WO2009060978A1 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
WO2009060978A1
WO2009060978A1 PCT/JP2008/070533 JP2008070533W WO2009060978A1 WO 2009060978 A1 WO2009060978 A1 WO 2009060978A1 JP 2008070533 W JP2008070533 W JP 2008070533W WO 2009060978 A1 WO2009060978 A1 WO 2009060978A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
phosphor
weight
coating
polyester
Prior art date
Application number
PCT/JP2008/070533
Other languages
French (fr)
Japanese (ja)
Inventor
Taro Ooya
Jun Iguchi
Hiroshi Kusume
Atsushi Oyamatsu
Original Assignee
Teijin Dupont Films Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Dupont Films Japan Limited filed Critical Teijin Dupont Films Japan Limited
Priority to KR1020107011042A priority Critical patent/KR101536024B1/en
Priority to JP2009540111A priority patent/JP4988853B2/en
Priority to CN200880115237A priority patent/CN101855081A/en
Publication of WO2009060978A1 publication Critical patent/WO2009060978A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester film and a laminated film comprising a coating layer provided thereon.
  • a liquid crystal display device usually includes a side-type or direct-type backlight unit.
  • the direct light system has been adopted.
  • cold cathode ray tubes are installed in parallel between the liquid crystal cell and the reflector plate located behind it.
  • Reflectors used in backlight units of liquid crystal display devices are required to have high reflection performance.
  • a film containing a white pigment or a film containing fine bubbles inside has been used as the reflector. Films containing a white pigment inside are widely used because they can obtain high brightness and uniform brightness.
  • An object of the present invention is to provide a laminated film in which yellowing over time is suppressed. Another object of the present invention is to provide a laminated film that can obtain high luminance when used as a member of a backlight unit of a liquid crystal display device. Another object of the present invention is to provide a laminated film that can suppress yellowing over time, obtain high luminance, have little color shift, and is suitable as a reflector.
  • the present invention relates to a laminated film comprising a polyester film and a coating layer containing a phosphor provided thereon, wherein the phosphor of the coating layer is made of an inorganic substance, and the content of the phosphor in the coating layer is 50 to 80. It is a laminated film characterized by the weight percent.
  • the phosphor of the coating layer is made of an inorganic substance.
  • a phosphor made of an inorganic substance as the phosphor, a laminated film with little color shift can be obtained.
  • the phosphor is decomposed by ultraviolet rays, and the laminated film is yellowed by ultraviolet rays after long-term use.
  • the coating layer is composed of 100% by weight of the composition of the coating layer and a phosphor made of an inorganic substance. ⁇ 80 wt%, preferably 15 to 50 wt%. If it is less than 5% by weight, a sufficiently high luminance cannot be maintained when a white film is used as a film for use in a reflector. On the other hand, if it exceeds 80% by weight, a uniform coating layer cannot be obtained, and it is difficult to suppress yellowing without spots throughout the film.
  • the coating layer preferably contains a compound having an ultraviolet absorbing ability from the viewpoint of effectively suppressing yellowing of the film.
  • the content is 100% by weight of the composition of the coating layer, for example, 20 to 95% by weight, preferably 20 to 50% by weight. It is.
  • the compound having ultraviolet absorbing ability may be a low molecular type or a high molecular type.
  • the high molecular weight type for example, a polymer obtained by polymerizing a low molecular weight capable of absorbing ultraviolet light into a polymer main chain or side chain can be used. This polymer type compound having ultraviolet absorbing ability is preferable because it has a function as a binder.
  • the coating layer preferably contains a resin as a binder in addition to the compound having ultraviolet absorbing ability.
  • the binder resin can occupy the portion of the coating layer composition other than the phosphor made of an inorganic substance, or the coating layer composition. Of these, it can occupy portions other than phosphors made of inorganic substances and compounds having ultraviolet absorption.
  • These components constituting the coating layer are dissolved or dispersed in an organic solvent and used as a coating solution.
  • binder resin examples include polyester, polyurethane, acrylic, polyamide, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, fluororesin, and copolymers thereof, and a mixture of two or more. Etc. can be used. Further, a binder resin obtained by copolymerizing a compound having an ultraviolet absorbing ability as a copolymerization component may be used.
  • the thickness of the coating layer is preferably 2 to 10; Lim.
  • the thickness in this range As a result, it is possible to obtain a laminated film in which the inorganic phosphor does not easily fall off and has good slipperiness.
  • the phosphor made of an inorganic substance in the present invention preferably has an excitation wavelength of 400 to 450 nm.
  • an excitation wavelength 400 to 450 nm.
  • a phosphor made of an inorganic substance having an excitation wavelength in this range a high luminance can be obtained when used as a reflector, and a laminated film without coloring due to absorption can be obtained.
  • phosphor made of an inorganic substance may be simply referred to as “inorganic phosphor”.
  • the inorganic phosphor in the present invention preferably has an emission peak wavelength of 500 to 600 nm. If the emission wavelength is less than 500 nm or exceeds 600 nm, the effect of improving the luminance when used as a reflector is not preferred.
  • an alkaline earth metal sulfide, alkaline earth metal complex oxide, or lanthanum phosphate compound having a rock salt type crystal structure is used as a matrix.
  • An inorganic phosphor containing an activator can be used.
  • alkaline earth metal sulfides for example, zinc sulfide (Zn S), strontium sulfide (S r S), yttrium oxide (Y 2 0 2 ) can be used.
  • alkaline earth metal composite oxide for example, barium / magnesium / aluminum composite oxide (BaMgA 1 10 17 ) can be used.
  • the activator for example, Eu, Cu, Mn, A1, Ce, Tb, Ba, Sr, Ag can be used, and further, for example, a combination of Eu, Cu and A1, Combinations of 6 and 13, 8 £ 1 and £ 1, and 8 &, 5 and Eu can be used.
  • Particularly preferred inorganic phosphors are based on strontium sulfide (S r S) or yttrium oxide (Y 2 0 2 ) as the activator. And inorganic phosphor containing Z or copper (Cu), barium-magnesium-aluminum composite oxide (BaMgAl 10 ⁇ 17 ) as a base material, and plutonium (Eu) and / or manganese (Mn) as activators An inorganic phosphor containing, as a base substance, lanthanum phosphate (L aP0 4 ) and Ce and / or Tb as activators.
  • S r S strontium sulfide
  • Y 2 0 2 yttrium oxide
  • activator is E u
  • E u 2 O 3 the content of the activator Eu 2 ⁇ 3 in the inorganic phosphors, based on the total weight of the inorganic phosphors, for example 0.01 to 10 wt% Dearu.
  • the activator is Mn
  • MnO can be used as the activator.
  • the content of the activator MnO in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor.
  • activator is C e
  • it can be used, for example C e P0 4 as an activator.
  • the content of the activator Ce P0 4 in the inorganic phosphors based on the total weight of the inorganic phosphors, for example 0.01 to 35 wt% Dearu.
  • Tb 40 7 can be used as the activator.
  • the content of the activator Tb 4 ⁇ 7 in the inorganic phosphors based on the total weight of the inorganic phosphor, for example, 0.01 to 25 wt%.
  • the activator is Cu
  • Cu 2 S can be used as the activator.
  • the content of the activator Cu 2 S in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor. .
  • the activator is A1
  • a 1 2 S 3 can be used as the activator.
  • the content of the activator A 1 2 S 3 in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor.
  • the inorganic phosphor for example, a particulate material is used, and the shape of the particles is not limited, but for example, a spherical material can be used.
  • the average particle diameter of the particles is, for example, 2 to 10 m, preferably 3 to 7; m.
  • Use particulate inorganic phosphors with an average particle size in this range As a result, it can be uniformly dispersed in the coating liquid, and a coating layer in which the phosphor is uniformly distributed can be obtained.
  • Inorganic phosphors are commercially available. For example, the following can be used.
  • E 7031-2 based on Nemoto Special Chemical Co., Ltd., La 2 0 2 S as the base material
  • E u E401 1-1 Sr A 1 2 0 4 manufactured by Nemoto Special Chemical Co., Ltd. and Eu as an activator
  • red inorganic phosphor Dl 110 (manufactured by Nemoto Special Chemical Co., Ltd., Y 2 0 3 as a base material and Eu as an activator) can be used.
  • D 1230 (Sr S manufactured by Nemoto Special Chemical Co., Ltd. is used as a base material and Eu is used as an activator
  • E 203 1-2 Ba Mg A 1 10 0 17 manufactured by Nemoto Special Chemical Co., Ltd. is used as a base material
  • Eu can be used as an activator.
  • KX 732A manufactured by Kasei Optronics Co., Ltd., barium / magnesium'aluminum complex oxide (BaMgA 1 10 17 )
  • BaMgA 1 10 17 barium / magnesium'aluminum complex oxide
  • Eu and Mn can be used as activators. .
  • P 22—GN4 (based on ZnS manufactured by Kasei Optonics Co., Ltd. and Cu and A 1 as activation materials)
  • LP—G2 (based on LaP0 4 manufactured by Kasei Optonics Co., Ltd., Ce, Tb can be used as an activator).
  • Examples of the compound having ultraviolet absorbing ability include organic compounds such as benzophenone, benzotriazole, cyanoacrylate, salicylic acid, triazine, benzoate, and oxalate anilide, and inorganic sol gels. Things can be used.
  • the organic UV-absorbing compound may be used in a form copolymerized with a polymer.
  • the compound which has an ultraviolet absorptivity is illustrated below.
  • cyanoacrylate-based compounds examples include ethyl 2_cyano 1,3 'diphenyl acrylate.
  • P- t _ butylphenyl salicylate, p-o An example is cutylphenyl salicylate.
  • thermoplastic aromatic polyester a film made of thermoplastic aromatic polyester is used.
  • thermoplastic aromatic polyester include polyethylene terephthalate, polyethylene naphthenic dicarboxylate, and polybutylene terephthalate. These polyesters may be copolymerized with a copolymer component. In that case, the proportion of the copolymerization component is, for example, a proportion of 20 mol% or less based on the total dicarboxylic acid component.
  • the laminated film of the present invention is used as a reflector, it is preferable to use a white polyester film as the polyester film.
  • a white polyester film a sheet of a composition in which particles are blended with polyester, or a composition in which a resin incompatible with polyester is blended is stretched, and at the time of stretching, the interface between the polyester and particles, or incompatible with polyester
  • a white polyester film in which peeling occurs at the interface with the resin and fine voids are formed inside the film can be used.
  • the particles for example, inorganic particles, organic particles, and composite particles thereof can be used.
  • the white polyester film it is preferable to use a white laminated film comprising a reflective layer and a support layer that supports the reflective layer.
  • the coating layer is provided on the reflective layer in order to suppress yellowing of the reflective layer.
  • the void volume ratio of the reflective layer in the white laminated film is preferably 30 to 80%, more preferably 35 to 75%, and particularly preferably 38 to 70%. This void volume fraction can be obtained when the interface between the polyester and the particles or the incompatible resin is peeled off during stretching to generate voids.
  • the average particle size of the particles is preferably 0.3 to 3. ⁇ , more preferably 0.4 to 2.5, and particularly preferably. Or 0.5 to 2.0 xm. If the average particle size is less than 0.3 / xm, aggregation is likely to occur, which is not preferable. If the average particle size exceeds 3.0 xm, the film may be broken, which is not preferable.
  • the particles are preferably contained in 3 to 60 parts by weight, more preferably 35 to 55 parts by weight, particularly preferably 37 to 50 parts by weight per 100 parts by weight of the polyester composition of the reflective layer. . 3 If it is less than 1% by weight, the reflectivity is lowered, or the deterioration due to ultraviolet rays becomes severe.
  • the particles are preferably inorganic particles.
  • white pigments are preferably used as the inorganic particles.
  • the white pigment for example, titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide particles are used, and preferably barium sulfate particles are used. Particularly good reflectance can be obtained by using barium sulfate particles.
  • the barium sulfate particles may have a plate shape or a spherical shape.
  • organic particles for example, incompatible resin particles described below can be used.
  • a polyolefin resin or a polystyrene resin can be used as the incompatible resin.
  • poly-3-methylbutene-1, poly-4 —Methylpentene-1, Polyethylene, Polypropylene, Polyvinyl-1, t-Butane, 1,4-Trans-1, Poly-1,2,3-Dimethylbutadiene, Polyvinylcyclohexane, Polystyrene, Polyfluorostyrene, Cellulose acetate Cellulose propionate and polychloroethylene can be used.
  • Polypropylene and polymethylpentene are particularly preferable. Polypropylene and polymethylpentene are optimal because the resin itself is highly transparent and can improve the reflectance by suppressing light absorption.
  • an incompatible resin When used, it is preferably 5 to 30 parts by weight, more preferably 8 to 25 parts by weight, particularly preferably 100 parts by weight of the polyester composition of the reflective layer. Alternatively, it is used at a ratio of 10 to 20 parts by weight. If it exceeds 30 parts by weight in the reflective layer, the film will be very easy to break, and if it is less than 5 parts by weight, sufficient void formation will not be achieved, and the reflectivity of the film will be low. It is not preferable because the resistance to ultraviolet rays is inferior.
  • the support layer is made of a polyester composition, and inorganic particles, preferably 0.5 to 30% by weight, more preferably 1 to 27% by weight, and particularly preferably 2 to 2%, per 100 parts by weight of the polyester composition. Contains 5% by weight. If it is less than 0.5% by weight, sufficient slipperiness cannot be obtained, which is not preferable, and if it exceeds 30% by weight, the strength as a support layer for supporting the reflective layer cannot be maintained, and the film breaks. This may lead to an unfavorable situation.
  • the average particle size of the inorganic particles is preferably 0.1 to 5; m, more preferably 0.5 to 3 / m, and particularly preferably 0.6 to 2 ⁇ m. If it is less than 0.1 m, particles are likely to aggregate, and if it exceeds 5 / x m, coarse protrusions are formed, which may lead to film breakage.
  • the method for producing the laminated film of the present invention will be described by taking as an example a laminated film in which a coating layer is provided on a white polyester film comprising a reflective layer containing barium sulfate particles and a support layer.
  • the blending of the barium sulfate particles into the polyester composition may be performed during the polymerization of the polyester or after the polymerization. In the case of polymerization, it may be added before the end of the transesterification or esterification reaction, or before the start of the polycondensation reaction.
  • Non-woven fabric type filter with an average opening of 10 to 100 m, preferably an average opening of 20 to 50 jm, made of stainless steel fine wire with a wire diameter of 15 // m or less. It is preferable to filter the polyester composition. By performing this filtration, it is possible to obtain a film with few coarse foreign matters by suppressing aggregation of particles that tend to agglomerate into coarse agglomerated particles.
  • a laminated unstretched sheet is produced by a simultaneous multilayer extrusion method using a feed block of a polyester composition melted from a die.
  • the polyester composition melt constituting the reflective layer and the polyester composition melt constituting the support layer are laminated to form the reflective layer Z support layer using a feed block, and developed on a die. And extruding. At this time, the polyester composition laminated by the feed block maintains the laminated form.
  • the unstretched sheet extruded from the die is cooled and solidified with a casting drum to form an unstretched film.
  • the coating liquid used for coating the coating layer is preferably applied to this unstretched film or to a longitudinally stretched film that has been subjected to subsequent longitudinal stretching.
  • the unstretched film is heated by roll heating, infrared heating, etc., and stretched in the machine direction to obtain a stretched film.
  • This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
  • the stretching temperature is preferably a temperature equal to or higher than the glass transition point (T g) of the polyester, and more preferably a temperature of T g to (at T g +70).
  • the draw ratio is preferably from 2.2 to 4.0 times, more preferably 2 in both the machine direction and the direction perpendicular to the machine direction (hereinafter referred to as the transverse direction). 3 to 3.9 times.
  • the longitudinally stretched film is subsequently subjected to the processes of cocoon stretching, heat setting, and thermal relaxation to form a biaxially oriented film, which are performed while the film is running.
  • the lateral elongation treatment starts from a temperature higher than the glass transition temperature (Tg) of the polyester and is performed while raising the temperature to a temperature of (Tg + 5) to (Tg + 70).
  • Tg glass transition temperature
  • the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), but usually the temperature rises sequentially.
  • the horizontal stretching zone of Ten Ten is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium of a predetermined temperature for each zone.
  • the transverse stretching ratio is preferably 2.5 to 4.5 times, more preferably 2.8 to 3.9 times. 2. If it is less than 5 times, the thickness unevenness of the film deteriorates and a good film cannot be obtained, and if it exceeds 4.5 times, breakage tends to occur during film formation, which is not preferred.
  • the film after transverse stretching should be held at both ends (Tm-20) to (: Tm_100) to reduce the thermal shrinkage rate by heat treatment under constant width or width reduction of 10% or less.
  • Tm-20 ends
  • Tm_100 the thermal shrinkage rate
  • the laminated film of the present invention may be stretched by either a sequential biaxial stretching method or a simultaneous biaxial stretching method.
  • the coating layer may be provided directly on the base polyester film.
  • the subbing treatment may be provided in the polyester film manufacturing process (inline coating method), or may be applied separately after the polyester film is manufactured (offline coating method).
  • the material used for the subbing treatment may be selected as appropriate, but as a suitable material, copolymer polyester, polyurethane, acrylic, and various coupling agents can be used.
  • the coating layer containing the inorganic phosphor can be coated by any method. For example, gravure, roll, spin, reverse, bar, screen, datebing, etc. can be used. A known method can be used as a curing method after coating.
  • a method using active rays such as thermosetting, ultraviolet rays, electron beams, and radiation can be applied.
  • the application may be performed before the completion of the crystal orientation of the film during the production of the polyester film, or after the completion of the crystal orientation of the film.
  • the film sample was measured for 10-point thickness with an electric micrometer (K-1400 B, manufactured by Anritsu), and the average value was obtained to obtain the film thickness.
  • K-1400 B manufactured by Anritsu
  • Samples were cut into triangles, fixed in embedded capsules, and embedded in epoxy resin. Then, after embedding the sample with a micro I ⁇ 1 um (ULTRACUT-S), the section parallel to the longitudinal direction was made into a thin film slice, and then observed and photographed using an optical microscope, The thickness ratio of the coating layer to the film was measured from the photograph, and the thickness of the coating layer was determined by calculating from the thickness of the entire film.
  • UTRACUT-S micro I ⁇ 1 um
  • fluorescence spectrophotometer F_4500 manufactured by Hitachi
  • F_4500 fluorescence spectrophotometer
  • Light irradiation was performed for 50 hours with a high-pressure mercury lamp ("Tosukia 40 1" manufactured by Harrison Toshiba Lighting) with a glass fill, and the color change before and after the light irradiation was observed.
  • the irradiance with light irradiation was 1 SmWZcm 2 .
  • the film was composed of two layers, a reflective layer and a support layer, measurement was performed by irradiating light from the reflective layer side.
  • the initial film hue (1 ⁇ *, a, b, and the film hue after irradiation (L 2 *, a 2 b 2 *) are combined with a color difference meter (Nippon Denshoku SZ S_ ⁇ 90 COLOR MEASUR I NG SYSTEM ), A hue change dE * represented by the following formula was calculated, and evaluated according to the following criteria.
  • Scanning electron microscope shows particles in powder before being added to polyester A double-sided tape was placed on the sample stage, and the particles were thinly deposited on it. After carbon deposition, a scanning electron microscope (SEM) was used to change the magnification appropriately according to the size of the particles and take pictures.
  • the equivalent circle diameter of at least 100 particles or more was obtained with an image processing apparatus, and divided by the number of particles to obtain a number-based average particle diameter (/ m).
  • the average luminance before coating was measured by the method (6-1) above.
  • the average brightness after coating was measured by the above method (6-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the obtained average luminance, the luminance improvement rate was calculated using the following formula.
  • ( ⁇ component of average chromaticity after coating) 1 (X component of average chromaticity before coating)
  • (y component of average chromaticity after coating) 1 (average chromaticity before coating) Y component)
  • the average luminance was measured by the method described in (6-1) above using the film after coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight lit. The average luminance after the durability test was measured for the film after the durability test by the method (6-1) above.
  • the luminance maintenance rate was calculated by the following formula.
  • the average chromaticity (x, y) was measured by the method described in (6-1) above using the film after coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight on. For films that have undergone a durability test, use the method described in (6-3) above. Average chromaticity (x, y) was measured. From the average chromaticity (x, y) obtained, Axy was calculated using the following formula.
  • the above (7-1) The average brightness before coating was measured by this method.
  • the average luminance after coating was measured by the above method (7-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the obtained average luminance, the luminance improvement rate was calculated using the following formula.
  • the average chromaticity (x, y) before coating was measured by the method of (7-1) above using the film before coating of the phosphor-containing coating layer as a measurement target.
  • the average chromaticity (x, y) after coating was measured by the above method (7-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the average chromaticity (x, y) obtained, the chromaticity difference ⁇ was calculated using the following formula.
  • ( ⁇ component of average chromaticity after coating) 1 (X component of average chromaticity before coating)
  • (y component of average chromaticity after coating) 1 (average chromaticity before coating) Y component)
  • the average luminance was measured by the above method (7_1), using the film after the coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight turned on. The average luminance after the durability test was measured for the film that had undergone the durability test by the method (7-1) above.
  • the luminance maintenance rate was calculated by the following formula.
  • Luminance maintenance rate (%) (Average brightness after endurance test) / (Average brightness before endurance test) X 100
  • the average chromaticity (x, y) was measured by the method described in (7-1) above using the film after coating of the phosphor-containing coating layer (film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the back light lit. About the film which passed the durability test, the average chromaticity (x, y) after a durability test was measured by the method of said (7-3). From the average chromaticity (x, y) obtained, Axy was calculated using the following formula.
  • the obtained copolymer polyester had a diethylene glycol component content of 2.5% by weight, a germanium element content of 50 ppm, and a lithium element content of 5 ppm.
  • the obtained polyester pellets were dried at 1600 for 3 hours, melt-extruded at 2800, and cooled and solidified with a cooling drum at a surface temperature of 20 to obtain an unstretched film. Subsequently, the film was heated at 95, stretched in the longitudinal direction (longitudinal direction) by a factor of 3.2, cooled by a roll group at 25, and then stretched while holding both ends of the longitudinally stretched film with clips. In the atmosphere heated at 120, the film was stretched 3.6 times in the direction perpendicular to the longitudinal direction (lateral direction) and then heat-fixed at a temperature of 220.
  • Example 1 Example of white polyester film
  • composition was dissolved in a toluene / butyl acetate mixed solution to prepare a coating solution having a solid content concentration of 45% by weight.
  • a 1 1 mixture of toluene and butyl acetate was used.
  • the brightness increase rate of the obtained coated film was 104%.
  • the other evaluation results are shown in Table 1.
  • the green light-emitting inorganic phosphor 22 10 (manufactured by Kasei Optronics) is an inorganic phosphor made of Zn S as a base material and Cu as an activator.
  • Example 2 (Example of white polyester film)
  • a coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to red inorganic phosphor D 1 110 (manufactured by Nemoto Special Chemical Co., Ltd.). Table 1 shows the evaluation results.
  • the red inorganic phosphor D 1110 (manufactured by Nemoto Special Chemical Co., Ltd.) is an inorganic phosphor having Y 2 0 3 as a base material and Eu as an activator.
  • Example 3 Example of white polyester film
  • a coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to blue inorganic phosphor D 1230 (manufactured by Nemoto Special Chemical Co., Ltd.). Table 1 shows the evaluation results.
  • the blue inorganic phosphor D 1230 (manufactured by Nemoto Special Chemical Co., Ltd.) is an inorganic phosphor having SrS as a base and Eu as an activator.
  • Example 4 Example of white polyester film
  • a coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to green inorganic phosphor KX 732 A (manufactured by Kasei Optronics). Table 1 shows the evaluation results.
  • the green inorganic phosphor KX 732 A (manufactured by Kasei Optronics Co., Ltd.) uses Eu / Mn as an activator based on a barium / magnesium / aluminum composite oxide (BaMgA 1 10 O 17 ). It is an inorganic phosphor.
  • Example 5 (Example of white polyester film)
  • Example 1 A coated film was obtained in the same manner as in Example 1 except that the ultraviolet absorbing material was changed to acrylic binder Uyuburu S-2840 (manufactured by Nippon Shokubai Co., Ltd.). The brightness improvement rate was 104%. Table 1 shows the evaluation results. Comparative Example 1 (Example of white polyester film) The following composition was dissolved in a toluene-butyl acetate mixed solution to prepare a coating solution having a solid content concentration of 45% by weight. The toluene / butyl acetate mixed solution having a weight ratio of 1: 1 was used.
  • UV absorbing material U-Uvable UV 6 0 1 0 (manufactured by Nippon Shokubai Co., Ltd.) 1 5 parts by weight
  • This coating solution is applied on the reflective layer of the white polyester film obtained in Reference Example 1, and the thickness after drying is 5 / m, and dried with hot air at 1550 for 2 minutes to obtain a coated film.
  • Example 2 Coating was performed in the same manner as in Example 1 except that the fluorescent substance shown in Table 1 was changed to the organic fluorescent brightener UVITEX-OB (manufactured by Ciba Specialty Company) and the addition amount was 5 parts by weight. A film was obtained. The luminance increase rate at this time was about 100%, and no improvement in luminance was confirmed. This film had a large difference in chromaticity due to coloring, and had a large decrease in luminance after the durability test, so that it was difficult to use practically. Table 1 shows the evaluation results. Comparative Example 3 (Example of white polyester film)
  • Example 6 Example of transparent polyester film
  • the following composition was dissolved in butyl acetate to prepare a coating solution having a solid content of 45% by weight.
  • Inorganic phosphor 22 10 made by Kasei Optonics
  • MBX-1 ⁇ made by Sekisui Plastics
  • the green light emitting inorganic phosphor 22 10 (manufactured by Kasei Obtronics) is an inorganic phosphor using Zn S as a base material and Cu as an activator.
  • MB X—15 is an acrylic particle having an average particle size of 15 / m.
  • composition was dissolved in butyl acetate to prepare a coating solution having a solid content of 45% by weight.
  • the present invention it is possible to provide a laminated film in which yellowing with time is suppressed, and a laminated film that can obtain high luminance when used as a member of a backlight unit of a liquid crystal display device. Can be provided. Further, according to the present invention, it is possible to provide a laminated film suitable for a reflecting plate, in which yellowing over time can be suppressed, high luminance can be obtained, color misregistration is small. Industrial applicability
  • the laminated film of the present invention can be widely used for optical applications.
  • the laminated film can be suitably used as a backlight unit member of a liquid crystal display device, particularly as a reflection plate of a back light unit of a liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a multilayer film composed of a polyester film and a coating layer formed thereon and containing a phosphor. The multilayer film is characterized in that the phosphor in the coating layer is composed of an inorganic material, and the phosphor content in the coating layer is within the range of 5-80% by weight. The multilayer film is suppressed in yellowing over time, while having high luminance and less color shift. The multilayer film is suitable for reflector plates.

Description

明細書 積層フィルム 技術分野  Specification Laminated Film Technical Field
本発明は、 ポリエステルフィルムおよびそのうえに設けられた塗布層からな る積層フィルムに関する。 背景技術  The present invention relates to a polyester film and a laminated film comprising a coating layer provided thereon. Background art
近年、 液晶テレビに代表される液晶表示装置が急速に普及している。 液晶表 示装置は、 通常、 サイド型ライト方式または直下型ライト方式のバックライト ユニットを備える。 液晶テレビのバックライトユニットでは、 直下型ライト方 式が採用されてきている。 この方式では、 液晶セルとその奥に配置された反射 板との間に、 冷陰極線管が並列に設置されている。 液晶表示装置のバックライ トユニットに用いられる反射板には、 高い反射性能が要求される。 従来、 この 反射板として、 白色顔料を含有するフィルムや、 内部に微細な気泡を含有する フィルムが使用されてきた。 内部に白色顔料を含有するフィルムは、 高い輝度 と、 均一な輝度を得ることができることから広く使用されており、 例えば、 特 開 2 0 0 4— 0 5 0 4 7 9号公報、 特開 2 0 0 4— 3 3 0 7 2 7号公報に開示 されている。 また、 内部に微細な気泡を含有するフィルムは、 例えば、 特開平 6 - 3 2 2 1 5 3号公報、 特開平 7— 1 1 8 4 3 3号公報に開示されている。 バックライトュニッ卜の輝度を向上する方法として、 反射板に用いるフィル ム自体の反射率を向上させることの他に、 蛍光増白剤をフィルムに塗布するこ とが提案されている (特開 2 0 0 2 - 4 0 2 1 4号公報) 。.しかし、 蛍光増白 剤を塗布した場合には、 冷陰極線管から放射される紫外光によって蛍光増白剤 が劣化してしまい、 フィルムが経時的に黄変することになる。 発明の開示 In recent years, liquid crystal display devices typified by liquid crystal televisions are rapidly spreading. A liquid crystal display device usually includes a side-type or direct-type backlight unit. In the backlight unit of LCD TVs, the direct light system has been adopted. In this method, cold cathode ray tubes are installed in parallel between the liquid crystal cell and the reflector plate located behind it. Reflectors used in backlight units of liquid crystal display devices are required to have high reflection performance. Conventionally, a film containing a white pigment or a film containing fine bubbles inside has been used as the reflector. Films containing a white pigment inside are widely used because they can obtain high brightness and uniform brightness. For example, Japanese Patent Application Laid-Open No. 2 0 0 4-0 5 0 4 7 9 0 0 4-3 3 0 7 2 7 is disclosed. In addition, films containing fine bubbles inside are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 6-3 2 2 1 53 and 7-1 1 8 4 3 3. As a method for improving the luminance of the backlight unit, in addition to improving the reflectance of the film itself used for the reflector, it has been proposed to apply a fluorescent whitening agent to the film (Japanese Patent Laid-Open No. 2). 0 0 2-4 0 2 1 4). However, when fluorescent whitening agent is applied, the fluorescent whitening agent deteriorates due to ultraviolet light emitted from the cold cathode ray tube, and the film turns yellow over time. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
本発明は、 経時的な黄変が抑制された積層フィルムを提供することを課題と する。 本発明は、 また、 液晶表示装置のバックライトユニットの部材として用 いたときに高い輝度を得ることができる積層フィルムを提供することを課題と する。本発明は、 また、 経時的な黄変が抑制され、 高い輝度を得ることができ、 色ずれが少なく、 反射板として好適な積層フィルムを提供することを課題とす る。  An object of the present invention is to provide a laminated film in which yellowing over time is suppressed. Another object of the present invention is to provide a laminated film that can obtain high luminance when used as a member of a backlight unit of a liquid crystal display device. Another object of the present invention is to provide a laminated film that can suppress yellowing over time, obtain high luminance, have little color shift, and is suitable as a reflector.
課題を解決するための手段 Means for solving the problem
すなわち本発明は、 ポリエステルフィルムおよびそのうえに設けられた蛍光 体を含有する塗布層からなる積層フィルムにおいて、 塗布層の蛍光体が無機物 質からなり、 該蛍光体の塗布層における含有量が 5〜 8 0重量%であることを 特徴とする積層フィルムである。  That is, the present invention relates to a laminated film comprising a polyester film and a coating layer containing a phosphor provided thereon, wherein the phosphor of the coating layer is made of an inorganic substance, and the content of the phosphor in the coating layer is 50 to 80. It is a laminated film characterized by the weight percent.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
(塗布層) (Coating layer)
本発明においては、 塗布層の蛍光体が無機物質からなることが肝要である。 蛍光体として無機物質からなる蛍光体を用いることで、 色ずれの少ない積層フ イルムを得ることができる。 他方、 蛍光体として有機物質からなる蛍光体を用 いると紫外線で蛍光体が分解され、 長期間の使用において紫外線で積層フィル ムが黄変することになる。  In the present invention, it is important that the phosphor of the coating layer is made of an inorganic substance. By using a phosphor made of an inorganic substance as the phosphor, a laminated film with little color shift can be obtained. On the other hand, when a phosphor made of an organic substance is used as the phosphor, the phosphor is decomposed by ultraviolet rays, and the laminated film is yellowed by ultraviolet rays after long-term use.
塗布層は、 塗布層の組成物 1 0 0重量%ぁたり無機物質からなる蛍光体を 5 〜8 0重量%、好ましくは 1 5〜5 0重量%含有する。 5重量%未満であると、 反射板の用途に用いるためにフィルムとして白色フィルムを用いたときに十分 に高い輝度を維持することができない。 他方、 8 0重量%を越えると均一な塗 布層を得ることができず、 フィルム全体にわたって斑なく黄変を抑制すること が難しい。 The coating layer is composed of 100% by weight of the composition of the coating layer and a phosphor made of an inorganic substance. ˜80 wt%, preferably 15 to 50 wt%. If it is less than 5% by weight, a sufficiently high luminance cannot be maintained when a white film is used as a film for use in a reflector. On the other hand, if it exceeds 80% by weight, a uniform coating layer cannot be obtained, and it is difficult to suppress yellowing without spots throughout the film.
塗布層は、 フィルムの黄変を効果的に抑制する観点から、 紫外線吸収能を有 する化合物を含有することが好ましい。 塗布層が紫外線吸収能を有する化合物 を含有する場合、 その含有量は、 塗布層の組成物 1 0 0重量%ぁたり、 例えば 2 0〜9 5重量%、 好ましくは 2 0〜 5 0重量%である。 紫外線吸収能を有す る化合物は低分子タイプであってもよく、 高分子タイプであってもよい。 高分 子タイプのものとして、 例えば、 紫外線吸収能を有する低分子を高分子の主鎖 や側鎖に重合したものを用いることができる。 この高分子タイプの紫外線吸収 能を有する化合物は、 バインダーとしての機能を備えるので好ましい。  The coating layer preferably contains a compound having an ultraviolet absorbing ability from the viewpoint of effectively suppressing yellowing of the film. When the coating layer contains a compound having an ultraviolet absorbing ability, the content is 100% by weight of the composition of the coating layer, for example, 20 to 95% by weight, preferably 20 to 50% by weight. It is. The compound having ultraviolet absorbing ability may be a low molecular type or a high molecular type. As the high molecular weight type, for example, a polymer obtained by polymerizing a low molecular weight capable of absorbing ultraviolet light into a polymer main chain or side chain can be used. This polymer type compound having ultraviolet absorbing ability is preferable because it has a function as a binder.
塗布層は、 紫外線吸収能を有する化合物の他に、 バインダーとしての樹脂を 含有することが好ましい。 塗布層がバインダーの樹脂を含有する場合、 バイン ダ一の樹脂は、 塗布層の組成物のうち無機物質からなる蛍光体以外の部分を占 めることができ、 または、 塗布層の組成物のうち無機物質からなる蛍光体およ び紫外線吸収納を有する化合物以外の部分を占めることができる。  The coating layer preferably contains a resin as a binder in addition to the compound having ultraviolet absorbing ability. When the coating layer contains a binder resin, the binder resin can occupy the portion of the coating layer composition other than the phosphor made of an inorganic substance, or the coating layer composition. Of these, it can occupy portions other than phosphors made of inorganic substances and compounds having ultraviolet absorption.
塗布層を構成するこれらの成分は、 有機溶媒に溶解もしくは分散させて塗液 として用いる。  These components constituting the coating layer are dissolved or dispersed in an organic solvent and used as a coating solution.
バインダー樹脂としては、 例えば、 ポリエステル、 ポリウレタン、 アクリル、 ポリアミド、 ポリエチレン、 ポリプロピレン、 ポリ塩化ビニル、 ポリ塩化ビニ リデン、 ポリスチレン、 ポリ酢酸ビニル、 フッ素系樹脂、 およびこれらの共重 合体、 2種以上の混合物などが使用できる。 また、 紫外線吸収能を有する化合 物を共重合成分として共重合したバインダー樹脂を用いてもよい。  Examples of the binder resin include polyester, polyurethane, acrylic, polyamide, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, fluororesin, and copolymers thereof, and a mixture of two or more. Etc. can be used. Further, a binder resin obtained by copolymerizing a compound having an ultraviolet absorbing ability as a copolymerization component may be used.
塗布層の厚みは 2〜1 0 ;Li mであることが好ましい。 この範囲の厚みとする ことで、 無機蛍光体が脱落しずらく、 しかも良好な滑り性を備える積層フィル ムを得ることができる。 The thickness of the coating layer is preferably 2 to 10; Lim. The thickness in this range As a result, it is possible to obtain a laminated film in which the inorganic phosphor does not easily fall off and has good slipperiness.
(無機物質からなる蛍光体) (Phosphor made of inorganic material)
本発明における無機物質からなる蛍光体は、 励起波長が 400〜450 nm にあるものが好ましい。 この範囲の励起波長の無機物質からなる蛍光体を用い ることによって反射板として用いたときに高い輝度を得ることができ、 吸収に よる着色のない積層フィルムを得ることができる。 以下、 「無機物質からなる 蛍光体」 を単に 「無機蛍光体」 をいう場合がある。  The phosphor made of an inorganic substance in the present invention preferably has an excitation wavelength of 400 to 450 nm. By using a phosphor made of an inorganic substance having an excitation wavelength in this range, a high luminance can be obtained when used as a reflector, and a laminated film without coloring due to absorption can be obtained. Hereinafter, “phosphor made of an inorganic substance” may be simply referred to as “inorganic phosphor”.
本発明における無機蛍光体は、 発光ピーク波長が 500〜600 nmにある ものが好ましい。 発光波長が 500 nm未満であるか 600 nmを超えると反 射板として用いたときの輝度向上の効果が少なく好ましくない。  The inorganic phosphor in the present invention preferably has an emission peak wavelength of 500 to 600 nm. If the emission wavelength is less than 500 nm or exceeds 600 nm, the effect of improving the luminance when used as a reflector is not preferred.
上記の励起波長および発光ピーク波長についての要件を満足する無機蛍光体 として、 岩塩型結晶構造をもつアルカリ土類金属硫化物、 アルカリ土類金属複 合酸化物またはリン酸ランタン化合物を母体としてなり、 賦活物質を含有する 無機蛍光体を用いることができる。  As an inorganic phosphor that satisfies the requirements for the excitation wavelength and emission peak wavelength described above, an alkaline earth metal sulfide, alkaline earth metal complex oxide, or lanthanum phosphate compound having a rock salt type crystal structure is used as a matrix. An inorganic phosphor containing an activator can be used.
アルカリ土類金属硫化物として、 例えば硫化亜鉛 (Zn S) 、 硫化ストロン チウム (S r S) 、 酸化イットリウム (Y22) を用いることができる。 As alkaline earth metal sulfides, for example, zinc sulfide (Zn S), strontium sulfide (S r S), yttrium oxide (Y 2 0 2 ) can be used.
アルカリ土類金属複合酸化物として、 例えばバリウム ·マグネシウム ·アル ミニゥム複合酸化物 (B aMgA 110Ο17) を用いることができる。 As the alkaline earth metal composite oxide, for example, barium / magnesium / aluminum composite oxide (BaMgA 1 10 17 ) can be used.
賦活物質としては、 例えば、 Eu、 Cu、 Mn、 A l、 Ce、 Tb、 Ba、 S r、 A gを用いることができ、 さらに組合せとして、 例えば、 Eu、 Cuと A 1との組合せ、 〇 6と丁13との組合せ、 8 £1と£ 1との組合せ、 8 &と5 と E uとの組合せを用いることができる。  As the activator, for example, Eu, Cu, Mn, A1, Ce, Tb, Ba, Sr, Ag can be used, and further, for example, a combination of Eu, Cu and A1, Combinations of 6 and 13, 8 £ 1 and £ 1, and 8 &, 5 and Eu can be used.
特に好ましい無機蛍光体は、 硫化ストロンチウム (S r S) または酸化イツ トリウム (Y22) を母体としてなり、 賦活物質としてユウ口ピウム (Eu) および Zまたは銅 (Cu) を含有する無機蛍光体、 バリウム ·マグネシウム · アルミニウム複合酸化物 (BaMgA l 10Ο17) を母体としてなり、 賦活物質 としてユウ口ピウム (Eu) および またはマンガン (Mn) を含有する無機 蛍光体、 リン酸ランタン (L aP04) を母体としてなり、 賦活物質として Ce および または Tbを含有する無機蛍光体である。 Particularly preferred inorganic phosphors are based on strontium sulfide (S r S) or yttrium oxide (Y 2 0 2 ) as the activator. And inorganic phosphor containing Z or copper (Cu), barium-magnesium-aluminum composite oxide (BaMgAl 10 Ο 17 ) as a base material, and plutonium (Eu) and / or manganese (Mn) as activators An inorganic phosphor containing, as a base substance, lanthanum phosphate (L aP0 4 ) and Ce and / or Tb as activators.
賦活物質が E uの場合、賦活剤として例えば E u 2 O 3を用いることができる。 この場合、 無機蛍光体における賦活剤 Eu23の含有量は、 無機蛍光体の合計 重量を基準として、 例えば 0. 01〜10重量%でぁる。 If activator is E u, can be used, for example E u 2 O 3 as an activator. In this case, the content of the activator Eu 23 in the inorganic phosphors, based on the total weight of the inorganic phosphors, for example 0.01 to 10 wt% Dearu.
賦活物質が M nの場合、 賦活剤として例えば M n〇を用いることができる。 この場合、 無機蛍光体における賦活剤 MnOの含有量は、 無機蛍光体の合計重 量を基準として、 例えば 0. 01〜1重量%である。  When the activator is Mn, for example, MnO can be used as the activator. In this case, the content of the activator MnO in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor.
