WO2009064998A1 - Heart regurgitation method and apparatus - Google Patents
Heart regurgitation method and apparatus Download PDFInfo
- Publication number
- WO2009064998A1 WO2009064998A1 PCT/US2008/083574 US2008083574W WO2009064998A1 WO 2009064998 A1 WO2009064998 A1 WO 2009064998A1 US 2008083574 W US2008083574 W US 2008083574W WO 2009064998 A1 WO2009064998 A1 WO 2009064998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- implant
- regurgitation
- conduit
- heart
- shaft
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/246—Devices for obstructing a leak through a native valve in a closed condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/044—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
- A61B2017/0441—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws the shaft being a rigid coil or spiral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
- A61B2017/048—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery for reducing heart wall tension, e.g. sutures with a pad on each extremity
Definitions
- the present disclosure relates to diagnosing dysfunctional heart valves, and more particularly pertains to heart regurgitation methods and apparatus.
- a human heart has four chambers, the left and right atrium and the left and right ventricles.
- the chambers of the heart alternately expand and contract to pump blood through the vessels of the body.
- the cycle of the heart includes the simultaneous contraction of the left and right atria, passing blood from the atria to the left and right ventricles.
- the left and right ventricles then simultaneously contract forcing blood from the heart and through the vessels of the body.
- the heart also includes a check valve at the upstream end of each chamber to ensure that blood flows in the correct direction through the body as the heart chambers expand and contract. These valves may become damaged, or otherwise fail to function properly, resulting in their inability to properly close when the downstream chamber contracts.
- Mitral regurgitation is a common variety of heart valve dysfunction or insufficiency. Mitral regurgitation occurs when the mitral valve separating the left coronary atrium and the left ventricle fails to properly close. As a result, upon contraction of the left ventricle blood may leak or flow from the left ventricle back into the left atrium, rather than being forced through the aorta. Any disorder that weakens or damages the mitral valve can prevent it from closing properly, thereby causing leakage or regurgitation. Mitral regurgitation is considered to be chronic when the condition persists rather than occurring for only a short period of time.
- mitral regurgitation may result in a decrease in blood flow through the body (cardiac output).
- Correction of mitral regurgitation typically requires surgical intervention. Surgical valve repair or replacement is carried out as an open heart procedure. The repair or replacement surgery may last in the range of about three to five hours, and is carried out with the patient under general anesthesia. The nature of the surgical procedure requires the patient to be placed on a heart-lung machine. Because of the severity/complexity/danger associated with open heart surgical procedures, corrective surgery for mitral regurgitation is typically not recommended until the patient's ejection fraction drops below 60% and/or the left ventricle is larger than 45 mm at rest.
- mitral regurgitation is present in a many human patients throughout the world, there are far less known instances of the disease in typical animal test species. As such, there is no known reliable sources for naturally occurring congestive heart failure animal models for the purposes of testing efficacy of a given therapy. Most efficacy test models rely on some type of surgical intervention to compromise the heart function of the test specimen prior to application of the test therapy and these interventions introduce many comorbidities into the experiments as a result of the initial surgery.
- FIG. 1 is a perspective view of one embodiment of a regurgitation implant
- FIG. 2 depicts another embodiment of a regurgitation implant including a plurality of conduits
- FIG. 3 depicts yet another embodiment of a regurgitation implant
- FIG. 4 depicts one embodiment of a regurgitation implant implanted within a heart in an open position
- FIG. 5 depicts the regurgitation implant of FIG. 4 implanted within a heart in a closed position
- the regurgitation implant 10 may generally include a conduit or straw 12 which may be coupled to a shaft 14.
- the shaft 14 may be coupled to at least one anchor portion 16 configured to couple, attach, and/or otherwise secure the regurgitation implant 10 to native coronary tissue.
- at least a portion of the conduit 12 may be configured to be disposed proximate a mitral valve such that the regurgitation implant 10 may interact and/or cooperate with at least a portion of the native mitral valve to induce a controlled amount of regurgitation through the conduit 12 and therefore through the mitral valve.
- the regurgitation through the conduit 12 and the mitral valve may cause the heart to dilute in a manner that is generally consistent with advanced disease of the heart.
- the amount of regurgitation may therefore be adjusted depending on the desired condition of the heart.
- the conduit or straw 12 may be configured to provide at least one opening or passageway through the heart valve when the heart valve is in the closed position in order to provide the desired amount of regurgitation.
- the conduit or straw 12 may define a passageway 18 having at least a first and a second end 20, 22 configured to extend between a first chamber of the heart, through a heart valve, and into a second chamber of the heart.
- the passageways 18 may be configured to extend from the left atrium, through the mitral valve, and into the left ventricle.
- the regurgitation implant 10 may include a plurality of passageways 18 as generally shown in FIG. 2. The diameter of the passageways 18 may be selected to provide the desired amount of regurgitation flow through the heart valve when the heart valve is in the closed position.
- the conduit or straw 12 may be constructed from a synthetic and/or biological material depending on the application and the patient condition and may include a plurality of layers.
- the conduit or straw 12 may include an open or closed cell foam substrate (for example, but not limited to, Invalon polyvinyl) and an outer layer of a material that is biologically acceptable.
- the outer layer may also include a material that is soft and/or deformable (either permanently or resiliently deformable) that may reduce and/or eliminate further scarring and/or damage to the leaflets of the valve.
- the substrate of the conduit or straw 12 may be coated with or formed substantially from a silicone urethane composite such as, but not limited to, Elasteon or the like.
- the conduit or straw 12 may include a stent- like structure.
- the conduit or straw 12 may include a frame (for example, a helical frame, braided frame, interconnecting row frame, or hatched frame) that may define a generally cylindrical structure configured to provide at least one opening through the heart valve when the heart valve is in the closed position.
- the conduit or straw 12 may optionally include a substrate such as, but not limited to, polytetrafluoroethylene (PTFE), disposed about at least a portion of the frame of the conduit or straw 12.
