EP2222885B1 - Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale - Google Patents

Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale Download PDF

Info

Publication number
EP2222885B1
EP2222885B1 EP08856969.4A EP08856969A EP2222885B1 EP 2222885 B1 EP2222885 B1 EP 2222885B1 EP 08856969 A EP08856969 A EP 08856969A EP 2222885 B1 EP2222885 B1 EP 2222885B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
less
around
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08856969.4A
Other languages
German (de)
English (en)
Other versions
EP2222885A1 (fr
Inventor
Jean-Luc Bernard
Patrice Berthod
Ludovic Hericher
Christophe Liebaut
Sylvain Michon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Saint Gobain SEVA SA
Original Assignee
Saint Gobain Isover SA France
Saint Gobain SEVA SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France, Saint Gobain SEVA SA filed Critical Saint Gobain Isover SA France
Priority to PL08856969T priority Critical patent/PL2222885T3/pl
Priority to SI200831173T priority patent/SI2222885T1/sl
Publication of EP2222885A1 publication Critical patent/EP2222885A1/fr
Application granted granted Critical
Publication of EP2222885B1 publication Critical patent/EP2222885B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Definitions

  • the present invention relates to a metal alloy for use at a very high temperature, particularly used in a process for manufacturing mineral wool by fiberizing a molten mineral composition, or more generally for the constitution of tools having high temperature strength. in an oxidizing medium such as molten glass, and cobalt-based alloys that can be used at high temperature, in particular for the production of articles for producing and / or heat-transforming glass or other mineral material, such as of mineral wool making machinery.
  • a fiber drawing technique consists in continuously dropping liquid glass inside a set of revolution parts rotating at a very high speed of rotation about their vertical axis.
  • a centerpiece called “plate”, more often referred to in the art as the “spinner”, receives the glass against a so-called “band” wall pierced with holes, which the glass passes under the effect of centrifugal force for to escape from all parts in the form of melted filaments.
  • An annular burner located above the outside of the plate, producing a downward gas flow along the outer wall of the strip, deflects these filaments downwardly by stretching them. These then “solidify” in the form of glass wool.
  • the plate is a fiber-drawing tool that is very thermally stressed (thermal shocks during start-ups and shutdowns, and establishment in stabilized use of a temperature gradient along the part), mechanically (centrifugal force, erosion due to the passage of the glass) and chemically (oxidation and corrosion by the molten glass, and by the hot gases coming out of the burner around the plate). Its main modes of deterioration are: the deformation by hot creep of the vertical walls, the appearance of horizontal or vertical cracks, the erosion wear of the fiberizing orifices, which require the pure and simple replacement of the organs. Their constituent material must therefore withstand during a production time long enough to remain compatible with the technical and economic constraints of the process. For this purpose, materials with a certain ductility, creep resistance and resistance to corrosion and / or oxidation are sought.
  • refractory alloys are based on chromium, cobalt (refractory element which brings to the matrix of the alloy an intrinsic strength at high temperature improved) and nickel (to stabilize the face-centered cubic crystal lattice of the Co).
  • WO-A-99/16919 a cobalt-based alloy having improved mechanical properties at high temperature, comprising the following elements (in weight percent of the alloy): Cr 26 to 34% Or 6 to 12% W 4 to 8% Your 2-4% VS 0.2 to 0.5% Fe less than 3% Yes less than 1% mn less than 0.5% Zr less than 0.1% the remainder being constituted by cobalt and unavoidable impurities, the molar ratio of tantalum with respect to carbon being of the order of 0.4 to 1.
  • the alloys described in the previous patent applications may especially be used in industrial conditions for the fibering of new glass compositions, in particular basaltic, whose melting temperature is higher than that of the compositions conventionally used in processes for obtaining wool of glass.
  • Such compositions are described in the following description.
  • a fibering plate made from the alloy described in Example 6 of WO 2005/052208 can withstand, over relatively long periods, melting glass temperatures in the range of 1200 to 1240 ° C., corresponding to a metal temperature of between 1160 and 1210 ° C., depending on the profile of the plate.
  • the present invention aims at providing still improved alloys whose high temperature mechanical resistance is increased, making it possible to work at a temperature (for the metal) of up to 1200 ° C., or even at higher temperatures, and having a duration improved life under such fiber drawing conditions.
  • the subject of the present invention is a cobalt-based alloy, further comprising chromium, and carbon, which contains the following elements (the proportions being indicated in percentage by weight of the alloy): Cr 23 to 34% Ti 0.2 to 5% Your 0.5 to 7% VS 0.2 to 1.2% Or less than 5% Fe less than 3% Yes less than 1% mn less than 0.5% the rest being cobalt and unavoidable impurities.
  • the alloy according to the present invention differs from the alloys incorporating carbides of Ti and Ta described in the application WO 2005/052208 (See in particular Examples 6 and 7), in that the nickel content is substantially lower than those described in this publication (8.7% by weight for the alloys of Examples 6 and 7).
  • the presence of such a quantity of nickel was necessary to extend the temperature stability domain of the face-centered cubic crystal structure of the cobalt matrix (see for example page 7 lines 18-21 of W02005 / 052208 or page 8 lines 29-32 and page 17 lines 25-30 of WO 2001/90429 ).
  • tests conducted on alloys demand WO99 / 16919 have shown that the presence of a substantial amount of nickel appears preferable to limit the oxidation of such alloys when used in a high temperature fiber drawing process.
  • the properties of the alloy compositions according to the present invention appeared to be greater than those of the previously described alloys.
  • the lifetimes of the plates obtained from the alloys according to the invention during a high temperature fiber drawing process appeared very substantially improved.
  • Carbon is an essential constituent of the alloy, necessary for the formation of metal carbide precipitates.
  • the carbon content directly determines the amount of carbides present in the alloy. It is at least 0.2% by weight to obtain the minimum reinforcement desired, preferably at least 0.6% by weight, but preferably limited to at most 1.2% by weight to prevent the alloy from becoming hard and difficult to machine because of too high density of reinforcements.
  • the lack of ductility of the alloy at such levels prevents it from accommodating without breaking an imposed deformation (for example of thermal origin) and withstanding sufficiently the propagation of cracks.
  • chromium contributes to the intrinsic mechanical strength of the matrix in which it is present in part in solid solution, and in some cases also in the form of carbides essentially Cr 23 C 6 type in fine dispersion inside grains where they provide resistance to intragranular creep or in the form of Cr 7 C 3 or Cr 23 C 6 type carbides present at the grain boundaries, which prevent grain-on-grain slippage thereby contributing. also to the intergranular reinforcement of the alloy.
  • Chromium contributes to the corrosion resistance as a chromium oxide precursor forming a protective layer on the surface exposed to the oxidizing medium. A minimal amount of chromium is required for the formation and maintenance of this protective layer. Too high a chromium content, however, is detrimental to strength and toughness at elevated temperatures, as it leads to too high rigidity and too low stress elongation that is incompatible with high temperature stresses.
  • the chromium content of an alloy which can be used according to the invention is 23 to 34% by weight, preferably of the order of 26 to 32% by weight, advantageously of approximately 27 to 30% by weight. .
  • the nickel, present in the alloy in the form of a solid solution with cobalt, is present in an amount of less than 5% by weight of the alloy.
  • the amount of nickel present in the alloy is less than 4%, or even less than 3% or even less than 2% by weight of the alloy.
  • the threshold at which the Ni is present only in the form of unavoidable impurities, excellent life values of plates, not yet observed so far, have also been obtained.
  • unavoidable impurities is meant within the meaning of the present invention that the nickel is not present intentionally in the composition of the alloy but that it is introduced in the form of impurities contained in at least one of the main elements of the alloy (or in at least one of the precursors of said main elements).
  • nickel was almost always present in the form of unavoidable impurities of at least 0.3% by weight and most often at least 0.5% by weight. or at least 0.7% by weight.
  • percentages of nickel in the alloy less than 0.3% by weight must also be considered as part of the invention, but the cost generated by such purity would then make the cost of the alloy too expensive to allow the commercial viability of the fiber drawing process.
  • Titanium is a more common element and less expensive than tantalum, so it penalizes less the final cost of the alloy.
  • the fact that this element is light can also be an advantage.
  • a minimum amount of titanium of 0.2 to 5% by weight of the alloy appeared preferable to produce a sufficient amount of TiC carbides, certainly due to the solubility of titanium in the cobalt cfc matrix.
  • a titanium content of the order of 0.5 to 4% seems advantageous, especially 0.6 to 3%. Excellent results have been obtained for alloys comprising Ti contents between 0.8 and 2%.
  • the tantalum present in the alloy is partly in solid solution in the cobalt matrix of which this heavy atom locally distorts the crystal lattice and hinders or even blocks the progression of the dislocations when the material is subjected to mechanical stress, thus contributing to the intrinsic strength of the matrix.