賦活物質が C eの場合、 賦活剤として例えば C e P04を用いることができる。 この場合、 無機蛍光体における賦活剤 Ce P04の含有量は、 無機蛍光体の合計 重量を基準として、 例えば 0. 01〜35重量%でぁる。 If activator is C e, it can be used, for example C e P0 4 as an activator. In this case, the content of the activator Ce P0 4 in the inorganic phosphors, based on the total weight of the inorganic phosphors, for example 0.01 to 35 wt% Dearu.
賦活物質が Tbの場合、賦活剤として例えば Tb47を用いることができる。 この場合、 無機蛍光体における賦活剤 Tb47の含有量は、 無機蛍光体の合計 重量を基準として、 例えば 0. 01〜25重量%である。 When the activator is Tb, for example, Tb 40 7 can be used as the activator. In this case, the content of the activator Tb 47 in the inorganic phosphors, based on the total weight of the inorganic phosphor, for example, 0.01 to 25 wt%.
賦活物質が C uの場合、 賦活剤として例えば C u 2 Sを用いることができる。 この場合、 無機蛍光体における賦活剤 Cu2Sの含有量は、 無機蛍光体の合計重 量を基準として、 例えば 0. 01〜1重量%である。 . When the activator is Cu, for example, Cu 2 S can be used as the activator. In this case, the content of the activator Cu 2 S in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor. .
賦活物質が A 1の場合、賦活剤として例えば A 12S3を用いることができる。 この場合、 無機蛍光体における賦活剤 A 12S3の含有量は、 無機蛍光体の合計 重量を基準として、 例えば 0. 01〜1重量%である。 When the activator is A1, for example, A 1 2 S 3 can be used as the activator. In this case, the content of the activator A 1 2 S 3 in the inorganic phosphor is, for example, 0.01 to 1% by weight based on the total weight of the inorganic phosphor.
無機蛍光体は、 例えば粒子状のものを用い、 粒子の形状は問わないが、 例え ば球状のものを用いることができる。粒子の平均粒径は、例えば 2〜 10 m、 好ましくは 3〜 7; mである。 この範囲の平均粒径の粒子状の無機蛍光体を用 いることで、 塗液中で均一に分散させることができ、 均一に蛍光体が分布した 塗布層を得ることができる。 As the inorganic phosphor, for example, a particulate material is used, and the shape of the particles is not limited, but for example, a spherical material can be used. The average particle diameter of the particles is, for example, 2 to 10 m, preferably 3 to 7; m. Use particulate inorganic phosphors with an average particle size in this range As a result, it can be uniformly dispersed in the coating liquid, and a coating layer in which the phosphor is uniformly distributed can be obtained.
無機蛍光体は市販されており、 例えば次のものを用いることができる。  Inorganic phosphors are commercially available. For example, the following can be used.
緑色発光無機蛍光体として、 2210 (化成ォプトロ二クス社製 ZnSを 母体として、 Cuを賦活物質としてなる) 、 E 7031— 2 (根本特殊化学社 製 L a 202 Sを母体として、 E uを賦活物質としてなる) 、 E401 1— 1 (根本特殊化学社製 S r A 1204を母体して、 Euを賦活物質としてなる) を用いることができる。 As green light emitting inorganic phosphors, 2210 (based on Kasei Optronics ZnS as the base material, Cu as the activator), E 7031-2 (based on Nemoto Special Chemical Co., Ltd., La 2 0 2 S as the base material, E u E401 1-1 (Sr A 1 2 0 4 manufactured by Nemoto Special Chemical Co., Ltd. and Eu as an activator) can be used.
赤色無機蛍光体として、 D l 1 10 (根本特殊化学社製、 Y203を母体とし て、 Euを賦活物質としてなる) を用いることができる。 As the red inorganic phosphor, Dl 110 (manufactured by Nemoto Special Chemical Co., Ltd., Y 2 0 3 as a base material and Eu as an activator) can be used.
青色無機蛍光体として、 D 1230 (根本特殊化学社製 S r Sを母体とし て、 Euを賦活物質としてなる) 、 E 203 1— 2 (根本特殊化学社製 Ba Mg A 110017を母体として、 Euを賦活物質としてなる) を用いることがで さる。 As a blue inorganic phosphor, D 1230 (Sr S manufactured by Nemoto Special Chemical Co., Ltd. is used as a base material and Eu is used as an activator), E 203 1-2 (Ba Mg A 1 10 0 17 manufactured by Nemoto Special Chemical Co., Ltd. is used as a base material) As an activator, Eu can be used.
緑色無機蛍光体として、 KX 732A (化成ォプトロ二クス社製、 バリウム · マグネシウム 'アルミニウム複合酸化物(B aMgA 11017)を母体として、 Euおよび Mnを賦活物質としてなる) を用いることができる。 As the green inorganic phosphor, KX 732A (manufactured by Kasei Optronics Co., Ltd., barium / magnesium'aluminum complex oxide (BaMgA 1 10 17 )) can be used as the matrix, and Eu and Mn can be used as activators. .
黄緑色無機蛍光体として、 P 22—GN4 (化成ォプトニクス社製 ZnS を母体とし、 Cu、 A 1を賦活物質としてなる) 、 LP— G2 (化成ォプトニ クス社製 L aP04を母体として、 Ce、 T bを賦活物質としてなる) を用い ることができる。 As yellow-green inorganic phosphors, P 22—GN4 (based on ZnS manufactured by Kasei Optonics Co., Ltd. and Cu and A 1 as activation materials), LP—G2 (based on LaP0 4 manufactured by Kasei Optonics Co., Ltd., Ce, Tb can be used as an activator).
(紫外線吸収能を有する化合物) (Compound with UV absorbing ability)
紫外線吸収能を有する化合物としては、 例えばべンゾフエノン系、 ベンゾト リアゾール系、 シァノアクリレート系、 サリチル酸系、 トリアジン系、 ベンゾ エート系、 蓚酸ァニリド系など有機系のもの、 また、 ゾルゲルなどの無機系の ものを用いることができる。 有機系の紫外線吸収能を有する化合物は、 ポリマ —に共重合した形態で用いてもよい。 Examples of the compound having ultraviolet absorbing ability include organic compounds such as benzophenone, benzotriazole, cyanoacrylate, salicylic acid, triazine, benzoate, and oxalate anilide, and inorganic sol gels. Things can be used. The organic UV-absorbing compound may be used in a form copolymerized with a polymer.
紫外線吸収能を有する化合物を以下に例示する。  The compound which has an ultraviolet absorptivity is illustrated below.
ベンゾフエノン系のものとして、 2, 4ージヒドロキシベンゾフエノン、 2 ーヒドロキシー 4—メトキシベンゾフエノン、 2—ヒドロキシー 4ーメ卜キシ _ 5—スルホベンゾフエノン、 2, 2, 一 4, 4, 一テトラヒドロキシベンゾ フエノン、 2, 2, ージヒドロキシ一 4—メトキシベンゾフエノン、 2, 2 ' ージヒドロキシ一 4, 4 ' ージメトキシベンゾフエノン、 ビス (2—メトキシ _ 4—ヒドロキシー 5—ベンゾィルフエニル) メタンを例示することができる。 ベンゾトリアゾール系のものとして、 2— (2, 一ヒドロキシー 5' —メチ ルフエニル) ベンゾトリァゾ一ル、 2— (2 ' ーヒドロキシー 5, — t一プチ ルフエ二ル) ベンゾトリアゾール、 2_ (2' —ヒドロキシ一 3, , 5' —ジ — t—ブチルフエニル) ベンゾトリアプール、 2 _ (2, —ヒドロキシ— 3, 一 t一ブチル— 5 ' —メチルフエニル) 一 5—クロ口べンゾトリァゾール、 2 一 (2, ーヒドロキシー 3 ' , 5' —ジ ' t一プチルフエニル) 一 5—クロ口 ベンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 5' — tーォクチルフエノー ル) ベンゾトリアプール、 2— (2, 一ヒドロキシ _ 3, , 5, 一ジ · t—ァ ミルフエニル) ベンゾトリァゾ一ル、 2, 2, ーメチレンビス [4一 (1, 1, 3, 3—テトラメチルブチル) —6— ( 2 H_ベンゾトリアゾール一2 _ィル) フエノール] 、 2 (2, ヒドロキシ一 5, 一メタァクリロキシフエニル) _2 H—べンゾトリァゾール、 2— [2, ーヒドロキシ一 3, - (3" , 4" , 5" , 6〃 ーテトラヒドロフ夕ルイミドメチル) 一 5' —メチルフエニル] ベンゾト リアゾールを例示することができる。  2, 4-Dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy _ 5-sulfobenzophenone, 2, 2, 1, 4, 4, 1 Tetrahydroxybenzophenone, 2, 2, -dihydroxy mono 4-methoxybenzophenone, 2, 2'-dihydroxy mono 4,4'-dimethoxybenzophenone, bis (2-methoxy _ 4-hydroxy-5-benzoyl phenyl) Methane can be exemplified. As benzotriazoles, 2— (2,1hydroxy-5′-methylphenyl) benzotriazole, 2— (2′-hydroxy-5, —t-butylphenyl) benzotriazole, 2_ (2′—hydroxyl 3,, 5 '—di-t-butylphenyl) benzotriapool, 2 _ (2, —hydroxy-3, 1 t-butyl-5′-methylphenyl) 1 5-clobenzobenzotriazole, 2 1 (2, hydroxy) 3 ', 5' — Di 't-Ptylphenyl) 1 5-Clo-benzotriazole, 2— (2 ′ — Hydroxy 5 ′ — Toctylphenol) Benzotria pool, 2— (2, 1 Hydroxy _ 3,, 5, 1-di-tert-milphenyl) benzotriazole, 2, 2, -methylenebis [4 1 (1, 1, 3, 3-tetramethylbutyl) —6— (2 H_benzotriazole 2 _ Gil Phenols], 2 (2, Hydroxy-1,5 Methacryloxyphenyl) _2 H-Benzotriazole, 2- [2, -Hydroxy-1,3- (3 ", 4", 5 ", 6〃-tetrahydrofurimidomethyl 1) 5'-methylphenyl] benzotriazole.
シァノアクリレート系のものとして、 ェチルー 2_シァノ一3, 3 ' ージフ ェニルァクリレートを例示することができる。  Examples of cyanoacrylate-based compounds include ethyl 2_cyano 1,3 'diphenyl acrylate.
サリチル酸系のものとして、 P— t _ブチルフエニルサリシレート、 p—ォ クチルフエニルサリシレートを例示することができる。 P- t _ butylphenyl salicylate, p-o An example is cutylphenyl salicylate.
ポリエステルフィルムとしては、 熱可塑性芳香族ポリエステルからなるフィ ルムを用いる。 熱可塑性芳香族ポリエステルとしては、 例えばポリエチレンテ レフ夕レート、 ポリエチレンナフ夕レンジカルボキシレート、 ポリブチレンテ レフ夕レートを挙げることができる。 これらのポリエステルには共重合成分が 共重合されていてもよい。 その場合、 共重合成分の割合は、 全ジカルボン酸成 分を基準として例えば 2 0モル%以下の割合である。 As the polyester film, a film made of thermoplastic aromatic polyester is used. Examples of the thermoplastic aromatic polyester include polyethylene terephthalate, polyethylene naphthenic dicarboxylate, and polybutylene terephthalate. These polyesters may be copolymerized with a copolymer component. In that case, the proportion of the copolymerization component is, for example, a proportion of 20 mol% or less based on the total dicarboxylic acid component.
本発明の積層フィルムを反射板として用いる場合には、 ポリエステルフィル ムとして白色ポリエステルフィルムを用いることが好ましい。  When the laminated film of the present invention is used as a reflector, it is preferable to use a white polyester film as the polyester film.
白色ポリエステルフィルムとしては、 ポリエステルに粒子を配合した組成物 や、 ポリエステルとは非相溶な樹脂を配合した組成物のシートを延伸し、 延伸 時にポリエステルと粒子との界面または、 ポリエステルと非相溶樹脂との界面 で剥離を発生させフィルム内部に微細なボイドを形成した白色ポリエステルフ イルムを、 例えば用いることができる。 粒子としては、 例えば無機粒子、 有機 粒子、 これらの複合粒子を用いることができる。  As a white polyester film, a sheet of a composition in which particles are blended with polyester, or a composition in which a resin incompatible with polyester is blended is stretched, and at the time of stretching, the interface between the polyester and particles, or incompatible with polyester For example, a white polyester film in which peeling occurs at the interface with the resin and fine voids are formed inside the film can be used. As the particles, for example, inorganic particles, organic particles, and composite particles thereof can be used.
白色ポリエステルフィルムとしては、 反射層とこれを支持する支持層からな る白色積層フィルムを用いることが好ましい。 この場合、 反射層の黄変を抑制 するために塗布層は反射層のうえに設けられる。  As the white polyester film, it is preferable to use a white laminated film comprising a reflective layer and a support layer that supports the reflective layer. In this case, the coating layer is provided on the reflective layer in order to suppress yellowing of the reflective layer.
白色積層フィルムにおける反射層のボイド体積率は、 好ましくは 3 0〜8 0 %、 さらに好ましくは 3 5〜7 5 %、 特に好ましくは 3 8〜 7 0 %である。 このポイド体積率は、 ポリエステルと、 粒子または非相溶樹脂との界面が延伸 の際に剥離してボイドが生じることによって得ることができる。  The void volume ratio of the reflective layer in the white laminated film is preferably 30 to 80%, more preferably 35 to 75%, and particularly preferably 38 to 70%. This void volume fraction can be obtained when the interface between the polyester and the particles or the incompatible resin is peeled off during stretching to generate voids.
ボイドを形成する物質として粒子を用いる場合、 粒子の平均粒径は、 好まし くは 0 . 3〜3 . Ο ΠΙ、 さらに好ましくは 0 . 4〜2 . 5 , 特に好まし くは 0 . 5〜2 . 0 x mである。 平均粒径が 0 . 3 /x m未満であると凝集が生 じ易く好ましくなく、 3 . 0 x mを超えるとフィルムの破断に繋がりかねず好 ましくない。 粒子は、 反射層のポリエステル組成物 1 0 0重量部あたり、 好ま しくは 3 1〜 6 0重量部、 さらに好ましくは 3 5〜 5 5重量部、 特に好ましく は 3 7〜5 0重量部含有させる。 3 1重量%未満であると反射率が低下したり、 紫外線に因る劣化が激しくなつたりして好ましくない。 6 0重量%を超えると フィルムが破れやすくなり好ましくない。 粒子としては無機粒子が好ましい。 特に高い反射性能を得る観点から無機粒子としては、 好ましくは白色顔料を 用いる。 白色顔料としては、 例えば、 酸化チタン、 硫酸バリウム、 炭酸カルシ ゥム、 二酸化珪素の粒子を用い、 好ましくは硫酸バリウム粒子を用いる。 硫酸 バリウム粒子を用いることで特に良好な反射率を得ることができる。 硫酸バリ ゥム粒子は、 板状、 球状のいずれの形状であってもよい。 When using particles as a substance that forms voids, the average particle size of the particles is preferably 0.3 to 3.Ο, more preferably 0.4 to 2.5, and particularly preferably. Or 0.5 to 2.0 xm. If the average particle size is less than 0.3 / xm, aggregation is likely to occur, which is not preferable. If the average particle size exceeds 3.0 xm, the film may be broken, which is not preferable. The particles are preferably contained in 3 to 60 parts by weight, more preferably 35 to 55 parts by weight, particularly preferably 37 to 50 parts by weight per 100 parts by weight of the polyester composition of the reflective layer. . 3 If it is less than 1% by weight, the reflectivity is lowered, or the deterioration due to ultraviolet rays becomes severe. If it exceeds 60% by weight, the film is easily broken, which is not preferable. The particles are preferably inorganic particles. From the viewpoint of obtaining particularly high reflection performance, white pigments are preferably used as the inorganic particles. As the white pigment, for example, titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide particles are used, and preferably barium sulfate particles are used. Particularly good reflectance can be obtained by using barium sulfate particles. The barium sulfate particles may have a plate shape or a spherical shape.
なお、 有機粒子としては、 例えば、 以下に説明する非相溶樹脂の粒子を用い ることができる。  As the organic particles, for example, incompatible resin particles described below can be used.
ボイドを形成する物質として非相溶樹脂を用いる場合、 非相溶樹脂としては、 例えばポリオレフイン樹脂、 ポリスチレン樹脂を用いることができ、 具体的に は、 例えばポリ— 3—メチルブテン一 1、 ポリ— 4—メチルペンテン一 1、 ポ リエチレン、 ポリプロピレン、 ポリビニル一 t—ブタン、 1, 4—トランス一 ポリ一 2 , 3—ジメチルブタジエン、 ポリビニルシクロへキサン、 ポリスチレ ン、ポリフルォロスチレン、セルロースァセテ一トセルロースプロピオネート、 ポリクロ口トリフルォロエチレンを用いることができ、 特に好ましくはポリプ ロピレン、 ポリメチルペンテンを用いる。 ポリプロピレン、 ポリメチルペンテ ンは樹脂自体が高透明であるため、 光の吸収を抑えて反射率を向上させること ができ最適である。  In the case of using an incompatible resin as a substance that forms a void, for example, a polyolefin resin or a polystyrene resin can be used as the incompatible resin. Specifically, for example, poly-3-methylbutene-1, poly-4 —Methylpentene-1, Polyethylene, Polypropylene, Polyvinyl-1, t-Butane, 1,4-Trans-1, Poly-1,2,3-Dimethylbutadiene, Polyvinylcyclohexane, Polystyrene, Polyfluorostyrene, Cellulose acetate Cellulose propionate and polychloroethylene can be used. Polypropylene and polymethylpentene are particularly preferable. Polypropylene and polymethylpentene are optimal because the resin itself is highly transparent and can improve the reflectance by suppressing light absorption.
非相溶樹脂を用いる場合、 反射層のポリエステルの組成物 1 0 0重量部あた り、 好ましくは 5〜 3 0重量部、 さらに好ましくは 8〜 2 5重量部、 特に好ま しくは 1 0〜2 0重量部の割合で用いる。 反射層に 3 0重量部を超えて配合す るとフィルムが非常に破断し易くなり好ましくなく、 5重量部未満であると十 分なボイド形成が成されず、 フィルムの反射率の低くなることがあり好ましく なく、 また紫外線による耐性が劣ったものになり好ましくない。 When an incompatible resin is used, it is preferably 5 to 30 parts by weight, more preferably 8 to 25 parts by weight, particularly preferably 100 parts by weight of the polyester composition of the reflective layer. Alternatively, it is used at a ratio of 10 to 20 parts by weight. If it exceeds 30 parts by weight in the reflective layer, the film will be very easy to break, and if it is less than 5 parts by weight, sufficient void formation will not be achieved, and the reflectivity of the film will be low. It is not preferable because the resistance to ultraviolet rays is inferior.
支持層はポリエステル組成物からなり、 このポリエステル組成物 1 0 0重量 部あたり無機粒子を、 好ましくは 0 . 5〜3 0重量%、 さらに好ましくは 1〜 2 7重量%、 特に好ましくは 2〜2 5重量%含有する。 0 . 5重量%未満であ ると十分な滑り性を得ることができず好ましくなく、 3 0重量%を超えると反 射層を支える支持層としての強度を保つことができず、 フィルムの破断に繋が りかねず好ましくない。  The support layer is made of a polyester composition, and inorganic particles, preferably 0.5 to 30% by weight, more preferably 1 to 27% by weight, and particularly preferably 2 to 2%, per 100 parts by weight of the polyester composition. Contains 5% by weight. If it is less than 0.5% by weight, sufficient slipperiness cannot be obtained, which is not preferable, and if it exceeds 30% by weight, the strength as a support layer for supporting the reflective layer cannot be maintained, and the film breaks. This may lead to an unfavorable situation.
無機粒子の平均粒径は、 好ましくは 0 . l〜5 ; m、 さらに好ましくは 0 . 5〜3 / m、 特に好ましくは 0 . 6〜2 x mである。 0 . l m未満であると 粒子の凝集が生じ易く好ましくなく、 5 /x mを超えると粗大突起となりフィル ム破断に繋がることがあり好ましくない。  The average particle size of the inorganic particles is preferably 0.1 to 5; m, more preferably 0.5 to 3 / m, and particularly preferably 0.6 to 2 × m. If it is less than 0.1 m, particles are likely to aggregate, and if it exceeds 5 / x m, coarse protrusions are formed, which may lead to film breakage.
(製造方法) (Production method)
以下、 本発明の積層フィルムを製造する方法を、 硫酸バリウム粒子を含有す る反射層と支持層からなる白色ポリエステルフィルムに塗布層を設けた積層フ イルムを例に説明する。  Hereinafter, the method for producing the laminated film of the present invention will be described by taking as an example a laminated film in which a coating layer is provided on a white polyester film comprising a reflective layer containing barium sulfate particles and a support layer.
硫酸バリゥム粒子のポリエステル組成物への配合は、 ポリエステルの重合時 に行ってもよく、 重合後に行ってもよい。 重合時に行う場合、 エステル交換反 応もしくはエステル化反応終了前に配合してもよく、 重縮合反応開始前に配合 してもよい。  The blending of the barium sulfate particles into the polyester composition may be performed during the polymerization of the polyester or after the polymerization. In the case of polymerization, it may be added before the end of the transesterification or esterification reaction, or before the start of the polycondensation reaction.
重合後に行う場合、 重合後のポリエステルに添加し溶融混練すればよい。 こ の場合、 硫酸バリウム粒子を比較的高濃度で含有するマスターペレットを製造 し、 これを硫酸バリウム粒子を含有しないポリエステルペレツ卜に配合するこ とで所望の含有率で硫酸バリゥム粒子を含有するポリエステル組成物を得るこ とができる。 When it is performed after polymerization, it may be added to the polymerized polyester and melt-kneaded. In this case, master pellets containing barium sulfate particles at a relatively high concentration are produced and blended with polyester pellets containing no barium sulfate particles. Thus, a polyester composition containing barium sulfate particles at a desired content can be obtained.
製膜時のフィル夕一として線径 1 5 // m以下のステンレス鋼細線よりなる平 均目開き 1 0〜 1 0 0 m、 好ましくは平均目開き 2 0〜5 0 j mの不織布型 フィル夕一を用い、 ポリエステル組成物を濾過することが好ましい。 この濾過 を行なうことにより、 一般的には凝集して粗大凝集粒子となりやすい粒子の凝 集を抑えて、 粗大異物の少ないフィルムを得ることができる。  Non-woven fabric type filter with an average opening of 10 to 100 m, preferably an average opening of 20 to 50 jm, made of stainless steel fine wire with a wire diameter of 15 // m or less. It is preferable to filter the polyester composition. By performing this filtration, it is possible to obtain a film with few coarse foreign matters by suppressing aggregation of particles that tend to agglomerate into coarse agglomerated particles.
ダイから溶融したポリエステル組成物をフイードブロックを用いた同時多層 押出し法により、 積層未延伸シートを製造する。 すなわち反射層を構成するポ リエステル組成物の溶融物と、 支持層を構成するポリエステル組成物の溶融物 とを、 フィードブロックを用いて反射層 Z支持層となるように積層し、 ダイに 展開して押出しを実施する。 この時、 フィードブロックで積層されたポリエス テル組成物は、 積層された形態を維持している。  A laminated unstretched sheet is produced by a simultaneous multilayer extrusion method using a feed block of a polyester composition melted from a die. In other words, the polyester composition melt constituting the reflective layer and the polyester composition melt constituting the support layer are laminated to form the reflective layer Z support layer using a feed block, and developed on a die. And extruding. At this time, the polyester composition laminated by the feed block maintains the laminated form.
ダイより押出された未延伸シートは、 キャスティングドラムで冷却固化され、 未延伸フィルムとなる。  The unstretched sheet extruded from the die is cooled and solidified with a casting drum to form an unstretched film.
塗布層の塗設に用いる塗液は、 この未延伸フィルムに対して、 もしくは、 こ の後の縦延伸を経た縦延伸フィルムに対して、 塗布することが好ましい。  The coating liquid used for coating the coating layer is preferably applied to this unstretched film or to a longitudinally stretched film that has been subjected to subsequent longitudinal stretching.
未延伸状フィルムを、 ロール加熱、 赤外線加熱等で加熱し、 縦方向に延伸し て縦延伸フィルムを得る。 この延伸は 2個以上のロールの周速差を利用して行 うのが好ましい。 延伸温度はポリエステルのガラス転移点 (T g ) 以上の温度 とすることが好ましく、 さらには T g〜 (T g + 7 0で) の温度とするのが好 ましい。 延伸倍率は、 用途の要求特性にもよるが、 縦方向、 縦方向と直交する 方向 (以降、 横方向と呼ぶ) ともに、 好ましくは 2 . 2〜4 . 0倍、 さらに好 ましくは 2 . 3〜3 . 9倍である。 2 . 2倍未満とするとフィルムの厚み斑が 悪くなり良好なフィルムが得られず、 4 . 0倍を超えると製膜中に破断が発生 し易くなり好ましくない。 縦延伸フィルムは、 続いて、 橫延伸、 熱固定、 熱弛緩の処理を順次施して二 軸配向フィルムとするが、 これら処理はフィルムを走行させながら行う。 横延 伸の処理はポリエステルのガラス転移点 (Tg) より高い温度から始め、 (T g+ 5) 〜 (Tg + 70) の温度に昇温しながら行う。 横延伸過程での昇温 は連続的でも段階的 (逐次的) でもよいが通常逐次的に昇温する。 例えばテン 夕一の横延伸ゾーンをフィルム走行方向に沿って複数に分け、 ゾーン毎に所定 温度の加熱媒体を流すことで昇温する。 横延伸の倍率は、 好ましくは 2. 5〜 4. 5倍、 さらに好ましくは 2. 8〜3. 9倍である。 2. 5倍未満であると フィルムの厚み斑が悪くなり良好なフィルムが得られず好ましくなく、 4. 5 倍を超えると製膜中に破断が発生し易くなり好ましくない。 The unstretched film is heated by roll heating, infrared heating, etc., and stretched in the machine direction to obtain a stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is preferably a temperature equal to or higher than the glass transition point (T g) of the polyester, and more preferably a temperature of T g to (at T g +70). Depending on the required characteristics of the application, the draw ratio is preferably from 2.2 to 4.0 times, more preferably 2 in both the machine direction and the direction perpendicular to the machine direction (hereinafter referred to as the transverse direction). 3 to 3.9 times. If it is less than 2 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained, and if it exceeds 4.0 times, breakage tends to occur during film formation, which is not preferable. The longitudinally stretched film is subsequently subjected to the processes of cocoon stretching, heat setting, and thermal relaxation to form a biaxially oriented film, which are performed while the film is running. The lateral elongation treatment starts from a temperature higher than the glass transition temperature (Tg) of the polyester and is performed while raising the temperature to a temperature of (Tg + 5) to (Tg + 70). The temperature rise in the transverse stretching process may be continuous or stepwise (sequential), but usually the temperature rises sequentially. For example, the horizontal stretching zone of Ten Ten is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium of a predetermined temperature for each zone. The transverse stretching ratio is preferably 2.5 to 4.5 times, more preferably 2.8 to 3.9 times. 2. If it is less than 5 times, the thickness unevenness of the film deteriorates and a good film cannot be obtained, and if it exceeds 4.5 times, breakage tends to occur during film formation, which is not preferred.
横延伸後のフィルムは両端を把持したまま(Tm— 20)〜(: Tm_ 100)で で定幅または 10 %以下の幅減少下で熱処理して熱収縮率を低下させるのがよ レ^ これより高い温度であるとフィルムの平面性が悪くなり、 厚み斑が大きく なり好ましくない。 熱処理温度が (Tm— 10.0) でより低いと熱収縮率が大 きくなることがある。  The film after transverse stretching should be held at both ends (Tm-20) to (: Tm_100) to reduce the thermal shrinkage rate by heat treatment under constant width or width reduction of 10% or less. When the temperature is higher, the flatness of the film is deteriorated, and the thickness unevenness is unfavorable. If the heat treatment temperature is lower (Tm-10.0), the thermal shrinkage rate may increase.
熱処理後、 フィルム温度を常温に戻す過程で (Tm— 20) 〜 (Tm — 10 0) °Cの温度領域にて、 フィルムの熱収縮量を調整するために、 把持している フィルムの両端を切り落し、 フィルム縦方向の引き取り速度を調整し、 縦方向 に弛緩させてもよい。 弛緩するには、 テン夕一出側のロール群の速度を調整す ればよい。 弛緩は、 テン夕一のフィルムライン速度に対してロール群の速度ダ ゥンを行レ 、好ましくは 0. 1〜1. 5%、 さらに好ましくは 0. 2〜; L. 2%、 特に好ましくは 0. 3〜1. 0%の速度ダウンを実施することで行うことがで きる。 このようにフィルムを弛緩することによつて縦方向の熱収縮率を調整す ることができる。 また、 フィルム横方向は両端を切り落すまでの過程で幅減少 させて、 所望の熱収縮率を得ることもできる。  In the process of returning the film temperature to room temperature after heat treatment, in order to adjust the thermal shrinkage of the film in the temperature range of (Tm-20) to (Tm-10 0) ° C, It may be cut off and adjusted in the longitudinal direction of the film to be relaxed in the longitudinal direction. To relax, adjust the speed of the roll group on the ten evening side. For the relaxation, the speed of the roll group is reduced with respect to the film line speed of Ten Ten, preferably 0.1 to 1.5%, more preferably 0.2 to; L. 2%, particularly preferably Can be performed by performing a speed reduction of 0.3 to 1.0%. By relaxing the film in this way, the heat shrinkage rate in the vertical direction can be adjusted. In addition, the width of the film in the horizontal direction can be reduced in the process until the both ends are cut off to obtain a desired heat shrinkage rate.
ここでは、 逐次二軸延伸法によって延伸する場合を例に詳細に説明したが、 本発明の積層フィルムは逐次二軸延伸法、 同時二軸延伸法のいずれの方法で延 伸してもよい。 Here, the case of stretching by the sequential biaxial stretching method was explained in detail as an example, The laminated film of the present invention may be stretched by either a sequential biaxial stretching method or a simultaneous biaxial stretching method.
本発明において塗布層は、 基材のポリエステルフィルム上に直接設けてもよ いが、 接着性が不足する場合には、 ポリエステルフィルムの表面にコロナ放電 処理や下引き処理を行うことが好ましい。 下引き処理は、 ポリエステルフィル ム製造工程内で設けてよく (インラインコーティング法) 、 ポリエステルフィ ルムを製造後に別途塗布でもよい (オフラインコーティング法) 。 下引き処理 に用いる材料は適宜選択すればよいが、 好適なものとしては、 共重合ポリエス テル、 ポリウレタン、 アクリル、 各種カップリング剤を用いることができる。 無機蛍光体を含有する塗布層は、 任意の方法で塗布することができる。 例え ばグラビア、 ロール、 スピン、 リバース、 バ一、 スクリーン、 デイツビングな どの方法を用いることができる。 塗布後の硬化方法は、 公知の方法を用いるこ とができる。 例えば、 熱硬化、 紫外線、 電子線、 放射線などの活性線を用いる 方法を適用できる。 塗布は、 ポリエステルフィルムの製造時にフィルムの結晶 配向化完了前に行ってもよく、 フィルムの結晶配向完了後に行ってもよい。 実施例  In the present invention, the coating layer may be provided directly on the base polyester film. However, when the adhesiveness is insufficient, it is preferable to subject the surface of the polyester film to corona discharge treatment or subbing treatment. The subbing treatment may be provided in the polyester film manufacturing process (inline coating method), or may be applied separately after the polyester film is manufactured (offline coating method). The material used for the subbing treatment may be selected as appropriate, but as a suitable material, copolymer polyester, polyurethane, acrylic, and various coupling agents can be used. The coating layer containing the inorganic phosphor can be coated by any method. For example, gravure, roll, spin, reverse, bar, screen, datebing, etc. can be used. A known method can be used as a curing method after coating. For example, a method using active rays such as thermosetting, ultraviolet rays, electron beams, and radiation can be applied. The application may be performed before the completion of the crystal orientation of the film during the production of the polyester film, or after the completion of the crystal orientation of the film. Example
以下、 実施例により本発明を詳述する。  Hereinafter, the present invention will be described in detail by way of examples.
なお、 測定および評価は以下の方法で行った。  Measurement and evaluation were performed by the following methods.
( 1 ) フィルムの厚み  (1) Film thickness
フィルムサンプルをエレクトリックマイクロメーター (アンリツ製 K一 4 0 2 B ) にて 1 0点厚みを測定して平均値を求め、 フィルム厚みとした。  The film sample was measured for 10-point thickness with an electric micrometer (K-1400 B, manufactured by Anritsu), and the average value was obtained to obtain the film thickness.
( 2 ) 塗布層の厚み  (2) Coating layer thickness
サンプルを三角形に切り出し、 包埋カプセルに固定後、 エポキシ樹脂にて包 埋した。 そして、 包埋されたサンプルをミクロ I ^一ム (U L T R A C U T— S ) で縦方向に平行な断面を薄膜切片にした後、 光学顕微鏡を用いて観察撮影し、 写真から塗布層とフィルムとの厚み比を測定し、 フィルム全体の厚みから計算 して塗布層の厚みを求めた。 Samples were cut into triangles, fixed in embedded capsules, and embedded in epoxy resin. Then, after embedding the sample with a micro I ^ 1 um (ULTRACUT-S), the section parallel to the longitudinal direction was made into a thin film slice, and then observed and photographed using an optical microscope, The thickness ratio of the coating layer to the film was measured from the photograph, and the thickness of the coating layer was determined by calculating from the thickness of the entire film.
(3) 励起波長 400から 450 nmでの発光および発光ピーク波長  (3) Emission and peak emission wavelength at excitation wavelength of 400 to 450 nm
蛍光分光光度計 F_4500 (日立製) を用いて、 励起波長 400から 45 0 nmの範囲および発光波長 300から 800 n mの範囲における励起発光ス ベクトルを採取して蛍光発光の有無を下記の基準で評価した。 測定は、 蛍光体 含有塗布層を設けた面ついて行った。 蛍光発光のあるものについては、 励起発 光スぺクトルから発光ピーク波長を求めた。  Using fluorescence spectrophotometer F_4500 (manufactured by Hitachi), we collect excitation emission spectra in the excitation wavelength range of 400 to 450 nm and emission wavelength range of 300 to 800 nm and evaluate the presence or absence of fluorescence emission according to the following criteria. did. The measurement was performed on the surface provided with the phosphor-containing coating layer. For those with fluorescent emission, the emission peak wavelength was determined from the excitation emission spectrum.
◎ : 蛍光発光有り  ◎: With fluorescence
X : 蛍光発光無し  X: No fluorescence
(4) 経時的な黄変  (4) Yellowing over time
高圧水銀ランプ (ハリソン東芝ライティング製 「トスキユア 40 1」 :ガ ラスフィル夕付き)によって 50時間光照射し、光照射前後での色変化をみた。 光照射での放射照度は 1 SmWZcm2であった。 フィルムの構成が反射層/支 持層の 2層の場合、 反射層側から光照射して測定を行った。 Light irradiation was performed for 50 hours with a high-pressure mercury lamp ("Tosukia 40 1" manufactured by Harrison Toshiba Lighting) with a glass fill, and the color change before and after the light irradiation was observed. The irradiance with light irradiation was 1 SmWZcm 2 . When the film was composed of two layers, a reflective layer and a support layer, measurement was performed by irradiating light from the reflective layer side.
初期のフィルム色相 (1^*、 a, b と、 照射後のフィルム色相 (L2 *、 a2 b2*) とを、 色差計 (日本電色工業製 S Z S_∑ 90 COLOR MEASUR I NG SYSTEM) にて測定し、 下記式で表される色相変化 dE *を算出し、 下記の基準で評価した。 The initial film hue (1 ^ *, a, b, and the film hue after irradiation (L 2 *, a 2 b 2 *) are combined with a color difference meter (Nippon Denshoku SZ S_∑ 90 COLOR MEASUR I NG SYSTEM ), A hue change dE * represented by the following formula was calculated, and evaluated according to the following criteria.
dE*= { (L -L2*) 2+ (a a2*) 2+ (b^— b2*) 2} 1/2 ◎ ·· d E*≤ 5 dE * = {(L -L2 *) 2 + (aa 2 *) 2 + (b ^ — b 2 *) 2 } 1/2 ◎ dE * ≤ 5
〇: 5<dE*≤ 10  ○: 5 <dE * ≤ 10
Δ: 10<d E*≤ 1 5  Δ: 10 <d E * ≤ 1 5
X : 1 5<d E*  X: 1 5 <d E *
(5) 平均粒径  (5) Average particle size
ポリエステルに添加する前の粉体状態の粒子を、 走査型電子顕微鏡 (SEM) 試料台に両面テープを張り、 その上に粒子を薄くのせ、 カーボン蒸着後、 走査 型電子顕微鏡 (S EM) を用い、 粒子の大きさにあわせて適宜倍率を変え写真 撮影を行った。 少なくとも 100点以上の粒子の円相当径を画像処理装置にて 求め、 粒子の個数で除して個数基準の平均粒径 ( /m) を求めた。 Scanning electron microscope (SEM) shows particles in powder before being added to polyester A double-sided tape was placed on the sample stage, and the particles were thinly deposited on it. After carbon deposition, a scanning electron microscope (SEM) was used to change the magnification appropriately according to the size of the particles and take pictures. The equivalent circle diameter of at least 100 particles or more was obtained with an image processing apparatus, and divided by the number of particles to obtain a number-based average particle diameter (/ m).
(6) 輝度および色度  (6) Luminance and chromaticity
測定対象が白色ポリエステルフィルムである場合 (実施例 1〜 5および比較 例 1〜3) については、 下記 (6_ 1) から (6 _ 5) に記載の方法で評価し た。  When the measurement object was a white polyester film (Examples 1 to 5 and Comparative Examples 1 to 3), the evaluation was performed by the method described in (6_1) to (6_5) below.
(6- 1) 評価用バックライトユニットの作成  (6-1) Creating a backlight unit for evaluation
評価用に用意した液晶テレビ (SHARP社製 AQUOS L C- 20 S 4) から、 直下型バックライトユニット (20インチ) を取り出し、 バックラ ィトュニットに元々組み込まれていた光反射シートに替えて、 測定対象のフィ ルムを組み込み、 評価用バックライトュニットを作成した。  Take the direct backlight unit (20 inches) from the LCD TV (SHARP AQUOS L C-20 S 4) prepared for evaluation, and replace it with the light reflection sheet originally built in the backlight unit. A backlight unit for evaluation was created.
評価用バックライトュニッ卜のバックライト面を 2 X 2の 4区画に分け、 バ ックライトを点灯して 1時間後の正面の輝度および色度を、 トプコン社製 BM _ 7輝度計を用い、 測定角を 1 ° 、 輝度計とバックライトとの距離を 50 cm として測定した。 測定は、 バックライト面の 4区画それぞれについて行い、 輝 度の単純平均を求めて平均輝度とし、 色度の単純平均を求めて平均輝度とした。  Divide the backlight surface of the evaluation backlight unit into 2 × 2 4 sections, and turn on the backlight and measure the brightness and chromaticity of the front one hour later using a Topcon BM _ 7 luminance meter. The angle was 1 ° and the distance between the luminance meter and the backlight was 50 cm. The measurement was performed for each of the four sections of the backlight surface, and a simple average of luminance was obtained as average luminance, and a simple average of chromaticity was obtained as average luminance.
(6-2) 輝度向上率  (6-2) Brightness improvement rate
蛍光体含有塗布層の塗工前のフィルムを測定対象として、 上記 (6— 1) の 方法で塗工前の平均輝度を測定した。 つぎに、 蛍光体含有塗布層の塗工後のフ イルムを測定対象として、 上記 (6— 1) の方法で塗工後の平均輝度を測定し た。 得られた平均輝度から、 下記式を用いて輝度向上率を算出した。  Using the film before coating of the phosphor-containing coating layer as an object of measurement, the average luminance before coating was measured by the method (6-1) above. Next, the average brightness after coating was measured by the above method (6-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the obtained average luminance, the luminance improvement rate was calculated using the following formula.
輝度向上率 (%)  Brightness improvement rate (%)
= (塗工後の平均輝度) / (塗工前の平均輝度) X 100  = (Average brightness after coating) / (Average brightness before coating) X 100
(6-3) 色度差 蛍光体含有塗布層の塗工前のフィルムを測定対象として、 上記 (6— 1) の 方法で塗工前の平均色度 (x、 y) を測定した。 つぎに、 蛍光体含有塗布層の 塗工後のフィルムを測定対象として、 上記 (6— 1) の方法で塗工後の平均色 度 (x、 y) を測定した。 得られた平均色度 (x、 y) から、 下記式を用いて 色度差 Δχγを算出した。 (6-3) Chromaticity difference The average chromaticity (x, y) before coating was measured by the method of (6-1) above using the film before coating of the phosphor-containing coating layer as a measurement target. Next, the average chromaticity (x, y) after coating was measured by the method of (6-1) above using the film after coating of the phosphor-containing coating layer as a measurement target. From the average chromaticity (x, y) obtained, the chromaticity difference Δχγ was calculated using the following formula.
Δ X y= (Δ χ 2 + Δ y 2) 1 /2 Δ X y = (Δ χ 2 + Δ y 2 ) 1/2
Δχ= (塗工後の平均色度の χ成分) 一 (塗工前の平均色度の X成分) Δγ= (塗工後の平均色度の y成分) 一 (塗工前の平均色度の y成分) 得られた Δ X yを用いて、 下記の基準で色度差△ X yを評価した。  Δχ = (χ component of average chromaticity after coating) 1 (X component of average chromaticity before coating) Δγ = (y component of average chromaticity after coating) 1 (average chromaticity before coating) Y component) Using the obtained Δ X y, the chromaticity difference Δ X y was evaluated according to the following criteria.
◎ : Δ X y<0. 0 δ  : Δ X y <0. 0 δ
〇: 0. 05≤Δ X y<0. 10  〇: 0. 05≤Δ X y <0. 10
X : 0. 10≤Δ x y  X: 0.10≤Δ x y
(6-4) 耐久性試験での輝度維持率  (6-4) Luminance maintenance rate in durability test
蛍光体含有塗布層の塗工後のフィルム (耐久性試験前のフィルム) を測定対 象として、 上記 (6— 1) の方法で平均輝度を測定した。 つぎに、 バックライ 卜を点灯させたまま 3000時間経時させる耐久性試験を行った。 耐久性試験 を経たフィルムについて、 上記 (6— 1) の方法で耐久性試験後の平均輝度を 測定した。  The average luminance was measured by the method described in (6-1) above using the film after coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight lit. The average luminance after the durability test was measured for the film after the durability test by the method (6-1) above.
輝度維持率を下記の式にて算出した。  The luminance maintenance rate was calculated by the following formula.
輝度維持率 (%)  Luminance maintenance rate (%)
= (耐久性試験後の平均輝度) / (耐久性試験前の平均輝度) X 100 (6-5) 耐久性試験での色度変化  = (Average brightness after endurance test) / (Average brightness before endurance test) X 100 (6-5) Change in chromaticity in endurance test
蛍光体含有塗布層の塗工後のフィルム (耐久性試験前のフィルム) を測定対 象として、 上記 (6— 1) の方法で平均色度 (x、 y) を測定した。 つぎに、 バックライトを点灯させたまま 3000時間経時させる耐久性試験を行った。 耐久性試験を経たフィルムについて、 上記 (6— 3) の方法で耐久性試験後の 平均色度 (x、 y) を測定した。 得られた平均色度 (x、 y) から、 下記式を 用いて Axyを算出した。 The average chromaticity (x, y) was measured by the method described in (6-1) above using the film after coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight on. For films that have undergone a durability test, use the method described in (6-3) above. Average chromaticity (x, y) was measured. From the average chromaticity (x, y) obtained, Axy was calculated using the following formula.
Δ X y = (Δ X 2 + Δ y 2) 1 2 Δ X y = (Δ X 2 + Δ y 2 ) 1 2
Δχ= (耐久性試験後の平均色度の x成分) - (耐久性試験前の平均色度 の X成分)  Δχ = (x component of average chromaticity after durability test)-(X component of average chromaticity before durability test)
Δγ= (耐久性試験後の平均色度の y成分) - (耐久性試験前の平均色度 の y成分)  Δγ = (y component of average chromaticity after durability test)-(y component of average chromaticity before durability test)
得られた Δ X yを用いて、 下記の基準で色度変化 Δ X yを評価した。  Using the obtained Δ X y, the chromaticity change Δ X y was evaluated according to the following criteria.
◎ : Δ X y<0. 05  : Δ X y <0. 05
〇: 0. 0 δ≤Δχγ<0. 10  ○: 0. 0 δ≤Δχγ <0. 10
X : 0. 10≤Δ χ y  X: 0.10≤Δ χ y
(7) 輝度および色度  (7) Luminance and chromaticity
測定対象が透明ポリエステルフィルムである場合 (実施例 6および比較例 4) については、 下記 (7— 1) から (7— 5) に記載の方法で評価した。  When the measurement object was a transparent polyester film (Example 6 and Comparative Example 4), the evaluation was performed by the methods described in (7-1) to (7-5) below.
