WO2009070972A1 - A measure method, a repeater and a base station in the process of cell handoff - Google Patents

A measure method, a repeater and a base station in the process of cell handoff Download PDF

Info

Publication number
WO2009070972A1
WO2009070972A1 PCT/CN2008/001870 CN2008001870W WO2009070972A1 WO 2009070972 A1 WO2009070972 A1 WO 2009070972A1 CN 2008001870 W CN2008001870 W CN 2008001870W WO 2009070972 A1 WO2009070972 A1 WO 2009070972A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
module
data
relay
Prior art date
Application number
PCT/CN2008/001870
Other languages
English (en)
French (fr)
Inventor
Wei Bao
Zhuo Gao
Haizhou Bi
Original Assignee
Datang Mobile Communications Equipment Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd filed Critical Datang Mobile Communications Equipment Co., Ltd
Priority to US12/745,363 priority Critical patent/US8588785B2/en
Priority to EP08857549.3A priority patent/EP2222119B1/en
Priority to KR1020107014417A priority patent/KR101167794B1/ko
Publication of WO2009070972A1 publication Critical patent/WO2009070972A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a cell handover technique in a mobile communication system, and in particular, to a measurement method, a relay, and a base station in a cell handover procedure.
  • Relay node with node A node that forwards terminal data or control signaling functions, wherein the nodes include: between a base station (BS, Base Station) and an RS, between an RS and an RS, and between an RS and a terminal (UT).
  • Transparent RS does not send downlink synchronization channel, system configuration and resource allocation broadcast messages.
  • Non-transparent RS Non-transparent RS sends its own downlink synchronization channel, system configuration and resource allocation broadcast messages.
  • Access link A wireless link that begins or terminates at the UT.
  • Relay link A wireless link between a BS and an RS or a wireless link between an RS and an RS.
  • RS Compared with BS, RS has the advantages of flexible layout and cost, which can save network construction cost.
  • the introduction of RS can increase the system capacity, increase the coverage of the cell, and increase the transmission rate.
  • Figure 1 shows the different application scenarios and functions of RS.
  • the coverage of the transparent RS falls completely within the coverage of the BS, and the coverage of the non-transparent RS may be partially or completely outside the coverage of the BS.
  • RS2 for providing hotspot coverage belongs to transparent RS, and relay RS1 for expanding BS coverage and relay RS3 for solving shadow effect are non-transparent RS.
  • RS1, RS2, and RS3 are all RSs under the BS.
  • the BS can use all frequency bands in the cell, and each RS can use some or all of the frequency bands in the cell.
  • the size of the frequency band used by the RS depends on the traffic of the RS service terminal and the design capability of the RS.
  • RS1, RS2, and RS3 have the same frequency band 210 as the BS, and the BS and the corresponding frequency band portion of each RS are filled with a grid.
  • the same frequency band is called a common frequency band, and its main purposes are:
  • the RSs communicate with each other; receive public information sent by the UT, such as Preamble.
  • the following describes the process by which the UT performs service node switching.
  • the so-called handover means that when the user terminal moves from the coverage area of one BS or RS to the coverage area of another BS or RS in the communication process, or the communication quality is degraded due to external interference, it must be transferred from the current communication link.
  • the handover process of the mobile communication system can be subdivided into three main processes, namely, a measurement process, a determination process, and an execution process, where
  • Measurement process Its main function is to measure the parameters required for handover in the wireless communication system, and to test the results of the measurement report.
  • the measurement process is mainly divided into intra-system measurement and inter-system measurement, as well as intra-frequency measurement and inter-frequency measurement.
  • the measurement process mainly involves parameters such as the period and format of the measurement report.
  • the measurement mainly refers to the UT detecting the downlink pilot signal transmitted by the BS and determining the signal quality thereof.
  • some network side service nodes such as transparent RSs, have no downlink pilot signals to measure. In this case, the signal between the UT and the network cannot be measured.
  • Judgment process Its main function is to provide the handover decision result according to the parameters of the network and the service, and refer to the corresponding threshold and measurement result to determine whether the UT switches and the target cell of the handover.
  • the design of the decision process embodies the backup switching criteria in the handover algorithm and is also a concrete reflection of the system performance.
  • Execution process The main function is that when the decision process has been determined that the UT needs to perform the corresponding handover, the UT and the target cell are connected through the signaling interaction between the target cell and the UT, and the corresponding resources are allocated to the user, thereby completing the entire handover. process.
  • the main object of the present invention is to provide a measurement method in a cell handover process, which uses the network side to perform signal quality measurement during cell handover.
  • Another object of the present invention is to provide a relay and a base station that implement cell handover, and use the relay and the base station to perform signal switching between the terminal and the terminal in the process of performing cell handover by the terminal. Line measurement.
  • the present invention provides a measurement method in a cell handover process, and the method includes:
  • the base station allocates resources required for the terminal to send uplink data.
  • the base station and the relay measure related data sent by the terminal on the resource scheduled by the base station, and the relay reports the measured uplink signal detection information to the base station.
  • the resource scheduled by the base station is a common frequency band resource, and the related data is uplink data sent by the terminal.
  • step A and step B further include:
  • the base station sends the scheduled resource scheduling information of the resource to the corresponding relay and the terminal, where the corresponding relay includes the original serving node of the terminal and the adjacent relay, where the corresponding
  • the trunk is a transparent relay or a non-transparent relay.
  • the step A further includes: the base station allocates a dedicated random access preamble sequence Preamble and its access resources to the terminal, and sends the resource scheduling information to the terminal.
  • the step A further includes: the base station sending the scheduled scheduling resource information to the terminal.
  • Step A and step B further include:
  • the base station sends the scheduled resource scheduling information of the resource to a corresponding relay, where the corresponding relay includes an original serving node of the terminal and an adjacent relay, where the corresponding relay is Transparent relay or non-transparent relay.
  • Step B further includes:
  • the base station determines, as the target node, the handover target node according to the measurement result obtained by the self measurement and/or the uplink signal detection information.
  • Step C further includes:
  • the handover process ends;
  • the base station notifies the original serving node to release the connection, and the original serving node reports the sending and receiving state information of the uplink and downlink data of the terminal.
  • Step D further includes:
  • the base station configures itself according to the received status information, and sends adjustment signaling to the terminal, and the terminal adjusts related parameters according to the adjustment information in the adjustment signaling. After that, the switching process ends.
  • Step E further includes:
  • the base station When the target node is a relay, the base station generates a status configuration signaling according to the received status information and the target node information, and sends the status configuration signaling to the target node, configures the target node, and generates an adjustment signaling to the terminal, where the terminal is configured according to the The adjustment information in the adjustment signaling performs adjustment of related parameters, and then the handover process ends.
  • the present invention also provides a relay for implementing cell handover, the relay includes: a data receiving module, an uplink data detecting module, and a data sending module, where
  • the data receiving module is configured to: after receiving the resource scheduling information sent by the base station, send the resource scheduling information to the uplink data detecting module;
  • the uplink data detecting module is configured to: after receiving the resource scheduling information, detect related data of the terminal in the corresponding frequency band, and send the obtained uplink signal detection information to the data sending module;
  • the data sending module is configured to send the detection information to the base station after receiving the uplink signal detection information.
  • the relay is a transparent relay or a non-transparent relay.
  • the related data is: uplink data sent by the terminal, or a dedicated Preamble,
  • the data receiving module is further configured to: when receiving the release connection signaling sent by the base station, send a signal to the status information generating module;
  • the corresponding relay further includes:
  • a status information generating module configured to: when receiving the signal sent by the data receiving module, release the connection with the terminal, and generate the sending and receiving status information and send the data to the data sending module;
  • the data sending module is further configured to: send the received transceiver status information to the base station.
  • the data receiving module is further configured to: after receiving the state configuration signaling sent by the base station, send the configuration signaling to the state configuration module;
  • the relay further comprises:
  • the state configuration module is configured to configure, according to the sending and receiving state information of the uplink and downlink data of the terminal, the trunk to which the terminal belongs, as the serving node of the terminal, after receiving the configuration signaling.
  • the present invention further provides a base station for implementing cell handover, the base station comprising: a data receiving module, a resource scheduling module, an uplink data detecting module, a service node selecting module, and a data sending module, wherein
  • a data receiving module configured to send the received uplink signal detection information sent by the secondary relay to the service node selection module
  • the resource scheduling module is configured to: when the network measurement is triggered, determine whether the terminal has uplink data, and accordingly allocate a common frequency band resource for the terminal, or allocate a dedicated: Preamble and its access resource to the terminal, and send the resource scheduling information to the terminal
  • the uplink data detecting module is configured to: after receiving the resource scheduling information, detect related data sent by the terminal in the corresponding frequency band, and send the detection result to the service node selection module;
  • a service node selection module configured to determine, according to the received detection result and the uplink signal detection information, a target node that is a terminal service, and send the target node information to the outside;
  • a data sending module configured to send the received resource scheduling information to the terminal and the corresponding relay.
  • the data receiving module is further configured to: send the receiving status information sent by the original serving node of the received terminal to the configuration signaling generating module;
  • the service node selection module is further configured to: when the determined target node is different from the original serving node of the terminal, generate release connection signaling and send the data to the data sending module; and further, send the target node information to the adjustment signaling generation module and the status Configuration module
  • the base station further comprises:
  • a state configuration module configured to: after receiving the transceiver status information, according to the received target node information, when the target node is the base station itself, configure the base station as a service node of the terminal; when the target node is a relay, generate a status Configure signaling and send it to the data sending module;
  • the adjustment signaling generation module is configured to generate adjustment signaling according to the target node information and the detection result of the target node to the uplink data of the terminal, and send the adjusted signaling to the data sending module;
  • the data sending module is further configured to: send the received state configuration signaling to the target node; and further, send the received adjustment signaling to the terminal.
  • the related data is: the uplink data sent by the terminal, or the dedicated Preamble.
  • the terminal When the UT needs to perform cell handover, the terminal does not measure the downlink pilot signal, but the network side triggers the measurement mechanism to measure the uplink signal quality between the UT and the network side, and finally according to the measurement. The result is that the UT selects the target node to switch.
  • the BS allocates the common frequency band resource for the UT to perform the uplink data transmission.
  • the dedicated random access preamble sequence (hereinafter referred to as Preamble) is allocated to the UT.
  • the access resource is used for measuring the uplink data of the UT, and avoids the problem that the most suitable service node cannot measure the uplink data of the UT if the different frequency bands of the adjacent RS are not taken into consideration.
  • the frequency band used by the terminal UT to transmit uplink data is located in the receiving frequency band of the transparent or non-transparent relay RS1, RS3 and the base station BS, but is outside the receiving frequency band of the transparent or non-transparent relay RS2. .
  • the current serving node of the terminal UT is RS1. With the UT moving, RS1 is no longer suitable to continue as a serving node.
  • the BS initiates network measurement, configures RS1, RS3, and BS to simultaneously measure the uplink signal of the MS, and selects a serving node for the UT according to the measurement result. As can be seen from Figure 3, the UT is closest to the RS2 distance.
  • RS2 cannot measure the uplink signal of the UT, and finally affects RS2 cannot be selected by the BS as the service node of the UT.
  • the BS is a common frequency band resource scheduled by the UT, so that the RSs around the UT can measure the uplink data of the UT as much as possible; and when there is no common frequency band resource, the dedicated UT and the access resource are allocated to the UT, so that The RS can measure the corresponding Preamble, thereby fundamentally avoiding the above-mentioned possible problems.
  • the BS allocates a dedicated Preamble and an access resource to the UT, and the RS and the BS measure the signal quality by measuring the Preamble sent by the UT, thereby avoiding that the UT has no uplink data.
  • the RS and the BS measure the signal quality by measuring the Preamble sent by the UT, thereby avoiding that the UT has no uplink data.
  • Figure 1 is a schematic diagram of different application scenarios and functions of the RS
  • FIG. 2 is a schematic diagram showing the relationship between the BS and its relay working frequency band
  • 3 is a schematic diagram of a situation in which a best serving cell cannot be selected as a target node
  • FIG. 4 is a schematic flowchart of a handover method when a base station allocates a common frequency band resource for a terminal according to the present invention
  • FIG. 5 is a schematic diagram of a handover when a base station allocates a dedicated Preamble to a terminal according to the present invention. Method flow diagram
  • FIG. 6 is a schematic diagram of a relay structure for implementing cell handover according to the present invention
  • FIG. 7 is a schematic structural diagram of a base station for implementing cell handover according to the present invention. detailed description
  • the basic idea of the present invention is: after triggering the measurement mechanism, the base station allocates a common frequency band resource to the terminal, or a dedicated Preamble and its access resources; when the terminal performs related data transmission on the resource, the base station and the corresponding relay Performing measurement of uplink data of the terminal; The base station determines, according to the measurement result of itself and the relay, the target node that the terminal performs handover, and performs a subsequent cell handover procedure.
  • FIG. 4 is a schematic flowchart of a handover method when a base station schedules a common frequency band for a terminal, where the UT, the RS1, the RS2, and the BS are included, the relay RSI is the original serving node of the UT, and the relay RS2 is the target node selected by the BS as the UT.
  • the method flow is not limited to the UT, the RS RS2, and the BS, and includes other RSs that detect uplink data of the UT, and the data interaction process between the other RS and the BS and the UT is before step 405.
  • the target node RS2 is the same, and is not shown in FIG.
  • the relay is a transparent relay or a non-transparent relay. As shown in Figure 4, the method includes:
  • Step 401 After the BS-side network measurement is triggered, the BS first determines whether the measured UT has uplink data. When there is uplink data, the BS allocates the uplink data for the UT scheduling resource, where the resource is preferably a common frequency band. Resources. In the handover process shown in Figure 4, the resources are common frequency band resources. When the UT does not have uplink data, the BS allocates a dedicated Preamble and its access resources to the UT. At this time, the specific processing procedure of the UT performing the cell handover is described in the handover method shown in FIG. 5. No longer.
  • the triggering condition of the BS-side network measurement includes, but is not limited to, one or more of the following: when the serving node is an RS, when the wireless channel environment of the user is deteriorated, the device reports the information to the BS, and the reporting may trigger the network measurement;
  • the monthly service node is a BS
  • network measurement may be triggered
  • the public frequency band may be a common working frequency band of all RSs, or may be a common working frequency band of some RSs. The more RSs that can be received in this band, the greater the chance that the last selected service node will achieve good results. Moreover, the public frequency band must be within the working frequency band of the current serving node, and the partial RS is preferably an RS around the UT.
  • the BS can determine the location of the UT and the RS around the UT accordingly. A common frequency band of the RS located around the UT can be obtained.
  • the BS specifically determines whether the UT has uplink data, and how the BS specifically allocates resources or common frequency band resources for the UT, how to allocate a dedicated Preamble to the UT, and how to access the resources are well known in the prior art. . Similarly, how the BS specifically determines the RSs that can be served by the UT around the UT and how to determine the common frequency according to the operating frequency bands of the respective RSs is also well known in the prior art and will not be described here.
  • Step 402 When the BS schedules the resource to the common frequency band, the BS notifies the UT and the corresponding RSs of the resource scheduling information obtained by the resource scheduling.
  • the corresponding respective relays include the current original service node of the terminal and the adjacent relay.
  • the BS may notify all the Ss under the UT of the result of the resource scheduling, or may only notify the RSs located around the UT;
  • the corresponding RSs are the RSs corresponding to the public working frequency band determined in step 401, or may be part of them, or all the RSs under the BS that can receive the frequency band.
  • the BS allocates a dedicated Preamble and an access resource to the UT when the BS does not schedule the common frequency band resource.
  • the specific processing method of the handover process is in the handover method shown in FIG. There is a detailed description, and there is no longer a description here.
  • Step 403 The UT sends uplink data on the resource notified by the BS in step 402, and the corresponding RS and BS detect the uplink data.
  • the information to be detected includes but is not limited to one or more of the following:
  • the deviation of the arrival time of the uplink signal from the expected arrival time that is, the timing adjustment amount (TA, Timing Alignment);
  • the power of the received signal is well known in the prior art, and are not described herein again.
  • Step 404 The RS reports the uplink signal detection information detected in step 403 to the BS.
  • Step 406 The BS sends a release connection signaling to the original serving node R, S1, where the signaling is used to notify the original serving node RS1 to release the connection with the UT.
  • Step 407 The original serving node RS1 returns the sending and receiving status information of the uplink and downlink data of the UT to the BS.
  • Step 408 The BS configures the target node. If the target node is a BS, the BS only needs to perform local configuration according to the received and sent status information. After that, step 409 is performed. If the target node is an RS, in this example, For RS2, the BS sends status configuration signaling to the target node RS2, and the signaling is used to configure the target node RS2. By configuration, the BS configures the transmission and reception status of the original serving node RS1 to the target node RS2.
  • Step 409 The BS sends adjustment signaling to the UT, where the signaling includes information such as TA and transmission power, and is used by the UT to adjust the +TA and the transmission power.
  • the TA and the transmission power that are notified by the notification UT are determined by the uplink signal detection information reported by the relay RS2 selected as the target node in step 404.
  • Step 410 The UT adjusts the sending parameter according to the received adjustment information in the signaling.
  • adjustment information such as TA and power
  • the handover process ends and the UT starts communicating with the target node RS2.
  • FIG. 5 is a schematic flowchart of a handover method when a base station allocates a dedicated Preamble to a terminal according to the present invention, where the UT, the RS1, the RS2, and the BS are included, the relay RSI is the original serving node of the UT, and the relay RS2 is the target node selected by the BS.
  • the method flow is not limited to between UT, RS1, RS2, and BS, and includes other RSs that detect uplink data of the UT, before step 505, other The processing of the RS is the same as that of RS2, which is not shown in FIG.
  • the method includes: Step 501: After the BS side network measurement is triggered, when the BS determines that the UT has no uplink data, or
  • the BS When the BS is unable to allocate common frequency band resources for the UT in the process of resource scheduling, the BS allocates the UT.
  • the reason that the foregoing BS cannot schedule the transmission of the UT for transmitting uplink data to the public frequency band mainly includes: In the public frequency band, the uplink signal quality between the UT and the current serving node is poor, if the UT is forced in the frequency band. Sending uplink data will cause the user's data to be lost or delayed, which will affect the user experience.
  • the resources of the public frequency band have no remaining resources and can be scheduled to the current UT.
  • the Preamble allocated by the BS to the UT should be a dedicated Preamble, that is, on the foregoing resources, only the UT may send the Preamble, and other UTs may use the foregoing resource to send.
  • the Preamble used must be different from the dedicated Preamble described above.
  • the triggering condition of the BS-side network measurement includes, but is not limited to, one or more of the following: when the serving node is an RS, when the wireless channel environment of the user is deteriorated, the device reports the information to the BS, and the reporting may trigger the network measurement;
  • the serving node When the serving node is a BS, 'when it discovers that the user's wireless channel environment is degraded, network measurement may be triggered;
  • network measurements may be triggered.
  • the BS specifically determines whether the UT has uplink data, and how the BS specifically allocates resources or common frequency band resources for the UT, how to allocate dedicated Preambles for the UT, and access resources are well known in the prior art, and details are not described herein again.
  • Step 502 The BS notifies the UT and the access resource to the UT and the corresponding one, wherein the corresponding relay includes the original H-service node of the terminal and an adjacent relay. If RS ⁇ is configured to detect all Preambles on the connected resource, the above information does not need to be sent to each RS. In this step, the BS only needs to notify the UT of the information.
  • Step 503 The UT sends a dedicated Preamble on the resource notified by the BS in step 502, and the RS and the BS detect the Preamble.
  • the information to be detected includes but is not limited to one or more of the following: The arrival time and expected of the uplink signal The deviation of the arrival time, ie TA; the power of the received signal.
  • the uplink data that the dedicated Preamble and the UT need to send may be collectively referred to as uplink data.
  • Step 504 The RS reports the uplink signal detection information detected in step 503 to the BS.
  • the UT selects the target node of the handover. If the selected target node is the current serving node, the handover process does not need to be performed, and if the selected target node is not the current serving node, step 506 is performed. Let the target node be RS2.
  • Steps 506 - 510 are the same as steps 406 ⁇ 410, and are not described here.
  • the uplink data sent by the terminal in step 403 and the dedicated Preamble sent by the terminal in step 503 are collectively referred to as related data.
  • the relay includes: a data receiving module 610, an uplink data detecting module 620, a state information generating module 630, a state configuration module 640, and a data sending module. 650, of which
  • the data receiving module 610 is configured to: after receiving the resource scheduling information sent by the BS, send the information to the uplink data detecting module 620; when receiving the release connection signaling sent by the BS, send a signal to the status information generating module. 630: Send the signaling to the state configuration module 640 when receiving the state configuration signaling sent by the BS.
  • the uplink data detecting module 620 is configured to: after receiving the resource scheduling information sent by the data receiving module 610, detect relevant data of the UT in the corresponding frequency band according to the information, and send the detected information to generate uplink signal detection information to the Data sending module 650.
  • the related data includes: uplink data that the UT needs to send, and a dedicated Preamble that the BS allocates for the UT.
  • the status information generating module 630 is configured to: after receiving the signal sent by the data receiving module 610, generate the sending and receiving status information according to the sending and receiving status of the uplink and downlink data of the UT, and send the status information to the data sending module 650.
  • the state configuration module 640 is configured to receive the state configuration signaling sent by the data receiving module 10, and configure the RS to which the module belongs as a service node of the UT according to the sending and receiving state information of the UT uplink and downlink data included in the signaling. .
  • the data sending module 650 is configured to send the information to the BS after receiving the uplink signal detection information or the sending and receiving state information.
  • the above relay can be a transparent relay or a non-transparent relay.
  • the base station includes: a data receiving module 710, a resource scheduling module 720, an uplink data detecting module 730, a service node selecting module 740, a state configuration module 750, and an adjustment. a signaling generation module 760 and a data sending module 770, Medium,
  • the data receiving module 710 is configured to: after receiving the sending and receiving state information sent by the original serving node of the UT, send the state information to the state configuration module 750; and further, receive the uplink signal detection information sent by the RS under the jurisdiction , sending the information to the service node selection module 7
  • the resource scheduling module 720 is configured to: when the network measurement is triggered, schedule a common frequency band resource for the UT, or allocate a dedicated Preamble and its access resource to the UT, and send the resource scheduling information to the uplink data detection module 730 and the data sending module 770. .
  • the uplink data detection module 730 is configured to receive the resource scheduling information, perform detection of the UT related data on a frequency band to which the UT is allocated, and send the detection result to the service node selection module 740.
  • the related condensed data is: the uplink data or the dedicated Preamble that the UT needs to send.
  • a service node selection module 740 configured to receive the uplink signal detection information and the detection result, and determine a target node that is the UT service, and generate a release connection signaling when the determined target node is different from the original serving node, and The signaling is sent to the data sending module 770, and the determined target node information is sent to the adjustment signaling generating module 760 and the state configuration module 750.
  • the state configuration module 750 is configured to configure, according to the received target node information, according to the received target node information, when the target node is the BS itself, configure the BS as a UT according to the transceiver status information.
  • the service node when the target node is an RS, generates state configuration signaling, and sends the signaling to the data sending module 770.
  • the adjustment signaling generation module 760 is configured to generate adjustment signaling according to the target node information and the detection result of the target node to the UT uplink data, and send the signaling to the data sending module 770.
  • the data sending module 770 is configured to receive the resource scheduling information, and send the information to the corresponding RS and the UT. When receiving the status configuration signaling, send the signaling to the target node. The signaling is further sent to the UT when the adjustment signaling is received.
  • the relay shown in Fig. 6 and the BS described in Fig. 7 can constitute a system.
  • the measurement method, the relay, and the base station in the cell handover process provided by the present invention can be applied to the terminal between the base station and the base station within the cell, between the relay, or under the base station. Switch between two relays and other scenarios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种小区切换过程中的测量方法、 中继及基站 技术领域
本发明涉及移动通信系统中的小区切换技术, 尤其涉及一种小区切换过程 中的测量方法、 中继及基站。 背景扶术
为了满足用户终端对系统全覆盖和高容量的需求, 在未来的移动通信系统 中将可能大量使用中继节点 (RS, Relay Station I 以下给出 RS的相关定义: 中继节点: 具备在节点之间转发终端数据或控制信令功能的节点。 其中, 所述节点之间包括: 基站(BS, Base Station ) 与 RS之间、 RS与 RS之间以及 RS与终端 (UT )之间。
透明 RS: 透明 RS不发送下行同步信道, 系统配置和资源分配广播消息。 非透明 RS: 非透明 RS发送自己的下行同步信道, 系统配置和资源分配广 播消息。
接入链路: 开始于或终结于 UT的无线链路。
中继链路: BS和 RS之间的无线链路或 RS和 RS之间的无线链路。
与 BS相比, RS具有布置灵活、 成本^ ί氏的优点, 可以节约建网成本。 RS 的引入可以提高系统容量, 增大小区的覆盖范围, 提高传输速率。
图 1为 RS不同应用场景及作用示意图。在实际使用中,透明 RS的覆盖范 围完全落在 BS的覆盖范围之内,而非透明 RS的覆盖范围可以有部分或全部位 于 BS的覆盖范围之外。 如图 1所示, 用于提供热点覆盖的 RS2属于透明 RS, 而用于扩大 BS覆盖范围的中继 RS1以及用于解决阴影效应的中继 RS3属于非 透明 RS。
为了避免 RS间的无线信号相互干扰,在实际布网时, 常将相邻 RS的工作 频段调整开来, 如图 2所示的各节点工作频段。 参看图 2, RS1、 RS2、 RS3均 为 BS的下辖 RS。 BS可以使用小区内的全部频段, 各 RS可以使用小区内的部 分或全部频段。 RS所用频段的大小取决于 RS服务终端的业务量以及 RS的设 计能力。 RS1、 RS2、 RS3与 BS有一段相同的频段 210, BS以及各个 RS的相 应频段部分用网格填充显示, 所述相同的频段称为公共频段, 其主要用途有: 供 RS间相互通信; 接收 UT发送的公共信息, 例如 Preamble等。
以下, 介绍 UT进行服务节点切换的过程。 所谓切换, 是指当用户终端在 通信过程中从一个 BS或 RS的覆盖区移动到另一个 BS或 RS的覆盖区, 或者 由于外界干扰而造成通信质量下降时, 必须从当前的通信链路转移到其他接入 节点管理的空闲通信链路的过程, 其中所述接入节点为 BS或 RS。
移动通信系统的切换流程可以细分为三个主要过程, 分别为测量过程、 判 决过程和执行过程, 其中,
测量过程: 其主要功能为对无线通信系统中切换要求的参数进行测量, 并 且对于测量报告的结果进行检验。测量过程主要分为系统内测量和系统间测量, 以及同频测量和异频测量。测量过程主要涉及到测量报告的周期和格式等参数。 在现有的无线通信系统中, 测量主要是指 UT对 BS发送的下行导频信号进行 检测, 判定其信号质量。 在未来的移动通信系统中, 某些网络侧服务节点, 例 如透明 RS, 没有可供测量的下行导频信号, 这种情况下, 则不能对 UT与网絡 间的信号^量进行测量。
判决过程: 其主要功能为根据网络和业务等备方面参数要求, 并参考相应 的门限和测量结果给出切换判决结果, 最终确定 UT是否切换以及切换的目标 小区。 判决过程的设计具体体现了切换算法中的备种切换准则, 同时也是对于 系统性能的具体反映。
执行过程:其主要功能为当判决过程已经判决 UT需要进行相应的切换时, 通过目标小区与 UT的信令交互, 使 UT与目标小区建立连接, 并为用户分配 相应的资源, 从而完成整个切换过程。
根据上述描述可知,在现有技术中,当某些网络侧服务节点,例如透明 RS, 没有可供测量的下行导频信号时, 则终端无法对 UT与网络间的信号质量进行 测量, 进而无法进行小区切换。 发明内容
有鉴于此, 本发明的主要目的在于提供一种小区切换过程中的测量方法, 该方法在小区切换过程中, 使用网 侧进行信号质量的测量。
本发明的另一目的在于提供一种实现小区切换的中继和基站, 使用该中继 和基站, 在终端进行小区切换的过程中, 可以对自身与终端之间的信号质量进 行测量。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种小区切换过程中的测量方法, 该方法包括:
A、 网络测量被触发后, 基站为终端调度发送上行数据所需的资源;
B、 所述基站和中继在所述基站调度的所述资源上测量所述终端发送的相 关数据, 所述中继将测量得到的上行信号检测信息上报给所述基站。
其中 , 网络测量被触发后, .当所述基站检测到所述终端存在上行数据时, 所述基站调度的所迷资源为公共频段资源, 所述相关数据为所述终端发送的上 行数据。
当基站为终端调度到所述公共频段资源时,步驟 A与步驟 B之间进一步包 括:
A1、所述基站将调度的所迷资源的资源调度信息发送给相应的中继和所述 终端, 所述相应的中继包括所迷终端的原服务节点和相邻的中继, 所述相应的 中继为透明中继或非透明中继。
当基站没有为终端调度到所述公共频段资源时, 步驟 A进一步包括: 所述基站为所述终端分配专用随机接入前导序列 Preamble及其接入资源, 并将上述资源调度信息发送给所述终端。
网络测量被触发后, 当所述基站检测到所述终端不存在上行数据时, 所述 基站调度的所述资源为专用 Preamble及其接入资源,相应的, 所述相关数据为 所述终端发送的专用 Preamble, 步骤 A进一步包括: 所述基站将调度得到的调 度资源信息发送给所述终端。
步骤 A与步驟 B之间进一步包括:
A2、 所述基站将调度的所述资源的资源调度信息发送给相应的中继, 所述 相应的中继包括所述终端的原服务节点和相邻的中继, 所述相应的中继为透明 中继或非透明中继。
步骤 B后进一步包括:
C、 所述基站根据自身测量得到的测量结杲和 /或所述上行信号检测信息为 所述终端确定切换的目标节点。
步骤 C之后进一步包括:
D、 当所述目标节点与终端的原服务节点相同时, 切换过程结束; 当目标 节点与终端的原服务节点不同时, 基站通知原服务节点释放连接, 原服务节点 上报终端上下行数据的收发状态信息。
步骤 D之后进一步包括:
E、 当所迷目标节点为基站自身时, 基站根据接收到的所述状态信息对自 身进行配置, 并发送调整信令给终端, 终端根据所述调整信令中的调整信息进 行相关参数的调整, 之后, 切换过程结束。
步骤 E进一步包括:
当所述目标节点为中继时, 基站根据接收到的所述状态信息以及目标节点 信息生成状态配置信令发送给目标节点, 对目标节点进行配置, 并生成调整信 令发送给终端, 终端根据所述调整信令中的调整信息进行相关参数的调整, 之 后, 切换过程结束。
本发明同时提供了一种实现小区切换的中继,该中继包括:数据接收模块、 上行数据检测模块以及数据发送模块, 其中,
数据接收模块, 用于接收到基站发来的资源调度信息后, 将所述资源调度 信息发送给上行数据检测模块;
上行数据检测模块, 用于接收到所述资源调度信息后, 在相应频段上检测 终端的相关数据, 并将得到的上行信号检测信息发送给数据发送模块;
数据发送模块, 用于接收到所述上行信号检测信息后, 将所述检测信息发 送给基站。
其中, 所述中继为透明中继或非透明中继。
其中, 所述相关数据为: 终端发送的上行数据、 或专用 Preamble,
数据接收模块进一步用于: 接收到基站发来的释放连接信令时, 发送信号 给状态信息生成模块;
相应的该中继进一步包括:
状态信息生成模块, 用于接收到数据接收模块发来的所迷信号时, 释放与 终端的连接, 并生成收发状态信息发送给数据发送模块;
相应的, 数据发送模块进一步用于: 将接收到的所述收发状态信息发送给 基站。
数据接收模块进一步用于: 接收到基站发来的状态配置信令后, 将所述配 置信令发送给状态配置模块; 相应的, 该中继进一步包括:
状态配置模块, 用于接收到所述配置信令后, 根据其中终端上下行数据的 收发状态信息将自身所属中继配置为该终端的服务节点。
本发明还提供了一种实现小区切换的基站, 该基站包括: 数据接收模块、 资源调度模块、 上行数据检测模块、 服务节点选择模块以及数据发送模块, 其 中,
数据接收模块, 用于将接收到的下辖中继发来的上行信号检测信息发送给 服务节点选择模块;
资源调度模块, 用于当网络测量触发时, 判断终端是否存在上行数据, 并 相应的为终端调度公共频段资源、 或为终端分配专用: Preamble及其接入资源, 并将上述资源调度信息发送给上行数据检测模块及数据发送模块;
上行数据检测模块, 用于接收到所述资源调度信息后, 在相应的频段上对 终端发送的相关数据进行检测,'并将检测结果发送给服务节点选择模块;
服务节点选择模块, 用于根据接收到的所述检测结果以及上行信号检测信 息, 确定为终端 务的目标节点, 并将所述目标节点信息向外发送;
数据发送模块, 用于将接收到的所述资源调度信息发送给终端和相应的中 继。
