WO2009065256A1 - Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance - Google Patents

Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance Download PDF

Info

Publication number
WO2009065256A1
WO2009065256A1 PCT/CN2007/003304 CN2007003304W WO2009065256A1 WO 2009065256 A1 WO2009065256 A1 WO 2009065256A1 CN 2007003304 W CN2007003304 W CN 2007003304W WO 2009065256 A1 WO2009065256 A1 WO 2009065256A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
permanent magnet
disc
stator
virtual
Prior art date
Application number
PCT/CN2007/003304
Other languages
English (en)
French (fr)
Inventor
Tiecai Li
Yamei Qi
Wenbin Yang
Lihui Li
Zhaoyang Zhou
Shuang Wang
Weilong Lan
Yuntao Wang
Original Assignee
Shenzhen Academy Of Aerospace Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Academy Of Aerospace Technology filed Critical Shenzhen Academy Of Aerospace Technology
Priority to PCT/CN2007/003304 priority Critical patent/WO2009065256A1/zh
Publication of WO2009065256A1 publication Critical patent/WO2009065256A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to a disc permanent magnet motor, and more particularly to a single-phase disc permanent magnet motor based on the principle of full flux, and a three-phase disc type using three kinds of single-phase disc permanent magnet motors.
  • a magneto, and a high-power disc permanent magnet motor comprising at least two such three-phase disc permanent magnet motors, which can be used for low-speed extra-large torque direct drive or high-power wind power generation. Background technique
  • a design method of an induction motor or a disc type iron core permanent magnet motor is generally used.
  • Three sides of the three-phase winding are arranged under each pole.
  • the ends of the windings are large, and the ends of the three-phase windings also have overlapping intersections, as shown in Fig. 1.
  • the ends of the windings are large, and the copper consumption is large; the overlapping ends of the windings cause the ends to become larger and thicker, resulting in higher production costs. Since the total thickness of the motor air gap and the winding cannot be greater than 8 mm, the air gap magnetic density is too low, the electric power is too small, the efficiency is low, and the volume is increased. Therefore, the power capacity of the conventional disc permanent magnet motor is lower than that. 2Kw, it is impossible to do even bigger.
  • the number of slots per phase per phase of a conventional three-phase permanent disk motor is Z/(2Pm) >l/2, where 2P is the number of poles, m is the number of phases, and Z is the number of slots. For example: 8 poles 24 slots and 8 poles 36 slots, and so on.
  • the larger the number of slots per phase per pole the larger the end of the winding, the lower the utilization of the winding, the greater the copper consumption, the higher the manufacturing cost of such a motor, and the power Capacity cannot exceed several kilowatts.
  • the conventional high-power three-phase disc permanent magnet motor usually has a cogging torque of 5% to 0.5% of the rated torque.
  • the absolute value of the cogging torque is very large. . This cogging torque will have a serious adverse effect on the operation and performance of the motor.
  • the present invention solves the problems that the power of the existing disk motor cannot be increased, the structure and the production process are complicated, the winding utilization rate is low, and the production cost is high.
  • the technical solution adopted by the present invention to solve the prior art problem is: constructing a single-phase disc permanent magnet motor, wherein a plurality of pairs of N and S pole permanent magnets are respectively mounted on the two disc rotors, and the first The permanent magnet N pole on the disc rotor faces the permanent magnet S pole on the second disc rotor to generate an axial air gap magnetic field; the winding is arranged in the virtual slot of the iron core disc stator;
  • the virtual slot of the iron-free disc-type stator is provided with a single-phase winding;
  • the number of magnetic poles 2P of the rotor is equal to the number of virtual slots Z of the stator, that is, Z-2P;
  • Z in the stator
  • forming the single-phase windings in series in series is: constructing
  • the axial physical air gap between the respective permanent magnets and the stator on the disc rotor is preferably 0. 5 ⁇ 2 mm; ⁇ 10mm.
  • each of the permanent magnets on the disc rotor may have a circular shape, and the respective permanent magnets are evenly distributed along the outer side of the disc rotor, and the permanent magnets N on the same rotor.
  • the S pole arrangement gap is 0 ⁇ 1mm process gap;
  • the shape of each virtual groove on the stator is a circle corresponding to each permanent magnet on the disc rotor, and is evenly distributed along the outer side of the disc stator;
  • the center of the Z-2P coils is on a circle of the same radial radius as the center of each permanent magnet on the disk rotor, and each coil is a simple toroidal coil and is filled in the virtual groove.
  • each of the permanent magnets on the disc rotor may have a fan shape, and the respective permanent magnets are evenly distributed along the outer side of the disc rotor, and the permanent magnets on the same rotor are
  • the arrangement gap is 0. l ⁇ 3mm process gap;
  • the shape of each virtual groove of the stator is the same fan shape as each permanent magnet on the disc rotor, and is evenly distributed along the outer side of the disc stator;
  • the single-phase winding in each of the stator virtual slots adopts a double-layer coil; in the first virtual groove, the lower layer coil is wound around the outer circle by N ⁇ , and then Winding from the inner circle
  • the inner circle of the layer coil, the upper layer coil is further rounded by the inner circle N ⁇ , so that the first end of the coil in the first virtual groove virtual groove is on the outer side of the lower layer, and the tail end is on the outer circle side of the upper layer;
  • the first The trailing end of the winding in the virtual slot is wound to the second virtual slot, becomes the first end of the second virtual slot coil and is on the outer circle side of the upper slot of the virtual slot, and the upper coil is wound around the outer circle by an outer circle N ⁇ , and then
  • the inner circle is wound around the inner circle of the lower layer coil, and the lower layer coil is further rounded by the inner circle N ⁇ , so that the first end of the coil in the second virtual groove is on the outer circle side of the upper layer, and the tail end is
  • an independent winding coil may be respectively disposed in each of the stator virtual slots, and the coils of the virtual slots are sequentially connected in series, and The leading end of the coil in a virtual slot acts as the leading end of the entire single-phase winding, and the tail end of the coil in the last dummy slot acts as the tail end of the entire single-phase winding, thereby obtaining a complete single-phase winding.
  • the single-phase disc permanent magnet motor of the present invention may be in a hollow, vertical installation form, or in a hollow, horizontal installation form; the stator shaft at the center of the stator is a hollow structure or a partial hollow structure, and the lead of the single-phase winding The hollow shaft or the partially hollow stator shaft hole is pierced.
  • the invention also provides a three-phase disc permanent magnet motor, wherein the single-phase disc permanent magnet motor is a single-phase motor unit, and three single-phase motor units A, B and C are common; the three single-phase units The motor units are sequentially mounted on the same stator shaft, and the stators of the three single-phase motor units are spatially offset by 120° electrical angle; three single-phase motor units A, B, and C form the three-phase disc permanent magnet motor.
  • A, B, C three-phase windings, and the three opposite potentials of the three-phase windings differ by 120 in time. Electrical angle; the A, B, C three-phase windings are used alone, or connected to a Y-shaped structure, or connected to a ⁇ -type structure.
  • two linear Hall sensors can be disposed, which are separated from each other by an electrical angle of 90 degrees; or three switch Hall sensors are provided, and the three are separated by an electrical angle of 120 degrees.
  • the linear Hall sensor is fixed to the stator through a PCB board; the sensitive direction of the Hall sensor faces an air gap magnetic field formed by the rotor permanent magnet to sense a change in the air gap magnetic field.
  • the invention also provides a high-power disk permanent magnet motor, wherein the three-phase disk permanent magnet motor is a three-phase permanent magnet motor module, and at least two three-phase permanent magnet motor modules are along the same stator
