WO2009071845A1 - Fibres textiles photoactives dépolluantes et désinfectantes - Google Patents

Fibres textiles photoactives dépolluantes et désinfectantes Download PDF

Info

Publication number
WO2009071845A1
WO2009071845A1 PCT/FR2008/052137 FR2008052137W WO2009071845A1 WO 2009071845 A1 WO2009071845 A1 WO 2009071845A1 FR 2008052137 W FR2008052137 W FR 2008052137W WO 2009071845 A1 WO2009071845 A1 WO 2009071845A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
textile
anthraquinone
group
use according
Prior art date
Application number
PCT/FR2008/052137
Other languages
English (en)
Inventor
Marie Weyland
Sylvie Lacombe
Thierry Pigot
Original Assignee
Uppa - Universite De Pau Et Des Pays De L'adour
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uppa - Universite De Pau Et Des Pays De L'adour filed Critical Uppa - Universite De Pau Et Des Pays De L'adour
Publication of WO2009071845A1 publication Critical patent/WO2009071845A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/084Visible light
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0045Footwear characterised by the material made at least partially of deodorant means
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/02Footwear characterised by the material made of fibres or fabrics made therefrom
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/003Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined characterised by the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/232Solid substances, e.g. granules, powders, blocks, tablets layered or coated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/123Polyaldehydes; Polyketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/22General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
    • D06P1/24Anthraquinone dyes or anthracene nucleus containing vat dyes

