
BRPI0819639B8 (pt) 2018-02-27
EP2222885B1 (fr) 2014-01-01
DK2222885T3 (da) 2014-04-07
UA98183C2 (uk) 2012-04-25
US20100244310A1 (en) 2010-09-30
EG26118A (en) 2013-03-05
ES2453499T3 (es) 2014-04-08
JP2011504969A (ja) 2011-02-17
US8262964B2 (en) 2012-09-11
KR101571143B1 (ko) 2015-11-23
SI2222885T1 (sl) 2014-05-30
CA2706450C (fr) 2016-10-04
FR2924442B1 (fr) 2010-02-26
CA2706450A1 (fr) 2009-06-11
KR20100090783A (ko) 2010-08-17
HRP20140302T1 (en) 2014-05-23
CO6210750A2 (es) 2010-10-20
PL2222885T3 (pl) 2014-05-30
BRPI0819639A2 (pt) 2015-05-05
CN101878318A (zh) 2010-11-03
EA017210B1 (ru) 2012-10-30

Similar Documents

Publication Publication Date Title
EP1287174B1 (fr) Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
EP1840232B1 (fr) Alliage à base de nickel
WO2020053518A1 (fr) Alliage pour assiette de fibrage
EP2222885B1 (fr) Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale
CA2272462C (fr) Alliage a base de cobalt, article realise a partir de l&#39;alliage et son procede de fabrication
EP3589590B1 (fr) Alliage pour assiette de fibrage
EP1689904B1 (fr) Alliage refractaire et procede de fabrication de laine minerale
FR2625255A1 (fr) Ailette ou pale de turbine en superalliage monocristallin
FR2935395A1 (fr) Procede de preparation d&#39;une piece en superalliage base nickel et piece ainsi preparee
WO2002002830A1 (fr) Compositions d&#39;acier, procede pour son obtention et pieces fabriquees a partir de ces compositions
BRPI0819639B1 (pt) League, article and form of fiber formation for the manufacture of mineral wool and process of manufacture of mineral wool.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118426.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008856969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1710/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010050806

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2706450

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12744496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008333024

Country of ref document: AU

Ref document number: 10063134

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20107011637

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010535433

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008333024

Country of ref document: AU

Date of ref document: 20081127

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201000913

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201008139

Country of ref document: UA

ENP Entry into the national phase

Ref document number: PI0819639

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100528