  • the minimum content of tantalum for the formation of mixed carbides with the Ti according to the invention is of the order of 0.5%, preferably of the order of 1% and very preferably of the order of 1, 5% or even 2%.
  • the upper limit of the tantalum content can be chosen to be about 7%.
  • the tantalum content is preferably of the order of 2 to 6%, in particular of 1.5 to 5%.
  • the tantalum content is very preferably less than 5%, even 4.5% or even 4% and advantageously close to 3.
  • a small amount of tantalum has the double advantage of substantially reducing the overall cost of the alloy but also to allow easy machining of said alloy. The higher the content of tantalum, the harder the alloy is, that is to say difficult to form.
  • the alloys according to the invention are preferably free of Ce, La, B, Y, Dy, Re and other rare earths.
  • the alloys that can be used according to the invention which contain highly reactive elements, can be shaped by casting, in particular by inductive melting in at least partially inert atmosphere and casting in a sand mold.
  • the casting may optionally be followed by a heat treatment at a temperature that may go beyond the fiberizing temperature.
  • the invention also relates to a method of manufacturing an article by casting from the alloys described above as an object of the invention.
  • the process may comprise at least one cooling stage, after casting and / or after or during a heat treatment, for example by cooling in air, in particular with a return to ambient temperature.
  • the alloys that are the subject of the invention can be used to manufacture all kinds of parts mechanically stressed at high temperature and / or made to work in an oxidizing or corrosive medium.
  • the invention also relates to such articles made from an alloy according to the invention, in particular by foundry.
  • Such applications include the manufacture of articles used for the development or hot processing of glass, for example fiber plates for the manufacture of mineral wool.
  • the subject of the invention is also a process for the manufacture of mineral wool by internal centrifugation, in which a flow of molten mineral matter is poured into a fiber-drawing plate whose peripheral band is pierced with a multitude of orifices through which filaments of molten mineral material escape, which are then drawn into wool by the action of a gas, the temperature of the mineral material in the plate being at least 1200 ° C. and the fibering plate being made of an alloy as defined above.
  • the alloys according to the invention thus make it possible to fiberize glass or a similar molten mineral composition having a liquidus temperature T liq of the order of 1130 ° C or more, for example from 1130 to 1200 ° C, in particular 1170 ° C or more.
  • the fiberization of these molten mineral compositions can be carried out in a temperature range (for the melt composition reaching the plate) between T liq and T log2,5 where T log2,5 is the temperature at which the composition
  • T log2,5 is the temperature at which the composition
  • the fondue has a viscosity of 2.5 poise (dPa.s), typically of the order of 1200 ° C or higher, e.g. 1240-1250 ° C or higher.
  • compositions of mineral material it may be preferred compositions containing a significant amount of iron, which are less corrosive vis-à-vis the constituent metal of the fiberizing members.
  • the process according to the invention advantageously uses a composition of oxidizing mineral material, in particular with respect to chromium, capable of repairing or reconstituting the protective layer of Cr 2 O 3 oxide which is established on the surface.
  • compositions containing iron essentially in ferric form may be preferred, in particular with a molar ratio of the degrees oxidation II and III, expressed in the ratio FeO FeO + Fe 2 ⁇ O 3 on the order of 0.1 to 0.3, especially 0.15 to 0.20.
  • the mineral material composition contains a high iron content allowing rapid kinetics of reconstitution of chromium oxide with a level of iron oxide (so-called "total iron” rate, corresponding to the total content of iron expressed conventionally in the form of Fe 2 O 3 equivalent) of at least 3%, preferably at least 4%, in particular of the order of 4 to 12%, in particular of at least 5%.
  • total iron a level of iron oxide
  • this corresponds to a ferric iron content Fe 2 O 3 alone of at least 2.7%, preferably at least 3.6%
  • compositions are known in particular from WO 99/56525 and advantageously comprise the following constituents: SiO 2 38-52%, preferably 40-48% Al 2 O 3 17-23% SiO 2 + Al 2 O 3 56-75%, preferably 62-72% RO (CaO + MgO) 9-26%, preferably 12-25% MgO 4-20%, preferably 7-16% MgO / CaO ⁇ 0.8, preferably ⁇ 1.0 or ⁇ 1.15 R 2 O (Na 2 O + K 2 O) ⁇ 2% P 2 O 5 0-5% Total iron (Fe 2 O 3 ) ⁇ 1.7%, preferably ⁇ 2% B 2 O 3 0-5% MnO 0-4% TO 2 0-3%
  • compositions of WO-00/17117 are particularly suitable for the process according to the invention.
  • SiO 2 39-35% preferably 40-52% Al 2 O 3 16-27% - 16-25%
  • the compositions have iron oxide levels of between 5 and 12%, especially between 5 and 8%, which can make it possible to obtain a fire resistance of the mineral wool mattresses.
  • the invention can be applied to the manufacture of very diverse articles, when they must have a high mechanical strength in an oxidizing and / or corrosive medium, particularly at high temperature.
  • these alloys can be used to make any type of refractory alloy fixed or moving parts for operating or operating a high temperature heat treatment furnace (above 1200 ° C.), a heat exchanger or reactor of the chemical industry. It can thus be for example hot fan blades, cooking support, charging material, etc. They can also be used to produce any type of heating resistor intended to operate in a hot oxidizing atmosphere, and to realize Turbine components, used in land, sea or air vehicle engines or in any other application that does not target vehicles, eg power plants.
  • a high temperature heat treatment furnace above 1200 ° C.
  • a heat exchanger or reactor of the chemical industry. It can thus be for example hot fan blades, cooking support, charging material, etc.
  • They can also be used to produce any type of heating resistor intended to operate in a hot oxidizing atmosphere, and to realize Turbine components, used in land, sea or air vehicle engines or in any other application that does not target vehicles, eg power plants.
  • the invention thus relates to the use in an oxidizing atmosphere at a temperature of at least 1200 ° C of an article consisting of an alloy as defined above.
  • a molten charge is prepared for the following composition which is then formed by simply casting into a mold of sand: Cr 27.83% Or 1.33% VS 0.36% Your 3.08% Ti 1.34% Fe 2.00% mn ⁇ 0.5% Yes ⁇ 0.3% Zr ⁇ 0,1% sum other impurities ⁇ 1%, the rest being cobalt.
  • the casting is followed by a heat treatment comprising a solution phase for 2 hours at 1200 ° C. and a secondary carbide precipitation phase for 10 hours at 1000 ° C., each of these stages ending with air cooling. to room temperature.
  • a second fibering plate 400 mm in diameter and having the same characteristics is prepared from a melted filler of the following composition: Cr 28.84% Or 0.78% VS 0.41% Your 2.95% Ti 1.21% Fe 0.66% mn ⁇ 0.5% Yes ⁇ 0.3% Zr ⁇ 0,1% sum other impurities ⁇ 1%, the rest being cobalt.
  • the capacity of the plates thus formed was evaluated in the fiberglass fiber application. More specifically the plates were placed on a industrial fiber drawing line of a basaltic glass composition: SiO 2 Al 2 O 3 Total iron (Fe 2 O 3 ) CaO MgO Na 2 O K 2 O Various 45.7 19 7.7 12.6 0.3 8 5.1 1
  • the plates are used with two different shots of 10 and 12,5 tons per day until their decision is decided following the ruin of the plate, declared by a visible deterioration or by a quality of fiber produced become insufficiently good .
  • the temperature of the mineral composition arriving in the plate is of the order of 1200 to 1240 ° C.
  • the temperature of the metal according to the profile of the plate is between 1160 and 1210 ° C.
  • the solidus temperature of the alloy constituting the plates is then measured according to conventional differential thermal analysis (DTA) techniques, after their use in the preceding fiberizing process.
  • DTA differential thermal analysis
  • solidus temperature is meant in the sense of your present description, the melting temperature of the alloys in equilibrium. Due to a different method of analysis, it should be noted that the values obtained from the solidus temperatures reported in Table 2 differ somewhat from the values previously obtained in WO 2005/052208 . However, the relative differences in melting temperature between the alloys according to the invention and the reference alloy remain identical, whatever the method used.
  • the solidus temperature of the alloys according to the invention is approximately 10 ° C. higher than the alloys of the prior art in all cases, which reflects a greater refractoriness. Because of the relative proximity between the operating temperature of the plate in the fiberizing process and the melting temperature of the alloy constituting the plate, such an improvement is extremely significant and could alone justify your superior properties. of high temperature strength, as observed on the present alloys.
  • Example 1 The high temperature strength properties of the alloys of Example 1 according to the invention and of Example 3 according to the prior art were evaluated in tests of resistance to three-point bending at 1250 ° C. load of 31 MPa for a period of 200 hours. The tests were carried out for each alloy on a series of parallelepipedic specimens of 30 mm wide and 3 mm thick, the load being exerted in the middle of a center distance of 37 mm. The results are shown in Table 3. Table 3 shows the slope of the three-point creep curves obtained for each alloy, said slope illustrating the rate of deformation (in ⁇ m.h -1 ) of the specimen by creep.
  • Table 3 summarizes all the results obtained, giving for each alloy the average creep rates, as well as the maximum and minimum values observed over the entire set of test pieces.
  • Table 3 Creep velocity in three-point bending ( ⁇ m.h -1 ) Average value Minimum value Maximum value Alloy example 1 (according to the invention) 4.1 2.8 5.7 Alloy example 3 (comparative) 17.7 3.5 30.8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Continuous Casting (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Glass Compositions (AREA)