Definitions

  • the present invention relates to photoactive textile fibers, that is to say having a photooxidative activity. More specifically, it relates to fibers on which are fixed or deposited organic photosensitizing molecules which have the capacity, under the action of light radiation and in the presence of oxygen, to generate active forms of oxygen (singlet oxygen superoxide anion).
  • the photosensitizer absorbs light energy in the form of photons. The photon thus absorbed allows the formation of an electronically excited state of the photosensitizer which can then transmit the energy to oxygen molecules. The transmitted energy then leads to the formation of highly reactive oxygen species, including singlet oxygen (Cantau C. et al Chem Phys Chem, (2007), 8, 2344).
  • reactive oxygen species are powerful oxidizers that allow the oxidation of various compounds, such as in particular certain polluting molecules.
  • singlet oxygen also has the ability to destroy microorganisms.
  • singlet oxygen acts on the cell membrane via an oxidative attack which leads to the peroxidation of the lipids constituting this membrane. The damage caused can thus lead to the death of the microorganism.
  • the textile industry has recently developed into so-called “intelligent" textiles, presenting various properties such as antibacterial, anti-odor or anti-stain activity.
  • the photoactive textiles having a depolluting and disinfecting activity are particularly advantageous in that they could be used in a broad spectrum of activities, under light irradiation, their photoactive activity being able to be implemented under normal conditions of use. .
  • the anti-bacterial photoactive tissues developed so far are generally treated with titanium dioxide.
  • This compound has been of particular interest in recent years. Indeed, TiO2 in its active form has original properties, which can be very interesting, especially as an antimicrobial agent, sterilant, deodorant or for the synthesis of materials self-cleaning. Nevertheless, it requires irradiation in I 1 UV. It is therefore desirable to provide new, improved photoactive textile fibers, especially in the visible.
  • Molecules including an anthraquinone structure are used as dyestuffs common in dyeing. They are therefore widely available and many toxicity and ecotoxicity data are known about them.
  • the photosensitizing properties of certain anthraquinone derivatives are known.
  • these usual anthraquinone compounds had never been attached to textile fibers for depolluting or disinfecting purposes.
  • these molecules have the particular advantage of being photoactivatable by visible light.
  • grafted compounds are complex, of cationic type, based on anthraquinone mono- or di-functionalized in position 1 or 1, 4 by a amide chain substituted by a quaternary ammonium.
  • the role of anthraquinone is that of a standard dye on which is attached an ammonium group responsible for antimicrobial activity.
  • Anthraquinone is only used here than to allow the attachment of the antibacterial agent to the tissue fibers.
  • photoactive textile fibers comprising anthraquinone or its derivatives, having antimicrobial and depolluting properties.
  • These new textiles have the advantage of being active under the action of visible light or UVA in the presence of air, and therefore do not require the use of additional chemical agents.
  • textile fibers there may be mentioned natural or synthetic fibers, such as cotton fibers, cellulose, wool, silk, linen, polyamides, viscoses.
  • the cotton and wool fibers are preferred; more preferably, the cotton fibers.
  • the textile fibers according to the invention can be used in the manufacture of textiles.
  • These textiles can themselves be used in the manufacture of textile articles such as clothing, shoes or furniture. It is possible to mention in hospitals or medical, blouses; or coatings for public places such as tapestries, seats, curtains, etc.
  • article is meant any article of manufacture composed of “textile” according to the invention.
  • depolluting agent refers to the oxidizing properties for the oxidation of undesirable molecules such as, for example, sulfur derivatives.
  • infectious agent refers to the antimicrobial activity (bacteria, fungi, etc.).
  • Fiberation is understood to mean any method of attaching a molecule to the fiber, such as grafting, deposition, binding, etc.
  • anthraquinones or substituted derivatives thereof is meant anthraquinone or its derivatives substituted at one or more positions of the ring, in particular the compounds of formula (I):
  • R1, R2, R3, R4, R5, R6, R7, and R8, which may be identical or different, independently represent a hydrogen atom; an alkyl group; a NRaRb group; a halogen atom; a COORc group; an ORd group, a CONReRf group, or an SO3M group where:
  • Ra, Rb, Rc, Rd, Re and Rf which may be identical or different, independently represent a hydrogen atom or a Ci-Ce alkyl group
  • M represents a hydrogen or alkali metal atom, such as sodium or potassium.
  • R1, R2, R3, R4, R5, R6, R7 and R8, which may be identical or different, independently represent a hydrogen atom; a NRaRb group; a halogen atom; a COORc group; or a group SO3M.
  • anthraquinone As a compound of formula (I), there may be mentioned anthraquinone, and its 2-substituted derivatives, such as in particular anthraquinone-2-carboxylic acid, 2-chloroanthraquinone, 2-amino-anthraquinone or anthraquinone-2-sulphonic acid, and more particularly the compounds of formula:
  • the present invention also relates to the process for preparing the textile fibers according to the invention.
  • Said method comprises the fixing of anthraquinone molecule or its derivatives on said fibers: this can be done according to the methods known per se, in particular in dyeing, such as in the tank, by thermosolage, by the printing technique or by quenching in an aqueous solution.
  • dyeing such as in the tank
  • thermosolage thermosolage
  • the printing technique by quenching in an aqueous solution.
  • several types of attachment are possible depending on the substituent groups carried by the fixed molecule and the type of textile used.
  • the compound can be easily reduced by sodium hydrosulfite in the presence of sodium hydroxide.
  • the leuco (reduced) form of the molecule which is partially soluble, enters the fiber.
  • the compound is oxidized to return to its original form, and becomes trapped in the cellulose.
  • the printing method is also possible. This route of attachment of anthraquinone and its derivatives has several advantages: in addition to ease of implementation, this process is used for products already woven. The printing is performed on the surface, unlike the vat process during which the molecule is attached to the core of the fiber.
  • the first step is to prepare a paste containing the molecule.
  • the mass proportion of the vat dye in the dough is about 4% on average.
  • the second step is to apply the paste to the fabric using a stencil and let it dry.
  • the evaporation of the water allows an increase of the concentration, and avoids the daubbling of the colors.
  • the molecule is not yet fixed.
  • the textile is then padded (this operation is to pass the textile in a machine called scarf, allowing the impregnation of fabric by a solution).
  • the solution in question is a soda / hydrosulphite soda bath.
  • the present invention also relates to the use of anthraquinone and / or its substituted derivatives, as defined above, in order to confer depolluting and / or disinfecting properties on textile, textile or textile fibers.
  • Said use comprises the implementation of the preparation method according to the invention discussed above. Said method is also part of the present invention.
  • the present invention also relates to a process for depollution or disinfection comprising the use of a fiber, textile or article as defined above.
  • Said method comprises the presentation of said fiber, textile or article in the presence of oxygen to visible light or UVA, preferably to 420 nm radiation, in particular centered at 420 nm.
  • the textile fibers according to the invention can be useful in a large number of sectors of activity.
  • the depolluting or disinfecting activity can be regenerated continuously at the exposure of natural light, or if it is insufficient by exposure to lamps emitting sufficient radiation at 420 nm, in particular centered at 420 nm.
  • the textiles according to the invention can in particular be used in the sector of clothing or furniture (furniture, curtains, etc.). Disinfecting activities are particularly sought after in the medical field: thus, the gowns of medical personnel can advantageously be made using a fabric according to the invention.
  • FIG. 1 represents a chromatogram obtained in example 3 by gas chromatographic analysis of the washing solutions.
  • the ratio of bath (tissue mass) / (volume of solution) is 1/20, and the dye ratio varies from 0 to 8% relative to the mass of textile.
  • the tissue is rinsed with large amounts of water and then washed in 200 ml of hydrogen peroxide at 2 g / l.
  • the fabric is then rinsed again under water.
  • the final step is to wash the tissue squares in a bath at 80-90 ° C in the presence of detergent and then rinse under clean water before allowing them to air dry.
  • anthraquinone or its derivatives were introduced into a printing paste: 0.5%, 1%, 2%, 4%, 5% and 7% dye (mass percentage). After homogenization of the dough, the mixture was then deposited on a fabric using a stencil. After drying the printing paste, strips of 4 x 25 cm are obtained. The sample is then treated according to a flash process: the molecules are first reduced with sodium hydroxide solution and sodium hydroxide by padding, then the sample enters a flash evaporator at 105 ° C for 1 minute. The fabric is then soaped and washed.
  • the second step is to analyze the textile to determine whether there has been grafting of the anthraquinone derivative.
  • the spectra are recorded between 200 and 800 nm.
  • the synthesized samples were analyzed.
  • Spectra of "white” tissues (references) were systematically subtracted from the spectra obtained.
  • UV-visible spectra highlight the presence of the photosensitizer on the fiber.
  • the depollution or photodegradation activity of the photoactive textile fibers according to the invention has been illustrated by the oxidation of dibutylsulphide.
  • the dibutylsulfide can be oxidized by the action of a photosensitizer or a photocatalyst.
  • a photosensitizer or a photocatalyst.
  • an anthraquinone derivative is irradiated in the presence of a sulfide
  • two types of type I and II photooxidation mechanisms may occur at the same time. This results in the formation of different sulphide degradation products.
  • the products resulting from the photodegradation reaction of dibutylsulphide by a photosensitizer such as anthraquinone are shown below.
  • DBS dibutylsulphide
  • the tissues are then deposited in bottles containing 10 ml of ethanol. They are vigorously shaken. The textiles are extracted and the solutions analyzed in gas chromatography.
  • FIG. 1 represents a chromatogram obtained by gas chromatographic analysis of the washing solutions.
  • DBS dibutylsulfide
  • Table 1 summarizes the results obtained for the samples prepared with various anthraquinone derivatives with the vat dye protocol. The concentration of the baths used to make these samples is 2%.
  • Table 1 Settlement count after 24 hours for samples made via the cotton-based vat dye protocol.
  • the tested samples are as follows:

Abstract

La présente invention concerne de nouvelles fibres textiles photoactives dépolluantes et désinfectantes à base d'anthraquinone ou ses dérivés.

Description

FIBRES TEXTILES PHOTOACTIVES DEPOLLUANTES ET DESINFECTANTES.
La présente invention concerne des fibres textiles photoactives, c'est-à-dire possédant une activité photooxydante. Plus précisément, elle concerne des fibres sur lesquelles sont fixées ou déposées des molécules organiques photosensibilisatrices qui ont la capacité, sous l'action d'un rayonnement lumineux et en présence d'oxygène, de générer des formes actives de l'oxygène (oxygène singulet, anion superoxyde). En bref, le photosensibilisateur absorbe l'énergie lumineuse sous forme de photons. Le photon ainsi absorbé permet la formation d'un état électroniquement excité du photosensibilisateur qui peut alors transmettre l'énergie à des molécules de dioxygène. L'énergie transmise conduit alors à la formation d'espèces très réactives de l'oxygène, dont l'oxygène singulet (C. Cantau et al Chem Phys Chem, (2007), 8, 2344).
Ces espèces réactives de l'oxygène sont des oxydants puissants qui permettent l'oxydation de divers composés, tels que notamment certaines molécules polluantes.
Par ailleurs, l'oxygène singulet a également la capacité de détruire les microorganismes. En effet, l'oxygène singulet agit sur la membrane cellulaire via une attaque oxydative qui conduit à la peroxydation des lipides constituant cette membrane. Les dommages causés peuvent ainsi conduire à la mort du microorganisme.
L'industrie textile s'est récemment développée vers des textiles dits "intelligents", présentant des propriétés diverses telles que l'activité antibactérienne, anti-odeur ou anti-tâche. Ainsi, les textiles photoactifs présentant une activité dépolluante et désinfectante sont tout particulièrement avantageux en ce qu'ils pourraient être utilisés dans un large spectre d'activités, sous irradiation lumineuse, leur activité photoactive pouvant être mise en oeuvre dans les conditions normales d'utilisation.
Les tissus anti-bactériens photoactifs développés jusqu'à présent sont en général traités au dioxyde de titane. Ce composé a suscité un intérêt particulier ces dernières années. En effet, le TÏO2 sous sa forme active présente des propriétés originales, qui peuvent être très intéressantes, notamment en tant qu'agent antimicrobien, stérilisant, désodorisant ou pour la synthèse de matériaux autonettoyants. Néanmoins, il nécessite une irradiation dans I1UV. Il est donc désirable de mettre à disposition de nouvelles fibres textiles améliorées photoactives, notamment dans le visible.
L'utilisation d'autres agents photoactifs a également été décrite pour la réalisation de surfaces antibactériennes. Des porphyrines, des dérivés du bleu de méthylène ou encore du rosé bengale ont été utilisés (M. Wainwright et al, J. Photochem. Photobiol., (2006), 84, 227 ; M. Wainwright, Dyes and pigments, (2007), 73, 7, J. Wilson et al European Patent n° WO 99/4983, October, 7, 1999 et M. Wilson, Infection Control and Hospital Epidemiology, (2003), 782). La réalisation de fibres synthétiques ou artificielles sur lesquelles sont greffées des porphyrines de façon covalente ont également déjà été décrits (Krouit et al, Bioorg. med. Chem. letters, (2006), 16, 1651 ; J. Sherrill et al, J. Polym. Sd. Part A : Polym. Chem., (2003), 41, 41 ; J. Bozja et al J. Polym. Sd. Part. A : Polym. Chem, (2003), 41, 2297 et J. Mόsinger et al J. Mater. Chem., (2007), 17, 164). Dans tous les cas, avec ce type d'agent antimicrobien, c'est la production d'espèces réactives de l'oxygène cytotoxiques lors d'une irradiation lumineuse qui permet l'oxydation des parois des bactéries, virus et/ou champignons.
Des molécules incluant une structure anthraquinonique sont utilisées comme des colorants usuels en teinturerie. Elles sont donc largement disponibles et de nombreuses données de toxicité et d'écotoxicité sont connues à leur sujet. Par ailleurs, les propriétés photosensibilisatrices de certains dérivés d'anthraquinone sont connues. Cependant, ces composés anthraquinoniques usuels n'avaient jamais été fixés sur des fibres textiles à des fins dépolluantes ou désinfectantes. D'autre part, il était jusqu'à présent incertain qu'ils conservent leur caractère photosensibilisateur après fixation ou dépôt sur des fibres textiles. Enfin ces molécules présentent notamment l'avantage d'être photoactivables par de la lumière visible.
Récemment, la demande de brevet US 2005/0011012 décrit des colorants antimicrobiens pour tissus. Néanmoins, les composés greffés sont complexes, de type cationique, à base d'anthraquinone mono- ou di-fonctionnalisés en position 1 ou 1 ,4 par une chaîne amide substituée par un ammonium quaternaire. Le rôle de l'anthraquinone est celui d'un colorant classique sur lequel est fixé un groupe ammonium, responsable de l'activité antimicrobienne. L'anthraquinone ne sert ici qu'à permettre la fixation de l'agent antibactérien sur les fibres de tissus. De plus, lors des tests bactériologiques, les échantillons ne sont pas soumis à une irradiation, ce qui confirme que l'agent antibactérien testé ici est la fonction ammonium quaternaire, et non pas l'anthraquinone. Enfin, ces tissus présentent l'inconvénient de ne pas être réutilisables puisque l'ammonium quaternaire ne peut résister au lavage.
Il est donc désirable de mettre au point de nouveaux tissus photoactivables dépolluants et antimicrobiens améliorés ne présentant pas ces inconvénients.
Les présents inventeurs ont désormais mis au point, et c'est un objet de la présente invention, des fibres textiles photoactives comprenant l'anthraquinone ou ses dérivés, présentant des propriétés antimicrobiennes et dépolluantes. Ces nouveaux textiles présentent l'avantage d'être actifs sous la seule action de la lumière visible ou UVA en présence d'air, et ne nécessitent donc nullement l'utilisation d'agents chimiques supplémentaires.
A titre de fibres textiles, on peut notamment citer les fibres naturelles ou synthétiques, telles que les fibres de coton, cellulose, laine, soie, lin, polyamides, viscoses. Préférentiellement, on préfère les fibres de coton et de laine ; encore plus préférentiellement, les fibres coton. Les fibres textiles selon l'invention peuvent être utilisées dans la fabrication de textiles.
Ces textiles peuvent eux même servir à la fabrication d'articles textiles tels que les vêtements, chaussures ou l'ameublement. On peut notamment citer en milieu hospitalier ou médical, les blouses ; ou encore les revêtements pour lieux publics tels que les tapisseries, sièges, rideaux, etc.
On entend par "textile" tout matériau ou étoffe réalisé à partir desdites fibres ; ceux-ci peuvent être tissés ou non tissés et incluent notamment les mats (tels que les feutres), les mèches (tels que les pansements), les fils, les tricots, les tissus, etc. On entend par "article" tout article de manufacture composé de « textile » selon l'invention. L'expression "dépolluante" fait référence aux propriétés oxydantes permettant l'oxydation de molécules indésirables telles que, par exemple, les dérivés soufrés.
L'expression "désinfectante" désigne l'activité antimicrobienne (bactéries, champignons, etc.).
On entend par "fixation" tout mode d'attache d'une molécule à la fibre, tel que le greffage, dépôt, liaison, etc.
A titre d'"anthraquinones ou ses dérivés substitués", on entend l'anthraquinone ou ses dérivés substitués en une ou plusieurs positions du cycle, notamment les composés de formule (I) :
Figure imgf000006_0001
dans laquelle :
R1 , R2 R3, R4, R5, R6 R7, et R8, identiques ou différents représentent indépendamment un atome d'hydrogène; un groupe alkyle ; un groupe NRaRb; un atome d'halogène; un groupe COORc ; un groupe ORd, un groupe CONReRf, ou un groupe SO3M où :
Ra, Rb, Rc, Rd, Re et Rf, identiques ou différents, représentent indépendamment un atome d'hydrogène ou un groupe Ci-Ce alkyle ;
M représente un atome d'hydrogène ou de métal alcalin, tel que le sodium ou le potassium.
De préférence, R1 , R2 R3, R4, R5, R6, R7 et R8, identiques ou différents, représentent indépendamment un atome d'hydrogène; un groupe NRaRb; un atome d'halogène; un groupe COORc ; ou un groupe SO3M.
Plus particulièrement, on préfère encore les composés pour lesquelsR1 = R4=R5=R8=H.
A titre de composé de formule (I), on peut notamment citer l'anthraquinone, et ses dérivés 2-substitués, tels que notamment l'anthraquinone-2-acide carboxylique, la 2-chloroanthraquinone, la 2-amino-anthraquinone ou l'anthraquinone-2-acide sulfonique, et plus particulièrement les composés de formule :
Figure imgf000007_0001
Anthraqumone Anthraqumone -2- Anthraqumone Anthraqumone -2-
(AQ) acide carboxylique (AQ -Cl) acide -sulfonique
(AQ -COOH ) (AQ -SO3Na)
Selon un autre objet, la présente invention concerne également le procédé de préparation des fibres textiles selon l'invention. Ledit procédé comprend la fixation de molécule d'anthraquinone ou ses dérivés sur lesdites fibres : celle-ci peut être faite selon les méthodes connues en soi, notamment en teinturerie, comme par exemple en cuve, par thermosolage, par la technique de l'impression ou par trempe dans une solution aqueuse. Généralement, plusieurs types de fixation sont possibles en fonction des groupes substituants portés par la molécule fixée et du type de textile utilisé.
Ainsi pour le coton, plusieurs types de fixation de molécules sont possibles, notamment le mode de fixation utilisé couramment en teinturerie pour les colorants de cuve, de structure anthraquinonique. Ce procédé en cuve convient aux molécules qui sont insolubles dans l'eau mais sont partiellement solubles en milieu alcalin-réducteur. Sous forme solubilisée (leuco dérivé), ils teignent les fibres naturelles (cellulosiques et animales). Une oxydation ultérieure les immobilise dans la fibre (reformation du pigment insoluble). Le fait que ces molécules soient insolubles sous leur forme oxydée est à l'origine d'une des principales qualité de ces molécules : une bonne résistance aux agent de dégradation. Aussi, ces composés possèdent en général une très haute solidité à la lumière, aux intempéries, aux lavages, aux débouillissages avec du carbonate, ou encore de la javel.
Le composé peut être facilement réduit par l'hydrosulfite de sodium en présence de soude. Lors du processus de teinture, la forme leuco (réduite) de la molécule, qui est partiellement soluble, pénètre dans la fibre. Après absorption, le composé est oxydé afin de reprendre sa forme initiale, et se retrouve piégé dans la cellulose. Selon une variante, le procédé d'impression est également possible. Cette voie de fixation de l'anthraquinone et ses dérivés présente plusieurs avantages : outre la facilité de mise en œuvre, ce procédé est utilisé pour des produits déjà tissés. L'impression est réalisée en surface, contrairement au procédé de cuve durant lequel la molécule est fixée au coeur de la fibre.
La première étape consiste à préparer une pâte contenant la molécule. La proportion massique du colorant de cuve dans la pâte est environ de 4% en moyenne.