  • the axial series is connected to form a high power disc multiphase permanent magnet motor proportional to the number of series.
  • the present invention proposes a full flux principle and solution based on the The principle of full flux can be made into a phase disc permanent magnet motor, and then a three-phase disc permanent magnet motor can be made into a high-power disc permanent magnet motor.
  • this type of disc permanent magnet motor not only the number of windings tends to be At the minimum, the ends of the windings tend to be minimized, the utilization of the windings tends to be the highest, and the cogging torque is completely eliminated, so that the iron loss and copper consumption of the motor are extremely small, and the power capacity is hundreds of It is on the order of kilowatts or even megawatts, while minimizing the production cost of the motor.
  • FIG. 1 is a schematic view showing the winding structure of a conventional ironless stator disc type brushless DC permanent magnet motor
  • FIG. 2 is a schematic structural view of a three-phase disc permanent magnet motor according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention. Schematic diagram of the stator single-phase winding in the middle;
  • Figure 4 is a schematic view showing the structure of a disc rotor cooperated with Figure 3;
  • FIG. 5 is a schematic structural view of a double-layer coil of a single-phase winding according to an embodiment of the present invention.
  • FIG. 6 is a schematic view of a hollow, vertical three-phase permanent magnet motor module according to an embodiment of the present invention
  • FIG. 7 is a schematic view of a high-power disk permanent magnet motor composed of a hollow and vertical three-phase permanent magnet motor module
  • FIG. 8 is a schematic view of a hollow and horizontal three-phase permanent magnet motor module according to an embodiment of the present invention
  • FIG. 9 is a schematic view of a high-power disk permanent magnet motor composed of a hollow and horizontal three-phase permanent magnet motor module
  • Figure 11 is an ideal back EMF waveform of the high power disc permanent magnet motor shown in Figure 10;
  • Figure 12 is an actual back-EM waveform of the high-power disk permanent magnet motor shown in Figure 10 after considering the width of the winding component;
  • FIG. 13 is a schematic diagram showing the internal structure of a two-phase permanent magnet motor module constituting a larger power motor.
  • 1 is a three-phase permanent magnet motor module
  • 2 is a stator shaft
  • 3 is a bearing
  • 4 is a base
  • 5 is an A-phase motor unit
  • 6 is a B-phase motor unit
  • 7 is a C-phase motor unit
  • 8 It is A phase stator
  • 9 is B phase stator
  • 10 is C phase stator
  • 11 is two disc rotors of A phase motor unit
  • 12 is two disc rotors of B phase motor unit
  • 13 is C phase motor unit Two disc rotors.
  • 15 is a three-phase permanent magnet motor module
  • 16 is a base
  • 17 is an upper end.
  • 18 is a three-phase permanent magnet motor module
  • 19 is a first end
  • 20 is a second end.
  • the motor of the invention is a full flux motor, which can obtain the motor torque by the partial derivative of the rotor displacement by the magnetic field energy storage of the motor, and the expression is:
  • the stator current, L u is the self-inductance of the stator winding, ⁇ 12 is the magnetic flux generated by the permanent magnet in the stator winding, and W ra2 is the magnetic field energy generated in the motor.
  • F2 formulas represent three terms: the first term: the reluctance torque generated by the stator current, the surface of the permanent magnet motor, L u constant as the rotor rotates, the reluctance torque is zero;
  • the second term the stator current interacts with the permanent magnet to generate the flux linkage, which produces the main torque of the motor.
  • the third term the reluctance torque generated by the permanent magnet.
  • the ideal (single ⁇ ) back EMF waveform of the circular magnetic steel disk type rotary full flux motor of the present invention is a dome square wave, as shown in FIG.
  • its actual back EMF waveform is a sine wave with 3rd harmonic and 6th harmonic, as shown in Figure 12. Therefore, the all-flux motor is a sine wave motor with excellent performance.
  • the winding end of the full flux motor can also be understood as zero, and since the number of windings tends to be the least, the end of the winding tends to be the smallest, and the utilization of the winding tends to be the highest, thereby making the motor The iron loss and copper consumption tend to be the smallest, and the production cost of the motor tends to be the lowest.
  • the interface is a point, as shown in Fig. 4, at this time, the armature armature reaction does not affect the main magnetic field, so the motor of the present invention is particularly suitable for high power and large current. For occasion use, it has a strong advantage for generators and motors with large diameter hollow structures.
  • a preferred embodiment of the invention is shown in Fig. 2, in which a three-phase disc permanent magnet motor 1 is constructed by a combination of three single-phase motor units 5, 6, 7. Each single-phase motor unit is a single-phase disc permanent magnet motor.
  • the single-phase disc permanent magnet motor two pairs of N- and S-pole permanent magnets are respectively mounted on the two disc rotors, and the first one
  • the permanent magnet on the disc rotor is opposite to the permanent magnet S pole on the second disc rotor to generate a disc axial air gap magnetic field; when the rotor rotates, it is equivalent to the iron core disc stator in the axial magnetic field
  • Rotating, single-phase windings are installed in the virtual slots of the ironless disc stator.
  • This design minimizes the number of windings of the motor, minimizes the ends of the windings, and tends to take advantage of the windings. The highest, so that the motor's iron consumption and copper consumption are minimized.
  • the axial dimension of the single-phase motor unit tends to be the smallest, and the electrical load and the magnetic load are both at a relatively high level, so that the volume of the motor is greatly reduced and the power density is greatly increased.
  • the three-phase disc permanent magnet motor has three single-phase motor units of B and C, and the stators of the three single-phase motor units are spatially offset by 120° electrical angle.
  • the three single-phase motor units form three-phase windings of A, B and C.
  • the three opposite potentials of the three-phase windings differ in time by 120 ° electrical angle, which constitutes a three-phase disc permanent magnet motor.
  • a three-phase disc permanent magnet motor is used as a three-phase permanent magnet motor module, and at least two three-phase permanent magnet motor modules are connected in series in the axial direction, so that a high-power disc multiphase permanent magnet proportional to the series number can be formed.
  • the motor and motor have a capacity of up to ten megawatts.
  • the A, B, C three-phase windings are used alone, for example, three-phase independent H-bridge driven motors, or three independent single-phase power generators; of course, they can also be connected to a conventional Y-type structure, or coupled Into the ⁇ structure.
  • the thickness of the stator is 3 to 10 mm; the thickness of the stator is 0. 5 ⁇ 2 ram, the thickness of the stator is 3 to 10 mm, as shown in Fig. 2, in the same single-phase disc permanent magnet motor, the axial physical air gap between the permanent magnets and the stator is 0. 5 ⁇ 2ram, the thickness of the stator is 3 ⁇ 10mm;
  • a stator shaft 2 is mounted at the center of the stator, the stator shaft being a hollow or partially hollow structure, and bearings on both sides of the stator shaft for supporting the rotation of the disc rotor.
  • a three-phase disc permanent magnet motor composed of three single-phase motor units, the leads of the three-phase windings are pierced from the hollow or partially hollow stator shaft holes. As shown in FIG.
  • each permanent magnet on the disc rotor is circular, and each permanent magnet is evenly distributed along the outer side of the disc rotor, and the same on the same rotor.
  • the gap between the N and S poles of the magnet is 0 ⁇ 1mm process gap.
  • the centers of the individual permanent magnets on the rotor are on a circle of the same radial radius, each coil being a simple toroidal coil and filled in the virtual slot.
  • the circular permanent magnets and winding elements minimize manufacturing costs and greatly improve the quality of the components.
  • the use shown in Figure 4 The circular permanent magnet and the circular coil shown in Figure 3 constitute a new type of full flux motor. It is a new type of motor that relies entirely on changes in the flux in the concentrated winding of the current carrying to generate torque.
  • each of the permanent magnets on the disc rotor may be a fan shape, each permanent magnet is distributed along the outer side of the disc rotor, the permanent magnet N, S pole arrangement gap on the same rotor is 0.
  • each virtual groove of the stator is the same fan shape as each permanent magnet on the disc rotor, and is evenly distributed along the outer side of the disc stator;
  • the geometric center of the single-phase winding Z 2P coils
  • the geometric centers of the individual sector-shaped permanent magnets on the disc rotor are on a circle of the same radial radius, each coil being fan-shaped and filled in a virtual slot.
  • Fan-shaped permanent magnets are mainly used in small-diameter motors, and their performance and cost are slightly worse.
  • two linear Hall sensors can be disposed in the three-phase disc permanent magnet motor, which are separated from each other by an electrical angle of 90 degrees, and are fixed on the stator through the PCB board; the sensitive direction of the Hall sensor is oriented toward the rotor forever The air gap magnetic field formed by the magnet to sense the change in the air gap magnetic field.
  • Three switch Hall sensors can also be provided, which are separated by 120 degrees from each other and fixed to the stator by a PCB.
  • the single-phase toroidal winding installed in the dummy groove of the stator adopts a double-layer coil, as shown in Fig.
  • the lower ring coil is wound from the outer circle to the inner circle by 3 turns, and then the inner circle is wound around the inner circle of the upper layer coil, and the ring type coil is further wound around the inner circle by 3 turns, so the head end of the coil in the virtual groove On the outer circle side of the lower layer of the virtual groove, and the tail end on the outer circle side of the upper layer of the virtual groove.
  • Fig. 5 denotes a 6-turn coil in each virtual slot, and the figure shows a cross-sectional view taken along the center of the virtual groove, which shows the winding structure of the 6-turn coil in the virtual groove, A winding structure of all of the N virtual slots is shown and a single phase winding is formed, which shows that the winding structure of the present invention avoids the intersection and overlap of any windings.
  • the arrows in the figure indicate the direction of current flow in each of the turns of the single phase winding.
  • the first end of the lower layer coil is marked as "1", and the lower layer is wound by the outer circle inward by 3 turns, that is, "1 - 1 - 2 - 2 - 3 - 3";
  • the upper layer gp "3 - 4"; then in the upper layer from the inner circle to the outer circle around 3 ⁇ , ⁇ 4 "4 - 4 - 5 - 5 - 6 - 6".
  • the trailing end of the winding can be wound around the next virtual slot without any intersection and overlap of the windings.
  • the trailing end of the first virtual slot becomes the leading end of the second virtual slot coil and is in the virtual slot.
  • Upper outer circle The side is then wound by an outer circle around the inner circle by 3 turns, and then from the inner circle around the inner circle of the lower layer loop coil, and then rounded outward by the inner circle by 3 turns.
  • the first end of the upper ring coil is on the outer circle side of the upper layer of the virtual slot
  • the tail end is on the outer circle side of the lower layer of the virtual slot
  • the tail end can be wound to the third virtual slot without generating any The intersection and overlap of the windings.
  • the last winding end is on the outer circumference side of the lower side of the last dummy groove, and forms a single-phase winding with the leading end of the winding on the outer circumference side of the lower side of the first dummy groove.
  • a coil can be separately wound for each virtual slot, and then the coils of the respective virtual slots are sequentially connected in series, and the first end and the last virtual slot of the coil in the first virtual slot are used.
  • the trailing end of the coil acts as the leading and trailing ends of the entire single-phase winding, resulting in a complete single-phase winding.
  • the advantage of this method is that there is no need for wire-wound tooling equipment, and the coils in each virtual slot can be screwed to the bracket.
  • the three-phase disc permanent magnet motor is designed in a hollow, vertical mounting configuration.
  • the three single-phase motor units A, B and C are assembled along the horizontal hollow stator shaft and form a three-phase permanent magnet motor module 15. Three-phase independent windings can be used independently, or A, B, C three-phase windings can be connected to Y or eight.
  • the base 16 of the three-phase disc permanent magnet motor is provided with a mounting hole, and the upper end 17 is provided with a mounting flange and a mounting hole for mechanically interfacing with the input or output.
  • the hollow, vertically mounted three-phase disc permanent magnet motor has a strong vertical support shafting and therefore good vertical load carrying capacity.
  • three hollow, vertically mounted three-phase permanent magnet motor modules 15 are superimposed in the direction of the hollow stator axis to triple the power.
  • the three-phase independent windings of each of the three-phase permanent magnet motor modules can be used independently or in various series-parallel configurations.
  • the disc permanent magnet motor is designed in a hollow, horizontally mounted form, or horizontally mounted form.
  • the three single-phase motor units A, B, and C are assembled along the horizontal hollow stator shaft, and a three-phase permanent magnet motor module 18 is formed.
  • the three-phase independent windings of the three-phase permanent magnet motor module can be used independently or in various serial-parallel manners.
  • the first end 19 of the three-phase disc permanent magnet motor is provided with a mounting hole, and the second end 20 is provided with a mounting flange for mechanical interface with the input or output. And mounting holes.
  • three hollow, horizontally structured three-phase permanent magnet motor modules 15 are superimposed in the direction of the hollow stator axis to triple the power.
  • a plurality of three-phase permanent magnet motor modules of a disc permanent magnet motor are mechanically connected in series along a shaft, and the mechanical structure of the interface between the two motor modules is
  • the magnetic circuit structure can be combined to reduce production costs.
  • a three-phase disc permanent magnet motor composed of a single-phase motor combination is provided, which has a power capacity of 300 KW, and can be applied to both low-speed and extra-large torque direct driving, and can also be applied to high power. Wind power, its dimensions are shown in Figure 10.
  • the two disc rotors of the single-phase motor are respectively equipped with 25 pairs of permanent magnets.
  • This design minimizes the number of motor windings, minimizes the ends of the windings, and maximizes the utilization of the windings, minimizing the iron and copper losses of the motor.
  • the axial dimension of the single-phase motor unit also tends to be the smallest. In this embodiment, the axial dimension is 1/3 of 200 mm, and the electrical load is 240 A/cm, and the magnetic load is 5000 GS, which are at a relatively high level. Therefore, the volume of the motor is greatly reduced, and the power density is greatly increased.
  • the three-phase windings of A, B and C are connected to form Y.
  • each coil is a simple toroidal coil and is filled in a virtual slot. among them
  • Nl 6, 6 ⁇ per pole, phase current 468A, motor torque 24000Nm.
  • the back EMF waveform is a sine wave with excellent performance.
  • Circular permanent magnets and winding components reduce the manufacturing cost to 2/3 of the sector-shaped permanent magnets and winding components. More importantly, the uniformity and average residual magnetic density of the circular permanent magnets are increased by about 10%. The quality has been greatly improved.
  • the axial physical air gap between each permanent magnet and the stator on the disc rotor of the motor of the present embodiment is 2 mm, and the thickness of the stator is 6.
  • Fig. 11 is an ideal back-EM waveform of a high-power disk permanent magnet motor shown in Fig. 10 (single-turn winding), which can be seen as a square wave of a dome having a relatively large fundamental component.
  • Figure 12 is the actual back EMF waveform considering the width of the winding element; in Figure 12, the fundamental wave (the line with the highest amplitude), the third harmonic (the line with the lowest amplitude), and the fundamental wave + the third harmonic original signal waveform. (Dotted line:), it can be seen that the main components in the original signal are the fundamental wave and the third harmonic, which are ideal for both the motor and the generator.

Description

单相、 三相、 以及大功率多相的盘式永磁电机 技术领域
本发明涉及盘式永磁电机,更具体地说,涉及一种基于全磁通原理的单相 盘式永磁电机、使用三个该种单相盘式永磁电机构成的三相盘式永磁电机, 以 及使用至少两个该种三相盘式永磁电机构成的大功率盘式永磁电机,该大功率 盘式永磁电机可用于低速特大力矩直接驱动或大功率风力发电。 背景技术
传统无铁芯定子盘式无刷直流永磁电机的绕组设计中,通常沿用感应电机 或盘式有铁芯永磁电机的设计方法。每极下布置三相绕组的 3个边,这种绕组 的端部很大, 三相绕组的端部还产生重叠交叉, 如图 1所示。 绕组的端部大, 铜耗就大;绕组的端部重叠交叉又使得端部进一步变大和变厚,导致生产成本 也会变高。 由于电机气隙和绕组的总厚度不能大于 8mm, 否则气隙磁密太低, 电机会因磁负荷太小而效率变低和体积变大,因此传统盘式永磁电机的功率容 量均低于 2Kw, 不可能做得更大。
传统三相永磁盘式电机每极每相槽数 Z/ (2Pm) >l/2, 其中 2P为极数, m 为相数, Z为槽数。 例如: 8极 24槽和 8极 36槽, 等等。 一般来讲, 每极每 相槽数越大的电机, 绕组的端部就会越大, 绕组的利用率越低, 铜耗会越大, 这类电机的制造成本就越高, 而且其功率容量不可能超越几个千瓦。
在本实用新型专利申请人所申请的另一件申请号为 200720172742. 8 的 "盘式三相无刷永磁电机"实用新型专利中, 公开了 Z=9N, 2P=8N或 10N的盘 式三相无刷永磁电机。这类电机的制造成本很低, 绕组系数为 0. 946左右, 绕 组的端部很小, 绕组利用率很高,铜耗也很小, 但其功率容量也不可能超越几 十千瓦。
另外, 传统大功率三相盘式永磁电机通常都存在占额定转矩 5%〜0. 5%大 小的齿槽定位力矩,对于大功率和大力矩电机,齿槽定位力矩的绝对值非常大。 而这个齿槽定位力矩又会对电机的运行和性能产生严重的不良影响。
1
确认本 发明内容
针对现有技术的上述缺陷,本发明要解决现有盘式电机功率无法做大,结 构和生产工艺复杂以及绕组利用率低、 生产成本高等问题。
本发明解决现有技术问题所采用的技术方案是:构造一种单相盘式永磁电 机, 其中在两个盘式转子上分别装有多对 N、 S极相间的永磁体, 且第一个盘 式转子上的永磁体 N极正对第二个盘式转子上的永磁体 S极以产生轴向气隙磁 场; 在无铁芯盘式定子的虚槽中装有绕组; 其特征在于, 所述无铁芯盘式定子 的虚槽中装的是单相绕组;所述转子的磁极数 2P与所述定子的虚槽数 Z相等, 即 Z-2P ; 在所述定子的 Z=2P 个虚槽中, 所述单相绕组线圈的排列次序为 A-/A-A-/A-A-/ A-A-/A-A · · · , 以 " A- /A"为基础在圆周内循环 Z=2P次, 且依次 串联形成所述单相绕组。
在本发明的单相盘式永磁电机中,所述盘式转子上各个永磁体与定子之间 的轴向物理气隙最好是 0. 5〜2mm; 所述定子的厚度最好是 3〜10mm。
在本发明的单相盘式永磁电机中,所述盘式转子上各个永磁体的形状可为 圆形, 所述各个永磁体沿盘式转子外侧均布, 同一转子上的永磁体 N、 S极排 列间隙为 0〜lmm工艺间隙; 所述定子上各个虚槽的形状是与所述盘式转子上 各个永磁体对应的圆形, 并沿盘式定子外侧均布; 所述单相绕组 Z-2P个线圈 的圆心与所述盘式转子上各个永磁体的圆心处于相同的径向半径的圆上,每个 线圈为简单的环型线圈并填充在所述虚槽中。
在本发明的单相盘式永磁电机中,所述盘式转子上各个永磁体的形状可为 扇形, 所述各个永磁体沿盘式转子外侧均布, 同一转子上的永磁体^ S极排 列间隙为 0. l〜3mm工艺间隙; 所述定子的各个虚槽的形状是与所述盘式转子 上各个永磁体相同的扇形, 并沿盘式定子外侧均布; 所述单相绕组 Z=2P个线 圈的几何中心与盘式转子上各个扇形永磁体的几何中心处于相同的径向半径 的圆上, 每个线圈为扇形并填充在所述虚槽中。
在本发明的单相盘式永磁电机中,每一个所述定子虛槽中的单相绕组采用 双层线圈; 第一个虚槽中, 下层线圈由外圆向内圆绕 N匝,然后从内圆绕向上 层线圈的内圆, 上层线圈再由内圆向外圆绕 N匝,使得第一个虚槽虚槽中线圈 的首端在下层外圆侧,而尾端在上层外圆侧;第一个虚槽中绕组的尾端绕向第 二个虚槽,成为第二个虚槽线圈的首端并在该虚槽的上层外圆侧,上层线圈由 外圆向内圆绕 N匝,然后从内圆绕向下层线圈的内圆, 下层线圈再由内圆向外 圆绕 N匝,使得第二个虛槽中线圈的首端在上层外圆侧,而尾端在下层外圆侧; 其余各个虚槽中的绕组连接方式依此类推, 直至绕完 Z=2P个虚槽中的全部线 圈, 最后一个虚槽中绕组的尾端在下层外圆侧,并与第一个虚槽下层外圆侧的 绕组首端形成所述单相绕组。
在本发明的单相盘式永磁电机中,除上述绕制结构外,还可在每一个所述 定子虚槽分别设一个独立绕制的线圈,各个虚槽的线圈依次串联,并以第一个 虚槽中线圈的首端作为整个单相绕组的首端、最后一个虚槽中线圈的尾端作为 整个单相绕组的尾端, 从而得到一个完整的单相绕组。
在本发明的单相盘式永磁电机可为中空、垂直安装形式, 或者为中空、 卧 式安装形式;所述定子中心的定子轴为中空结构或局部中空结构,所述单相绕 组的引线自所述中空或局部中空的定子轴孔穿出。
本发明还提供一种三相盘式永磁电机,其中以前述单相盘式永磁电机为一 个单相电机单元, 共有 A、 B、 C三个单相电机单元; 所述三个单相电机单元依 次装于同一根定子轴上, 且三个单相电机单元的定子在空间上错开 120° 电角 度; A、 B、 C三个单相电机单元形成该三相盘式永磁电机的 A、 B、 C三相绕组, 且三相绕组的三相反电势在时间上互差 120。 电角度; 所述 A、 B、 C三相绕组 单独使用、 或联接成 Y型结构、 或者联接成厶型结构。
在本发明的三相盘式永磁电机中,可设置两个线性霍尔传感器,两者互相 间隔 90度电角度; 或者设置三个开关霍尔传感器, 三者互相间隔 120度电角 度 ·,所述线性霍尔传感器通过 PCB板固定在定子上;所述霍尔传感器的敏感方 向朝向转子永磁体形成的气隙磁场, 以传感气隙磁场的变化。
本发明还提供一种大功率盘式永磁电机,其中以前述三相盘式永磁电机为 一个三相永磁电机模块,并由至少两个三相永磁电机模块沿所述同一根定子轴 向串联, 以构成与串联数成正比的大功率盘式多相永磁电机。
由上述技术方案可知,本发明提出了一种全磁通原理和解决方案,基于该 全磁通原理可制成相盘式永磁电机,进而制成三相盘式永磁电机,再进一步制 成大功率盘式永磁电机,此类盘式永磁电机中不仅绕组的数目趋于最少、绕组 的端部趋于最小、绕组的利用率趋于最高, 而且完全消除了齿槽定位力矩, 从 而使电机的铁耗和铜耗趋于极小,并且使其功率容量达到数百千瓦甚至兆瓦量 级,同时使电机的生产成本趋于最低。 附图说明
图 1是传统无铁芯定子盘式无刷直流永磁电机的绕组结构示意图; 图 2是本发明一个实施例中的三相盘式永磁电机的结构示意图; 图 3是本发明一个实施例中的定子单相绕组结构示意图;
图 4是与图 3配合的盘式转子结构示意图;
图 5是本发明一个实施例中单相绕组的双层线圈结构示意图;
图 6是本发明一个实施例中的中空、 垂直式三相永磁电机模块示意图; 图 7是由中空、垂直式三相永磁电机模块构成大功率盘式永磁电机的示意 图;
图 8是本发明一个实施例中的中空、 卧式三相永磁电机模块示意图; 图 9 是由中空、 卧式三相永磁电机模块构成大功率盘式永磁电机的示意 图;
图 10是本发明一个实施例中 Z=2P=50、300KW大功率盘式永磁电机的外型 示意图;
图 11是图 10所示大功率盘式永磁电机的理想反电势波形;
图 12是图 10所示大功率盘式永磁电机中考虑绕组元件宽度后的实际反电 势波形;
图 13是二个三相永磁电机模块构成更大功率电机的内部结构示意图。 在图 2中, 1是三相永磁电机模块, 2是定子轴, 3是轴承, 4是机座, 5 是 A相电机单元, 6是 B相电机单元, 7是 C相电机单元, 8是 A相定子, 9 是 B相定子, 10是 C相定子,11是 A相电机单元的两个盘式转子, 12是 B相 电机单元的两个盘式转子, 13是 C相电机单元的两个盘式转子。 在图 6中和图 7中, 15是三相永磁电机模块, 16是机座, 17是上端。 在图 8中和图 9中, 18是三相永磁电机模块, 19是第一端, 20是第二端 具体实施方式
本发明的电机是一种全磁通电机,它可通过电机磁场储能对转子位移的偏 导数求得电机转矩, 其表示式为:
Figure imgf000007_0001
式中: 为电机极对数、 为电机的磁场储能、 为电机的转子的位移角。
从上式出发可以推导出双边励磁 (包括永磁体电机)的转矩公式:
Figure imgf000007_0002
式中: 。为定子电流、 Lu为定子绕组自感、 Φ 12为永磁体在定子绕组中产生的 磁链、 Wra2为永磁体产生的电机内磁场能量。 F2公式中的三个项分别表示: 第一项: 定子电流产生的磁阻转矩, 对表面永磁电机, 转子转动时 Lu不 变, 磁阻转矩为零;
第二项: 定子电流与永磁体产生磁链相互作用, 产生电机的主转矩; 第三项: 永磁体产生的磁阻转矩, 转子转动时, 齿槽对 Wm2变化将会产生 脉动转矩;
对于无铁芯定子盘式三相无刷永磁直流电机只有第二项,它是完全依靠载 流的集中绕组中磁通的变化来产生力矩的一类新型电机。
Figure imgf000007_0003
Ρ=ω T= ρίάφ =2ρΧ 7½Χ i'X e (F4) 其中 是每极匝数, i是相电流, e是相电势, P每相功率, 每相力矩。
理论分析和实施例证明,本发明圆形磁钢盘式旋转全磁通电机的理想(单 匝)反电势波形是圆顶方波, 如图 11所示。 若考虑绕组元件的宽度, 其实际反 电势波形是具有 3次谐波和 6次谐波的正弦波, 如图 12所示。 因此, 全磁通 电机是正弦波电机, 性能十分理想。
与传统电机相比较, 当磁极面积相同时, 圆形的周长是矩形周长的 0.886; 圆形的周长是扇形周长的 0.877〜0.75。 因此圆形磁钢和圆形绕组电机的绕组 总长度最短。此外与传统电机相比较,全磁通电机的绕组端部也可以理解为零, 又由于绕组的数目趋于最少, 绕组的端部趋于最小, 绕组的利用率趋于最高, 从而使电机的铁耗和铜耗趋于最小, 电机的生产成本趋于最低。
由于 N、 S圆形磁钢相间排列, 交接面是一个点, 如图 4所示, 此时交轴 电枢反应不会对主磁场产生影响, 因此本发明电机特别适合在大功率、大电流 场合使用, 对于大直径中空结构的发电机和电动机, 更有强大优势。
本发明电机的槽数等于极数, Z=2P, 其电机绕组的利用率非常高。 其中: 槽距电角度: - ^^ = ^^ = 180° (F5)
Ζ 2ρ 分布系数: Κ = 1 (F6) 短距系数: KPl - sin ^ - = sin 0.85 X - = 0.972 (F7)
2 2
其中 ^是考虑虚槽中每一匝线圈具有不同的直径,设虚槽中线圈的平均直 径是电机极距 π的 0. 85。
绕组系数: Κν1 = ΚΛΚρϊ = 0.972 (F8) 可见, 本发明中电机的绕组系数为 0.972左右, 取决于虚槽中线圈的平均 直径与极距之比。 由于短距系数为 0.972左右, 使得本发明电机绕组的线反电 势波形是相当理想的正弦波。 本发明的一个优选实施例如图 2所示, 其中由三个单相电机单元 5、 6、 7 组合构成的一个三相盘式永磁电机 1。每一个单相电机单元就是一个单相盘式 永磁电机, 在单相盘式永磁电机中, 两个盘式转子上分别装有多对 N、 S极相 间的永磁体,且第一个盘式转子上的永磁体 Ν极正对第二个盘式转子上的永磁 体 S极以产生盘式轴向气隙磁场;转子转动时,相当于无铁芯盘式定子在轴向 磁场中转动, 无铁芯盘式定子的虚槽中装有单相绕组。
本实施例中, 转子的磁极数 2Ρ与定子的虚槽数 Ζ相等, 即 Ζ=2Ρ。这一设 计使得电机的绕组的数目趋于最少、绕组的端部趋于最小、绕组的利用率趋于 最高,从而使电机的铁耗和铜耗趋于最小。更重要的是单相电机单元的轴向尺 寸也趋于最小,且电负荷和磁负荷均处于相当高的水平,从而使得电机的体积 大幅减小, 功率密度大幅提高。
本实施例中, 三相盘式永磁电机共有 、 B、 C三个单相电机单元, 并且三 个单相电机单元的定子在空间错开 120° 电角度。三个单相电机单元形成 A、B、 C三相绕组, 这三相绕组的三相反电势在时间上互差 120 ° 电角度, 也即构成 了一个三相盘式永磁电机。 以一个三相盘式永磁电机作为三相永磁电机模块, 并由至少两个三相永磁电机模块沿轴向串联,便可以构成与串联数成正比的大 功率盘式多相永磁电机, 电机的容量可达到十兆瓦。
在 A相绕组中, 定子的 Z=2P个虚槽中的单相绕组线圈的排列次序分别为 A-/A-A-/A-A-/A-A-/A-A- , 并以 " A- /A"为基础在圆周内循环 Z=2P次, 且线 圈依次串联形成 A相绕组; B相绕组和 C相绕组中, 绕组线圈的排列次序也按 同样方式排列。 其中, 所述 A、 B、 C三相绕组单独使用, 例如构成三相独立 H 桥驱动的电动机, 或独立的三个单相电源发电机; 当然也可以联接成传统的 Y 型结构、 或者联接成△型结构。
如图 2所示,在同一个单相盘式永磁电机中,盘式转子上各个永磁体与定 子之间的轴向物理气隙是 0. 5〜2ram,定子的厚度是 3〜10mm; 在定子中心装有 定子轴 2, 该定子轴是中空或局部中空结构, 定子轴的两边装有用于支撑盘式 转子回转的轴承。由三个单相电机单元组成的三相盘式永磁电机,其三相绕组 的引线自中空或局部中空的定子轴孔穿出。 如图 4所示, 本发明的一个优选实施例中, Z=2P=20, 盘式转子上各个永 磁体的形状为圆形,各个永磁体沿盘式转子外侧均布,同一转子上的永磁体 N、 S极排列间隙为 0〜lmm工艺间隙。如图 3所示, 定子的各个虚槽的形状是与 盘式转子上各个永磁体对应的圆形, 并沿盘式定子外侧均布; 单相绕组 Z=2P 个线圈的圆心与所述盘式转子上各个永磁体的圆心处于相同的径向半径的圆 上,每个线圈为简单的环型线圈并填充在所述虚槽中。圆形永磁体和绕组元件, 使制造成本趋于最低,部件的质量大幅提高。在盘式永磁电机中采用图 4所示 的圆形永磁体和图 3所示的圆形线圈,构成一种新型的全磁通电机。它是完全 依靠载流的集中绕组中磁通的变化来产生力矩的一类新型电机。
具体实施时,盘式转子上各个永磁体的形状还可为扇形,各个永磁体沿盘 式转子外侧均布,同一转子上的永磁体 N、S极排列间隙为 0. 1〜3腿工艺间隙, 以便抑制交轴电枢反应;定子的各个虚槽的形状是与盘式转子上各个永磁体相 同的扇形, 并沿盘式定子外侧均布; 单相绕组 Z=2P个线圈的几何中心与盘式 转子上各个扇形永磁体的几何中心处于相同的径向半径的圆上,每个线圈为扇 形并填充在虛槽中。扇形永磁体主要在小直径电机中才会被釆用,其性能和成 本稍差。
具体实施时,三相盘式永磁电机中可设置两个线性霍尔传感器,两者互相 间隔 90度电角度, 并通过 PCB板固定在定子上; 所述霍尔传感器的敏感方向 朝向转子永磁体形成的气隙磁场, 以传感气隙磁场的变化。还可设置三个开关 霍尔传感器, 三者互相间隔 120度电角度, 并通过 PCB板固定在定子上。 本发明中,为了在单相单元电机的轴向气隙中布置最多绕组,在定子虛槽 中安装的单相环型绕组采用双层线圈, 如图 5所示,针对每极 6匝的情况,下 层环型线圈由外圆向内圆绕 3 匝,然后从内圆绕向上层线圈的内圆, 环型线圈 再由内圆向外圆绕 3 匝,因此这个虚槽中线圈的首端在虚槽下层外圆侧, 而尾 端在虚槽上层外圆侧。
图 5中,①②③④⑤⑥表示每个虚槽中的 6匝线圈, 图中示出的是沿虛槽 中心被切开后的截面图,它表示了虚槽中的 6匝线圈的绕制结构, 同时表示了 N个虚槽中全部线圈的绕制结构, 并形成单相绕组, 该图表明本发明的绕组结 构避免了产生任何绕组的交叉和重叠。图中箭头表示单相绕组中每一匝线圈中 的电流方向。
以第 1个虚槽为例, 其中下层线圈的首端被标记为"①", 在下层由外圆向 内圆绕 3匝, 即"①―①―②―②一③一③"; 然后绕向上层, gp"③一④"; 然 后在上层由内圆向外圆绕 3匝, §Ρ "④一④―⑤一⑤一⑥一⑥"。
按这种方式,绕组的尾端可以绕向下一个虚槽而不会产生任何绕组的交叉 和重叠,第 1个虚槽的尾端成为第 2个虚槽线圈的首端并在该虚槽的上层外圆 侧, 然后由外圆向内圆绕 3匝,再从内圆绕向下层环型线圈的内圆, 然后再由 内圆向外圆绕 3匝。在第 2个虚槽中,上层环型线圈的首端在虚槽上层外圆侧, 而尾端在虛槽下层外圆侧,该尾端可以绕向第 3个虚槽,而不产生任何绕组的 交叉和重叠。
按此规律就可绕完 Z=2P=50的虚槽中的全部线圈, 且不产生任何绕组的 交叉和重叠。 最后一个绕组尾端在最后一个虚槽下层外圆侧, 并与第一个虚 槽下层外圆侧的绕组的首端形成了单相绕组。
除了上述绕制方法之外, 还可针对每一个虚槽, 分别绕好一个线圈, 然后 将各个虛槽的线圈依次串联,并以第一个虚槽中线圈的首端和最后一个虚槽中 线圈的尾端作为整个单相绕组的首端和尾端, 从而得到一个完整的单相绕组。 这种方法的好处是不用做绕线的工装设备,每一个虚槽中的线圈可以用螺钉固 定到支架上。 如图 6所示,本发明的一个优选实施例中,三相盘式永磁电机被设计成中 空、 垂直安装形式。 A、 B、 C三个单相电机单元沿水平中空定子轴装配, 并形 成三相永磁电机模块 15。 三相独立绕组可以被独立使用, 也可以将 A、 B、 C 三相绕组联接成 Y型或八型使用。 该三相盘式永磁电机的底座 16上设有安装 孔,上端 17设有用于与输入或输出机械接口的安装法兰盘和安装孔。该中空、 垂直安装形式的三相盘式永磁电机的具有强大的垂直支撑轴系,因此具有良好 的垂直承载能力。
如图 7所示, 本发明的另一个优选实施例中,三个中空、垂直安装形式的 三相永磁电机模块 15沿中空定子轴方向叠加, 使功率扩大三倍。 其每一个三 相永磁电机模块的三相独立绕组可以被独立使用,也可以按各种串并联方式被 使用。
如图 8所示,本发明的另一个优选实施例中,将盘式永磁电机设计成中空、 卧式安装形式, 或称水平安装形式。 A、 B、 C三个单相电机单元沿水平中空定 子轴装配, 并形成三相永磁电机模块 18。 三相永磁电机模块的三相独立绕组 可以被独立使用,也可以按各种串并联方式被使用。该三相盘式永磁电机的第 一端 19设有安装孔,第二端 20设有用于与输入或输出机械接口的安装法兰盘 和安装孔。
如图 9所示,本发明的另一个优选实施例中, 三个中空、卧式结构的三相 永磁电机模块 15沿中空定子轴方向叠加, 使功率扩大三倍。
如图 13所示, 本发明的另一个优选实施例中, 盘式永磁电机的多个三相 永磁电机模块,在沿轴机械串联叠加时,两个电机模块相接面的机械结构和磁 路结构可以合拼以便降低生产成本。
由上述实施例可以看出,本发明盘式永磁电机中,在满足 Z=2P的前提下, 其磁极数和虚槽数不受任何约束,该盘式永磁电机可以用于不同功率和容量的 低速特大力矩直接驱动, 也可用于大功率风力发电。 本发明的一个优选实施例中,提供一种由单相电机组合构成的三相盘式永 磁电机, 它的功率容量为 300KW, 既可应用于低速特大力矩直接驱动, 也可应 用于大功率风力发电, 其外型尺寸如图 10所示。 其中, 单相电机的两个盘式 转子上分别装有 25对^ S极相间的永磁体。
其中, 转子的磁极数 2P=50, 与定子的虚槽数 Z相等, 即 Z=2P=50。 这一 设计使得电机绕组的数目趋于最少、绕组的端部趋于最小、绕组的利用率趋于 最高,从而使电机的铁耗和铜耗趋于最小。更重要的是单相电机单元的轴向尺 寸也趋于最小, 本实施例为轴向尺寸 200 mm的 1/3 , 且电负荷为 240A/cm, 磁负荷为 5000GS, 均处于相当高的水平, 从而使得电机的体积大幅减小, 功 率密度大幅提高。
在 A相绕组中,定子的 Z=2P=50个虚槽中的单相绕组线圈的排列次序分别 为 A-/A-A-/A- A-/A-A-/A - Α···,并以 "Α-/Α"为基础在圆周内循环 Ζ=2Ρ=50次, 且线圈依次串联形成 Α相绕组; B相绕组和 C相绕组中按同样方式排列。 A、 B、 C三相绕组联接成 Y型。
本实施例中,盘式永磁电机的盘式转子上各个永磁体的形状为圆形,各个 永磁体沿盘式转子外侧均布, 永磁体 N、 S极排列间隙为 0. 1mm工艺间隙。 定 子上各个虚槽的形状是与盘式转子上各个永磁体对应的圆形,并沿盘式定子外 侧均布;单相绕组中 Z=2P二 50个线圈的圆心与盘式转子上各个永磁体的圆心处 于相同的径向半径的圆上,每个线圈为简单的环型线圈并填充在虚槽中。其中
Nl=6即, 每极 6匝, 相电流 468A, 电机力矩达 24000Nm。 反电势波形是正弦 波, 性能十分理想。 圆形永磁体和绕组元件, 使制造成本下降到扇形永磁体和 绕组元件的 2/3, 更重要的是圆形永磁体的一致性和平均剩磁磁密均提高了 10%左右, 部件的品质大幅提高。
本实施例电机的虚槽中线圈的平均直径是电机极距 π的 0. 85, 故绕组系 数: W pl = 0.972 。 本实施例电机的盘式转子上各个永磁体与定子之间的轴向物理气隙是 2mm,定子的厚度是 6讓。
图 11是图 10所示大功率盘式永磁电机的理想反电势波形 (单匝整距绕 组),可以看出它是圆顶的方波, 具有相对更大的基波分量。 图 12是考虑绕组 元件宽度后的实际反电势波形; 图 12中, 分别为基波 (振幅最高那条线)、 三 次谐波 (振幅最低那条线)、 基波 +三次谐波原始信号波形 (虚线:), 可见原始信 号中的主要构成成分为基波和三次谐波,这种波形对于电动机和发电机均相当 理想。

Claims

权 利 要 求
1、 一种单相盘式永磁电机, 其中在两个盘式转子上分别装有多对 N、 S 极相间的永磁体,且第一个盘式转子上的永磁体 N极正对第二个盘式转子上的 永磁体 S极以产生轴向气隙磁场;在无铁芯盘式定子的虚槽中装有绕组;其特 征在于,
所述无铁芯盘式定子的虚槽中装的是单相绕组;
所述转子的磁极数 2P与所述定子的虚槽数 Z相等, 即 Z=2P;
在所述定子的 Z=2P 个虛槽中, 所述单相绕组线圈的排列次序为 A - /A-A-/A-A-/A-A- /A-A〜, 以 " A-/A"为基础在圆周内循环 Z=2P次, 且依次 串联形成所述单相绕组。
2、 根据权利要求 1所述的单相盘式永磁电机, 其特征在于, 所述盘式转 子上各个永磁体与定子之间的轴向物理气隙是 0. 5〜2mm; 所述定子的厚度是 3〜10画。
3、 根据权利要求 2所述的单相盘式永磁电机, 其特征在于,
所述盘式转子上各个永磁体的形状为圆形,所述各个永磁体沿盘式转子外 侧均布, 同一转子上的永磁体 N、 S极排列间隙为 0〜lmm工艺间隙;
所述定子上各个虛槽的形状是与所述盘式转子上各个永磁体对应的圆形, 并沿盘式定子外侧均布; 所述单相绕组 Z=2P个线圈的圆心与所述盘式转子上 各个永磁体的圆心处于相同的径向半径的圆上,每个线圈为简单的环型线圈并 填充在所述虚槽中。
4、 根据权利要求 2所述的单相盘式永磁电机, 其特征在于,
所述盘式转子上各个永磁体的形状为扇形,所述各个永磁体沿盘式转子外 侧均布, 同一转子上的永磁体 N、 S极排列间隙为 0. l〜3mm工艺间隙;
所述定子的各个虚槽的形状是与所述盘式转子上各个永磁体相同的扇形, 并沿盘式定子外侧均布; 所述单相绕组 Z=2P个线圈的几何中心与盘式转子上 各个扇形永磁体的几何中心处于相同的径向半径的圆上,每个线圈为扇形并填 充在所述虚槽中。
5、 根据权利要求 1所述的单相盘式永磁电机, 其特征在于, 每一个所述 定子虚槽中的单相绕组釆用双层线圈;
第一个虚槽中, 下层线圈由外圆向内圆绕 N匝,然后从内圆绕向上层线圈 的内圆, 上层线圈再由内圆向外圆绕 N匝,使得第一个虚槽中线圈的首端在下 层外圆侧, 而尾端在上层外圆侧;
第一个虚槽中绕组的尾端绕向第二个虚槽,成为第二个虚槽线圈的首端并 在该虚槽的上层外圆侧, 上层线圈由外圆向内圆绕 N匝,然后从内圆绕向下层 线圈的内圆,下层线圈再由内圆向外圆绕 N匝,使得第二个虚槽中线圈的首端 在上层外圆侧, 而尾端在下层外圆侧;
其余各个虚槽中的绕组连接方式依此类推, 直至绕完 Z=2P个虚槽中的全 部线圈, 最后一个虚槽中绕组的尾端在下层外圆侧,并与第一个虚槽下层外圆 侧的绕组首端形成所述单相绕组。
6、 根据权利要求 1所述的单相盘式永磁电机, 其特征在于, 在每一个所 述定子虚槽分别设有一个独立绕制的线圈,各个虚槽的线圈依次串联,并以第 一个虚槽中线圈的首端作为整个单相绕组的首端、最后一个虚槽中线圈的尾端 作为整个单相绕组的尾端, 从而得到一个完整的单相绕组。
7、 根据权利要求 1所述的单相盘式永磁电机, 其特征在于, 该单相盘式 7 磁电机为中空、垂直安装形式, 或者为中空、 卧式安装形式; 所述定子中心 的定子轴为中空结构或局部中空结构,所述单相绕组的引线自所述中空或局部 中空的定子轴孔穿出。
8、 一种三相盘式永磁电机, 其特征在于, 其中以权利要求 1-6中任一项 所述的单相盘式永磁电机为一个单相电机单元, 共有 A、 B、 C三个单相电机单 元;所述三个单相电机单元依次装于同一根定子轴上,且三个单相电机单元的 定子在空间上错开 120° 电角度; A、 B、 C三个单相电机单元形成该三相盘式 永磁电机的 A、 B、 C三相绕组, 且三相绕组的三相反电势在时间上互差 120 ° 电角度; 所述 A、 B、 C三相绕组单独使用、 或联接成 Y型结构、 或者联接成△ 型结构。
9、 根据权利要求 8所述的三相盘式永磁电机, 其特征在于, 其中设有两 个线性霍尔传感器, 两者互相间隔 90度电角度; 或者设有三个开关霍尔传感 器,三者互相间隔 120度电角度;所述线性霍尔传感器通过 PCB板固定在定子 上;所述霍尔传感器的敏感方向朝向转子永磁体形成的气隙磁场, 以传感气隙 磁场的变化。
10、一种大功率盘式永磁电机, 其特征在于, 其中以权利要求 7所述的三 相盘式永磁电机为一个三相永磁电机模块,并由至少两个三相永磁电机模块沿 所述同一根定子轴向串联, 以构成与串联数成正比的大功率盘式多相永磁电 机。
11、 根据权利要求 10所述的三相盘式永磁电机, 其特征在于, 相邻两个 三相永磁电机模块共用机械结构和磁路结构。
PCT/CN2007/003304 2007-11-22 2007-11-22 Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance WO2009065256A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003304 WO2009065256A1 (fr) 2007-11-22 2007-11-22 Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003304 WO2009065256A1 (fr) 2007-11-22 2007-11-22 Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance

Publications (1)

Publication Number Publication Date
WO2009065256A1 true WO2009065256A1 (fr) 2009-05-28

Family

ID=40667099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003304 WO2009065256A1 (fr) 2007-11-22 2007-11-22 Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance

Country Status (1)

Country Link
WO (1) WO2009065256A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400665A (zh) * 2018-05-10 2018-08-14 邹跃洲 电机定子及其制造方法、电机
CN110034649A (zh) * 2019-01-23 2019-07-19 河北工业大学 一种轴向磁场磁通切换式横向磁通永磁电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2112222U (zh) * 1992-02-14 1992-08-05 常景蔚 一种铁芯不冲槽的盘式电机
JPH09121521A (ja) * 1995-10-23 1997-05-06 Sawafuji Electric Co Ltd 回転機の磁気回路構造
JPH10174420A (ja) * 1996-12-11 1998-06-26 Yaskawa Electric Corp 平滑巻線形リニアモータ
JPH11187635A (ja) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd フラット回転機
JP2002010573A (ja) * 2000-06-28 2002-01-11 Miyata Ind Co Ltd 発電装置、発電システムおよびこの発電装置を備えた移動体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2112222U (zh) * 1992-02-14 1992-08-05 常景蔚 一种铁芯不冲槽的盘式电机
JPH09121521A (ja) * 1995-10-23 1997-05-06 Sawafuji Electric Co Ltd 回転機の磁気回路構造
JPH10174420A (ja) * 1996-12-11 1998-06-26 Yaskawa Electric Corp 平滑巻線形リニアモータ
JPH11187635A (ja) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd フラット回転機
JP2002010573A (ja) * 2000-06-28 2002-01-11 Miyata Ind Co Ltd 発電装置、発電システムおよびこの発電装置を備えた移動体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400665A (zh) * 2018-05-10 2018-08-14 邹跃洲 电机定子及其制造方法、电机
CN110034649A (zh) * 2019-01-23 2019-07-19 河北工业大学 一种轴向磁场磁通切换式横向磁通永磁电机
CN110034649B (zh) * 2019-01-23 2023-10-27 河北工业大学 一种轴向磁场磁通切换式横向磁通永磁电机

Similar Documents

Publication Publication Date Title
CN102035319B (zh) 双定转子倍极开关磁阻电动机
JPH11511948A (ja) 二重突極磁石発電機
JP2007185087A (ja) 外転形永久磁石励磁横磁束電動機
CN103166402B (zh) 隔磁磁阻和短路笼条一体式转子无刷电励磁同步电机
WO2009055956A1 (fr) Moteur à courant continu à aimant permanent sans balai triphasé à onde carrée
US20030057787A1 (en) Motor/generator with energised reluctance and coil in the air gap
CN110224563A (zh) 三相聚磁式双边无源转子横向磁通永磁电机
CN110086308A (zh) 六相聚磁式内外无源转子横向磁通永磁电机
CN201156695Y (zh) 单相、三相、以及大功率多相的盘式永磁电机
US20110248582A1 (en) Switched reluctance machine
CN201504159U (zh) 双定转子倍极开关磁阻电动机
CN102055294A (zh) 永磁倍极开关磁阻电动机发电机
CN107689699A (zh) 一种新型印刷绕组的永磁无刷直流电机
WO2009065256A1 (fr) Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance
CN104471845B (zh) 用于电磁电机或电磁发电机的定子元件的包括至少一个单一构件式刚性分支的绕组和其生产方法
CN208046339U (zh) 一种新型印刷绕组的永磁无刷直流电机
CN113949245B (zh) 一种空间磁阻双凸极励磁风力发电机
CN112615509A (zh) 双永磁体内嵌式永磁同步电机结构
WO2009055957A1 (fr) Moteur à courant continu à aimant permanent sans balai triphasé de type disque
Zhang et al. Comparison and analysis of dual stator permanent magnet vernier machines with different pole/slot combinations for low speed direct drive applications
CN102403861B (zh) 永磁倍极开关磁阻电动机
CN201667596U (zh) 永磁倍极开关磁阻电动机发电机
CN210183204U (zh) 一种错位双转子磁通切换型永磁电机及发电设备
CN102124627A (zh) 大直径型方波三相无刷直流电机及其装配方法
CN102160255A (zh) 大小齿结构的方波无刷永磁直流电机及其装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07845679

Country of ref document: EP

Kind code of ref document: A1