其中, 数据接收模块进一步用于: 将接收到的终端的原服务节点发来的收 发状态信息发送给配置信令生成模块;
服务节点选择模块进一步用于: 当确定的目标节点与终端的原服务节点不 同时, 生成释放连接信令并发送给数据发送模块; 还用于将目标节点信息发送 给调整信令生成模块以及状态配置模块;
相应的, 该基站进一步包括:
状态配置模块, 用于接收到所述收发状态信息后, 根据接收到的目标节点 信息, 当目标节点为基站自身时, 将基站配置为终端的服务节点; 当目标节点 为中继时, 生成状态配置信令并发送给数据发送模块;
调整信令生成模块, 用于根据目标节点信息以及该目标节点对终端上行数 据的检测结果生成调整信令, 并将所迷调整信令发送给数据发送模块;
相应的, 数据发送模块进一步用于: 将接收到的状态配置信令发送给目标 节点; 还用于将接收到的调整信令发送给终端。 所述相关数据为: 终端发送的上行数据、 或专用的 Preamble, 本发明所提供的小区切换过程中的测量方法以及实现小区切换的中继、 基 站, 具有如下优点和特点:
( 1 )当 UT需进行小区切换时, 不再由终端对下行导频信号进行测量, 而 是由网络侧触发测量机制, 进行 UT与网络侧之间上行信号质量的测量, 并进 而最终根据测量结果为 UT选择进行切换的目标节点。
( 2 ) 当网络侧的测量触发后, BS为 UT调度公共频段资源进行上行数据 的传输,当无法调度公共频段资源时,则为 UT分配专用随机接入前导序列(在 下文中简称为 Preamble )以及接入资源, 用于进行 UT上行数据的测量, 避免 了如果没有考虑到相邻 RS采用不同的频段, 从而造成的最合适的服务节点无 法对 UT的上行数据进行测量的问题。
例如, 如图 3所示, 终端 UT发送上行数据所使用的频段位于透明或非透 明中继 RS1、 RS3和基站 BS的接收频段之内, 但位于透明或非透明中继 RS2 的接收频段之外。 终端 UT的当前服务节点为 RS1。 随着 UT的移动, RS1 已 不再适合继续作为服务节点, 此时, BS启动网络测量, 配置 RS1、 RS3和 BS 同时对 MS的上行信号进行测量, 并根据测量结果为 UT选择服务节点。 从图 3中可以看出, UT此时离 RS2距离最近,但由于 UT发送上行数据所使用的频 段位于 RS2的工作频段之外, 将导致 RS2无法对 UT的上行信号进行测量, 并 最终影响到 RS2无法被 BS选为 UT的服务节点。
在本发明中, BS为 UT调度的为公共频段资源, 尽量使得 UT周围的 RS 都能够对 UT的上行数据进行测量; 且在无公共频段资源时, 为 UT分配专用 Preamble以及接入资源, 使得 RS能够对相应的 Preamble进行测量, 从而从根 本上避免上述可能出现的问题。
( 3 )在本发明中, 当 UT无上行数据传输时, BS为 UT分配专用 Preamble 及接入资源, RS和 BS通过测量 UT发送的 Preamble进行信号质量的测量,从 而避免了当 UT无上行数据传输时, 无法进行网络测量的问题。 附图说明
图 1为 RS不同应用场景及作用示意图;
图 2为 BS及其下辖中继工作频段关系示意图; 图 3为最佳服务小区无法 站选为目标节点的情况示意图; 图 4为本发明基站为终端调度公共频段资源时的切换方法流程示意图; 图 5为本发明基站为终端分配专用 Preamble时的切换方法流程示意图; 图 6为本发明实现小区切换的中继结构示意图; .
图 7为本发明实现小区切换的基站结构示意图。 具体实施方式
本发明的基本思想是:触发测量机制后, 由基站为终端分配公共频段资源.、 或专用 Preamble及其接入资源; 当终端在所述资源上进行相关数据传输时, 基 站以及相应的中继进行该终端上行数据的测量; .基站根据自身以及中继的测量 结果确定终端进行切换的目标节点, 并进行后续的小区切换流程。
以下, 通过实施例结合附图详细说明。
图 4为本发明基站为终端调度公共频段时的切换方法流程示意图, 其中, 包括 UT、 RS1、 RS2以及 BS, 中继 RSI为 UT的原服务节点, 中继 RS2为 BS 为 UT选择的目标节点, 但是, 该方法流程并不仅限于 UT、 RS RS2以及 BS之间, 还包括对 UT的上行数据进行检测的其他 RS, 所述其他 RS与 BS和 UT之间的数据交互过程在步骤 405之前与目标节点 RS2相同,图 4中未示出'。 其中, 所述的中继为透明中继或非透明中继。 如图 4所示, 该方法包括:
步骤 401: 在 BS侧网络测量被触发后, BS首先判断被测量的 UT是否存 在上行数据, 当存在上行数据时, BS为该 UT调度资源用于发送上行数据, 所 述资源最好为公共频段资源。 在图 4所示的切换过程中, 所述资源为公共频段 资源。 其中, 当 UT不存在上行数据时, BS将为 UT分配专用 Preamble及其接 入资源, 此时, UT进行小区切换的具体处理流程在图 5所示的切换方法中.已 有详细描述, 这里不再赘述。
其中, BS侧网络测量的触发条件包括但不限于以下的一种或多种: 服务节点为 RS时, 当用户的无线信道环境恶化时, 其向 BS上报, 该上报 可能触发网络测量;
月良务节点为 BS时, 当其发现用户的无线信道环境恶化时, 可能触发网络 测量;
UT发现无线信道环境恶化时, 可能触发网络测量。 其中, 所迷公共频段可以为所有 RS 的公共工作频段, 也可以为部分 RS 的公共工作频段。 能对该频段接收的 RS越多, 则最后选出的服务节点取得好 的效果的机率越大。 而且, 所迷公共频段必须位于当前服务节点的工作频段之 内, 且所述部分 RS最好为处于 UT周围的 RS。
由于 BS下辖的各个 RS的工作频段均为确定值, 因此当 XJT以 BS、 或者 其下辖的某个 RS作为服务节点时, BS可以据此确定 UT的位置, 以及 UT周 围的 RS , 从而可以得到位于 UT.周围的 RS的公共频段。
其中, BS具体如何判断 UT是否存在上行数据、 以及 BS具体如何为 UT 调度资源或公共频段资源、 具体如何为 UT分配专用 Preamble以及接入资源在 现有技术中已非常公知, 这里不再赘迷。 同样的, BS具体如何确定处于 UT周 围的、 可以为 UT提供服务的 RS、 以及如何根据各个 RS的工作频段确定公共 频 的方法在现有技术中同样非常公知, 这里不再贅述。
步骤 402: 当 BS调度到公共频段资源时, BS将资源调度得到的资源调度 信息通知 UT以及相应的各个 RS。 其中, 相应的各个中继包括终端当前的原服 务节点和相邻的中继。
其中, 当步驟 401中调度的频段为所有 RS的公共频段时,则 BS可以将资 源调度的结果通知下辖的全部 S , 也可以只通知位于 UT周围的 RS; 当步骤 401中 BS调度的频段为部分 RS的公共频段时, 则上述相应的各个 RS为步骤 401中确定公 工作频段时所对应的 RS , 或者也可以是其中的一部分, 或者为 BS下辖的所有可以接收该频段的 RS。
其中, 上述具体需要通知的 RS可以在实际应用中灵活控制。
其中,当 BS没有调度到公共频段资源时, BS将为 UT分配专用的 Preamble 以及接入资源, 当 BS为 UT分配专用 Preamble时, 其切换过程的具体处理方 法在图 5所示的切换方法中有详细描述, 这里不再脊述。
步骤 403 : UT在步骤 402中 BS所通知的资源上发送上行数据,相应的 RS 和 BS对所述上行数据进行检测。与基站通知的相应的 RS相对应,终端当前的 原服务节点、 相邻的中继以及 BS对所述上行数据进行检测, 需要检测的信息 包括但不限于以下的一种或多种:
上行信号的到达时间与预期到达时间的偏差, 即定时调整量(TA, Timing Alignment );
所接收到的信号的功率。 其中, RS和 BS如何对上行数据进行 TA以及功率等的检测在现有技术中 巳非常公知, 这里不再赘述。
步骤 404: RS将在步骤 403中检测得到的上行信号检测信息上报给 BS。 步骤 405: BS根据自己检测到的信息以及各 RS上报的所述上行信号检测 信息, 为 UT选择切换的目标节点, 若选择的目标节点为当前为 UT服务的原 服务节点 RS1 , 则无需切换, 切换过程结束, UT继续与原服务节点 RS1进行 数据收发; 若所选择的目标节点不是原服务节点 RS1, 则执行步骤 406。 设基 站所选择的目标节点为 RS2。
其中, BS具体如何根据上迷检测得到的信息选择服务节点在现有技术中已 非常公知, 这里不再赘述。
步骤 406: BS向原服务节点 R,S1发送释放连接信令,所述信令用于通知原 服务节点 RS1释放与 UT的连接。
步骤 407: 原服务节点 RS1向 BS返回该 UT的上下行数据的收发状态信 息。
步驟 408: BS配置目标节点, 如果目标节点为 BS, BS只需根据接收到的 所述收发状态信息进行本地配置即可, 之后, 执行步骤 409; 如果目标节点为 某一个 RS, 在本例中为 RS2, 则 BS向目标节点 RS2发送状态配置信令, 所述 信令用于对目标节点 RS2进行配置。 通过配置, BS将原服务节点 RS1的收发 状态配置给目标节点 RS2。
步 409: BS向 UT发送调整信令, 所述信令中包含 TA以及发送功率等 信息, 用于 UT对 +TA和发送功率进行调整。
其中, 上述通知 UT进行调整的 TA以及发送功率通过步骤 404中被选择 为目标节点的中继 RS2上报的上行信号检测信息确定。
步骤 410: UT根据接收到的所述信令中的调整信息对发送参数进行调整。 其中, UT具体如何根据 TA以及功率等调整信息进行参数调整在现有技术中已 非常'公知, 这里不再赘述。
之后, 切换过程结束, UT开始与目标节点 RS2进行通信。
图 5为本发明当基站为终端分配专用 Preamble时的切换方法流程示意图, 其中, 包括 UT、 RS1、 RS2以及 BS, 中继 RSI为 UT的原服务节点, 中继 RS2 为 BS选择的目标节点, 但是, 该方法流程并不仅限于 UT、 RS1、 RS2以及 BS 之间, 还包括对 UT的上行数据进行检测的其他 RS, 在步骤 505之前, 其他 RS的处理过程与 RS2相同, 图 5中未示出。 如图 5所示, 该方法包括: 步骤 501 : 在 BS侧网络测量被触发后, 当 BS判断 UT无上行数据、 或当
BS在资源调度的过程中, 无法为 UT调度公共频段资源时, BS为 UT分配
Preamble及其接入资源。
其中, 上述 BS无法将 UT用于发送上行数据的资源调度到公共频段发送 的原因主要有: 在公共频段, UT与当前服务节点之间的上行链路信号质量较 差, 如果迫使 UT在该频段上发送上行数据, 会导致用户的数据^失或迟延, 进而影响到用户体验; 公共频段的资源已无剩余资源可以调度给当前 UT。
其中, 上述 BS为 UT分配的 Preamble应为专用 Preamble, 即在上述资源 上, 只可能有所述 UT发送该 Preamble, 其他 UT如果使用上述资源发送
Preamble, 其所使用的 Preamble必须与上述专用 Preamble不同。
其中, BS侧网络测量的触发条件包括但不限于以下的一种或多种: 服务节点为 RS时, 当用户的无线信道环境恶化时, 其向 BS上报, 该上报 可能触发网络测量;
服务节点为 BS时,'当其发现用户的无线信道环境恶化时, 可能触发网络 测量;
UT发现无线信道环境恶化时, 可能触发网络测量。
其中, BS具体如何判断 UT是否存在上行数据、 以及 BS具体如何为 UT 调度资源或公共频段资源、 具体如何为 UT分配专用 Preamble以及接入资源在 现有技术中已非常公知, 这里不再赘述。
步骤 502: BS将为 UT分配的 Preamble和接入资源通知 UT以及相应的 其中, 所述相应的中继包括所述终端的原 H良务节点和相邻的中继。 若 RS 巳配置为对接人资源上的所有 Preamble进行检测, 则上述信息无需发送给各 RS, 此时, 该步骤中, BS只需通知 UT所述信息即可。
步骤 503: UT在步驟 502中 BS所通知的资源上发送专用 Preamble, RS 和 BS对该 Preamble进行检测, 需要检测的信息包括但不限于以下的一种或多 种: 上行信号的到达时间与预期到达时间的偏差, 即 TA; 所接收到的信号的功 率。 其中, 专用 Preamble与 UT需要发送的上行数据可以统称为上行数据。
步骤 504: RS将在步骤 503中检测得到的上行信号检测信息上报给 BS。 步骤 505: BS根据自身检测到的信息以及各 RS上报的所迷检测信息, 为 UT选择切换的目标节点, 若选择的目标节点为当前的服务节点, 则无需切换, 切换过程结束; 若所选择的目标节点不是当前的服务节点, 则执行步驟 506。 设目标节点为 RS2。
其中, BS具体如何根据所述信息选择服务节点在现有技术中已非常公知, 这里不再赘述。
步骤 506 - 510与步骤 406 ~ 410相同, 这里不再赘述。
在图 4与图 5所示的小区切换的方法中, 步骤 403中终端发送的上行数据 与步骤 503中终端所发送的专用 Preamble统称为相关数据。
图 6为实现小区切换的中继的结构示意图, 如图 6所示, 该中继包括: 数 据接收模块 610、 上行数据检测模块 620、 状态信息生成模块 630、 状态配置模 块 640、 以及数据发送模块 650, 其中,
数据接收模块 610,用于接收到 BS发来的资源调度信息之后,将所述信息 发送给上行数据检测模块 620; 当接收到 BS发来的释放连接信令时,发送信号 给状态信息生成模块 630; 当接收到 BS发来的状态配置信令时,将所述信令发 送给状态配置模块 640。
上行数据检测模块 620, 用于接收到数据接收模块 610发来的所述资源调 度信息后, 根据所述信息在相应频段检测 UT的相关数据, 并将检测得到的信 息生成上行信号检测信息发送给数据发送模块 650。
其中, 所述相关数据包括: UT需要发送的上行数据以及 BS为 UT分配的 专用 Preamble,
状态信息生成模块 630, 用于接收到数据接收模块 610发来的信号后, 根 据 UT的上下行数据的收发状态生成收发状态信息发送给数据发送模块 650。
状态配置模块 640, 用于接收到数据接收模块 10发来的所述状态配置信 令, 根据所述信令中包含的 UT上下行数据的收发状态信息将本模块所属 RS 配置为 UT的服务节点。
数据发送模块 650, 用于接收到所述上行信号检测信息、 或者所述收发状 态信息后, 将所述信息发送给 BS。
显然, 上述中继可以是透明中继或非透明中继。
图 7为实现小区切换的基站的结构示意图, 如图 7所示, 该基站包括: 数 据接收模块 710、 资源调度模块 720、 上行数据检测模块 730、 服务节点选择模 块 740、 状态配置模块 750、 调整信令生成模块 760以及数据发送模块 770, 其 中,
数据接收模块 710, 用于当接收到 UT的原服务节点发来的收发状态信息 后,将所迷状态信息发送给状态配置模块 750;还用于接收到下辖 RS发来的上 行信号检测信息, 将所述信息发送给服务节点选择模块 7氣
资源调度模块 720, 用于当网络测量触发时, 为 UT调度公共频段资源、 或为 UT分配专用 Preamble及其接入资源, 并将上述资源调度信息发送给上行 数据检测模块 730及数据发送模块 770。
上行数据检测模块 730, 用于接收到所述资源调度信息, 在该 UT被分配 的频段上进行该 UT相关数据的检测, 并将检测结果发送给服务节点选择模块 740。 其中, 所述相关凝:据为: UT需要发送的上行数据或专用 Preamble。
服务节点选择模块 740, 用于接收到所述上行信号检测信息以及所述检测 结果, 确定为该 UT服务的目标节点, 当确定的目标节点与原服务节点不同时, 生成释放连接信令, 并将所述信令发送给数据发送模块 770, 同时将确定的目 标节点信息发送给调整信令生成模块 760及状态配置模块 750。
状态配置模块 750, 用于根据接收到的原服务节点发来的 UT的收发状态 信息, 根据接收到的目标节点信息, 当目标节点为 BS 自身时, 根据所述收发 状态信息将 BS配置为 UT的服务节点; 当目标节点为 RS时, 生成状态配置信 令, 并将所述信令发送给数据发送模块 770。
调整信令生成模块 760, 用于根据目标节点信息以及该目标节点对 UT上 行数据的检测结果生成调整信令, 并将所述信令发送给数据发送模块 770。
数据发送模块 770, 用于接收到所述资源调度信息, 将所述信息发送给相 应的 RS以及 UT; 还用于接收到所述状态配置信令时, 将所述信令发送给目标 节点; 还用于接收到所述调整信令时, 将所述信令发送给 UT。
其中, 图 6中所迷的中继与图 7中所述的 BS可以组成系统。
由上迷图 4〜图 7可知, 本发明所提供的小区切换过程中的测量方法、 中 继和基站可以适用于终端在小区内部的基站与基站下辖.中继之间、 或基站下辖 的两中继之间进行切换等场景。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。

Claims

权利要求书
1、 一种小区切换过程中的测量方法, 其特征在于, 该方法包括:
A、 网络测量被触发后, 基站为终端调度发送上行数据所需的资源;
B、 所述基站和中继在所述基站调度的所述资源上测量所述终端发送的相 关数据, 所述中继将测量得到的上行信号检测信息上报给所述基站。
2、根据权利要求 1所述的测量方法, 其特征在于, 网络测量被触发后, 当 所述基站检测到所述终端存在上行数据时, 所述基站调度的所述资源为公共频 段资源, 所述相关数据为所述终端发送的上行数据。
3、根据权利要求 2所述的测量方法,其特征在于, 当所述基站为所述终端 调度到所述公共频段资源时, 步骤 A与步骤 B之间进一步包括:
A1、所述基站将调度的所述资源的资源调度信息发送给相应的中继和所述 终端, 所述相应的中继包括所迷终端的原服务节点和相邻的中继, 所述相应的 中继为透明中继或非透明中继。
4、根据权利要求 2所述的测量方法,其特征在于, 当所述基站没有为所述 终端调度到所述公共频段资源时, 步骤 A进一步包括:
所述基站为所述终端分配专用随机接入前导序列 Preamble及其接入资源, 并将上述资源调度信息发送给所述终端。
5、根据权利要求 1所述的测量方法, 其特征在于, 网络测量被触发后, 当 所述基站检测到所述终端不存在上行数据时, 所述基站调度的所述资源为专用 Preamble 及其接入资源, 相应的, 所述相关数据为所述终端发送的专用 Preamble, 步骤 A进一步包括: 所述基站将调度得到的调度资源信息发送给所 述终端。
6、 根据权利要求 4或 5所述的测量方法, 其特征在于, 步骤 A与步骤 B 之间进一步包括:
A2、 所迷基站将调度的所述资源的资源调度信息发送给相应的中继, 所述 相应的中继包括所述终端的原服务节点和相邻的中继, 所述相应的中继为透明 中继或非透明中继。
7、 根据权利要求 1至 5任一项所述的测量方法, 其特征在于, 步骤 B后 进一步包括: C 所述基站根据自身测量得到的测量结果和 /或所述上行信号检测信息为 所迷终端确定切换的目标节点。
8、 根据权利要求 7所述的测量方法, 其特征在于, 步骤 C之后进一步包 括:
D、 当所迷目标节点与所述终端的原服务节点相同时, 切换过程结束; 当 目标节点与所述终端的原服务节点不同时,所述基站通知原服务节点释放连接, 原服务节点上报所述终端上下行数据的收发状态信息。
9、 根据权利要求 8所述的测量方法, 其特征在于, 步驟 D之后进一步包 括:
E、 当所述目标节点为所述基站自身时, 所述基站 居接收到的所述状态 信息对自身进行配置, 并发送调整信令给所述终端, 所述终端根据所述调整信 令中的调整信息进行相关参数的调整, 之后, 切换过程结束。
10、 根据权利要求 9所述的测量方法, 其特征在于, 步驟 E进一步包括: 当所述目标节点为中继时, 所述基站根据接收到的所述状态信息以及目标 节点信息生成状态配置信令发送给目标节点, 对目标节点进行配置, 并生成调 整信令发送给所述终端, 所述终端根据所述调整信令中的调整信息进行相关参 数的调整, 之后, 切换过程结束。
11、 一种实现小区切换的中继, 其特征在于, 所述中继包括: 数据接收模 块、 上行数据检测模块以及数据发送模块, 其中,
数据接收模块, 用于接收到基站发来的资源调度信息后, 将所述资源调度 信息发送给上行数据检测模块;
上行数据检测模块, 用于接收到所述资源调度信息后, 在相应频段上检测 终端的相关数据, 并将得到的上行信号检测信息发送给数据发送模块;
数据发送模块, 用于接收到所述上行信号检测信息后, 将所述检测信息发 送给所述基站。
12、根据权利要求 11所述的中继, 其特征在于, 所述中继为透明中继或非 透明中继。
13、根据权利要求 12所述的中继, 其特征在于, 所述相关数据为: 所述终 端发送的上行数据、 或专用 Preamble。
14、 根据权利要求 12或 13所述的中继, 其特征在于, 数据接收模块进一步用于: 接收到所述基站发来的释放连接信令时, 发送 信号给状态信息生成模块;
相应的所述中继进一步包括:
状态信息生成模块, 用于接收到数据接收模块发来的所述信号时, 释放与 所迷终端的连接, 并生成收发状态信息发送给数据发送模块;
相应的, 数据发送模块进一步用于: 将接收到的所述收发状态信息发送给 所述基站。
15、 根据权利要求 14所述的中继, 其特征在于,
数据接收模块进一步用于: 接收到所述基站发来的状态配置信令后, 将所 述配置信令发送给状态配置模块;
相应的, 所述中继进一步包括:
状态配置模块, 用于接收到所述配置信令后, 根据其中所述终端上下行数 据的收发状态信息将自身所属中继配置为所述终端的服务节点。
16、 一种实现小区切换的基站, 其特征在于, 所述基站包括: 数据接收模 块、 资源调度模块、上行数据检测模块、服务节点选择模块以及数据发送模块, 其中,
数据接收模块, 用于将接收到的下辖中继发来的上行信号检测信息发送给 服务节点选择模块;
资源调度模块,用于当网络测量触发时,判断所述终端是否存在上行数据, 并相应的为所述终端调度公共频段资源、或为所述终端分配专用 Preamble及其 接入资源, 并将上述资源调度信息发送给上行数据检测模块及数据发送模块; 上行数据检测模块, 用于接收到所述资源调度信息后, 在相应的频段上对 所述终端发送的相关数据进行检测, 并将检测结果发送给服务节点选择模块; 服务节点选择模块, 用于根据接收到的所述检测结果以及上行信号检测信 息, 确定为所述终端服务的目标节点, 并将所述目标节点信息向外发送;
数据发送模块, 用于将接收到的所述资源调度信息发送给所述终端和相应 的中继。
17、 根据权利要求 16所述的基站, 其特征在于,
数据接收模块进一步用于: 将接收到的所述终端的原服务节点发来的收发 状态信息发送给配置信令生成模块; 服务节点选择模块进一步用于: 当确定的目标节点与所述终端的原服务节 点不同时, 生成释放连接信令并发送给数据发送模块; 还用于将目标节点信息 发送给调整信令生成模块以及状态配置模块;
相应的, 所述基站进一步包括:
状态配置模块, 用于接收到所述收发状态信息后, 根据接收到的目标节点 信息, 当目标节点为所述基站自身时,将所述基站配置为所述终端的服务节点; 当目标节点为中继时, 生成状态配置信令并发送给数据发送模块;
调整信令生成模块, 用于根据目标节点信息以及该目标节点对所述终端上 行数据的检测结果生成调整信令, 并将所迷调整信令发送给数据发送模块; 相应的, 数据发送模块进一步用于: 将接收到的状态配置信令发送给目标 节点; 还用于将接收到的调整信令发送给所述终端。
18、 根据权利要求 16或 17所述的基站, 其特征在于, 所述相关数据为: 所述终端发送的上行数据、 或专用的 Preamble,
PCT/CN2008/001870 2007-11-29 2008-11-12 A measure method, a repeater and a base station in the process of cell handoff WO2009070972A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/745,363 US8588785B2 (en) 2007-11-29 2008-11-12 Measurement method, a relay station, and a base station in a cell handover procedure
EP08857549.3A EP2222119B1 (en) 2007-11-29 2008-11-12 A measure method and a base station in the process of cell handoff
KR1020107014417A KR101167794B1 (ko) 2007-11-29 2008-11-12 셀 핸드오프 과정에서의 측정 방법, 중계기 및 기지국

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710178387.X 2007-11-29
CN200710178387A CN101453745B (zh) 2007-11-29 2007-11-29 一种小区切换过程中的测量方法、透明中继及基站

Publications (1)

Publication Number Publication Date
WO2009070972A1 true WO2009070972A1 (en) 2009-06-11

Family

ID=40717288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001870 WO2009070972A1 (en) 2007-11-29 2008-11-12 A measure method, a repeater and a base station in the process of cell handoff

Country Status (5)

Country Link
US (1) US8588785B2 (zh)
EP (1) EP2222119B1 (zh)
KR (1) KR101167794B1 (zh)
CN (1) CN101453745B (zh)
WO (1) WO2009070972A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8588180B2 (en) * 2008-05-19 2013-11-19 Nec Corporation Mobile communication system, mobile station, base station, and handover controlling method
CN102177665B (zh) * 2008-08-12 2015-04-22 黑莓有限公司 在无线通信网络中实现下行链路透明中继的方法、设备及系统
WO2010134162A1 (ja) * 2009-05-19 2010-11-25 富士通株式会社 基地局、中継局、通信システムおよび通信方法
CN101965027B (zh) * 2009-07-23 2015-06-03 中兴通讯股份有限公司 一种小区同步切换的方法和系统
WO2011020212A1 (zh) * 2009-08-17 2011-02-24 上海贝尔股份有限公司 切换方法及相应的基站、中继节点和通信系统
CN102065483B (zh) * 2009-11-18 2013-12-04 华为技术有限公司 流量控制方法、装置
CN102104913B (zh) * 2009-12-22 2013-11-20 上海无线通信研究中心 一种中继网络流量控制方法
WO2011097817A1 (zh) * 2010-02-11 2011-08-18 上海贝尔股份有限公司 中继无线通信系统中通信方法和相关装置
CN102215537B (zh) * 2010-04-09 2014-06-04 华为技术有限公司 一种切换方法、基站和家庭网关
US8892028B2 (en) * 2011-09-27 2014-11-18 Broadcom Corporation Method and apparatus for a cellular assisted intelligent transportation system
US9253677B2 (en) * 2012-04-09 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for enhancing network positioning measurement performance by managing uncertain measurement occasions
US9332474B2 (en) 2012-05-17 2016-05-03 Telefonaktiebolaget L M Ericsson Signaling support for multi sector deployment in cellular communications
EP2887732B1 (en) * 2013-12-19 2017-06-14 Sony Corporation Method for operating a user equipment in a wireless radio network
CN106162779B (zh) * 2015-04-09 2020-06-05 上海诺基亚贝尔股份有限公司 用于保持用户设备的业务连续性的方法
WO2017001015A1 (en) * 2015-07-02 2017-01-05 Huawei Technologies Co., Ltd. Network nodes and methods thereof
US9918348B2 (en) * 2015-07-25 2018-03-13 Qualcomm Incorporated Device-to-device relay selection
US10615844B2 (en) 2016-03-15 2020-04-07 Huawei Technologies Co., Ltd. System and method for relaying data over a communication network
US10542570B2 (en) * 2016-03-15 2020-01-21 Huawei Technologies Co., Ltd. System and method for relaying data over a communication network
WO2018045572A1 (zh) * 2016-09-09 2018-03-15 深圳前海达闼云端智能科技有限公司 终端接入方法及网络设备
CN108810960B (zh) 2017-04-28 2021-06-22 华为技术有限公司 一种小区切换、确定上行发送功率的方法及装置
JP2021509546A (ja) * 2017-11-14 2021-03-25 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. ネットワーク切替方法、ネットワークデバイス及び端末デバイス
CN111212459B (zh) 2018-11-22 2021-09-14 华为技术有限公司 一种中继通信方法及装置
WO2024103401A1 (zh) * 2022-11-18 2024-05-23 华为技术有限公司 小区切换方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820529A (zh) * 2003-05-08 2006-08-16 M/A-Com公司 无线通信系统的激活方法
US20070060050A1 (en) * 2005-09-14 2007-03-15 Samsung Electronics Co., Ltd. Apparatus and method for supporting multi-link in multi-hop relay cellular network
CN1996786A (zh) * 2006-11-29 2007-07-11 北京邮电大学 基于中继技术的新型无线通信组网方法
WO2007078138A2 (en) * 2006-01-02 2007-07-12 Lg Electronics Inc. Method for handover using relay station
CN101064911A (zh) * 2006-04-28 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线接入系统的切换控制方法、中继站和基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100255320B1 (ko) * 1997-12-29 2000-05-01 윤종용 주파수 도약/부호 분할 다중 접속시스템의 기지국시스템
JP2005341300A (ja) 2004-05-27 2005-12-08 Sharp Corp 無線通信システム、無線通信装置
KR100744340B1 (ko) 2005-10-13 2007-07-30 삼성전자주식회사 디지털 방송 제한 수신 시스템 및 그 방법
EP1775984A2 (en) * 2005-10-17 2007-04-18 Samsung Electronics Co.,Ltd. Apparatus and method for supporting handover in a wireless access communication system
KR101128801B1 (ko) 2006-01-16 2012-03-23 엘지전자 주식회사 릴레이 스테이션을 포함하는 통신 시스템에서의 채널 상태보고 방법
CN1964225B (zh) * 2005-11-11 2013-03-13 上海贝尔阿尔卡特股份有限公司 一种无线接入控制方法、中继站和基站
KR100896205B1 (ko) * 2006-02-20 2009-05-12 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 단말에게 투명성 있는 릴레이 서비스를제공하기 위한 중계국의 단말-중계국 간 채널 상태 보고장치 및 방법
US20080108355A1 (en) * 2006-11-03 2008-05-08 Fujitsu Limited Centralized-scheduler relay station for mmr extended 802.16e system
US7873338B2 (en) * 2006-11-06 2011-01-18 Motorola Mobility, Inc. Method and apparatus for determining an appropriate link path in a multi-hop communication system
US7907540B2 (en) * 2007-12-18 2011-03-15 Intel Corporation Relays in wireless communication networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820529A (zh) * 2003-05-08 2006-08-16 M/A-Com公司 无线通信系统的激活方法
US20070060050A1 (en) * 2005-09-14 2007-03-15 Samsung Electronics Co., Ltd. Apparatus and method for supporting multi-link in multi-hop relay cellular network
WO2007078138A2 (en) * 2006-01-02 2007-07-12 Lg Electronics Inc. Method for handover using relay station
CN101064911A (zh) * 2006-04-28 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线接入系统的切换控制方法、中继站和基站
CN1996786A (zh) * 2006-11-29 2007-07-11 北京邮电大学 基于中继技术的新型无线通信组网方法

Also Published As

Publication number Publication date
KR101167794B1 (ko) 2012-07-25
KR20100120638A (ko) 2010-11-16
CN101453745A (zh) 2009-06-10
EP2222119A1 (en) 2010-08-25
US20100311322A1 (en) 2010-12-09
EP2222119A4 (en) 2014-08-20
US8588785B2 (en) 2013-11-19
CN101453745B (zh) 2012-09-19
EP2222119B1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2009070972A1 (en) A measure method, a repeater and a base station in the process of cell handoff
JP6400752B2 (ja) ネットワークデバイス、ユーザ装置及び基地局
CN108307686B (zh) 宽松的测量报告与控制平面双连接
CN107251601B (zh) 用于异构网络多连接的方法以及装置
JP6304522B2 (ja) 通信システム
JP5654659B2 (ja) 無線通信システム、基地局、無線端末、及びプロセッサ
US9107228B2 (en) Radio communication system and control method of radio resource allocation
EP2807859B1 (en) Methods and apparatus for hetergeneous network handover
US10034192B2 (en) Method and apparatus for inter-frequency measurements in a communication network
JP2018121345A (ja) 二重接続における無線リンク障害ハンドリング
EP2893743B1 (en) Apparatus and method for providing cooperative communication service between macro base station and small cell base station in mobile communication system
EP2742766B1 (en) Exchange of mobility information in cellular radio communicatons
KR20160004003A (ko) 핸드오버 방법 및 그 장치
CN112534874B (zh) 用于处置链路转换的第一网络节点、无线装置以及由此执行的方法
AU2014266127A1 (en) Interference measurement method and apparatus for controlling inter-cell interference in wireless communication system
WO2012142823A1 (zh) 小区切换方法、设备及系统
RU2575259C2 (ru) Обмен информацией о мобильности в сотовой радиосвязи
Lott et al. Fast Handover in Multi-hop Systems Beyond 3
KR20120013061A (ko) 무선 중계 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08857549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12745363

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008857549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107014417

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4707/DELNP/2010

Country of ref document: IN