Description

  • La présente invention concerne un alliage métallique pour utilisation à très haute température, notamment utilisable dans un procédé de fabrication de laine minérale par fibrage d'une composition minérale en fusion, ou plus généralement pour la constitution d'outils doués de résistance mécanique à haute température en milieu oxydant tel que le verre fondu, et des alliages à base de cobalt utilisables à haute température, notamment pour la réalisation d'articles pour l'élaboration et/ou la transformation à chaud du verre ou autre matière minérale, tels que des organes de machines de fabrication de laine minérale.
  • Une technique de fibrage, dite par centrifugation interne, consiste à laisser tomber continûment du verre liquide à l'intérieur d'un ensemble de pièces de révolution tournant à très grande vitesse de rotation autour de leur axe vertical. Une pièce maîtresse, dénommée « assiette », plus souvent désignée dans la technique sous le terme anglais « spinner », reçoit le verre contre une paroi dite « bande » percée de trous, que le verre traverse sous l'effet de la force centrifuge pour s'en échapper de toutes parts sous la forme de filaments fondus. Un brûleur annulaire situé au-dessus de l'extérieur de l'assiette, produisant un courant de gaz descendant longeant la paroi extérieure de la bande, dévie ces filaments vers le bas en les étirant. Ceux-ci se « solidifient » ensuite sous la forme de laine de verre.
  • L'assiette est un outil de fibrage très sollicité thermiquement (chocs thermiques lors des démarrages et arrêts, et établissement en utilisation stabilisée d'un gradient de température le long de la pièce), mécaniquement (force centrifuge, érosion due au passage du verre) et chimiquement (oxydation et corrosion par le verre fondu, et par les gaz chauds sortant du brûleur autour de l'assiette). Ses principaux modes de détérioration sont : la déformation par fluage à chaud des parois verticales, l'apparition de fissures horizontales ou verticales, l'usure par érosion des orifices de fibrage, qui nécessitent le replacement pur et simple des organes. Leur matériau constitutif se doit donc de résister pendant un temps de production suffisamment long pour rester compatible avec les contraintes techniques et économiques du procédé. On recherche à cet effet des matériaux doués d'une certaine ductilité, de résistance au fluage et résistance à la corrosion et/ou oxydation.
  • Différents matériaux connus pour la réalisation de ces outils sont des superalliages à base de nickel ou de cobalt renforcés par précipitation de carbures. Des alliages particulièrement réfractaires sont à base de chrome, de cobalt (élément réfractaire qui apporte à la matrice de l'alliage une résistance mécanique intrinsèque à haute température améliorée) et de nickel (pour stabiliser le réseau cristallin cubique face centrée du Co).
  • On connaît ainsi de WO-A-99/16919 un alliage à base de cobalt ayant des propriétés mécaniques améliorées à haute température, comprenant les éléments suivants (en pourcentage pondéral de l'alliage) :
    Cr 26 à 34%
    Ni 6 à 12%
    W 4 à 8%
    Ta 2 à 4%
    C 0,2 à 0,5%
    Fe moins de 3%
    Si moins de 1%
    Mn moins de 0,5%
    Zr moins de 0,1 %
    le reste étant constitué par du cobalt et des impuretés inévitables, le rapport molaire du tantale par rapport au carbone étant de l'ordre de 0,4 à 1.
  • La sélection des proportions en carbone et tantale est destinée à former dans l'alliage un réseau dense mais discontinu de carbures intergranulaires constitués essentiellement par des carbures de chrome sous forme Cr7C3 et (Cr,W)23C6 et par des carbures de tantale TaC. Cette sélection confère à l'alliage des propriétés mécaniques et de résistance à l'oxydation améliorées à haute température, permettant le fibrage d'un verre fondu dont la température est de 1080°C.
  • On connaît également de WO 01/90429 , des alliages à base de cobalt susceptibles d'être employés à des températures encore plus élevées. Ces alliages présentant un bon compromis entre la résistance mécanique et la résistance à l'oxydation à partir de 1100°C grâce à une microstructure dont les zones intergranulaires sont riches en précipités de carbure de tantale. Ces carbures jouent d'une part le rôle d'un renfort mécanique en s'opposant au fluage intérgranulaire à très haute température, et d'autre part ont un effet sur la tenue à l'oxydation lié à leur oxydation en Ta2O5, qui forme des oxydes occupant tout l'ancien volume des carbures TaC empêchant la pénétration du milieu agressif (verre liquide, gaz chauds) dans les espaces intergranulaires.
  • Plus récemment, il a été décrit, dans la demande WO2005/052208 qui ne fait pas part de cette invention, un alliage doué d'une forte résistance mécanique à haute température en milieu oxydant, sur la base d'une matrice cobalt stabilisée par du nickel et renfermant du chrome, renforcée par précipitation de carbures, notamment de titane et de tantale.
  • Les alliages décrits dans les demandes de brevet précédentes peuvent notamment être utilisés en conditions industrielles pour le fibrage de nouvelles compositions de verre, en particulier basaltiques, dont la température de fusion est supérieure à celle des compositions classiquement utilisées dans les procédés d'obtention de laine de verre. De telles compositions sont décrites dans la suite de la présente description.
  • Par exemple une assiette de fibrage faite à partir de l'alliage décrit dans l'exemple 6 de WO 2005/052208 peut supporter sur des durées relativement grandes des températures du verre en fusion de l'ordre de 1200 à 1240 °C, correspondant à une température du métal comprise entre 1160 et 1210 °C, suivant le profil de l'assiette.
  • La production industrielle de fibres de verres de type basaltique ne peut cependant être économiquement intéressante que si la résistance mécanique de l'assiette, et donc de l'alliage constitutif, est suffisante aux températures de fibrages mentionnées précédemment. En particulier la durée de vie de l'assiette au sein du dispositif de fibrage, qui est l'un des facteurs de coût les plus importants dans le procédé global de fibrage, sera d'autant plus longue que la résistance mécanique de l'alliage, combiné à sa résistance à la corrosion, sera importante.
  • La présente invention vise à fournir des alliages encore améliorés dont la résistance mécanique à haute température est accrue, permettant de travailler à une température (pour le métal) pouvant aller jusqu'à 1200 °C, voire à des températures supérieures, et présentant une durée de vie améliorée dans de telles conditions de fibrage.
  • En particulier, la présente invention a pour objet un alliage à base de cobalt, comprenant en outre du chrome, et du carbone, qui contient des éléments suivants (les proportions étant indiquées en pourcentage pondéral de l'alliage) :
    Cr 23 à 34%
    Ti 0,2 à 5%
    Ta 0,5 à 7 %
    C 0,2 à 1,2%
    Ni moins de 5%
    Fe moins de 3%
    Si moins de 1%
    Mn moins de 0,5%
    le reste étant constitué par du cobalt et des impuretés inévitables.
  • L'alliage selon la présente invention se différencie des alliages incorporant des carbures de Ti et de Ta décrits dans la demande WO 2005/052208 (voir en particulier les exemples 6 et 7), en ce que la teneur en nickel est sensiblement inférieure à celles décrites dans cette publication (8,7% poids pour les alliages des exemples 6 et 7). On pensait jusqu'à présent que la présence d'une telle quantité de nickel était nécessaire pour étendre le domaine de stabilité en température de la structure cristalline cubique à faces centrées de la matrice de Cobalt (voir par exemple page 7 lignes 18-21 de W02005/052208 ou page 8 lignes 29-32 et page 17 lignes 25-30 de WO 2001/90429 ). En outre, des essais menés sur les alliages de la demande WO99/16919 avaient montré que la présence d'une quantité substantielle de Nickel apparaissait préférable pour limiter l'oxydation de tels alliages lors de leur utilisation dans un procédé de fibrage à haute température.
  • De façon inattendue et même au contraire de ce qu'on pouvait attendre, les propriétés des compositions d'alliage selon la présente invention, c'est-à-dire présentant une proportion de nickel beaucoup plus faible que précédemment décrit, sont apparues supérieures à celles des alliages précédemment décrits. En particulier, les durées de vie des assiettes obtenues à partir des alliages selon l'invention durant un procédé de fibrage à haute température sont apparues très sensiblement améliorées.
  • On pourra se reporter à la demande WO 2005/052208 pour une description complète des avantages et de la microstructure présente dans les alliages selon la présente invention. En effet les microstructures des nouveaux alliages, observées en microscopie électronique, sont pour l'essentiel quasiment identiques à ceux déjà décrits dans la demande WO 2005/052208 . En particulier, on observe des carbures mixtes de Ta et de Ti (Ta,Ti)C disposés au joints de grains des alliages, qui présentent une microstructure améliorée à haute température : moins de fragmentation et moins de raréfaction des carbures (Ta,Ti)C. Mieux, l'addition de Ti aux carbures TaC stabilise tellement ces derniers à haute température que de fins carbures secondaires (Ta,Ti)C, très utiles pour la résistance au fluage intragranulaire, précipitent spontanément dans la matrice (alors que généralement les précipités secondaires obtenus par traitement thermique spécial ont plutôt tendance à disparaître dans les mêmes conditions). Cette stabilité vis-à-vis des hautes températures, rend ces carbures (Ta,Ti)C particulièrement avantageux.
  • Il est avantageux de privilégier les carbures (Ta,Ti)C comme principale phase durcissante, en respectant un rapport des teneurs atomiques de la somme des métaux (Ta+Ti) au carbone proche de 1, mais pouvant être supérieur, notamment de l'ordre de 0,9 à 2. En particulier un léger écart inférieur à t'unité reste admissible dans le sens que les quelques carbures supplémentaires qui pourraient être générés (carbures de chrome) ne sont pas gênants pour l'ensemble des propriétés à toutes températures. Une plage de rapport avantageuse est généralement de 0,9 à 1,5.
  • Le carbone est un constituant essentiel de l'alliage, nécessaire à la formation des précipités de carbures métalliques. En particulier, la teneur en carbone détermine directement la quantité de carbures présente dans l'alliage. Elle est d'au moins 0,2% poids pour obtenir le renfort minimum désiré, de préférence d'au moins 0,6% poids, mais préférentiellement limitée à au plus 1,2% poids pour éviter que l'alliage ne devienne dur et difficile à usiner en raison d'une trop grande densité de renforts. Le manque de ductilité de l'alliage à de telles teneurs l'empêche d'accommoder sans se rompre une déformation imposée (par exemple d'origine thermique) et de résister suffisamment à la propagation des fissures.
  • De façon déjà décrite, le chrome contribue à la résistance mécanique intrinsèque de la matrice dans laquelle il est présent en partie en solution solide, et dans certains cas aussi sous forme de carbures essentiellement de type Cr23C6 en dispersion fine à l'intérieur des grains où ils apportent une résistance au fluage intragranulaire ou sous forme de carbures de type Cr7C3 ou Cr23C6 présents aux joints de grains, qui empêchent le glissement grain sur grain contribuant ainsi. également au renforcement intergranulaire de l'alliage. Le chrome contribue à la résistance à la corrosion en tant que précurseur d'oxyde de chrome formant une couche protectrice à la surface exposée au milieu oxydant. Une quantité minimale de chrome est nécessaire pour la formation et le maintien de cette couche protectrice. Une teneur en chrome trop élevée est cependant néfaste à la résistance mécanique et à la ténacité aux températures élevées, car elle conduit à une rigidité trop élevée et une aptitude à l'allongement sous contrainte trop faible incompatible avec les contraintes à haute température.
  • De façon générale, la teneur en chrome d'un alliage utilisable selon l'invention est de 23 à 34% en poids, de préférence de l'ordre de 26 à 32% en poids, avantageusement d'environ 27 à 30% en poids.
  • Le nickel, présent dans l'alliage sous forme d'une solution solide avec le cobalt, est présent dans une quantité inférieure à 5% en poids de l'alliage. De préférence la quantité de nickel présente dans l'alliage est inférieure à 4%, voire même inférieure à 3% ou encore inférieure à 2% en poids de l'alliage. En dessous de 1% en poids de l'alliage, seuil sous lequel le Ni n'est présent que sous la forme d'impuretés inévitables, d'excellentes valeurs de durée de vie des assiettes, non encore observées jusqu'ici, ont également été obtenues. Par impuretés inévitables, on entend au sens de la présente invention que le Nickel n'est pas présent de façon intentionnelle dans la composition de l'alliage mais qu'il est introduit sous la forme d'impuretés contenues dans au moins un des éléments principaux de l'alliage (ou dans au moins un des précurseurs desdits éléments principaux).
  • Le plus généralement, les essais effectués par le demandeur ont montré que le Nickel était quasiment toujours présent sous la forme d'impuretés inévitables à hauteur d'au moins 0,3% poids et le plus souvent d'au moins 0,5% poids, voire d'au moins 0,7% poids. Des pourcentages de Nickel dans l'alliage inférieurs à 0,3% poids doivent cependant également être considérés comme compris dans le cadre de l'invention, mais le coût engendré par une telle pureté rendrait alors le coût de l'alliage trop onéreux pour permettre ta viabilité commerciale du procédé de fibrage.
  • Le titane étant un élément plus courant et moins coûteux que le tantale, il pénalise donc moins le coût final de l'alliage. Le fait que cet élément soit léger peut aussi être un avantage.
  • Une quantité minimale de titane de 0,2 à 5 % en poids de l'alliage est apparue préférable pour produire une quantité de carbures TiC suffisante, certainement en raison de la solubilité du titane dans la matrice cfc du cobalt. Une teneur en titane de l'ordre de 0,5 à 4% semble avantageuse, notamment 0,6 à 3%. D'excellents résultats ont été obtenus pour des alliages comprenant des teneurs en Ti comprises entre 0,8 et 2%.
  • En comparaison des alliages décrits dans la demande WO2405/052208 , les alliages selon l'invention comprenant des carbures mixtes de tantale et de titane démontrent une stabilité à haute température encore améliorée, comme il sera décrit par la suite.
  • Le tantale présent dans l'alliage se trouve en partie en solution solide dans la matrice de cobalt dont cet atome lourd distord localement le réseau cristallin et gêne, voire bloque, la progression des dislocations quand le matériau est soumis à un effort mécanique, contribuant ainsi à la résistance intrinsèque de la matrice. La teneur minimale en tantale permettant la formation de carbures mixtes avec le Ti selon l'invention est de l'ordre de 0,5 %, de préférence de l'ordre de 1 % et de manière très préférée de l'ordre de 1,5%, voire 2%. La limite supérieure de la teneur en tantale peut être choisie à environ 7 %. La teneur en tantale est de préférence de l'ordre de 2 à 6%, en particulier de 1,5 à 5%. La teneur en tantale est de manière très préférée inférieure à 5%, voire 4,5% ou même 4% et avantageusement proche de 3. Une faible quantité de tantale présente le double avantage de diminuer substantiellement le coût global de l'alliage mais également de permettre un usinage facilité dudit alliage. Plus la teneur en tantale est élevée plus l'alliage est dur, c'est à dire difficile à mettre en forme.
  • L'alliage peut contenir d'autres éléments sous forme d'impuretés inévitables. Il comporte en général :
    • du silicium en tant que désoxydant du métal fondu lors de l'élaboration et du moulage de l'alliage, à raison de moins de 1% en poids ;
    • du manganèse également désoxydant, à raison de moins de 0,5% en poids ;
    • du fer, en une proportion pouvant aller jusqu'à 3% en poids sans altération des propriétés du matériau et de préférence en une proportion inférieure ou égale à 2% poids, par exemple inférieure ou égale à 1% poids ;
    • la quantité cumulée des autres éléments introduits à titre d'impuretés avec les constituants essentiels de l'alliage (« impuretés inévitables ») représente avantageusement moins de 1% en poids de la composition de l'alliage.
  • Les alliages selon l'invention sont de préférence exempts de Ce, La, B, Y, Dy, Re et autres terres rares.
  • Les alliages utilisables selon l'invention, qui contiennent des éléments hautement réactifs, peuvent être mis en forme par fonderie, notamment par fusion inductive sous atmosphère au moins partiellement inerte et coulée en moule de sable.
  • La coulée peut éventuellement être suivie d'un traitement thermique à une température pouvant aller au-delà de la température de fibrage.
  • L'invention a également pour objet un procédé de fabrication d'un article par fonderie à partir des alliages décrits précédemment comme objet de l'invention.
  • Le procédé peut comprendre au moins une étape de refroidissement, après la coulée et/ou après ou au courant d'un traitement thermique, par exemple par refroidissement à l'air, notamment avec un retour à la température ambiante.
  • Les alliages objets de l'invention peuvent être utilisés pour fabriquer toutes sortes de pièces sollicitées mécaniquement à haute température et/ou amenées à travailler en milieu oxydant ou corrosif. L'invention a encore pour objets de tels articles fabriqués à partir d'un alliage selon l'invention, notamment par fonderie.
  • Parmi de telles applications on peut citer notamment la fabrication d'articles utilisables pour l'élaboration ou la transformation à chaud du verre, par exemple des assiettes de fibrage pour la fabrication de laine minérale.
  • Ainsi l'invention a-t-elle également pour objet un procédé de fabrication de laine de minérale par centrifugation interne, dans lequel on déverse un débit de matière minérale en fusion dans une assiette de fibrage dont la bande périphérique est percée d'une multitude d'orifices par lesquels s'échappent des filaments de matière minérale fondue qui sont ensuite étirés en laine sous l'action d'un gaz, la température de la matière minérale dans l'assiette étant d'au moins 1200°C et l'assiette de fibrage étant constituée d'un alliage tel que défini ci-dessus.
  • Les alliages selon l'invention permettent donc de fibrer du verre ou une composition minérale fondue similaire ayant une température de liquidus Tliq de l'ordre de 1130°C ou plus, par exemple de 1130 à 1200 °C, notamment 1170°C ou plus.
  • En général, le fibrage de ces compositions minérales fondues peut être effectué dans une plage de températures (pour la composition fondue parvenant dans l'assiette) comprise entre Tliq et Tlog2,5 où Tlog2,5 est la température à laquelle la composition fondue présente une viscosité de 102,5 poise (dPa.s), typiquement de l'ordre de 1200°C ou plus, par exemple de 1240 à 1250°C ou plus.
  • Parmi ces compositions de matière minérale, on peut préférer des compositions renfermant une quantité de fer significative, qui sont moins corrosives vis-à-vis du métal constitutif des organes de fibrage.
  • Ainsi, le procédé selon l'invention utilise avantageusement une composition de matière minérale oxydante notamment vis-à-vis du chrome, capable de réparer ou reconstituer la couche protectrice d'oxyde Cr2O3 qui s'établit en surface. A cet égard, on peut préférer des compositions renfermant du fer essentiellement sous forme ferrique (oxyde Fe2O3), notamment avec un rapport molaire des degrés d'oxydation II et III, exprimé par le rapport FeO FeO + Fe 2 O 3
    Figure imgb0001
    de l'ordre de 0,1 à 0,3, notamment 0,15 à 0,20.
  • Avantageusement, la composition de matière minérale renferme une teneur en fer élevée permettant une cinétique rapide de reconstitution de l'oxyde de chrome avec un taux d'oxyde de fer (taux dit « fer total », correspondant à la teneur totale en fer exprimée conventionnellement sous forme de Fe2O3 équivalent) d'au moins 3%, de préférence d'au moins 4%, notamment de l'ordre de 4 à 12%, en particulier d'au moins 5%. Dans la plage de redox ci-dessus, cela correspond à une teneur en fer ferrique Fe2O3 seul d'au moins 2,7%, de préférence au moins 3,6%
  • De telles compositions sont connues notamment de WO-99/56525 et comprennent avantageusement les constituants suivants :
    SiO2 38-52%, de préférence 40-48%
    Al2O3 17-23%
    SiO2+ Al2O3 56-75%, de préférence 62-72%
    RO (CaO+MgO) 9-26%, de préférence 12-25%
    MgO 4-20%, de préférence 7-16%
    MgO/CaO ≥ 0,8 , de préférence ≥ 1,0 ou ≥ 1,15
    R2O (Na2O+K2O) ≥ 2%
    P2O5 0-5%
    Fer total (Fe2O3) ≥ 1,7%, de préférence ≥ 2%
    B2O3 0-5%
    MnO 0-4%
    TO2 0-3%
  • D'autres compositions connues de WO-00/17117 se révèlent particulièrement appropriées pour le procédé selon l'invention.
  • Elles sont caractérisées par les pourcentages pondéraux suivants :
    SiO2 39-35%, de préférence 40-52%
    Al2O3 16-27%, -- 16-25%
    CaO 3-35%, -- 10-25%
    MgO 0-15%, -- 0-10%
    Na2O 0-15%, -- 6-12%
    K2O 0-15%, -- 3-12%
    R2O (Na2O + K2O) 10-17%, -- 12-17%
    P2O5 0-3%, -- 0-2%
    Fer total (Fe2O3) 0-15%, -- 4-12%
    B2O3 0-8%, -- 0-4%
    TiO2 0-3%,
    MgO étant compris entre 0 et 5%, notamment entre 0 et 2% lorsque R2O ≤ 13,0%.
  • Selon un mode de réalisation, les compositions possèdent des taux d'oxyde de fer compris entre 5 et 12%, notamment entre 5 et 8%, ce qui peut permettre d'obtenir une tenue au feu des matelas de laines minérales.
  • Bien que l'invention ait été décrite principalement dans ce cadre de la fabrication de lainé minérale, elle peut être appliquée à l'industrie verrière en général pour réaliser des éléments ou accessoires de four, de filière, ou de feeder notamment pour la production de fils de verre textile, de verre d'emballage.
  • En dehors de l'industrie verrière, l'invention peut s'appliquer à la fabrication d'articles très divers, lorsque ceux-ci doivent présenter une résistance mécanique élevée en milieu oxydant et/ou corrosif, en particulier à haute température.