(7 _ 1) 評価用バックライトユニットの作成  (7 _ 1) Creating a backlight unit for evaluation
評価用に用意した液晶テレビ (SHARP社製 AQUOS LC- 20 S 4) から、 直下型バックライトユニット (20インチ) を取り出し、 ノ ックラ ィ卜ュニッ卜に元々組み込まれていた光拡散シートに替えて、 測定対象のフィ ルムを組み込み、 評価用バックライトュニットを作成した。  Take the direct backlight unit (20 inches) from the LCD TV (SHARP AQUOS LC-20 S 4) prepared for evaluation, and replace it with the light diffusion sheet that was originally built into the Knock Tune. An evaluation backlight unit was created by incorporating the film to be measured.
評価用バックライトユニットのバックライト面を 2 X 2の 4区画に分け、 バ ックライトを点灯して 1時間後の正面の輝度および色度を、 トプコン社製 BM 一 7輝度計を用い、 測定角を 1° 、 輝度計とバックライトとの距離を 50 cm として測定した。 測定は、 バックライト面の 4区画それぞれについて行い、 輝 度の単純平均を求めて平均輝度とし、 色度の単純平均を求めて平均輝度とした。  Divide the backlight surface of the backlight unit for evaluation into 2 × 2 4 sections, and turn on the backlight and measure the luminance and chromaticity of the front one hour later using a Topcon BM-7 luminance meter. Was measured at 1 °, and the distance between the luminance meter and the backlight was 50 cm. The measurement was performed for each of the four sections of the backlight surface, and a simple average of luminance was obtained as average luminance, and a simple average of chromaticity was obtained as average luminance.
(7-2) 輝度向上率  (7-2) Brightness improvement rate
蛍光体含有塗布層の塗工前のフィルムを測定対象として、 上記 (7— 1) の 方法で塗工前の平均輝度を測定した。 つぎに、 蛍光体含有塗布層の塗工後のフ イルムを測定対象として、 上記 (7— 1) の方法で塗工後の平均輝度を測定し た。 得られた平均輝度から、 下記式を用いて輝度向上率を算出した。 Using the film before coating of the phosphor-containing coating layer as the measurement target, the above (7-1) The average brightness before coating was measured by this method. Next, the average luminance after coating was measured by the above method (7-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the obtained average luminance, the luminance improvement rate was calculated using the following formula.
輝度向上率 (%)  Brightness improvement rate (%)
= (塗工後の平均輝度) / (塗工前の平均輝度) X 100  = (Average brightness after coating) / (Average brightness before coating) X 100
(7-3) 色度差  (7-3) Chromaticity difference
蛍光体含有塗布層の塗工前のフィルムを測定対象として、 上記 (7— 1) の 方法で塗工前の平均色度 (x、 y) を測定した。 つぎに、 蛍光体含有塗布層の 塗工後のフィルムを測定対象として、 上記 (7— 1) の方法で塗工後の平均色 度 (x、 y) を測定した。 得られた平均色度 (x、 y) から、 下記式を用いて 色度差 Δχγを算出した。  The average chromaticity (x, y) before coating was measured by the method of (7-1) above using the film before coating of the phosphor-containing coating layer as a measurement target. Next, the average chromaticity (x, y) after coating was measured by the above method (7-1) using the film after coating of the phosphor-containing coating layer as a measurement target. From the average chromaticity (x, y) obtained, the chromaticity difference Δχγ was calculated using the following formula.
Δ X y= (Δ χ 2 + Δ y 2) 1 /2 Δ X y = (Δ χ 2 + Δ y 2 ) 1/2
Δχ= (塗工後の平均色度の χ成分) 一 (塗工前の平均色度の X成分) Δγ= (塗工後の平均色度の y成分) 一 (塗工前の平均色度の y成分) 得られた Δχγを用いて、 下記の基準で色度差 Δχγを評価した。  Δχ = (χ component of average chromaticity after coating) 1 (X component of average chromaticity before coating) Δγ = (y component of average chromaticity after coating) 1 (average chromaticity before coating) Y component) Using the obtained Δχγ, the chromaticity difference Δχγ was evaluated according to the following criteria.
◎: Δ X y<0. 05  ◎: Δ X y <0. 05
〇: 0. 0 δ≤Δχγ<0. 10  ○: 0. 0 δ≤Δχγ <0. 10
X : 0. 10≤Δ X y  X: 0.10≤Δ X y
(7-4) 耐久性試験での輝度維持率  (7-4) Luminance maintenance rate in durability test
蛍光体含有塗布層の塗工後のフィルム (耐久性試験前のフィルム) を測定対 象として、 上記 (7 _ 1) の方法で平均輝度を測定した。 つぎに、 バックライ トを点灯させたまま 3000時間経時させる耐久性試験を行った。 耐久性試験 を経たフィルムについて、 上記 (7— 1) の方法で耐久性試験後の平均輝度を 測定した。  The average luminance was measured by the above method (7_1), using the film after the coating of the phosphor-containing coating layer (the film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the backlight turned on. The average luminance after the durability test was measured for the film that had undergone the durability test by the method (7-1) above.
輝度維持率を下記の式にて算出した。  The luminance maintenance rate was calculated by the following formula.
輝度維持率 (%) = (耐久性試験後の平均輝度) / (耐久性試験前の平均輝度) X 100Luminance maintenance rate (%) = (Average brightness after endurance test) / (Average brightness before endurance test) X 100
(7— 5) 耐久性試験での色度変化 (7-5) Change in chromaticity during durability test
蛍光体含有塗布層の塗工後のフィルム (耐久性試験前のフィルム) を測定対 象として、 上記 (7— 1) の方法で平均色度 (x、 y) を測定した。 つぎに、 バックライ卜を点灯させたまま 3000時間経時させる耐久性試験を行った。 耐久性試験を経たフィルムについて、 上記 (7— 3) の方法で耐久性試験後の 平均色度 (x、 y) を測定した。 得られた平均色度 (x、 y) から、 下記式を 用いて Axyを算出した。  The average chromaticity (x, y) was measured by the method described in (7-1) above using the film after coating of the phosphor-containing coating layer (film before the durability test) as the measurement target. Next, a durability test was performed for 3000 hours with the back light lit. About the film which passed the durability test, the average chromaticity (x, y) after a durability test was measured by the method of said (7-3). From the average chromaticity (x, y) obtained, Axy was calculated using the following formula.
Δ X y = (Δ χ2 + Δ y 2) 1/2 Δ X y = (Δ χ 2 + Δ y 2 ) 1/2
Δχ= (耐久性試験後の平均色度の χ成分) 一 (耐久性試験前の平均色度 の X成分)  Δχ = (χ component of average chromaticity after durability test) 1 (X component of average chromaticity before durability test)
Δγ= (耐久性試験後の平均色度の y成分) - (耐久性試験前の平均色度 の y成分)  Δγ = (y component of average chromaticity after durability test)-(y component of average chromaticity before durability test)
得られた Δ X yを用いて、 下記の基準で色度変化 Δ X yを評価した。  Using the obtained Δ X y, the chromaticity change Δ X y was evaluated according to the following criteria.
◎: Δ X y<0. 05  ◎: Δ X y <0. 05
〇: 0. 05≤Δχγ<0. 10  ◯: 0. 05≤Δχγ <0. 10
X : 0. 10≤Δ χ y 参考例 1 (白色ポリエステルフィルムの製造)  X: 0.10≤Δ χ y Reference Example 1 (Production of white polyester film)
テレフ夕ル酸ジメチル 132重量部、 イソフタル酸ジメチル 18重量部 (ポ リエステルの全ジカルボン酸成分を基準に 12モル%) 、 エチレングリコール 96重量部、 ジエチレングリコール 3. 0重量部、 酢酸マンガン 0. 05重量 部、 酢酸リチウム 0. 012重量部を精留塔、 留出コンデンサを備えたフラス コに仕込み、 撹拌しながら 150〜235 に加熱しメタノールを留出させェ ステル交換反応を行った。 メタノールが留出した後、 リン酸トリメチル 0. 0 3重量部、 二酸化ゲルマニウム 0. 04重量部を添加し、 反応物を反応器に移 した。 ついで撹拌しながら反応器内を徐々に 0. 5mmHgまで減圧するとと もに 290 まで昇温し重縮合反応を行った。 得られた共重合ポリエステルの ジエチレングリコール成分量は 2. 5重量%、 ゲルマニウム元素含有量は 50 ppm、 リチウム元素含有量は 5 p pmであった。 132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the total dicarboxylic acid component of the polyester), 96 parts by weight of ethylene glycol, 3.0 parts by weight of diethylene glycol, 0.05 parts by weight of manganese acetate And 0.012 parts by weight of lithium acetate were charged into a flask equipped with a rectifying column and a distillation condenser, and heated to 150 to 235 with stirring to distill methanol to carry out an ester exchange reaction. After methanol is distilled, 0.03 parts by weight of trimethyl phosphate and 0.04 parts by weight of germanium dioxide are added, and the reaction product is transferred to the reactor. did. Then, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg, and the temperature was raised to 290 to conduct a polycondensation reaction. The obtained copolymer polyester had a diethylene glycol component content of 2.5% by weight, a germanium element content of 50 ppm, and a lithium element content of 5 ppm.
このポリエステルに平均粒径 1. 5 mの硫酸バリウム粒子を 50重量%添 加して反射層用のポリエステル組成物を得た。 また、 このポリエステルに平均 粒径 1. 5 /mの硫酸バリゥム粒子を 5重量%添加して支持層用のポリエステ ル組成物を得た。 それぞれの組成物を、 280 に加熱された 2台の押出機に 供給し、 反射層 支持層の厚み比率が 3 1となるように 2層フィードブロッ ク装置を用いて合流させて 2層に積層し、 この積層状態を保持したままダイス より押出て 2層シート状に成形した。 これを表面温度 25 の冷却ドラムで冷 却固化して未延伸フィルムとし、 さらに 95 に加熱して長手方向 (縦方向) に延伸し、 25でのロール群で冷却した。 続いて、 縦延伸したフィルムの両端 をクリップで保持しながらテン夕一に導き 120 に加熱された雰囲気中で長 手方向に垂直な方向 (横方向) に延伸した。 その後テン夕一内で 200 の温 度で熱固定を行い、 縦方向の弛緩および横方向の幅入れを 130での温度でそ れぞれ 0. 5%、 1 %ずつ行い、 室温まで冷やして、 総厚み 188 mの二軸 延伸ポリエステルフィルムを得た。 参考例 2 (透明ポリエステルフィルムの製造)  50% by weight of barium sulfate particles having an average particle diameter of 1.5 m was added to this polyester to obtain a polyester composition for a reflective layer. Further, 5% by weight of barium sulfate particles having an average particle size of 1.5 / m was added to this polyester to obtain a polyester composition for a support layer. Each composition is supplied to two extruders heated to 280, and the two layers are laminated by using a two-layer feedblock device so that the thickness ratio of the reflective layer and the support layer is 31. Then, while maintaining this laminated state, it was extruded from a die and formed into a two-layer sheet. This was cooled and solidified with a cooling drum having a surface temperature of 25 to form an unstretched film, further heated to 95, stretched in the longitudinal direction (longitudinal direction), and cooled with a roll group of 25. Next, the film was stretched in the direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 while being held at both ends of the film that had been stretched longitudinally and held in clips. After that, heat setting is performed at a temperature of 200 in the evening, and longitudinal relaxation and lateral width adjustment are performed at 0.5% and 1% respectively at a temperature of 130, and cooled to room temperature. A biaxially stretched polyester film having a total thickness of 188 m was obtained. Reference Example 2 (Production of transparent polyester film)
ジメチルテレフ夕レート 96重量部、 エチレングリコール 58重量部および 酢酸マンガン 0. 03重量部をそれぞれ反応器に仕込み、攪拌下内温が 24 Ot になるまでメ夕ノ一ルを留出せしめながらエステル交換反応を行い、 該エステ ル交換反応が終了した後、 トリメチルホスフェート 0. 097重量部および三 酸化アンチモン 0. 041重量部を添加した。弓 Iき続いて反応生成物を昇温し、 最終的に高真空下 280°Cの条件で重縮合を行って固有粘度 ( [ ] ) 0. 6 4のポリエステルペレツトを得た。 96 parts by weight of dimethyl terephthalate, 58 parts by weight of ethylene glycol and 0.03 part by weight of manganese acetate were charged into the reactor, respectively, and the ester exchange was carried out while distilling the methanol until the internal temperature reached 24 Ot under stirring. After completion of the ester exchange reaction, 0.097 part by weight of trimethyl phosphate and 0.041 part by weight of antimony trioxide were added. Bow I Then, the reaction product is heated up, and finally polycondensation is carried out under high vacuum at 280 ° C to obtain the intrinsic viscosity ([]) 0. 6 4 polyester pellets were obtained.
得られたポリエステルペレットを 1 6 0 にて 3時間乾燥させた後、 28 0でで溶融押出し、 表面温度 20での冷却ドラムで冷却固化して未延伸フィル ムを得た。 続いて、 95でに加熱して長手方向 (縦方向) に 3. 2倍延伸し、 25でのロール群で冷却した後、 縦延伸したフィルムの両端をクリップにて把 持しながらテン夕一に導き、 1 20でに加熱した雰囲気中にて長手方向に垂直 な方向 (横方向) に 3. 6倍延伸した後、 220 の温度にて熱固定を行った。 その後、 テン夕一内 1 30での温度において、 縦方向の弛緩、 横方向の幅入れ をそれぞれ 0. 5%、 1. 0 %ずつ行い室温まで冷やして二軸延伸フィルムを 得た。 実施例 1 (白色ポリエステルフィルムの例)  The obtained polyester pellets were dried at 1600 for 3 hours, melt-extruded at 2800, and cooled and solidified with a cooling drum at a surface temperature of 20 to obtain an unstretched film. Subsequently, the film was heated at 95, stretched in the longitudinal direction (longitudinal direction) by a factor of 3.2, cooled by a roll group at 25, and then stretched while holding both ends of the longitudinally stretched film with clips. In the atmosphere heated at 120, the film was stretched 3.6 times in the direction perpendicular to the longitudinal direction (lateral direction) and then heat-fixed at a temperature of 220. Thereafter, at a temperature of 1130 in Tenyuichi, longitudinal relaxation and lateral width insertion were carried out by 0.5% and 1.0%, respectively, and cooled to room temperature to obtain a biaxially stretched film. Example 1 (Example of white polyester film)
下記の組成物をトルエン Z酢酸ブチル混合溶液に溶解して、 45重量%の固 形分濃度の塗液を作成した。 トルエン Z酢酸ブチル混合溶液として重量比で 1 : 1のものを用いた。  The following composition was dissolved in a toluene / butyl acetate mixed solution to prepare a coating solution having a solid content concentration of 45% by weight. A 1: 1 mixture of toluene and butyl acetate was used.
(塗液固形分組成)  (Coating liquid solid content composition)
•緑色発光無機蛍光体 22 10 (化成ォプトロ二クス社製) 30重量部 •紫外線吸収物質 ユー夕ブル UV60 10 (日本触媒社製) 1 5重量部 この塗液を、 参考例 1で得た白色ポリエステルフィルムの反射層の上に、 乾 燥後の厚みが 5 //mになるように塗布し、 1 50でで 2分間熱風乾燥し、 塗工 フィルムを得た。  • Green light emitting inorganic phosphor 22 10 (made by Kasei Optronics) 30 parts by weight • Ultraviolet absorbing material Ueburu UV60 10 (manufactured by Nippon Shokubai Co., Ltd.) 1 5 parts by weight The white color obtained in Reference Example 1 On the reflective layer of the polyester film, it was applied so that the thickness after drying was 5 // m, and dried with hot air at 150 for 2 minutes to obtain a coated film.
得られた塗工フィルムの輝度上昇率は 1 04%であった。 その他の評価結果 を表 1に示す。  The brightness increase rate of the obtained coated film was 104%. The other evaluation results are shown in Table 1.
なお、 緑色発光無機蛍光体 22 1 0 (化成ォプトロ二クス社製) は、 Zn S を母体として、 Cuを賦活物質としてなる無機蛍光体である。 実施例 2 (白色ポリエステルフィルムの例) The green light-emitting inorganic phosphor 22 10 (manufactured by Kasei Optronics) is an inorganic phosphor made of Zn S as a base material and Cu as an activator. Example 2 (Example of white polyester film)
塗液の蛍光物質を赤色無機蛍光体 D 1 1 10 (根本特殊化学社製) に変更し た以外は実施例 1と同様にして、塗工フィルムを得た。評価結果を表 1に示す。 なお、 赤色無機蛍光体 D 1 110 (根本特殊化学社製) は、 Y203を母体と して、 Euを賦活物質としてなる無機蛍光体である。 実施例 3 (白色ポリエステルフィルムの例) A coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to red inorganic phosphor D 1 110 (manufactured by Nemoto Special Chemical Co., Ltd.). Table 1 shows the evaluation results. The red inorganic phosphor D 1110 (manufactured by Nemoto Special Chemical Co., Ltd.) is an inorganic phosphor having Y 2 0 3 as a base material and Eu as an activator. Example 3 (Example of white polyester film)
塗液の蛍光物質を青色無機蛍光体 D 1230 (根本特殊化学社製) に変更し た以外は実施例 1と同様にして、塗工フィルムを得た。評価結果を表 1に示す。 なお、 青色無機蛍光体 D 1230 (根本特殊化学社製) は、 S r Sを母体と して、 Euを賦活物質としてなる無機蛍光体である。 実施例 4 (白色ポリエステルフィルムの例)  A coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to blue inorganic phosphor D 1230 (manufactured by Nemoto Special Chemical Co., Ltd.). Table 1 shows the evaluation results. The blue inorganic phosphor D 1230 (manufactured by Nemoto Special Chemical Co., Ltd.) is an inorganic phosphor having SrS as a base and Eu as an activator. Example 4 (Example of white polyester film)
塗液の蛍光物質を緑色無機蛍光体 KX 732 A (化成ォプトロ二クス社製) に変更した以外は実施例 1と同様にして、 塗工フィルムを得た。 評価結果を表 1に示す。  A coated film was obtained in the same manner as in Example 1 except that the fluorescent material of the coating liquid was changed to green inorganic phosphor KX 732 A (manufactured by Kasei Optronics). Table 1 shows the evaluation results.
なお、 緑色無機蛍光体 KX 732 A (化成ォプトロ二クス社製) は、 バリウ ム ·マグネシウム ·アルミニウム複合酸化物 (B aMgA 110O17) を母体と して、 Euおよび Mnを賦活物質としてなる無機蛍光体である。 実施例 5 (白色ポリエステルフィルムの例) The green inorganic phosphor KX 732 A (manufactured by Kasei Optronics Co., Ltd.) uses Eu / Mn as an activator based on a barium / magnesium / aluminum composite oxide (BaMgA 1 10 O 17 ). It is an inorganic phosphor. Example 5 (Example of white polyester film)
紫外線吸収物質をアクリルバインダー ユー夕ブル S— 2840 (日本触 媒社製) に変更した以外は実施例 1と同様にして、 塗工フィルムを得た。 輝度 向上率は 104%であった。 評価結果を表 1に示す。 比較例 1 (白色ポリエステルフィルムの例) 下記の組成物をトルエンノ酢酸ブチル混合溶液に溶解して、 4 5重量%の固 形分濃度の塗液を作成した。 なお、 トルエン 酢酸ブチル混合溶液として重量 比で 1 : 1のものを用いた。 A coated film was obtained in the same manner as in Example 1 except that the ultraviolet absorbing material was changed to acrylic binder Uyuburu S-2840 (manufactured by Nippon Shokubai Co., Ltd.). The brightness improvement rate was 104%. Table 1 shows the evaluation results. Comparative Example 1 (Example of white polyester film) The following composition was dissolved in a toluene-butyl acetate mixed solution to prepare a coating solution having a solid content concentration of 45% by weight. The toluene / butyl acetate mixed solution having a weight ratio of 1: 1 was used.
(塗液固形分組成)  (Coating liquid solid content composition)
·有機蛍光増白剤 O B— 1 (イーストマン社製) 5重量部 · Organic optical brightener O B— 1 (Eastman) 5 parts by weight
•紫外線吸収物質 ユー夕ブル UV 6 0 1 0 (日本触媒社製) 1 5重量部 この塗液を、 参考例 1で得た白色ポリエステルフィルムの反射層の上に、 乾 燥後の厚みが 5 / mになるように塗布し、 1 5 0でで 2分間熱風乾燥し、 塗工 フィルムを得た。 • UV absorbing material U-Uvable UV 6 0 1 0 (manufactured by Nippon Shokubai Co., Ltd.) 1 5 parts by weight This coating solution is applied on the reflective layer of the white polyester film obtained in Reference Example 1, and the thickness after drying is 5 / m, and dried with hot air at 1550 for 2 minutes to obtain a coated film.
得られた塗工フィルムの輝度上昇率は 1 0 5 %を示したものの、 着色による 色度差が大きく、 また耐久性試験後の輝度の低下も大きく、 フィルムであり実 用上使用困難であった。 評価結果を表 1に示す。 比較例 2 (白色ポリエステルフィルムの例)  Although the brightness increase rate of the obtained coated film was 105%, the difference in chromaticity due to coloring was large, and the decrease in brightness after the durability test was large, and it was a film and was difficult to use practically. It was. Table 1 shows the evaluation results. Comparative Example 2 (Example of white polyester film)
表 1に示す蛍光物質を有機蛍光増白剤 U V I T E X— O B (チバスぺシャ 'リ ティケミカルズ社製) に変更し、 その添加量を 5重量部にした以外は実施例 1 と同様にして塗工フィルムを得た。 このときの輝度上昇率は 1 0 0 %程度であ り、 輝度の向上は確認されなかった。 このフィルムは、 着色による色度差が大 きく、 また耐久性試験後の輝度の低下が大きなフィルムであり、 実用上使用が 困難であった。 評価結果を表 1に示す。 比較例 3 (白色ポリエステルフィルムの例)  Coating was performed in the same manner as in Example 1 except that the fluorescent substance shown in Table 1 was changed to the organic fluorescent brightener UVITEX-OB (manufactured by Ciba Specialty Company) and the addition amount was 5 parts by weight. A film was obtained. The luminance increase rate at this time was about 100%, and no improvement in luminance was confirmed. This film had a large difference in chromaticity due to coloring, and had a large decrease in luminance after the durability test, so that it was difficult to use practically. Table 1 shows the evaluation results. Comparative Example 3 (Example of white polyester film)
有機蛍光増白剤 O B— 1の添加量を 3 0重量部に変更した他は比較例 1と同 様にして、 塗工フィルムを得た。 評価結果を表 1に示す。 実施例 6 (透明ポリエステルフィルムの例) 下記の組成物を酢酸ブチルに溶解して、 45重量%の固形分濃度の塗液を作 成した。 A coated film was obtained in the same manner as in Comparative Example 1, except that the amount of the organic fluorescent brightener OB-1 added was changed to 30 parts by weight. Table 1 shows the evaluation results. Example 6 (Example of transparent polyester film) The following composition was dissolved in butyl acetate to prepare a coating solution having a solid content of 45% by weight.
(塗液固形分組成)  (Coating liquid solid content composition)
•無機蛍光体 (22 10 化成ォプトニクス社製) 10重量部 ·アクリルビーズ (MBX— 1 δ 積水化成品工業社製) 60重量部 • Inorganic phosphor (22 10 made by Kasei Optonics) 10 parts by weightAcrylic beads (MBX-1 δ made by Sekisui Plastics) 60 parts by weight
•アクリルバインダー (ユーダブル S 2740 日本触媒社製) 25重量部 •架橋剤 (コロネート HL 日本ウレタン工業社製) 5重量部 塗液としてこの塗液を、 固化後 8 gZm2となるように塗工する他は実施例 1 と同様にして、 塗工フィルムを得た。 評価結果を表 1に示す。 • (manufactured Yudaburu S 2740 Shokubai Co., Ltd.) Acrylic Binder 25 parts by weight • crosslinking agent (Coronate HL manufactured by Nippon Urethane Kogyo) This coating solution as 5 parts by weight coating solution is applied so that the solidified after 8 gZm 2 Otherwise, a coated film was obtained in the same manner as in Example 1. Table 1 shows the evaluation results.
なお、 緑色発光無機蛍光体 22 10 (化成ォブトロニクス社製) は、 Zn S を母体として、 Cuを賦活物質としてなる無機蛍光体である。 MB X— 1 5は、 平均粒径 1 5 /mのアクリル粒子である。  The green light emitting inorganic phosphor 22 10 (manufactured by Kasei Obtronics) is an inorganic phosphor using Zn S as a base material and Cu as an activator. MB X—15 is an acrylic particle having an average particle size of 15 / m.
この塗液を、 参考例 2で得た透明ポリエステルフィルムの上に、 乾燥後の厚 みが 5 zxmになるように塗布し、 1 50でで 2分間熱風乾燥し、 塗工フィルム を得た。 評価結果を表 1に示す。 比較例 4 (透明ポリエステルフィルムの例)  This coating liquid was applied onto the transparent polyester film obtained in Reference Example 2 so that the thickness after drying was 5 zxm, and dried with hot air at 150 for 2 minutes to obtain a coated film. Table 1 shows the evaluation results. Comparative Example 4 (Example of transparent polyester film)
下記の組成物を酢酸ブチルに溶解して、 45重量%の固形分濃度の塗液を作 成した。  The following composition was dissolved in butyl acetate to prepare a coating solution having a solid content of 45% by weight.
(塗液固形分組成)  (Coating liquid solid content composition)
•アクリルビーズ (MBX— 1 5 積水化成品工業社製) 60重量部 • Acrylic beads (MBX— 1 5 Sekisui Plastics Co., Ltd.) 60 parts by weight
•ァクリルバインダー (ユーダブル S 2740 日本触媒社製) 32重量部 •架橋剤 (コロネート HL 日本ウレタン工業社製) 8重量部 塗液としてこの塗液を、 固化後 8 gZm2となるように塗工する他は実施例 6 と同様にして、 塗工フィルムを得た。 評価結果を表 1に示す。 蛍光体 塗布層 励起波 発光 経時 輝度 色度 耐久性 耐久性 の の 長 400〜 ピーク 的な 向上 試験での 試験 種類 蛍光体 450nmで 波長 黄変 率 輝度 での 含有量 の発光 維持率 色度• Acrylic binder (Udouble S 2740, Nippon Shokubai Co., Ltd.) 32 parts by weight • Cross-linking agent (Coronate HL, Nippon Urethane Kogyo Co., Ltd.) 8 parts by weight Apply this coating solution to 8 gZm 2 after solidification Otherwise, a coated film was obtained in the same manner as in Example 6. Table 1 shows the evaluation results. Phosphor Coating Layer Excitation Wave Emission Time Luminance Chromaticity Durability Durability Length 400 ~ Peak Improvement Test Type Test Phosphor Wavelength at 450nm Yellowing Rate Luminance Content Emission Retention Rate Chromaticity
(重量%) 、nm) (%) (%) 変化 実施 無機 (Wt%), nm) (%) (%) Change Implementation Inorganic
例 蛍光体 30 ◎ 535 ◎ 104.0 o 99. 6 ◎ Example Phosphor 30 ◎ 535 ◎ 104.0 o 99.6 6 ◎
1 2210 1 2210
実施 無機 Inorganic
例 蛍光体 40 ◎ 650 ◎ 101. 8 ◎ 99.5 o Example Phosphor 40 ◎ 650 ◎ 101. 8 ◎ 99.5 o
2 D1110 2 D1110
実施 無機 Inorganic
例 蛍光体 40 ◎ 440 ◎ 101. 1 ◎ 99. 5 ◎ 3 D1230  Example Phosphor 40 ◎ 440 ◎ 101.1 ◎ 99.5 ◎ 3 D1230
無機  Inorganic
実施 Implementation
蛍光体  Phosphor
例 30 ◎ 510 ◎ 101.2 ◎ 99. 5 ◎ KX732  Example 30 ◎ 510 ◎ 101.2 ◎ 99.5 ◎ KX732
4  Four
A  A
実施 無機 Inorganic
例 蛍光体 30 ◎ 535 o 104.0 o 96.4 o 5 2210  Example Phosphor 30 ◎ 535 o 104.0 o 96.4 o 5 2210
比較 ¾機 Comparison ¾ machine
例 蛍光体 5 ◎ 550 X 105.2 X 94.3 X 1 OB-1  Example Phosphor 5 ◎ 550 X 105.2 X 94.3 X 1 OB-1
有機蛍  Organic fireflies
比較 Comparison
光体  Light body
例 5 ◎ 440 X 100.0 o 95.2 X UVITEX  Example 5 ◎ 440 X 100.0 o 95.2 X UVITEX
2  2
-OB  -OB
比較 有機蛍 Compare Organic Firefly
例 光体 30 ◎ 550 X 108.2 X 94. 2 X 3 OB-1  Example Light 30 ◎ 550 X 108.2 X 94.2 X 3 OB-1
実施 無機蛍 Inorganic firefly
例 光体 10 ◎ 535 O 103. 8 o 99. 1 O 6 2210  Example Light 10 ◎ 535 O 103.8 8 o 99. 1 O 6 2210
比較 Comparison
例 0 X O 100.0 ◎ 99.0 O 4 発明の効果 Example 0 XO 100.0 ◎ 99.0 O 4 The invention's effect
本発明によれば、 経時的な黄変が抑制された積層フィルムを提供することが でき、 また、 液晶表示装置のバックライトユニットの部材として用いたときに 高い輝度を得ることができる積層フィルムを提供することができる。 本発明に よれば、 また、 経時的な黄変が抑制され、 高い輝度を得ることができ、 色ずれ が少なく、 反射板として好適な積層フィルムを提供することができる。 産業上の利用可能性  According to the present invention, it is possible to provide a laminated film in which yellowing with time is suppressed, and a laminated film that can obtain high luminance when used as a member of a backlight unit of a liquid crystal display device. Can be provided. Further, according to the present invention, it is possible to provide a laminated film suitable for a reflecting plate, in which yellowing over time can be suppressed, high luminance can be obtained, color misregistration is small. Industrial applicability
本発明の積層フィルムは、 広く光学用途に用いることができ、 例えば、 液晶 表示装置のバックライ卜ュニットの部材として、 特に液晶表示装置のバックラ ィトュニッ卜の反射板として好適に用いることができる。  The laminated film of the present invention can be widely used for optical applications. For example, the laminated film can be suitably used as a backlight unit member of a liquid crystal display device, particularly as a reflection plate of a back light unit of a liquid crystal display device.

Claims

請求の範囲 The scope of the claims
1 . ポリエステルフィルムおよびそのうえに設けられた蛍光体を含有する塗 布層からなる積層フィルムにおいて、 塗布層の蛍光体が無機物質からなり、 該 蛍光体の塗布層における含有量が 5〜 8 0重量%であることを特徴とする積層 フィルム。 1. In a laminated film comprising a polyester film and a coating layer containing a phosphor provided thereon, the phosphor of the coating layer is made of an inorganic substance, and the content of the phosphor in the coating layer is 5 to 80% by weight. A laminated film characterized by being:
2 . 液晶表示装置のバックライトユニット部材として用いられる、 クレーム 1記載の積層フィルム。  2. The laminated film according to claim 1, which is used as a backlight unit member of a liquid crystal display device.
3 . ポリエステルフィルムが白色ポリエステルフィルムであり、 液晶表示装 置のバックライトュニッ卜の反射板として用いられる、 クレーム 1記載の積層 フィルム。  3. The laminated film according to claim 1, wherein the polyester film is a white polyester film, and is used as a reflector of a backlight unit of a liquid crystal display device.
PCT/JP2008/070533 2007-11-08 2008-11-05 Multilayer film WO2009060978A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107011042A KR101536024B1 (en) 2007-11-08 2008-11-05 Multilayer film
JP2009540111A JP4988853B2 (en) 2007-11-08 2008-11-05 Laminated film
CN200880115237A CN101855081A (en) 2007-11-08 2008-11-05 Multilayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007290526 2007-11-08
JP2007-290526 2007-11-08

Publications (1)

Publication Number Publication Date
WO2009060978A1 true WO2009060978A1 (en) 2009-05-14

Family

ID=40625860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070533 WO2009060978A1 (en) 2007-11-08 2008-11-05 Multilayer film

Country Status (5)

Country Link
JP (1) JP4988853B2 (en)
KR (1) KR101536024B1 (en)
CN (1) CN101855081A (en)
TW (1) TWI449624B (en)
WO (1) WO2009060978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006540A (en) * 2009-06-24 2011-01-13 Teijin Dupont Films Japan Ltd Thermoplastic resin film used as reflective film of led lighting

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038953A1 (en) * 2011-09-14 2013-03-21 エムテックスマート株式会社 Led manufacturing method, led manufacturing device, and led
BR112015018967A2 (en) 2013-02-08 2017-07-18 3M Innovative Properties Co optical construction
KR101588220B1 (en) * 2014-11-12 2016-01-25 주식회사 다온씨엔티 Optical Sheet
US11015115B2 (en) 2015-12-31 2021-05-25 3M Innovative Properties Company Curable quantum dot compositions and articles
CN107833962A (en) * 2016-08-22 2018-03-23 深圳市欧弗德光电科技有限公司 Light source body with OFED structures and its application containing organic green light, gold-tinted and red photoluminescent material compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303045A (en) * 2000-04-19 2001-10-31 Konica Corp Inorganic fluorescent substance
JP2004050479A (en) * 2002-07-17 2004-02-19 Teijin Dupont Films Japan Ltd Laminated white polyester film
JP2004330727A (en) * 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd Laminated polyester film
JP2006126774A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Optical element, polarized surface light source using the same, and display device using the light source
JP2006251076A (en) * 2005-03-08 2006-09-21 Mitsubishi Chemicals Corp Filter for display and display device
JP2007133173A (en) * 2005-11-10 2007-05-31 Nippon Shokubai Co Ltd Light diffusing sheet, complex light diffusing plate, and back light unit using those

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290539A (en) * 1995-04-25 1996-11-05 Diafoil Co Ltd Laminated polyester film for magnetic card
JP3946183B2 (en) * 2003-10-27 2007-07-18 帝人デュポンフィルム株式会社 White polyester film
JP5217170B2 (en) * 2006-02-14 2013-06-19 Dic株式会社 Light-shielding adhesive tape and LCD module using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303045A (en) * 2000-04-19 2001-10-31 Konica Corp Inorganic fluorescent substance
JP2004050479A (en) * 2002-07-17 2004-02-19 Teijin Dupont Films Japan Ltd Laminated white polyester film
JP2004330727A (en) * 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd Laminated polyester film
JP2006126774A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Optical element, polarized surface light source using the same, and display device using the light source
JP2006251076A (en) * 2005-03-08 2006-09-21 Mitsubishi Chemicals Corp Filter for display and display device
JP2007133173A (en) * 2005-11-10 2007-05-31 Nippon Shokubai Co Ltd Light diffusing sheet, complex light diffusing plate, and back light unit using those

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006540A (en) * 2009-06-24 2011-01-13 Teijin Dupont Films Japan Ltd Thermoplastic resin film used as reflective film of led lighting

Also Published As

Publication number Publication date
CN101855081A (en) 2010-10-06
JP4988853B2 (en) 2012-08-01
TWI449624B (en) 2014-08-21
TW200936373A (en) 2009-09-01
JPWO2009060978A1 (en) 2011-03-24
KR20100089850A (en) 2010-08-12
KR101536024B1 (en) 2015-07-10

Similar Documents

Publication Publication Date Title
TW527507B (en) White film for surface light source
TWI362998B (en)
JP4793263B2 (en) Direct type backlight
WO2009060978A1 (en) Multilayer film
JP2005173546A (en) Light reflective film and surface light source using the same
TWI398673B (en) Surface light diffusion polyester film
WO2005123385A1 (en) Laminated film for reflection plate
JP2009229879A (en) Light diffusion plate
US20050112351A1 (en) Highly reflective optical element
JP2007140542A (en) Light reflection film and surface light source using the same
JP5405917B2 (en) Thermoplastic resin film used as a reflective film for LED lighting
JP2010036487A (en) Surface light diffusing polyester film
TWI500883B (en) Reflective film for lighting fixtures
JP2010044238A (en) Reflection film for liquid crystal display device
JP5038824B2 (en) Biaxially stretched laminated film for reflectors
KR102488716B1 (en) White reflective film for direct surface light source and direct surface light source using same
JP5508071B2 (en) Film for reflectors for lighting equipment
JP2010066760A (en) Reflective film for liquid crystal display device
JP2007322875A (en) Reflection film
KR101161659B1 (en) Anisotropic diffusion film for direct backlight
JP5108438B2 (en) Polyester film for reflector
JP2012053092A (en) Light-diffusion laminated polyester film for backlight
JP2010043208A (en) Laminated film
JP2008069217A (en) Polyester film and method for producing the same
JP5457103B2 (en) Reflective film for liquid crystal display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115237.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009540111

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107011042

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08847050

Country of ref document: EP

Kind code of ref document: A1