WO2009059749A2 - Installation de séchage - Google Patents

Installation de séchage Download PDF

Info

Publication number
WO2009059749A2
WO2009059749A2 PCT/EP2008/009310 EP2008009310W WO2009059749A2 WO 2009059749 A2 WO2009059749 A2 WO 2009059749A2 EP 2008009310 W EP2008009310 W EP 2008009310W WO 2009059749 A2 WO2009059749 A2 WO 2009059749A2
Authority
WO
WIPO (PCT)
Prior art keywords
dryer
rnv
air
exhaust
temperature
Prior art date
Application number
PCT/EP2008/009310
Other languages
German (de)
English (en)
Other versions
WO2009059749A3 (fr
Inventor
Gerd Wurster
Original Assignee
Gerd Wurster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerd Wurster filed Critical Gerd Wurster
Priority to EP08848200A priority Critical patent/EP2220448A2/fr
Publication of WO2009059749A2 publication Critical patent/WO2009059749A2/fr
Publication of WO2009059749A3 publication Critical patent/WO2009059749A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/022Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure

Definitions

  • the invention relates to a dryer system with a dryer, are released in the combustible materials and / or condensate.
  • Dryers of this kind for example in the form of cathodic dip-paint kilns (CTL)
  • CTL cathodic dip-paint kilns
  • KTL furnaces release organic solvents and condensates from the stoving process.
  • designs are known in which the exhaust air from KTL furnaces is passed through a thermal afterburning.
  • a thermal afterburning requires a very high temperature in the order of about 750 0 C, which means a very high energy consumption.
  • the exhaust gas discharged to the ambient air then still has a temperature of about 250 ° C, for example.
  • the object of the invention is thus to operate a dryer in which flammable substances or condensate is released, and therefore must be operated with a high air flow, as energy-saving operation.
  • the pollutant load for the ambient air should be kept low.
  • a dryer system with a dryer, in particular a KTL furnace, with an exhaust duct, which is coupled to a regenerative post combustion (RNV), wherein the output of the RNV either via a heat exchanger for preheating supply air for the Dryer is led or partly via a high-temperature filter the dryer is supplied as supply air again.
  • RNV regenerative post combustion
  • Regenerative afterburning achieves significantly better energy utilization in exhaust air purification than in thermal afterburning.
  • a regenerative afterburning has two or more ceramic bodies, which are traversed by the exhaust air during the combustion process.
  • the exhaust air for example, only flows through the first storage medium for preheating, is heated and cleaned by means of a burner and then flows through the second ceramic storage medium for the purpose of cooling in countercurrent principle.
  • the flow direction through the two ceramic storage media is changed over by a flap control from time to time to ensure better heat utilization.
  • RNV plants operate authotherm, i. without requiring additional energy for combustion.
  • the exhaust air is heated in a thermal afterburning only by means of a burner to a sufficiently high temperature of, for example, about 750 0 C, which is necessary for the decomposition of the harmful components, with a partial recovery of energy through a heat exchanger is possible.
  • a regenerative afterburning is now used instead of a thermal afterburning.
  • RNV regenerative afterburner
  • the exhaust air can in this case with a temperature of at most about 220 0 C, preferably of at most about 210 0 C, are discharged to the ambient air.
  • the RNV is operated without a heat exchanger, preferably at least about 60%, preferably at least about 80%, particularly preferably about 90%, of the exhaust air from the RNV is returned to the dryer as supply air.
  • FIG. 1 shows a first embodiment of a dryer installation according to the invention with a dryer in the form of a KTL furnace using a heat exchanger.
  • Fig. 2 shows a modification of the dryer system of FIG. 1 using a high-temperature filter for the partial return of exhaust air from the RNV in the dryer and
  • Fig. 3 shows a dryer system according to the prior art with a thermal post-combustion (TNV).