La seconde étape consiste à appliquer la pâte sur le tissu à l'aide d'un pochoir et à la laisser sécher. L'évaporation de l'eau permet une augmentation de la concentration, et évite le barbouillage des couleurs. A ce stade, la molécule n'est pas encore fixée.
Pendant la phase suivante de fixation sur la fibre, il s'agit de faire migrer dans les fibres une quantité aussi importante que possible, maintenu à la surface par l'épaississant. Le textile est alors foulardé (cette opération consiste à passer le textile dans une machine appelé foulard, permettant l'imprégnation de tissu par une solution). Dans le cas de colorants de cuves, la solution en question est un bain de soude/hydrosulfite de soude.
Le dépôt par trempe dans une solution aqueuse est également possible.
Selon un autre objet, la présente invention concerne également l'utilisation de l'anthraquinone et/ou ses dérivés substitués, tels que définis ci-avant, pour conférer des propriétés dépolluantes et/ou désinfectantes aux fibres textiles, textiles ou articles textiles. Ladite utilisation comprend la mise en œuvre du procédé de préparation selon l'invention discuté ci-dessus. Ledit procédé fait donc également partie de la présente invention.
La présente invention concerne également un procédé de dépollution ou désinfection comprenant l'utilisation d'une fibre, textile ou article tels que définis ci- avant. Ledit procédé comprend la présentation desdits fibre, textile ou article en présence d'oxygène à la lumière visible ou UVA, préférentiellement à des rayonnements à 420 nm, notamment centrés à 420 nm. Les fibres textiles selon l'invention peuvent être utiles dans un grand nombre de secteurs d'activité. L'activité dépolluante ou désinfectante peut être régénérée en continu à l'exposition de la lumière naturelle, ou si celle-ci est insuffisante par exposition à des lampes émettant suffisamment de rayonnements à 420 nm, notamment centrés à 420 nm. Les textiles selon l'invention peuvent notamment être utilisés dans le secteur de l'habillement ou de l'ameublement (mobilier, rideaux, etc.). Les activités désinfectantes sont tout particulièrement recherchées dans le domaine médical : ainsi, les blouses du personnel médical peuvent avantageusement être réalisées au moyen d'un tissu selon l'invention.
La figure 1 représente un chromatogramme obtenu à l'exemple 3 par l'analyse en chromatographie en phase gazeuse des solutions de lavage.
Les exemples suivants sont donnés à titre représentatif et non limitatif de la présente invention :
Exemple 1 : Procédé sur coton
1. a. Procédé en cuve
Les expériences ont été réalisées dans un réacteur pouvant contenir 12 cuves de 200 mL, permettant à la fois d'agiter et de contrôler la température à l'intérieur des cuves.
Des carrés de coton blanc tricotés de 15x15 cm ont été découpés et pesés. 50 mL de lessive de soude à 30% sont mis en présence de 7,5 g (43 mmol) d'hydrosulfite de soude (NaS2O4). Le volume est complété à 1500 mL avec de l'eau. La solution est alors mélangée. Dans certains cas, un ajout de sel (NaCI) est également réalisé afin d'obtenir une concentration en sel de 15 g/L.
Le volume adéquat de solution et de molécule anthraquinonique est placé dans chaque cuve. Après dissolution du colorant dans la solution, le textile est ajouté, et les cuves sont alors fermées, et placées dans le réacteur.
Le rapport de bain (masse de tissus)/(volume de solution) est de 1/20, et le taux de colorant varie de 0 à 8 % par rapport à la masse de textile. Programmation de température
Température de réaction : 40-60"C
Gradient de monté e température : 4OZmJn (valeur maximale)
Durée cycle : 20-70 min
Post traitement
En fin de cycle, après ouverture des cuves, le tissu est rincé à grandes eaux, puis lavé dans 200 ml_ d'eau oxygénée à 2 g/L. Le tissu est alors à nouveau rincé sous l'eau. La dernière étape consiste à laver les carrés de tissus dans un bain à 80-90"C en présence de détergent. Un dernier rinçag e sous l'eau claire est alors effectué avant de les laisser sécher à l'air.
Des échantillons ayant subi les mêmes traitements mais sans présence de molécule de type anthraquinonique ont été réalisés afin d'obtenir des échantillons « blanc » qui serviront de références.
1.b. Procédé d'impression sur coton
Différentes quantités d'anthraquinone ou de ses dérivés ont été introduits dans une pâte d'impression : 0,5%, 1%, 2%, 4%, 5% et 7% de colorant (pourcentage massique). Après homogénéisation de la pâte, la mixture a alors été déposée sur un tissu à l'aide d'un pochoir. Après séchage de la pâte d'impression, des bandes de 4 x 25 cm sont obtenues. L'échantillon est alors traité suivant un procédé flash : les molécules sont d'abord réduites avec une solution de soude et d'hydrosulfite de soude par foulardage, puis l'échantillon entre dans un vaporiseur flash, à 105"C, pendant 1 minute environ. Le tissu est ensuite savonné et lavé.
1.c. Procédé de dépôt sur coton par trempe dans une solution aqueuse Des carrés de coton de 15 x 15 cm ont été trempés dans des solutions aqueuses d'anthraquinone-2-acide sulfonique à différentes concentrations (0 à 400 mg dans 20 mL d'eau distillée). Après absorption de la solution, les cotons sont utilisés pour réaliser des tests biologiques. Exemple 2 : Analyses
La seconde étape consiste à analyser le textile afin de déterminer si il y a eu ou non greffage du dérivé d'anthraquinone. Les échantillons ont tous été soumis à une analyse en spectroscopie UV-Visible à l'aide d'une sphère d'intégration permettant l'analyse de solide. Aussi, dans ce cas, ce n'est pas l'absorbance, mais la réflectance R qui est mesurée. A partir de cette mesure, f(R) est déterminé d'après la formule suivante : f(R) = (1 - R)2 / 2R
Les spectres sont enregistrés entre 200 et 800 nm. Les échantillons synthétisés ont été analysés. Les spectres des tissus "blancs" (références) ont systématiquement été soustraits aux spectres obtenus.
Les spectres UV-visibles mettent en évidence la présence du photosensibilisateur sur la fibre.
Exemple 3: Activité dépolluante
L'activité de dépollution ou photodégradation des fibres textiles photoactives selon l'invention a été illustrée par l'oxydation du dibutylsulfure.
Le dibutylsulfure peut être oxydé sous l'action d'un photosensibilisateur ou d'un photocatalyseur. Lorsqu'un dérivé d'anthraquinone est irradié en présence d'un sulfure, deux types de mécanismes de photooxydation de type I et II peuvent avoir lieu en même temps. Il en résulte la formation de différents produits de dégradation du sulfure. Les produits issus de la réaction de photodégradation du dibutylsulfure par un photosensibilisateur tel que l'anthraquinone sont représentés ci-dessous.
Figure imgf000011_0001
Photodégradation du dibutylsulfure par un photosensibilisateur (PS) en présence d'oxygène Les produits formés lors de cette réaction sont connus, et les temps de rétention des pics correspondants en chromatographie gazeuse (GC) ont déjà été déterminés préalablement.
Mode opératoire :
Dans une fiole jaugée de 10 ml_, 600 μl_ de dibutylsulfure (DBS) (2,3 mmol) sont déposés. Le volume est alors ajusté avec l'acétate d'éthyle. Des rectangles de coton d'environ 900 mg sont découpés et placés dans le fond d'une boîte de Pétri. 2 mL de solution de DBS sont alors déposées sur chaque échantillon. Les boîtes sont refermées, puis placées dans le réacteur, et soumises à une irradiation de 24 heures, λmaχ = 420 nm, distance lampe échantillon = 5cm. Les tissus sont alors déposés dans des bouteilles contenant 10 mL d'éthanol. Elles sont vigoureusement secouées. Les textiles sont extraits et les solutions analysées en chromatographie gazeuse. Des expériences identiques menées sur les échantillons de tissus traités sans présence de molécules anthraquinoniques servent de références. Les résultats obtenus pour deux échantillons (une référence, et un tissu traité avec 4% d'anthraquinone) sont illustrés sur la figure 1. La figure 1 représente un chromatogramme obtenu par l'analyse en chromatographie en phase gazeuse des solutions de lavage. Des échantillons de tissus traités avec l'anthraquinone ainsi que d'autres non traités, ont été imprégnés de dibutylsulfure (DBS) et soumis à une irradiation de 24 heures sous des lampes présentant un λmax = 420 nm. Dans cette expérience, le DBS est utilisé à titre de polluant test. Par la suite, les tissus sont lavés et les solutions analysées. Ces résultats montrent clairement que, dans le cas de l'échantillon traité avec l'anthraquinone, le DBS est oxydé en sulfoxyde et sulfone. Il faut souligner que la méthode d'analyse ne permet pas de mettre en évidence la formation d'autres sous-produits acides.
Exemple 4 : Activité désinfectante
L'activité antimicrobienne des fibres textiles selon l'invention a été mise en évidence dans les deux tests suivants : 4.1. Inoculation naturelle
Les carrés de 15 x 15 cm de coton greffé ou non avec un composé de formule (I) sont découpés en quatre, puis laissés pendant 24 heures sur une paillasse dans le noir afin de réaliser une inoculation naturelle. La moitié des morceaux sont placés sous une lampe (λmax = 420 mn) pendant une heure (distance lampe échantillon = 5 cm). Après l'irradiation, les tissus sont appliqués sur un milieu gélose. Les boites de Pétri ont été incubées à 32"C. Deux décomptes de bactéries ont été effectués : à t = 24heures, et à t = 48 heures.
Le tableau 1 ci-dessous reprend les résultats obtenus pour les échantillons préparés avec différents dérivés d'anthraquinone avec le protocole de colorant de cuve. La concentration des bains utilisés pour réaliser ces échantillons est de 2%.
Figure imgf000013_0001
Tableau 1 : décompte des colonies après 24 heures pour des échantillons réalisés via le protocole de colorant de cuve sur support en coton.
Les résultats obtenus montrent qu'il existe un effet désinfectant de la lumière, puisque, dans tous les cas, un plus grand nombre de colonies est décompté pour les échantillons restés à l'obscurité.
Il existe également un effet antimicrobien dû à l'effet combiné de l'irradiation et de la présence des dérivés anthraquinoniques. Cet effet est observable, quel que soit le dérivé d'anthraquinone utilisé. 4.2. Inoculation par E. CoIi
300 μl d'une solution d'E. CoIi sont mis en suspension dans 5 ml de milieu LB broth Miller. La solution est laissée à l'étuve à 30"C pendant 22 heures. Une dilution au 1/100000eme est réalisée dans une solution d'eau salée à 10g/I de NaCI. 400 μl de solution diluée sont déposés sur chaque échantillon textile (carré de 4x6 cm).
Les échantillons testés sont les suivants :
2 échantillons de textile non traité
2 échantillons de textile imprimé avec l'Anthraquinone
Après inoculation, un échantillon de textile non traité et un de textile traité sont placé sous une lampe λmax=420 nm pendant 1 heure. Les deux autres sont laissés dans l'obscurité.
Après irradiation, tous les textiles sont appliqués quelques seconde sur boite de pétri contenant du milieu gélose (LB-Agar). Après retrait du tissus, les boites de pétri sont placées dans une étuve à 32"C pendant 14 h. Le nombre de colonies dans chaque boite est alors décompté (tableau suivant).
Figure imgf000014_0001

Claims

REVENDICATIONS
1. Utilisation de l'anthraquinone ou ses dérivés de formule générale (I) :
Figure imgf000015_0001
dans laquelle :
R1 , R2 R3, R4, R5, R6 R7, et R8, identiques ou différents représentent indépendamment un atome d'hydrogène; un groupe alkyle ; un groupe NRaRb; un atome d'halogène; un groupe COORc ; un groupe ORd, un groupe CONReRf, ou un groupe SO3M où : Ra, Rb, Rc, Rd, Re et Rf, identiques ou différents, représentent indépendamment un atome d'hydrogène ou un groupe Ci-Ce alkyle ;
M représente un atome d'hydrogène ou de métal alcalin, tel que le sodium ou le potassium, pour conférer des propriétés dépolluantes et/ou désinfectantes aux fibres textiles, textiles ou articles textiles.
2. Utilisation selon la revendication 1 tel que R1 , R2 R3, R4, R5, R6 R7, et R8, identiques ou différents, représentent indépendamment un atome d'hydrogène; un groupe NRaRb; un atome d'halogène; un groupe COORc ; ou un groupe SO3M.
3. Utilisation selon la revendication 1 ou 2 tel que dans la formule générale (I)
R1 =R4=R5=R8=H.
4. Utilisation selon la revendication 1 , 2 ou 3 telles que l'anthraquinone ou ses dérivés sont choisis parmi les composés de formule :
Figure imgf000016_0001
Anthraqumone Anthraqumone -2- Anthraqumone Anthraqumone -2-
(AQ) acide carboxylique (AQ -Cl) acide -sulfomque
(AQ -COOH ) (AQ -SO3Na)
5. Utilisation selon l'une quelconque des revendications précédentes telles que lesdites fibres sont choisies parmi les fibres naturelles ou synthétiques.
6. Utilisation selon l'une quelconque des revendications précédentes telles que lesdites fibres sont choisies parmi les fibres de coton, cellulose, laine, soie, lin, polyamides, viscoses.
7. Utilisation selon l'une quelconque des revendications précédentes telles que lesdites fibres sont choisies parmi les fibres de coton.
8. Utilisation selon l'une quelconque des revendications précédentes comprenant l'étape de fixation d'anthraquinone ou ses dérivés sur les dites fibres.
9. Utilisation selon la revendication 8 l'étape de fixation est réalisée en cuve, par thermosolage, par la technique de l'impression ou par trempe dans une solution aqueuse de l'anthraquinone ou ses dérivés.
10. Fibres textiles photoactives dépolluantes et/ou désinfectantes comprenant l'anthraquinone ou ses dérivés tels que définis selon l'une quelconque des revendications 1 à 4.
11. Fibres selon la revendication 10 tel que lesdites fibres sont telles que définies selon l'une quelconque des revendications 5 à 7.
12. Textile comprenant une ou plusieurs fibres selon l'une quelconque des revendications 10 à 11.
13. Article textile comprenant un ou plusieurs textiles selon la revendication 12.
14. Article selon la revendication 13 choisi parmi les vêtements, chaussures et articles d'ameublement.
15. Utilisation d'une fibre, textile ou article selon l'une quelconque des revendications 10 à 14 pour la mise en œuvre d'un procédé photochimique de dépollution et/ou désinfection.
16. Utilisation selon la revendication 15 tel que le procédé comprend la présentation de ladite fibre, textile ou article à la lumière visible ou UVA en présence d'oxygène.
PCT/FR2008/052137 2007-12-04 2008-11-27 Fibres textiles photoactives dépolluantes et désinfectantes WO2009071845A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759551A FR2924445B1 (fr) 2007-12-04 2007-12-04 Fibres textiles photoactives depolluantes et desinfectantes.
FR0759551 2007-12-04

Publications (1)

Publication Number Publication Date
WO2009071845A1 true WO2009071845A1 (fr) 2009-06-11

Family

ID=39092686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/052137 WO2009071845A1 (fr) 2007-12-04 2008-11-27 Fibres textiles photoactives dépolluantes et désinfectantes

Country Status (2)

Country Link
FR (1) FR2924445B1 (fr)
WO (1) WO2009071845A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719312A (zh) * 2019-03-22 2020-09-29 东丽纤维研究所(中国)有限公司 一种柔软吸水面料及其用途
EP3933102A1 (fr) * 2020-06-29 2022-01-05 Ortner Cleanroom Engineering GmbH Nappe textile, vêtement, son procédé de fabrication, fonctionnalisation d'une nappe textile et l'utilisation d'un photosensibilisateur fixé à la surface d'une nappe textile

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012085250A1 (fr) * 2010-12-22 2012-06-28 Ortner Cleanroom Engineering Gmbh Dispositif de salle blanche présentant une source de rayonnement électromagnétique mobile
WO2012085257A1 (fr) * 2010-12-22 2012-06-28 Ortner Cleanroom Engineering Gmbh Contrôle photodynamique de la croissance microbienne sur les surfaces
CN112914173B (zh) * 2021-01-26 2022-08-02 张斌翔 一种光催化磷灰石包裹技术杀菌消毒口罩

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566874A (en) * 1981-12-09 1986-01-28 Ciba-Geigy Corporation Water-soluble zinc and aluminium phthalocyanines and use thereof as photoactivators
US6034003A (en) * 1997-12-29 2000-03-07 Lee; Kui-Fong Ultraviolet radiation protective clothing
WO2003020506A1 (fr) * 2001-08-31 2003-03-13 Milliken & Company Chiffon a absorption electrostatique pour salle blanche

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566874A (en) * 1981-12-09 1986-01-28 Ciba-Geigy Corporation Water-soluble zinc and aluminium phthalocyanines and use thereof as photoactivators
US6034003A (en) * 1997-12-29 2000-03-07 Lee; Kui-Fong Ultraviolet radiation protective clothing
WO2003020506A1 (fr) * 2001-08-31 2003-03-13 Milliken & Company Chiffon a absorption electrostatique pour salle blanche

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. GUTIERREZ, S.G. BERTOLOTTI, M.A. BIASUTTI, A.T. SOLTERMANN, N.A. GARCIA: "Quinones and hydroxyquinones as generators of singlet molecular oxygen", CAN. J. CHEM., vol. 75, 1997, pages 423 - 428, XP002471646 *
M.C. DEROSA, R.J. CRUTCHLEY: "Photosensitized singlet oxygen and its applications", COORDINATION CHEMISTRY REVIEW, no. 233-234, 2002, pages 351 - 371, XP002471645 *
N.S. ALLEN, G. PULLEN, M. SHAH, M: EDGE, D. HOLDSWORTH, I. WEDDELL, R. SWART, F. CATALINA: "Photochemistry and photoinitiator properties of 2-substituted anthraquinones 1. Absorption and luminescence characteristics", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 91, 1995, pages 73 - 79, XP002471647 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719312A (zh) * 2019-03-22 2020-09-29 东丽纤维研究所(中国)有限公司 一种柔软吸水面料及其用途
EP3933102A1 (fr) * 2020-06-29 2022-01-05 Ortner Cleanroom Engineering GmbH Nappe textile, vêtement, son procédé de fabrication, fonctionnalisation d'une nappe textile et l'utilisation d'un photosensibilisateur fixé à la surface d'une nappe textile
WO2022002489A1 (fr) * 2020-06-29 2022-01-06 Ortner Cleanroom Engineering Gmbh Surface textile, vêtement, procédé de fabrication et de fonctionnalisation d'une surface textile et utilisations d'un photosensibilisateur lié à une structure textile

Also Published As

Publication number Publication date
FR2924445A1 (fr) 2009-06-05
FR2924445B1 (fr) 2010-03-19

Similar Documents

Publication Publication Date Title
AU708910B2 (en) Low hue photodisinfectants
Yusuf et al. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis)
FR2564837A1 (fr) Azaphtalocyanines hydrosolubles, leur procede de preparation et leur utilisation comme photoactivateurs
WO2009071845A1 (fr) Fibres textiles photoactives dépolluantes et désinfectantes
CH619369A5 (en) Training device for games with a small ball or a large ball (ball games), particularly for football
KR880001612B1 (ko) 표백제의 제조방법
EP0026744B2 (fr) Moyen et procédé pour le traitement et l'amélioration de l'apparence de textiles
CH657864A5 (de) Wasserloesliche phthalocyaninverbindungen und deren verwendung als photoaktivatoren.
Jiang et al. Studies on the photofading of alizarin, the main component of madder
TW201816102A (zh) 對基板施加處理劑之方法
Rather et al. Instrumental characterization of merino wool fibers dyed with Cinnamomum camphora waste/fallen leaves extract: An efficient waste management alternative
Hu et al. Functional modification of cellulose fabrics with phthalocyanine derivatives and the UV light-induced antibacterial performance
Meksi et al. Cotton dyeing by indigo with the borohydride process: Effect of some experimental conditions on indigo reduction and dyeing quality
Wang et al. Preparation and investigation of a stable hybrid inkjet printing ink of reactive dye and CHPTAC
FR2702779A1 (fr) Obtention de textiles en jean ayant un aspect surteint et délavé.
Wang et al. Surface treatment of cotton using β-cyclodextrins sol–gel method
Sharma et al. A greener approach to impart multiple functionalities on polyester fabric using Schiff base of vanillin and benzyl amine
US20220112629A1 (en) Antibacterial and antiviral fabrics
EP0165115B1 (fr) Composition détergente pour blanchiment par photoactivation et son procédé d'utilisation
DE602004012854T2 (de) Blaue und rote bleichmittel
JP3268553B2 (ja) セルロース系繊維の加工方法
EP0148681B1 (fr) Procédé de teinture avec des colorants en poudre et composition pour sa réalisation
Santhi et al. Study on different reducing agents for effective vat dyeing on cotton fabric
Farrell et al. Cationic cotton prepared with hydrophobic alkyl chlorohydrin quats: a new fiber with new properties
JPH0948925A (ja) 緑色染料、その製法、該染料を含有する抗菌消臭剤、該染料を含有する抗菌消臭性繊維製品及びその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08856680

Country of ref document: EP

Kind code of ref document: A1