- the substrate may also include a coating or layer (for example, a coating or layer of PTFE) disposed about the inner and/or outer surfaces of the conduit or straw 12.
- the conduit or straw 12 may include a generally tube-like structure.
- the conduit or straw 12 may include a generally tube-like structure made from PTFE.
- the conduit or straw 12 may be collapsible and/or expandable.
- the conduit or straw 12 may be configured to fit through the lumen of a catheter or the like when collapsed to facilitate delivery of the regurgitation implant 10 to the heart.
- the conduit or straw 12 may include a self-expanding metallic stent (SEMS).
- SEMS may include a shape-memory alloy such as, but not limited to, copper- zinc-aluminum, copper-aluminum-nickel, and nickel-titanium (NiTi) alloys, polyurethane, and polyethylene.
- the shape-memory alloy may include either one-way or two-way shape memory and may be introduced in to the delivery catheter lumen (not shown) having a shape which does not exceed the interior dimensions of the delivery catheter lumen.
- the conduit or straw 12 may also include a plastic self-expanding stent (such as, but not limited to, Polyflex ® made by Boston Scientific).
- the conduit or straw 12 may also be expandable through use of a balloon or the like. For example, one or more fluids (gases and/or liquids) may be provided to inflate the conduit or straw 12 from the collapsed position to the expanded position.
- the conduit or straw 12 may be mounted, coupled, or otherwise secured to at least part of the shaft 14.
- the conduit or straw 12 may be generally disposed along a portion of the shaft 14 as shown in FIGS. 1 and 2.
- the shaft 14 may extend beyond the ends 20, 22 of the conduit or straw 12 as generally shown in FIG. 1 and may optionally include bushing or the like 24 disposed about the distal-most end of the shaft 14.
- the bushing 24 may optionally include a driver configured to engage with a clamping mechanism as generally described in co-pending U.S. Patent Application Serial No. 11/940,694 (Attorney Docket: CAR023), which is fully incorporated herein by reference.
- the shaft 14 may terminate at or before the distal-most end of the conduit or straw 12 as generally shown in FIGS. 2 and 3.
- the conduit or straw 12 may be coupled to at least a portion of the shaft 14 by way of an adhesive or cement (such as, but not limited to, a biologically acceptable adhesive or cement), bonding/molding (such as, but not limited to, overmolding and the like), or welding (such as, but not limited to, ultrasonic welding or the like).
- the conduit or straw 12 may also be coupled to at least a portion of the shaft 14 using a fastening mechanism.
- the fastening mechanism may substantially fix the position of one or more of the conduit or straw 12 with respect to the regurgitation implant 10 (and specifically with respect to the shaft 14).
- the fastening mechanism may allow one or more of the conduits or straws 12 to move relative to the shaft 14.
- the fastening mechanism may allow the one or more of the conduits or straws 12 to move generally along the longitudinal axis and/or radially with respect to the shaft 14.
- FIG. 4 one embodiment of a heart 60 is shown in a condition in which the pressure of blood within the left atrium 62 is at equal to, or higher than, the pressure of blood within the left ventricle 64, e.g., during contraction of the left atrium 62.
- the pressure of blood within the left atrium 62 is greater than or equal to the pressure of blood within the left ventricle 64, blood may flow from the left atrium 62 into the left ventricle 64.
- the pressure differential causes a flow of blood from the left atrium 62 to the left ventricle 64.
- the flow of blood from left atrium 62 to the left ventricle 64 may cause the mitral valve 61 to flare and/or expand outwardly away from the mitral valve implant 10.
- the regurgitation implant 10 may provide sufficient clearance between the mitral valve 61 and the conduit or spacer 12 to permit adequate blood flow from the left atrium 62 to the left ventricle 64. Some of the blood may also flow through the regurgitation implant 10 as generally indicated by the arrows.
- the pressure of blood in the left ventricle 64 may increase such that the blood pressure in the left ventricle 64 is greater than the blood pressure in the left atrium 62. Additionally, as the pressure of the blood in the left ventricle 64 initially increases above the pressure of the blood in the left atrium 62, blood may begin to flow towards and/or back into the left atrium 62.
- the conduit or straw 12 may interact with, engage, and/or be positioned adjacent to at least a portion of the mitral valve 61. For example, at least a portion of at least one cusp 63 of the mitral valve 61 may contact at least a portion of the conduit or straw 12.
- the regurgitation implant 10 may induce a controlled amount of regurgitation through the conduit or straw 12 and therefore through the mitral valve 61 as generally indicated by the arrows.
- the inducement of regurgitation through the mitral valve 61 may cause the heart 60 to dilate in a manner that is generally consistent with heart disease.
- the regurgitation implant 10 may be inserted in the heart 60 percutaneously (for example, by way of a catheter-based delivery system as generally described in co-pending U.S. Patent Application Serial No. 11/258,828, entitled “Heart Valve Implant” filed on October 26, 2005, U.S. Patent Application Serial No. 11/748,147, entitled “Safety for Mitral Valve Plug” filed on May 14, 2007, U.S. Patent Application Serial No. 11/748,138, entitled “Solid Construct Mitral Spacer” filed on May 14, 2007, and U.S. Patent Application Serial No. 11/748,121, entitled “Ballon Mitral Spacer” filed on May 14, 2007, all of which are hereby incorporated by reference.
- the use of the catheter-based delivery system may spare the recipient (for example, an animal) from the collateral damage that may be caused by surgical or drug induced techniques.
- the regurgitation implant 10 in and of itself, may not alter the anatomy of the valve, but may serve to create a heart output insufficiency that may cause the heart to naturally remodel in a manner the same as or similar to a heart (such as a human heart) suffering from valvular regurgitation.
- the regurgitation implant 10 herein has been disclosed above in the context of a mitral valve implant.
- An regurgitation implant 10 consistent with the present disclosure may also suitably be employed in other applications, e.g., as an implant associated with one of the other valves of the heart, etc.
- the present disclosure should not, therefore, be construed as being limited to use for reducing and/or preventing regurgitation of the mitral valve.
- the present disclosure features an implant comprising a shaft, at least one anchor coupled to a first end region of the shaft, and at least one conduit coupled to the shaft.
- the conduit is configured to interact with at least a portion of at least one cusp of a heart valve to induce a controlled amount of regurgitation through the heart valve in a closed position.
- the present disclosure features a regurgitation implant comprising a shaft, at least one anchor coupled to an end region of the shaft, and at least one conduit coupled to the shaft configured to interact with at least a portion of at least one cusp of a heart valve to at least partially restrict a flow of blood through the heart valve in a closed position.
- the conduit defines at least one passageway configured to extend through the heart valve and induce a controlled amount of regurgitation through the heart valve in the closed position.
- the present disclosure features a method of inducing regurgitation.
- the method comprises providing a regurgitation implant including at least one anchor portion and conduit coupled to a shaft.
- the implant is percutaneously inserted into a heart and secured within the heart such that the conduit interacts with at least a portion of at least one cusp of a heart valve to define at least one passageway through the heart valve configured to induce a controlled amount of regurgitation through the heart valve in a closed position.
- the present disclosure is not intended to be limited to a system or method which must satisfy one or more of any stated or implied object or feature of the present disclosure and should not be limited to the preferred, exemplary, or primary embodiment(s) described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2705942A CA2705942A1 (en) | 2007-11-15 | 2008-11-14 | Heart regurgitation method and apparatus |
AU2008322560A AU2008322560A1 (en) | 2007-11-15 | 2008-11-14 | Heart regurgitation method and apparatus |
EP08850467A EP2211781A4 (en) | 2007-11-15 | 2008-11-14 | Heart regurgitation method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/940,724 | 2007-11-15 | ||
US11/940,724 US8597347B2 (en) | 2007-11-15 | 2007-11-15 | Heart regurgitation method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009064998A1 true WO2009064998A1 (en) | 2009-05-22 |
Family
ID=40639153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/083574 WO2009064998A1 (en) | 2007-11-15 | 2008-11-14 | Heart regurgitation method and apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US8597347B2 (en) |
EP (1) | EP2211781A4 (en) |
AU (1) | AU2008322560A1 (en) |
CA (1) | CA2705942A1 (en) |
WO (1) | WO2009064998A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011034628A1 (en) * | 2005-02-07 | 2011-03-24 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US9060858B2 (en) | 2009-09-15 | 2015-06-23 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US10667911B2 (en) | 2005-02-07 | 2020-06-02 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2563426C (en) | 2004-05-05 | 2013-12-24 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
EP1887983A4 (en) | 2005-06-07 | 2008-12-17 | Direct Flow Medical Inc | Stentless aortic valve replacement with high radial strength |
US8092525B2 (en) | 2005-10-26 | 2012-01-10 | Cardiosolutions, Inc. | Heart valve implant |
US8216302B2 (en) * | 2005-10-26 | 2012-07-10 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US9259317B2 (en) | 2008-06-13 | 2016-02-16 | Cardiosolutions, Inc. | System and method for implanting a heart implant |
US8852270B2 (en) | 2007-11-15 | 2014-10-07 | Cardiosolutions, Inc. | Implant delivery system and method |
US7785366B2 (en) | 2005-10-26 | 2010-08-31 | Maurer Christopher W | Mitral spacer |
US8449606B2 (en) | 2005-10-26 | 2013-05-28 | Cardiosolutions, Inc. | Balloon mitral spacer |
US8778017B2 (en) | 2005-10-26 | 2014-07-15 | Cardiosolutions, Inc. | Safety for mitral valve implant |
US8029556B2 (en) * | 2006-10-04 | 2011-10-04 | Edwards Lifesciences Corporation | Method and apparatus for reshaping a ventricle |
US8133213B2 (en) | 2006-10-19 | 2012-03-13 | Direct Flow Medical, Inc. | Catheter guidance through a calcified aortic valve |
US7935144B2 (en) | 2006-10-19 | 2011-05-03 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
US8480730B2 (en) | 2007-05-14 | 2013-07-09 | Cardiosolutions, Inc. | Solid construct mitral spacer |
JP5329542B2 (en) | 2007-08-23 | 2013-10-30 | ダイレクト フロウ メディカル、 インク. | Transluminally implantable heart valve with in-place forming support |
DE102007043830A1 (en) | 2007-09-13 | 2009-04-02 | Lozonschi, Lucian, Madison | Heart valve stent |
US8591460B2 (en) | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
EP3649985B8 (en) | 2009-12-08 | 2021-04-21 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
US9307980B2 (en) | 2010-01-22 | 2016-04-12 | 4Tech Inc. | Tricuspid valve repair using tension |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US8475525B2 (en) | 2010-01-22 | 2013-07-02 | 4Tech Inc. | Tricuspid valve repair using tension |
CA3035048C (en) | 2010-12-23 | 2021-05-04 | Mark Deem | System for mitral valve repair and replacement |
US8454656B2 (en) | 2011-03-01 | 2013-06-04 | Medtronic Ventor Technologies Ltd. | Self-suturing anchors |
EP2723273B1 (en) | 2011-06-21 | 2021-10-27 | Twelve, Inc. | Prosthetic heart valve devices |
US9161837B2 (en) | 2011-07-27 | 2015-10-20 | The Cleveland Clinic Foundation | Apparatus, system, and method for treating a regurgitant heart valve |
US10799360B2 (en) | 2011-07-27 | 2020-10-13 | The Cleveland Clinic Foundation | Systems and methods for treating a regurgitant heart valve |
EP2741711B1 (en) | 2011-08-11 | 2018-05-30 | Tendyne Holdings, Inc. | Improvements for prosthetic valves and related inventions |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
CN103974674B (en) | 2011-10-19 | 2016-11-09 | 托尔福公司 | Artificial heart valve film device, artificial mitral valve and related system and method |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US8961594B2 (en) | 2012-05-31 | 2015-02-24 | 4Tech Inc. | Heart valve repair system |
WO2014022124A1 (en) | 2012-07-28 | 2014-02-06 | Tendyne Holdings, Inc. | Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9675454B2 (en) * | 2012-07-30 | 2017-06-13 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
WO2014108903A1 (en) | 2013-01-09 | 2014-07-17 | 4Tech Inc. | Soft tissue anchors |
WO2014141239A1 (en) | 2013-03-14 | 2014-09-18 | 4Tech Inc. | Stent with tether interface |
US9232998B2 (en) | 2013-03-15 | 2016-01-12 | Cardiosolutions Inc. | Trans-apical implant systems, implants and methods |
US9289297B2 (en) | 2013-03-15 | 2016-03-22 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
CA2910948C (en) | 2013-05-20 | 2020-12-29 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
CA2915073A1 (en) | 2013-06-14 | 2014-12-18 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
EP3013281B1 (en) | 2013-06-25 | 2018-08-15 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
EP3027144B1 (en) | 2013-08-01 | 2017-11-08 | Tendyne Holdings, Inc. | Epicardial anchor devices |
WO2015058039A1 (en) | 2013-10-17 | 2015-04-23 | Robert Vidlund | Apparatus and methods for alignment and deployment of intracardiac devices |
JP6554094B2 (en) | 2013-10-28 | 2019-07-31 | テンダイン ホールディングス,インコーポレイテッド | Prosthetic heart valve and system and method for delivering an artificial heart valve |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10039643B2 (en) | 2013-10-30 | 2018-08-07 | 4Tech Inc. | Multiple anchoring-point tension system |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
DE102013224283A1 (en) * | 2013-11-27 | 2015-06-11 | Deutsches Herzzentrum Berlin | Device for transcutaneous implantation of epicardial pacemaker electrodes |
WO2015120122A2 (en) | 2014-02-05 | 2015-08-13 | Robert Vidlund | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
CN110338911B (en) | 2014-03-10 | 2022-12-23 | 坦迪尼控股股份有限公司 | Apparatus and method for positioning and monitoring tether load of prosthetic mitral valve |
EP3157607B1 (en) | 2014-06-19 | 2019-08-07 | 4Tech Inc. | Cardiac tissue cinching |
WO2016050751A1 (en) | 2014-09-29 | 2016-04-07 | Martin Quinn | A heart valve treatment device and method |
EP3068311B1 (en) | 2014-12-02 | 2017-11-15 | 4Tech Inc. | Off-center tissue anchors |
EP3242630A2 (en) | 2015-01-07 | 2017-11-15 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
EP3884906A1 (en) | 2015-02-05 | 2021-09-29 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
EP3283010B1 (en) | 2015-04-16 | 2020-06-17 | Tendyne Holdings, Inc. | Apparatus for delivery and repositioning of transcatheter prosthetic valves |
JP7111610B2 (en) | 2015-08-21 | 2022-08-02 | トゥエルヴ, インコーポレイテッド | Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
AU2016362474B2 (en) | 2015-12-03 | 2021-04-22 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
EP3397206B1 (en) | 2015-12-28 | 2022-06-08 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
WO2017189276A1 (en) | 2016-04-29 | 2017-11-02 | Medtronic Vascular Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
EP3468480B1 (en) | 2016-06-13 | 2023-01-11 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
EP3478224B1 (en) | 2016-06-30 | 2022-11-02 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus for delivery of same |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
CN110290764B (en) | 2016-12-21 | 2022-04-29 | 特里弗洛心血管公司 | Heart valve support devices and methods for making and using the same |
WO2018129312A1 (en) * | 2017-01-05 | 2018-07-12 | Harmony Development Group, Inc. | Inflatable device for improving physiological cardiac flow |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
SI3682854T1 (en) | 2017-04-18 | 2022-04-29 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11224511B2 (en) | 2017-04-18 | 2022-01-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
WO2018217921A1 (en) | 2017-05-23 | 2018-11-29 | Harmony Development Group, Inc. | Tethered implantable device having a vortical intracardiac velocity adjusting balloon |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
WO2019006152A1 (en) | 2017-06-28 | 2019-01-03 | Harmony Development Group, Inc. | A force transducting inflatable implant system including a dual force annular transduction implant |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
EP3651695B1 (en) | 2017-07-13 | 2023-04-19 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus for delivery of same |
CN111031967B (en) | 2017-08-28 | 2022-08-09 | 坦迪尼控股股份有限公司 | Prosthetic heart valve with tether connection features |
US11051940B2 (en) | 2017-09-07 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic spacer device for heart valve |
EP3749253B1 (en) | 2018-02-09 | 2023-07-05 | The Provost, Fellows, Foundation Scholars, and the other members of Board, of the College of the Holy & Undiv. Trinity of Queen Elizabeth near Dublin | A heart valve therapeutic device |
US11167122B2 (en) | 2018-03-05 | 2021-11-09 | Harmony Development Group, Inc. | Force transducting implant system for the mitigation of atrioventricular pressure gradient loss and the restoration of healthy ventricular geometry |
US11058411B2 (en) * | 2019-01-14 | 2021-07-13 | Valfix Medical Ltd. | Anchors and locks for percutaneous valve implants |
EP3972534A4 (en) | 2019-05-22 | 2023-08-02 | Triflo Cardiovascular Inc. | Heart valve support device |
CN114502104B (en) | 2019-08-05 | 2023-04-04 | 克罗瓦夫有限责任公司 | Apparatus and method for treating defective heart valves |
EP3831343B1 (en) | 2019-12-05 | 2024-01-31 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
EP4199860A1 (en) | 2020-08-19 | 2023-06-28 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030105519A1 (en) * | 1997-09-04 | 2003-06-05 | Roland Fasol | Artificial chordae replacement |
US20060058871A1 (en) * | 2004-09-14 | 2006-03-16 | Edwards Lifesciences, Ag | Device and method for treatment of heart valve regurgitation |
WO2007078772A1 (en) * | 2005-12-15 | 2007-07-12 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant valve |
US20070255399A1 (en) * | 2005-10-26 | 2007-11-01 | Eliasen Kenneth A | Balloon Mitral Spacer |
Family Cites Families (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2549731A (en) | 1944-12-18 | 1951-04-17 | Vincent E Wattley | Flexible test prod |
US2625967A (en) | 1949-12-19 | 1953-01-20 | Illinois Tool Works | Screw-holding and screw-driving tool |
US3197788A (en) | 1962-04-23 | 1965-08-03 | Inst Of Medical Sciences | Prosthetic valve for cardiac surgery |
US3445916A (en) | 1967-04-19 | 1969-05-27 | Rudolf R Schulte | Method for making an anatomical check valve |
US3551913A (en) | 1968-04-02 | 1971-01-05 | Donald P Shiley | Heart valve prosthesis with guard structure |
GB1268484A (en) | 1968-06-28 | 1972-03-29 | Brian John Bellhouse | Improvements relating to non-return valves particularly as prosthetics |
US3589392A (en) | 1969-05-05 | 1971-06-29 | Louis C Meyer | Split leaflet check valve for cardiac surgery and the like |
US3586029A (en) | 1969-06-16 | 1971-06-22 | Aero Flow Dynamics Inc | Apparatus for automatically controlling fluid flow according to predetermined volumetric proportions |
US3671979A (en) | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
GB1264472A (en) | 1969-09-25 | 1972-02-23 | ||
US3689942A (en) | 1969-11-28 | 1972-09-12 | Richard K Rapp | Prosthetic heart valve |
US3739402A (en) | 1970-10-15 | 1973-06-19 | Cutter Lab | Bicuspid fascia lata valve |
US3714671A (en) | 1970-11-30 | 1973-02-06 | Cutter Lab | Tissue-type heart valve with a graft support ring or stent |
US3737919A (en) | 1971-03-16 | 1973-06-12 | Univ Minnesota | Pivoted disc-type heart valve |
US4291420A (en) | 1973-11-09 | 1981-09-29 | Medac Gesellschaft Fur Klinische Spezialpraparate Mbh | Artificial heart valve |
US3983581A (en) | 1975-01-20 | 1976-10-05 | William W. Angell | Heart valve stent |
AR206762A1 (en) | 1976-01-01 | 1976-08-13 | Pisanu A | LOW PROFILE BIOPROTHESIS DERIVED FROM PORCINE HETEROLOGICAL AORTIC VALVE |
US4084268A (en) | 1976-04-22 | 1978-04-18 | Shiley Laboratories, Incorporated | Prosthetic tissue heart valve |
US4297749A (en) | 1977-04-25 | 1981-11-03 | Albany International Corp. | Heart valve prosthesis |
AR221872A1 (en) | 1979-03-16 | 1981-03-31 | Liotta Domingo S | IMPROVEMENTS IN IMPANTABLE HEART VALVES |
EP0125393B1 (en) | 1980-11-03 | 1987-12-09 | Shiley Incorporated | Prosthetic heart valve |
US4439185A (en) | 1981-10-21 | 1984-03-27 | Advanced Cardiovascular Systems, Inc. | Inflating and deflating device for vascular dilating catheter assembly |
AU8398782A (en) | 1982-03-12 | 1983-10-24 | Webster, Wilton W. Jr. | Autoinflatable catheter |
US4597767A (en) | 1982-12-15 | 1986-07-01 | Andrew Lenkei | Split leaflet heart valve |
US4865030A (en) | 1987-01-21 | 1989-09-12 | American Medical Systems, Inc. | Apparatus for removal of objects from body passages |
US4960424A (en) | 1988-06-30 | 1990-10-02 | Grooters Ronald K | Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis |
US5002067A (en) | 1989-08-23 | 1991-03-26 | Medtronic, Inc. | Medical electrical lead employing improved penetrating electrode |
US5797958A (en) | 1989-12-05 | 1998-08-25 | Yoon; Inbae | Endoscopic grasping instrument with scissors |
US5665100A (en) | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
DK124690D0 (en) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
GB9012716D0 (en) | 1990-06-07 | 1990-08-01 | Frater Robert W M | Mitral heart valve replacements |
US5397351A (en) | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
US5217484A (en) | 1991-06-07 | 1993-06-08 | Marks Michael P | Retractable-wire catheter device and method |
US5370685A (en) | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
EP0617594B1 (en) | 1991-12-12 | 1997-11-26 | Target Therapeutics, Inc. | Detachable pusher-vasoocclusive coil assembly with interlocking coupling |
US5261916A (en) | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5222973A (en) | 1992-03-09 | 1993-06-29 | Sharpe Endosurgical Corporation | Endoscopic grasping tool surgical instrument |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5308357A (en) | 1992-08-21 | 1994-05-03 | Microsurge, Inc. | Handle mechanism for manual instruments |
US5350397A (en) | 1992-11-13 | 1994-09-27 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US6283127B1 (en) | 1992-12-03 | 2001-09-04 | Wesley D. Sterman | Devices and methods for intracardiac procedures |
US5462527A (en) | 1993-06-29 | 1995-10-31 | C.R. Bard, Inc. | Actuator for use with steerable catheter |
US5638827A (en) | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
US5611800A (en) | 1994-02-15 | 1997-03-18 | Alphatec Manufacturing, Inc. | Spinal fixation system |
US5509428A (en) | 1994-05-31 | 1996-04-23 | Dunlop; Richard W. | Method and apparatus for the creation of tricuspid regurgitation |
US6217610B1 (en) | 1994-07-29 | 2001-04-17 | Edwards Lifesciences Corporation | Expandable annuloplasty ring |
US5582607A (en) | 1994-09-09 | 1996-12-10 | Carbomedics, Inc. | Heart valve prosthesis rotator with bendable shaft and drive mechanism |
US5814062A (en) | 1994-12-22 | 1998-09-29 | Target Therapeutics, Inc. | Implant delivery assembly with expandable coupling/decoupling mechanism |
US5634936A (en) | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
WO1996040006A1 (en) | 1995-06-07 | 1996-12-19 | St. Jude Medical, Inc. | Adjustable sizing apparatus for heart annulus |
WO1997001368A1 (en) | 1995-06-26 | 1997-01-16 | Trimedyne, Inc. | Therapeutic appliance releasing device |
US5653712A (en) | 1995-10-02 | 1997-08-05 | Stern; Howard G. | Intramedullary bone groover |
US5649949A (en) | 1996-03-14 | 1997-07-22 | Target Therapeutics, Inc. | Variable cross-section conical vasoocclusive coils |
US5993474A (en) | 1996-06-11 | 1999-11-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessory for endoscope |
US5792179A (en) | 1996-07-16 | 1998-08-11 | Sideris; Eleftherios B. | Retrievable cardiac balloon placement |
US5776075A (en) | 1996-08-09 | 1998-07-07 | Symbiosis Corporation | Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same |
US5895391A (en) | 1996-09-27 | 1999-04-20 | Target Therapeutics, Inc. | Ball lock joint and introducer for vaso-occlusive member |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US6406420B1 (en) | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US5928224A (en) | 1997-01-24 | 1999-07-27 | Hearten Medical, Inc. | Device for the treatment of damaged heart valve leaflets and methods of using the device |
US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US6090096A (en) | 1997-04-23 | 2000-07-18 | Heartport, Inc. | Antegrade cardioplegia catheter and method |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US5957865A (en) | 1997-09-25 | 1999-09-28 | Merit Medical Systems, Inc. | Flexible catheter guidewire |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
US6808498B2 (en) | 1998-02-13 | 2004-10-26 | Ventrica, Inc. | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
US6165183A (en) | 1998-07-15 | 2000-12-26 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
US6152144A (en) | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
DE60045096D1 (en) | 1999-04-09 | 2010-11-25 | Evalve Inc | METHOD AND DEVICE FOR HEART LAPSE REPERATION |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US6283995B1 (en) | 1999-04-15 | 2001-09-04 | Sulzer Carbomedics Inc. | Heart valve leaflet with scalloped free margin |
US6287339B1 (en) | 1999-05-27 | 2001-09-11 | Sulzer Carbomedics Inc. | Sutureless heart valve prosthesis |
ES2235453T3 (en) | 1999-07-19 | 2005-07-01 | Silvano Umberto Tramonte | DENTAL ENDOSE IMPLANT. |
US8257428B2 (en) | 1999-08-09 | 2012-09-04 | Cardiokinetix, Inc. | System for improving cardiac function |
US6994092B2 (en) | 1999-11-08 | 2006-02-07 | Ev3 Sunnyvale, Inc. | Device for containing embolic material in the LAA having a plurality of tissue retention structures |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6929633B2 (en) | 2000-01-25 | 2005-08-16 | Bacchus Vascular, Inc. | Apparatus and methods for clot dissolution |
BR0107897A (en) | 2000-01-27 | 2002-11-05 | 3F Therapeutics Inc | Prosthetic heart valve without stent, semi-lunar heart valve without stent, process for producing a prosthetic tubular heart valve without stent, process for making a prosthetic heart valve, and, process for producing a prosthetic valve |
US6797002B2 (en) | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
US20050070999A1 (en) | 2000-02-02 | 2005-03-31 | Spence Paul A. | Heart valve repair apparatus and methods |
US6821297B2 (en) | 2000-02-02 | 2004-11-23 | Robert V. Snyders | Artificial heart valve, implantation instrument and method therefor |
US6478776B1 (en) | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6419695B1 (en) | 2000-05-22 | 2002-07-16 | Shlomo Gabbay | Cardiac prosthesis for helping improve operation of a heart valve |
US6869444B2 (en) | 2000-05-22 | 2005-03-22 | Shlomo Gabbay | Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve |
US6440132B1 (en) | 2000-05-24 | 2002-08-27 | Roger P. Jackson | Open head bone screw closure with threaded boss |
US6805711B2 (en) | 2000-06-02 | 2004-10-19 | 3F Therapeutics, Inc. | Expandable medical implant and percutaneous delivery |
US6358277B1 (en) | 2000-06-21 | 2002-03-19 | The International Heart Institute Of Montana Foundation | Atrio-ventricular valvular device |
EP1401358B1 (en) | 2000-06-30 | 2016-08-17 | Medtronic, Inc. | Apparatus for performing a procedure on a cardiac valve |
DE20013905U1 (en) | 2000-08-12 | 2000-12-21 | stryker Trauma GmbH, 24232 Schönkirchen | Sleeve-shaped device for holding screws when screwing into an object, e.g. into a bone with the help of a screwdriver |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US7527646B2 (en) | 2000-09-20 | 2009-05-05 | Ample Medical, Inc. | Devices, systems, and methods for retaining a native heart valve leaflet |
US20050222489A1 (en) | 2003-10-01 | 2005-10-06 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant |
US6461382B1 (en) | 2000-09-22 | 2002-10-08 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
US7070618B2 (en) | 2000-10-25 | 2006-07-04 | Viacor, Inc. | Mitral shield |
US6482228B1 (en) | 2000-11-14 | 2002-11-19 | Troy R. Norred | Percutaneous aortic valve replacement |
US6974476B2 (en) | 2003-05-05 | 2005-12-13 | Rex Medical, L.P. | Percutaneous aortic valve |
US6746404B2 (en) | 2000-12-18 | 2004-06-08 | Biosense, Inc. | Method for anchoring a medical device between tissue |
US6454798B1 (en) | 2000-12-21 | 2002-09-24 | Sulzer Carbomedics Inc. | Polymer heart valve with helical coaption surface |
WO2002069814A1 (en) | 2001-03-05 | 2002-09-12 | Tyco Healthcare Group Lp | Grasping instrument |
US7186264B2 (en) | 2001-03-29 | 2007-03-06 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US6673100B2 (en) | 2001-05-25 | 2004-01-06 | Cordis Neurovascular, Inc. | Method and device for retrieving embolic coils |
US6592606B2 (en) | 2001-08-31 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Hinged short cage for an embolic protection device |
GB0125925D0 (en) | 2001-10-29 | 2001-12-19 | Univ Glasgow | Mitral valve prosthesis |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US20030144574A1 (en) | 2001-12-19 | 2003-07-31 | Heilman Marlin S. | Method and apparatus for providing limited back-flow in a blood pump during a non-pumping state |
US20030144573A1 (en) | 2001-12-19 | 2003-07-31 | Heilman Marlin S. | Back-flow limiting valve member |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
JP4465192B2 (en) | 2002-03-15 | 2010-05-19 | エヌエムティー メディカル, インコーポレイティッド | A binding system useful in implant placement |
US7572276B2 (en) | 2002-05-06 | 2009-08-11 | Warsaw Orthopedic, Inc. | Minimally invasive instruments and methods for inserting implants |
AU2003247526A1 (en) | 2002-06-12 | 2003-12-31 | Mitral Interventions, Inc. | Method and apparatus for tissue connection |
AU2003248750A1 (en) | 2002-06-27 | 2004-01-19 | J. Luis Guerrero | Ventricular remodeling for artioventricular valve regurgitation |
US8348963B2 (en) | 2002-07-03 | 2013-01-08 | Hlt, Inc. | Leaflet reinforcement for regurgitant valves |
KR100442330B1 (en) | 2002-09-03 | 2004-07-30 | 주식회사 엠아이텍 | Stent and manufacturing method the same |
AU2003282617B2 (en) | 2002-10-10 | 2006-06-29 | The Cleveland Clinic Foundation | Method and apparatus for replacing a mitral valve with a stentless bioprosthetic valve having chordae |
US7247134B2 (en) | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7404824B1 (en) | 2002-11-15 | 2008-07-29 | Advanced Cardiovascular Systems, Inc. | Valve aptation assist device |
US6830585B1 (en) | 2003-01-14 | 2004-12-14 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve and methods of implantation |
US7473266B2 (en) | 2003-03-14 | 2009-01-06 | Nmt Medical, Inc. | Collet-based delivery system |
US7381210B2 (en) | 2003-03-14 | 2008-06-03 | Edwards Lifesciences Corporation | Mitral valve repair system and method for use |
US7175656B2 (en) | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
DE602004023350D1 (en) | 2003-04-30 | 2009-11-12 | Medtronic Vascular Inc | Percutaneous inserted provisional valve |
TW590007U (en) | 2003-06-06 | 2004-06-01 | Univ Tamkang | Tri-leaflet mechanical heart valve |
US7160322B2 (en) | 2003-08-13 | 2007-01-09 | Shlomo Gabbay | Implantable cardiac prosthesis for mitigating prolapse of a heart valve |
US20050038509A1 (en) | 2003-08-14 | 2005-02-17 | Ashe Kassem Ali | Valve prosthesis including a prosthetic leaflet |
US20050090824A1 (en) | 2003-10-22 | 2005-04-28 | Endius Incorporated | Method and surgical tool for inserting a longitudinal member |
US7056286B2 (en) | 2003-11-12 | 2006-06-06 | Adrian Ravenscroft | Medical device anchor and delivery system |
US20050159810A1 (en) | 2004-01-15 | 2005-07-21 | Farzan Filsoufi | Devices and methods for repairing cardiac valves |
CA2563426C (en) | 2004-05-05 | 2013-12-24 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US7704268B2 (en) | 2004-05-07 | 2010-04-27 | Nmt Medical, Inc. | Closure device with hinges |
US7658757B2 (en) | 2004-10-08 | 2010-02-09 | Boston Scientific Scimed, Inc. | Endoprosthesis delivery system |
WO2009053952A2 (en) | 2007-10-26 | 2009-04-30 | Mednua Limited | A medical device for use in treatment of a valve |
WO2006064490A1 (en) | 2004-12-15 | 2006-06-22 | Mednua Limited | A medical device suitable for use in treatment of a valve |
EP1855623B1 (en) | 2005-02-07 | 2019-04-17 | Evalve, Inc. | Devices for cardiac valve repair |
WO2006091597A1 (en) | 2005-02-22 | 2006-08-31 | Cardiofocus, Inc. | Deflectable sheath catheters |
US8083793B2 (en) | 2005-02-28 | 2011-12-27 | Medtronic, Inc. | Two piece heart valves including multiple lobe valves and methods for implanting them |
US20060199995A1 (en) | 2005-03-02 | 2006-09-07 | Venkataramana Vijay | Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure |
SE531468C2 (en) | 2005-04-21 | 2009-04-14 | Edwards Lifesciences Ag | An apparatus for controlling blood flow |
US8002742B2 (en) | 2005-04-22 | 2011-08-23 | Accessclosure, Inc. | Apparatus and methods for sealing a puncture in tissue |
WO2006127509A2 (en) | 2005-05-20 | 2006-11-30 | Mayo Foundation For Medical Education And Research | Devices and methods for reducing cardiac valve regurgitation |
US20060293698A1 (en) | 2005-06-28 | 2006-12-28 | Medtronic Vascular, Inc. | Retainer device for mitral valve leaflets |
WO2007012046A2 (en) | 2005-07-19 | 2007-01-25 | Stout Medical Group, L.P. | Anatomical measurement tool |
US20070049980A1 (en) | 2005-08-30 | 2007-03-01 | Zielinski Todd M | Trans-septal pressure sensor |
US7785366B2 (en) | 2005-10-26 | 2010-08-31 | Maurer Christopher W | Mitral spacer |
US9259317B2 (en) | 2008-06-13 | 2016-02-16 | Cardiosolutions, Inc. | System and method for implanting a heart implant |
US8216302B2 (en) | 2005-10-26 | 2012-07-10 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US8092525B2 (en) | 2005-10-26 | 2012-01-10 | Cardiosolutions, Inc. | Heart valve implant |
US8852270B2 (en) | 2007-11-15 | 2014-10-07 | Cardiosolutions, Inc. | Implant delivery system and method |
US8778017B2 (en) | 2005-10-26 | 2014-07-15 | Cardiosolutions, Inc. | Safety for mitral valve implant |
JP2009515598A (en) | 2005-11-10 | 2009-04-16 | フェイズ ワン メディカル リミテッド ライアビリティ カンパニー | Catheter device |
US20070118151A1 (en) | 2005-11-21 | 2007-05-24 | The Brigham And Women's Hospital, Inc. | Percutaneous cardiac valve repair with adjustable artificial chordae |
WO2007064810A2 (en) | 2005-11-29 | 2007-06-07 | Krishnan Subramaniam C | Method and apparatus for detecting and achieving closure of patent foramen ovale |
WO2007100409A2 (en) | 2005-12-15 | 2007-09-07 | Georgia Tech Research Corporation | Systems and methods to control the dimension of a heart valve |
WO2007073566A1 (en) | 2005-12-22 | 2007-06-28 | Nmt Medical, Inc. | Catch members for occluder devices |
US20070185571A1 (en) | 2006-02-06 | 2007-08-09 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant valve |
US20070198050A1 (en) | 2006-02-22 | 2007-08-23 | Phase One Medica, Llc | Medical implant device |
US7536228B2 (en) | 2006-03-24 | 2009-05-19 | Micardia Corporation | Activation device for dynamic ring manipulation |
CA2652471C (en) | 2006-06-01 | 2014-09-09 | Edwards Lifesciences Corporation | Prosthetic insert for improving heart valve function |
IE20070428A1 (en) | 2006-06-15 | 2007-12-21 | Mednua Ltd | A medical device suitable for use in treatment of a valve |
US7657326B2 (en) | 2006-11-08 | 2010-02-02 | Cardiac Pacemakers, Inc. | Cardiac lead with a retractable helix |
US8337518B2 (en) | 2006-12-20 | 2012-12-25 | Onset Medical Corporation | Expandable trans-septal sheath |
US7753949B2 (en) | 2007-02-23 | 2010-07-13 | The Trustees Of The University Of Pennsylvania | Valve prosthesis systems and methods |
US8480730B2 (en) | 2007-05-14 | 2013-07-09 | Cardiosolutions, Inc. | Solid construct mitral spacer |
US8226709B2 (en) | 2007-10-19 | 2012-07-24 | Cordis Corporation | Method and system for plicating tissue in a minimally invasive medical procedure for the treatment of mitral valve regurgitation |
US8591460B2 (en) | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
-
2007
- 2007-11-15 US US11/940,724 patent/US8597347B2/en active Active
-
2008
- 2008-11-14 CA CA2705942A patent/CA2705942A1/en not_active Abandoned
- 2008-11-14 WO PCT/US2008/083574 patent/WO2009064998A1/en active Application Filing
- 2008-11-14 AU AU2008322560A patent/AU2008322560A1/en not_active Abandoned
- 2008-11-14 EP EP08850467A patent/EP2211781A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030105519A1 (en) * | 1997-09-04 | 2003-06-05 | Roland Fasol | Artificial chordae replacement |
US20060058871A1 (en) * | 2004-09-14 | 2006-03-16 | Edwards Lifesciences, Ag | Device and method for treatment of heart valve regurgitation |
US20070255399A1 (en) * | 2005-10-26 | 2007-11-01 | Eliasen Kenneth A | Balloon Mitral Spacer |
WO2007078772A1 (en) * | 2005-12-15 | 2007-07-12 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant valve |
Non-Patent Citations (1)
Title |
---|
See also references of EP2211781A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011034628A1 (en) * | 2005-02-07 | 2011-03-24 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US8470028B2 (en) | 2005-02-07 | 2013-06-25 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US10667911B2 (en) | 2005-02-07 | 2020-06-02 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
US9060858B2 (en) | 2009-09-15 | 2015-06-23 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
EP3042615A1 (en) * | 2009-09-15 | 2016-07-13 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
Also Published As
Publication number | Publication date |
---|---|
US8597347B2 (en) | 2013-12-03 |
EP2211781A1 (en) | 2010-08-04 |
EP2211781A4 (en) | 2010-12-29 |
US20090131849A1 (en) | 2009-05-21 |
AU2008322560A1 (en) | 2009-05-22 |
CA2705942A1 (en) | 2009-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8597347B2 (en) | Heart regurgitation method and apparatus | |
US8480730B2 (en) | Solid construct mitral spacer | |
US9232999B2 (en) | Mitral spacer | |
CN109310500B (en) | Heart valve repair device and method of implanting the same | |
JP6473682B2 (en) | Implantable device for treating heart valve regurgitation | |
JP6605445B2 (en) | Mitral valve spacer or system and method for implanting it | |
US8894705B2 (en) | Balloon mitral spacer | |
EP1948087B1 (en) | Heart valve implant | |
US9545306B2 (en) | Prosthetic valve with sealing members and methods of use thereof | |
US20110077733A1 (en) | Leaflet contacting apparatus and method | |
US20070265700A1 (en) | Safety for Mitral Valve Plug | |
US20110106244A1 (en) | Medical apparatus for the therapeutic treatment of an insufficient cardiac valve | |
KR20220116077A (en) | Prosthetic device for a heart valve | |
CN101184453A (en) | A blood flow controlling apparatus | |
JP2021536303A (en) | Stent loader with fluid reservoir | |
WO2021034538A1 (en) | Heart valve leaflet tethering | |
WO2019204194A1 (en) | Cardiac treatment system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08850467 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008322560 Country of ref document: AU Ref document number: 2705942 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008850467 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008322560 Country of ref document: AU Date of ref document: 20081114 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: PI0818096 Country of ref document: BR Free format text: VIDE PARECER NO E-PARECER |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: PI0818096 Country of ref document: BR Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI 2332 |