  • TSV thermal post-combustion
  • a known by use dryer system is shown schematically and designated 40 in total.
  • the known dryer system 40 has a dryer 42 approximately in the form of a KTL furnace, which has an operating temperature of for example 210 0 C.
  • Exhaust gas from the dryer 42 is discharged via an exhaust pipe 50 and guided by a fan 44 via a heat exchanger 46 and there heated to, for example, about 530 0 C.
  • the exhaust gas After passing through the heat exchanger 46, the exhaust gas enters via a line 52 in a thermal post-combustion (TNV) 48, in which it is heated by a burner to about 750 ° C, so that decompose or burn harmful organic components.
  • TSV thermal post-combustion
  • the exhaust gas exits at a temperature of about 750 0 C and is passed via a line 54 to the other side of the heat exchanger 46 to be cooled there to about 430 0 C, while the preheating of the via line 50th supplied exhaust gas takes place.
  • the exhaust gas passes via a line 56 via motor-operated flap valves 58, 60 in a heating line 62 to heat the dryer or is partially led directly to a chimney 64.
  • the chimney 64 results in an exhaust gas temperature of about 250 0 C to 280 0 C.
  • the energy consumption is significantly reduced, while maintaining high levels of pollutant emissions of the exhaust gas.
  • a dryer system according to the invention is shown in FIG. 1 and designated overall by the numeral 10.
  • the exhaust gas of a dryer 12 for example in the form of a KTL furnace, is discharged via an exhaust gas line 14 and fed by means of a fan 16 to a regenerative afterburning (RNV).
  • RNV regenerative afterburning
  • a regenerative afterburning takes place with flow through several ceramic bodies, wherein the exhaust gas between the two ceramic bodies is heated by means of a burner to a temperature of about 800 ° C.
  • the first ceramic body is a preheating of the exhaust gases
  • a cooling of the exhaust gas in Countercurrent principle with the first ceramic body takes place.
  • the regenerative afterburning takes place by means of the burner, then again the cooling over the other ceramic body.
  • the direction of flow through the first or second storage medium is periodically changed when the ceramic body at the entrance, through which the introduction into the RNV 18 takes place, has cooled too much.
  • the exhaust gas After flowing through the RNV 18, the exhaust gas is supplied via a line 22 to a heat exchanger 20 by being cooled to a temperature of about 50 0 C and can be discharged through an exhaust duct 24 and a fireplace to the outside.
  • Supply air which is drawn in from the outside via an air supply line 26, is preheated via the heat exchanger 20 and then fed to the dryer 12 via a supply air line 28.
  • the exhaust gas temperature can be significantly reduced in comparison to the previously outlined with reference to FIG. 3 system with thermal afterburning, for example, from about 250 0 C in the TNV to about 50 0 C in the dryer system 10 according to the invention.
  • Fig. 2 shows an alternative embodiment of the dryer system according to the invention, which is generally designated 10 '.
  • corresponding reference numerals are used for corresponding parts.
  • Exhaust from the dryer 12 passes through an exhaust pipe 14 and a fan 16 in the regenerative afterburning RNV 18. After exiting the RNV 18 about 10% of the exhaust gas via an exhaust pipe 24 with a temperature of about 220 to 230 0 C delivered. By contrast, 90% of the exhaust gas is passed through a high-temperature filter of type F9 and fed back to the dryer 12 via a supply air line 28. The remaining 10% are replaced by fresh air (not shown).
  • the dryer system according to the invention with an RNV differs significantly from conventional dryers which are operated with a TNV.
  • a TNV always uses gas-tight heat exchangers in which the exhaust air from the dryer and the thermally cleaned exhaust air from the TNV are separated from each other in a gastight manner.
  • the thermal efficiency of such TNV systems is even using heat exchangers at a maximum of about 60%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