  • De manière générale, ces alliages peuvent servir à réaliser tout type de pièces fixes ou mobiles en alliage réfractaire servant au fonctionnement ou à l'exploitation d'un four de traitement thermique à haute température (au-delà de 1200°C), d'un échangeur de chaleur ou d'un réacteur de l'industrie chimique. Il peut ainsi s'agir par exemple de pales de ventilateur chaud, de support de cuisson, de matériel d'enfournement... Ils peuvent aussi servir à réaliser tout type de résistance chauffante destinée à fonctionner en atmosphère chaude oxydante, et à réaliser des éléments de turbine, entrant dans des moteurs de véhicule terrestre, maritime ou aérien ou dans toute autre application ne visant pas des véhicules, par exemple des centrales de production d'énergie.
  • L'invention a ainsi pour objet l'utilisation en atmosphère oxydante à une température d'au moins 1200°C d'un article constitué d'un alliage tel que défini précédemment.
  • Les exemples qui suivent, nullement restrictifs des compositions selon l'invention ou des conditions de la mise en oeuvre des assiettes de fibrage selon l'invention, illustrent les avantages de la présente invention.
  • EXEMPLE 1
  • Par la technique de fusion inductive sous atmosphère inerte (notamment argon) on prépare une charge fondue de la composition suivante que l'on met ensuite en forme par simple coulée en moule de sable :
    Cr 27,83%
    Ni 1,33%
    C 0,36%
    Ta 3,08%
    Ti 1,34%
    Fe 2,00%
    Mn < 0,5%
    Si < 0,3%
    Zr < 0,1%
    somme autres impuretés < 1 %,
    le reste étant constitué par du cobalt.
  • La coulée est suivie par un traitement thermique comportant une phase de mise en solution pendant 2 heures à 1200°C et une phase de précipitation des carbures secondaires pendant 10 heures à 1000°C, chacun de ces paliers finissant par un refroidissement à l'air jusqu'à la température ambiante.
  • De cette manière, une assiette de fibrage de 400 mm de diamètre de forme classique a été fabriquée.
  • EXEMPLE 2 :
  • Selon un procédé de fabrication identique à l'exemple 1, on prépare une deuxième assiette de fibrage de 400 mm de diamètre et présentant les mêmes caractéristiques, à partir d'une charge fondue de la composition suivante :
    Cr 28,84%
    Ni 0,78%
    C 0,41%
    Ta 2,95%
    Ti 1,21%
    Fe 0,66%
    Mn < 0,5%
    Si < 0,3%
    Zr < 0,1%
    somme autres impuretés < 1%,
    le reste étant constitué par du cobalt.
  • EXEMPLE 3 (comparatif):
  • Selon les mêmes conditions que pour les exemples 1 à 2 qui précédent, on prépare à titre de comparaison deux assiettes de diamètres 400 mm identiques aux précédentes par leurs caractéristiques de forme mais obtenues à partir de la composition d'alliage selon l'exemple 6 de WO 2005/052208 :
    Cr 28,3%
    Ni 8,7%
    C 0,4%
    Ta 3,0%
    Ti 1,5%
    Fe <2%
    Mn < 0,5%
    Si < 0,3%
    Zr < 0,1%
    somme autres impuretés < 1%,
    le reste étant constitué par du cobalt.
  • La capacité des assiettes ainsi formées a été évaluée dans l'application de fibrage de laine de verre. Plus précisément les assiettes ont été placées sur une ligne industrielle de fibrage d'un verre basaltique de composition :
    SiO2 Al2O3 Fer total (Fe2O3) CaO MgO Na2O K2O Divers
    45,7 19 7,7 12,6 0,3 8 5,1 1
  • Il s'agit d'un verre relativement oxydant par rapport à un verre classique en raison de sa teneur élevée en fer et d'un redox de 0,15. Sa température de liquidus est de 1140 °C.
  • Les assiettes sont utilisées avec deux tirées différentes de 10 et 12,5 tonnes par jour jusqu'à ce que leur arrêt soit décidé suite à la ruine de l'assiette, déclarée par une détérioration visible ou par une qualité de fibre produite devenue insuffisamment bonne.
  • Mises à part les variations de tirée, les conditions de fibrage sont restées identiques d'une assiette à l'autre : la température de la composition minérale arrivant dans l'assiette est de l'ordre de 1200 à 1240°C. La température du métal suivant le profil de l'assiette est comprise entre 1160 et 1210°C.
  • Les résultats des durées de vie des assiettes, en fonction de leurs conditions d'utilisation, sont reportées dans le tableau 1. Dans ce tableau, dans un souci de clarté et pour faciliter une comparaison immédiate, les valeurs des durées de vie obtenues pour les assiettes selon l'invention (exemples 1 et 2) ont été mises en correspondance avec les valeurs obtenues pour les assiettes de référence (exemple 3), pour des conditions de la tirée identiques.
    Figure imgb0002
  • On voit dans le tableau 1 que les assiettes selon la présente invention présentent toujours, pour des conditions d'utilisation comparables, les durées de vie les plus longues.
  • On mesure ensuite selon les techniques conventionnelles d'analyse thermique différentielle (ATD) la température de solidus de l'alliage constitutif des assiettes, après leur utilisation dans le procédé de fibrage précédent.
  • Par le terme « température de solidus », on entend au sens de ta présente description, la température de fusion des alliages à l'équilibre. En raison d'une méthode d'analyse différente, il faut noter que les valeurs obtenues des températures de solidus reportées dans le tableau 2 diffèrent un peu des valeurs précédemment obtenues dans WO 2005/052208 . Cependant, les écarts relatifs de température de fusion entre les alliages selon l'invention et l'alliage de référence restent identiques, quelque soit la méthode utilisée.
  • Les résultats obtenus sont reportés dans le tableau 2 :
    Figure imgb0003
  • On voit que la température de solidus des alliages selon l'invention est supérieure d'environ 10°C aux alliages de l'art antérieur dans tous les cas, ce qui traduit une plus grande réfractairité. Du fait de la relative proximité entre la température de fonctionnement de l'assiette dans le procédé de fibrage et la température de fusion de l'alliage constitutif de l'assiette, une telle amélioration est extrêmement significative et pourrait justifier à elle seule tes propriétés supérieures de résistance mécanique à haute température, telles qu'observées sur les présents alliages.
  • Les propriétés de résistance mécanique à haute température des alliages de l'exemple 1 selon l'invention et de l'exemple 3 selon l'art antérieur ont été évaluées dans des essais de tenue au fluage en flexion trois points à 1250°C sous une charge de 31 MPa pendant une durée de 200 heures. Les essais ont porté pour chaque alliage sur une série d'éprouvettes parallélépipédiques de 30 mm de large et de 3 mm d'épaisseur, la charge étant exercée au milieu d'un entraxe de 37 mm. Les résultats sont reportés dans le tableau 3. Dans le tableau 3 est reportée la pente des courbes de fluage trois points obtenues pour chaque alliage, ladite pente illustrant la vitesse de déformation (en µm.h-1) de l'éprouvette par fluage.
  • Le tableau 3 résume l'ensemble des résultats obtenus, en donnant pour chaque alliage la moyenne des vitesses de fluage, ainsi que les valeurs maximales et minimales observées sur toute la série d'éprouvettes. Tableau 3
    Vitesse de fluage en flexion trois points (µm.h-1) Valeur moyenne Valeur minimale Valeur maximale
    Alliage exemple 1 (selon l'invention) 4,1 2,8 5,7
    Alliage exemple 3 (comparatif) 17,7 3,5 30,8
  • Par la comparaison des données reportées dans le tableau 3, on observe, pour l'alliage selon l'invention, une résistance au fluage sous contrainte à haute température sensiblement améliorée. Combinée à l'augmentation de la température de solidus des alliages selon l'invention, cette amélioration de la résistance au fluage conduit à l'augmentation de la durée de vie d'une assiette fabriquée à partir d'un alliage selon l'invention lorsque celle-ci est mise en oeuvre sur une ligne industrielle de fibrage d'un verre basaltique, tel que reporté précédemment.

Claims (11)

  1. Alliage, caractérisé en ce qu'il contient les éléments suivants, (les proportions étant indiquées en pourcentage pondéral de l'alliage) : Cr 23 à 34% Ti 0,2 à 5 % Ta 0,5 à 7% C 0,2 à 1,2% Ni moins de 5% Fe moins de 3% Si moins de 1% Mn moins de 0,5%
    le reste étant constitué par du cobalt et des impuretés inévitables.
  2. Alliage selon la revendication 1, caractérisé en ce qu'il comprend moins de 4% poids de Ni, de préférence moins de 3% poids de Ni et de manière très préférée moins de 2% poids de Ni.
  3. Alliage selon la revendication 1 ou 2, caractérisé en ce qu'il comprend au moins 0,2% et préférentiellement au moins 0,6% en poids de carbone.
  4. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les métaux Ti et Ta, dans un rapport molaire au carbone (Ti+Ta)/C de l'ordre de 0,9 à 2, en particulier de 0,9 à 1,5.
  5. Alliage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend 0,5 à 4 % en poids de titane, de préférence de l'ordre de 0,6 à 3% en poids de titane.
  6. Alliage selon l'une des revendications précédentes, caractérisé en ce que la teneur en tantale est de l'ordre de 1 à 7%, en particulier de l'ordre de 2 à 6%.
  7. Alliage selon l'une des revendications précédentes, caractérisé en ce que la teneur en chrome est de l'ordre de 26 à 32%, en particulier de l'ordre de 27 à 30%.
  8. Article pour la fabrication de laine minérale réalisé en un alliage selon l'une quelconque des revendications 1 à 7, notamment par fonderie.
  9. Assiette de fibrage pour la fabrication de laine minérale réalisé en un alliage selon l'une quelconque des revendications 1 à 8, notamment par fonderie.
  10. Procédé de fabrication de laine minérale par centrifugation interne, dans lequel on déverse un débit de matière minérale en fusion dans une assiette de fibrage selon la revendication 9 dont la bande périphérique est percée d'une multitude d'orifices par lesquels s'échappent des filaments de matière minérale fondue qui sont ensuite étirés en laine sous l'action d'un gaz, la température de la matière minérale dans l'assiette étant d'au moins 1200°C.
  11. Procédé selon la revendication 10, caractérisé en ce que la matière minérale fondue a une température de liquidus de l'ordre de 1130°C ou plus, notamment 1170°C ou plus.
EP08856969.4A 2007-11-30 2008-11-27 Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale Active EP2222885B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL08856969T PL2222885T3 (pl) 2007-11-30 2008-11-27 Stop kobaltowy, tarcza do formowania włókien i sposób wytwarzania wełny mineralnej
SI200831173T SI2222885T1 (sl) 2007-11-30 2008-11-27 Kobaltova zlitina, predilni kroĹľnik in postopek za pripravo mineralne volne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759451A FR2924442B1 (fr) 2007-11-30 2007-11-30 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale
PCT/FR2008/052140 WO2009071847A1 (fr) 2007-11-30 2008-11-27 Alliage refractaire, assiette de fibrage et procede de fabrication de laine minerale

Publications (2)

Publication Number Publication Date
EP2222885A1 EP2222885A1 (fr) 2010-09-01
EP2222885B1 true EP2222885B1 (fr) 2014-01-01

Family

ID=39758463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08856969.4A Active EP2222885B1 (fr) 2007-11-30 2008-11-27 Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale

Country Status (20)

Country Link
US (1) US8262964B2 (fr)
EP (1) EP2222885B1 (fr)
JP (1) JP5461418B2 (fr)
KR (1) KR101571143B1 (fr)
CN (1) CN101878318B (fr)
BR (1) BRPI0819639B8 (fr)
CA (1) CA2706450C (fr)
CL (1) CL2010000574A1 (fr)
CO (1) CO6210750A2 (fr)
DK (1) DK2222885T3 (fr)
EA (1) EA017210B1 (fr)
EG (1) EG26118A (fr)
ES (1) ES2453499T3 (fr)
FR (1) FR2924442B1 (fr)
HR (1) HRP20140302T1 (fr)
PL (1) PL2222885T3 (fr)
SI (1) SI2222885T1 (fr)
UA (1) UA98183C2 (fr)
WO (1) WO2009071847A1 (fr)
ZA (1) ZA201003834B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH709112A8 (de) 2014-01-14 2015-09-15 Sager Ag Mineralfaserkomposition.
SI3589590T1 (sl) * 2017-02-28 2023-10-30 Saint-Gobain Seva Zlitina za predilnik steklenih vlaken
DK3713887T3 (da) 2017-11-20 2022-03-21 Stm Tech S R L Koboltbaseret legering med høj bestandighed ved høje temperaturer, centrifuge til fremstilling af mineralfibre omfattende denne legering og fremgangsmåde til fremstilling af mineralfibre, hvilken anvender en sådan centrifuge

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881918A (en) * 1974-05-09 1975-05-06 Owens Corning Fiberglass Corp Cobalt-base superalloy
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength
US20030221756A1 (en) 1997-09-29 2003-12-04 Isover Saint Gobain Cobalt based alloy, article made from said alloy and method for making same
US6266979B1 (en) * 1999-09-02 2001-07-31 Johns Manville International, Inc. Spinner disc alloy
US6361836B1 (en) * 1999-12-09 2002-03-26 Johns Manville International, Inc. Method of making spinner discs for rotary fiberization processes
FR2809387B1 (fr) 2000-05-23 2002-12-20 Saint Gobain Isover Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
JP4032654B2 (ja) * 2001-03-06 2008-01-16 Jfeスチール株式会社 耐ピックアップ性・耐高温摩耗特性に優れた表面被覆材料
JP4128832B2 (ja) * 2002-09-09 2008-07-30 大平洋特殊鋳造株式会社 ガラス繊維成形スピナ−用耐熱合金およびスピナ−
FR2862662B1 (fr) * 2003-11-26 2007-01-12 Saint Gobain Isover Alliage refractaire et procede de fabrication de laine minerale

Also Published As

Publication number Publication date
EA201000913A1 (ru) 2010-10-29
JP5461418B2 (ja) 2014-04-02
CA2706450A1 (fr) 2009-06-11
AU2008333024A1 (en) 2009-06-11
FR2924442B1 (fr) 2010-02-26
WO2009071847A1 (fr) 2009-06-11
DK2222885T3 (da) 2014-04-07
CL2010000574A1 (es) 2010-12-10
BRPI0819639B8 (pt) 2018-02-27
HRP20140302T1 (en) 2014-05-23
ES2453499T3 (es) 2014-04-08
KR101571143B1 (ko) 2015-11-23
EG26118A (en) 2013-03-05
FR2924442A1 (fr) 2009-06-05
CA2706450C (fr) 2016-10-04
KR20100090783A (ko) 2010-08-17
US20100244310A1 (en) 2010-09-30
EP2222885A1 (fr) 2010-09-01
PL2222885T3 (pl) 2014-05-30
ZA201003834B (en) 2011-02-23
CO6210750A2 (es) 2010-10-20
JP2011504969A (ja) 2011-02-17
CN101878318B (zh) 2014-02-19
UA98183C2 (uk) 2012-04-25
US8262964B2 (en) 2012-09-11
BRPI0819639A2 (pt) 2015-05-05
CN101878318A (zh) 2010-11-03
SI2222885T1 (sl) 2014-05-30
EA017210B1 (ru) 2012-10-30

Similar Documents

Publication Publication Date Title
EP1287174B1 (fr) Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
EP1844173B1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese et toles ainsi produites
EP1840232B1 (fr) Alliage à base de nickel
EP1667939B1 (fr) Composition de laine minerale
WO2020053518A1 (fr) Alliage pour assiette de fibrage
EP2222885B1 (fr) Alliage de cobalt, assiette de fibrage et procede de fabrication de laine minerale
CA2272462C (fr) Alliage a base de cobalt, article realise a partir de l&#39;alliage et son procede de fabrication
EP3589590B1 (fr) Alliage pour assiette de fibrage
EP1689904B1 (fr) Alliage refractaire et procede de fabrication de laine minerale
EP1297192B1 (fr) Compositions d&#39;acier, procede pour son obtention et pieces fabriquees a partir de ces compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008029682

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20140302

Country of ref document: HR

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2453499

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER AND CIE S.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 647652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140101

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20140302

Country of ref document: HR

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 16100

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008029682

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008029682

Country of ref document: DE

Effective date: 20141002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140302

Country of ref document: HR

Payment date: 20171012

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20171030

Year of fee payment: 10

Ref country code: TR

Payment date: 20171121

Year of fee payment: 10

Ref country code: RO

Payment date: 20171018

Year of fee payment: 10

Ref country code: NO

Payment date: 20171109

Year of fee payment: 10

Ref country code: NL

Payment date: 20171115

Year of fee payment: 10

Ref country code: SK

Payment date: 20171017

Year of fee payment: 10

Ref country code: DK

Payment date: 20171110

Year of fee payment: 10

Ref country code: FI

Payment date: 20171109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171123

Year of fee payment: 10

Ref country code: HR

Payment date: 20171012

Year of fee payment: 10

Ref country code: SE

Payment date: 20171113

Year of fee payment: 10

Ref country code: BE

Payment date: 20171122

Year of fee payment: 10

Ref country code: ES

Payment date: 20171201

Year of fee payment: 10

Ref country code: LV

Payment date: 20171108

Year of fee payment: 10

Ref country code: SI

Payment date: 20171019

Year of fee payment: 10

Ref country code: PL

Payment date: 20171016

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20140302

Country of ref document: HR

Effective date: 20181127

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20181130

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 16100

Country of ref document: SK

Effective date: 20181127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231006

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231130

Year of fee payment: 16

Ref country code: DE

Payment date: 20230929

Year of fee payment: 16

Ref country code: CH

Payment date: 20231202

Year of fee payment: 16