La présente invention concerne une installation de séchage comprenant un séchoir (12), notamment un four de vernissage à immersion cathodique (KTL), comprenant une conduite d'évacuation d'air (14) raccordée à une unité de post-combustion régénérative (RNV) (18). La sortie (22) de la RNV (18) est orientée sur un échangeur thermique (20) afin de préchauffer de l'air d'admission (26) pour le séchoir (10) ou elle est remise en circulation en partie dans le séchoir, en tant qu'air d'admission, par l'intermédiaire d'un filtre à haute température.
PCT/EP2008/009310 2007-11-07 2008-11-05 Installation de séchage WO2009059749A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08848200A EP2220448A2 (fr) 2007-11-07 2008-11-05 Installation de séchage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007051034.0 2007-11-07
DE200710051034 DE102007051034A1 (de) 2007-11-07 2007-11-07 Trockneranlage

Publications (2)

Publication Number Publication Date
WO2009059749A2 true WO2009059749A2 (fr) 2009-05-14
WO2009059749A3 WO2009059749A3 (fr) 2009-08-20

Family

ID=40530406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009310 WO2009059749A2 (fr) 2007-11-07 2008-11-05 Installation de séchage

Country Status (3)

Country Link
EP (1) EP2220448A2 (fr)
DE (1) DE102007051034A1 (fr)
WO (1) WO2009059749A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995988B2 (en) * 2015-12-21 2021-05-04 Verboca Energy-Saving Technologies Co., Ltd Balanced drying system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001234A1 (de) * 2010-01-26 2011-07-28 Dürr Systems GmbH, 74321 Anlage zum Trocknen von Karossen mit Gasturbine
DE102012023457A1 (de) * 2012-11-30 2014-06-05 Eisenmann Ag Verfahren und Vorrichtung zum Temperieren von Gegenständen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066301A (en) 1995-12-28 2000-05-23 Nippon Furnace Kogyo Kabushiki Kaisha Deodorizing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343096A (en) * 1980-11-25 1982-08-10 Bobst Champlain, Inc. System for controlling emissions of a solvent from a printing press
US4917027A (en) * 1988-07-15 1990-04-17 Albertson Orris E Sludge incineration in single stage combustor with gas scrubbing followed by afterburning and heat recovery
EP0440181B1 (fr) * 1990-01-30 1993-09-29 LTG Lufttechnische GmbH Réacteur à régénération pour brûleur des effluents gazeux industriels
DE19716877C1 (de) * 1997-04-22 1998-12-10 Schedler Johannes Verfahren zur adsorptiven Abgasreinigung
AU742412B2 (en) * 1998-05-07 2002-01-03 Megtec Systems, Inc. Web dryer with fully integrated regenerative heat source
US6742284B2 (en) * 2001-01-08 2004-06-01 Advanced Dryer Systems, Inc. Energy efficient tobacco curing and drying system with heat pipe heat recovery
EP1790928A1 (fr) * 2005-11-25 2007-05-30 Advanced Photonics Technologies AG Procédé et dispositif de revêtement de bandes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066301A (en) 1995-12-28 2000-05-23 Nippon Furnace Kogyo Kabushiki Kaisha Deodorizing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995988B2 (en) * 2015-12-21 2021-05-04 Verboca Energy-Saving Technologies Co., Ltd Balanced drying system

Also Published As

Publication number Publication date
DE102007051034A1 (de) 2009-05-14
WO2009059749A3 (fr) 2009-08-20
EP2220448A2 (fr) 2010-08-25

Similar Documents

Publication Publication Date Title
DE2952216C2 (de) Verfahren und Vorrichtung zur Rückgewinnung und Wiederverwertung von Wärme aus den Abgasen metallurgischer Prozesse
DE3033641C2 (de) System zur thermischen Nachverbrennung von brennbaren Abfallstoffen
DE19654043C2 (de) Trockner mit Abgasreinigung mittels thermischer Nachverbrennung
DE102011001773B4 (de) Verfahren und Anlage zur Herstellung von Zementklinker
DE102008060774B4 (de) Schrottvorwärmungsprozess und Vorrichtungen in Stahlerzeugungsanlagen
WO2017140631A1 (fr) Unité brûleur et dispositif de mise en température d'objets
EP2220448A2 (fr) Installation de séchage
CH628972A5 (en) Tunnel furnace with direct firing
DE102015003856A1 (de) Vorrichtung zur Temperierung von Gegenständen
EP0402305A1 (fr) Four tunnel
DE3248623C1 (de) Verfahren und Vorrichtung zum Vorwaermen der Verbrennungsmedien,insbesondere fuer die Beheizung von Winderhitzern fuer Hochoefen
DE102014108150A1 (de) Verfahren und Anlage zur katalytischen Reinigung von Abgas
WO2012085258A1 (fr) Procédé pour faire fonctionner un four dans une installation de travail des métaux et installation de travail des métaux
EP0286892A1 (fr) Dispositif de dénitration catalytique des fumées
EP1906088A2 (fr) Procédé de fonctionnement d'une installation de purification de gaz d'échappement par régénération
DE19707891C2 (de) Verfahren und Vorrichtung zum Vorwärmen von Beschickungsgut an Glasschmelzöfen, die mit Oxidationsgasen mit 30 bis 100 Volumenprozent Sauerstoff betrieben werden
AT510408B1 (de) Verfahren und vorrichtung zur temperaturerhöhung eines ab- oder prozessgases mit einem oxidierbaren anteil
DE8424417U1 (de) Vorrichtung zur selektiven katalytischen Reduktion von Stickoxyden
DE202008012971U1 (de) Anlage zur Trocknung und Erhitzung von granuliertem Material für die Asphaltherstellung
AT17227U1 (de) Verfahren zur Reinigung eines Rauchgases
DE212020000741U1 (de) Regenerative Abgasverbrennungsanlage
DE102021125432A1 (de) Fluidreinigungssystem und verfahren zur fluidreinigung
EP2886985A1 (fr) Installation de séchage et son procédé
WO2020025163A1 (fr) Système de récupération de chaleur pour un four pourvu d'un ou de plusieurs brûleurs
WO2017186778A1 (fr) Installation de production de ciment ou de traitement de minerais et procédé pour faire fonctionner une telle installation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08848200

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2008848200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008848200

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE