WO2009059527A1 - Générateur de source électrique de référence et dispositif de commande de sortie de tension de la source électrique - Google Patents
Générateur de source électrique de référence et dispositif de commande de sortie de tension de la source électrique Download PDFInfo
- Publication number
- WO2009059527A1 WO2009059527A1 PCT/CN2008/072852 CN2008072852W WO2009059527A1 WO 2009059527 A1 WO2009059527 A1 WO 2009059527A1 CN 2008072852 W CN2008072852 W CN 2008072852W WO 2009059527 A1 WO2009059527 A1 WO 2009059527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- resistor
- wave
- power
- output module
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
Definitions
- the present invention relates to a control power supply technology, and more particularly to a technique for controlling a power supply output voltage by controlling a power supply reference voltage.
- the performance of an integrated circuit is closely related to the input voltage, and variations in the input voltage affect the timing and noise margin of the integrated circuit.
- the general manufacturer will specify the upper and lower limits of the input voltage of the integrated circuit.
- the output voltage of the power supply needs to be adjusted to reach the upper and lower limits of the design. Since the ordinary power supply circuit cannot automatically adjust the output voltage, it is generally manually adjusted during the test. As shown in FIG. 1, the output voltage of the power adjustment unit 110 is represented by Vout, and the reference voltage of the adjustment terminal of the power adjustment unit 110 is represented by Vref. Then the output voltage can be expressed as Equation 1:
- Vout Vref ( 1 + R1/R2) ( 1 )
- the resistance values of the first resistor 120 and the second resistor 130 can be adjusted to achieve the purpose of voltage adjustment, but the manual adjustment method has low test efficiency. And it is impossible to implement automatic testing in mass production.
- a Complicated Programmable Logical Device CPLD
- EPLD Erasable Programmable Logic Device
- FPGA Field Programmable Gate Array
- the output includes three states, high level, low level or tristate (high impedance state), respectively corresponding to the voltage up, down and no adjustment, to change The reference voltage of the regulation terminal of the power supply, thereby changing the output voltage of the power supply.
- the circuit of FIG. 2 includes: a power supply adjusting unit 201, a first resistor 202, a second resistor 203 and a third resistor 204, and a programmable logic device 205.
- the power adjustment unit 201 has an input end, an output end and an adjustment end.
- the first resistor 202 is connected between the adjustment end and the output end of the power adjustment unit 201.
- the second resistor 203 is connected between the adjustment end of the power adjustment unit 201 and the ground.
- the third resistor 204 is connected between the adjustment end of the power adjustment unit 201 and the output port of the programmable logic device 205.
- Vout the output voltage of the circuit is defined as Vout
- Vref the reference voltage of the adjustment terminal of the power adjustment unit
- Vcon the control voltage output by the programmable logic device
- R1 and R2 the resistances of the first resistor, the second resistor, and the third resistor are R1 and R2, respectively. And R3.
- Vout can be expressed as Equation 2:
- Vout Vref ( 1 + R1/ 2) - (Vcon-Vref) R1/R3 (2)
- the output voltage Vout can be adjusted by adjusting and changing the control voltage Vcon.
- the inventors have found that when the output voltage is controlled by a programmable logic device, since the output voltage of the output port of the programmable logic device is limited, it is generally 3.3 V, 2. 5 V, 5. 0 V, etc., so that the power supply is also Only a few fixed voltage values can be output. KTLPHW081110 cannot output the voltage value between these voltage values.
- Embodiments of the present invention provide a circuit for controlling a power supply output voltage to achieve a multi-pole adjustment power supply output voltage.
- the embodiment of the present invention provides a power supply output voltage control device, including a power supply adjusting unit, a first resistor, and a second resistor, wherein: the first resistor is connected between the adjusting end and the output end of the power adjusting unit, The second resistor is connected between the adjustment end of the power supply adjusting unit and the ground; and the power output voltage control device further includes:
- a P-wave output module for outputting a variable duty cycle P-wave at its output port
- a low-pass filter unit is connected between the output end of the PWM wave output module and the adjustment end of the power adjustment unit, and is configured to filter the P-wave outputted by the PWM wave output module, and the DC obtained by the filtering The wave is used to control the adjustment terminal voltage of the power adjustment unit.
- the embodiment of the present invention further provides a reference power generation device, including:
- a P-wave output module for outputting a variable duty cycle P-wave at its output port
- a low-pass filtering unit is connected to the output end of the PWM wave output module for filtering the P-wave outputted by the P-wave output module.
- the PWM wave filter is rectified into a DC wave by the low-pass filter unit, and the DC wave is used to adjust the reference voltage of the power source, thereby adjusting the power supply output voltage.
- FIG. 1 is a schematic diagram of a power supply output voltage control device of the prior art
- FIG. 2 is a schematic circuit diagram of a prior art control power supply to change an output voltage
- FIG. 3a is a schematic block diagram of a power supply output voltage control apparatus according to an embodiment of the present invention.
- 3b is a schematic circuit diagram of controlling a power supply to change an output voltage according to Embodiment 1 of the present invention
- FIG. 4 is a schematic diagram showing waveforms of a P3 ⁇ 4m wave and a Vref having a duty ratio of 33% according to Embodiment 1 of the present invention
- FIG. 5 is a schematic diagram of waveforms of P-wave and Vref with a duty ratio of 67% according to Embodiment 1 of the present invention
- FIG. 6 is a schematic circuit diagram of controlling a power supply to change an output voltage according to Embodiment 2 of the present invention.
- FIG. 7 is a schematic circuit diagram of controlling a power supply to change an output voltage according to Embodiment 3 of the present invention.
- the duty ratio of the square wave is the ratio of the high level duration of the square wave to the period of the square wave in one cycle.
- the duty ratio of the Pulse Width Modulation (PWM) wave can be adjusted, that is, The duration of the high level in each cycle of the PWM wave can be adjusted. If the duty cycle of P Libo becomes larger, it means that the duration of the high level becomes longer in one cycle of the waveform, and accordingly, the duration of the low level becomes shorter; if the duty ratio of P Libo becomes smaller , means that the duration of the high level becomes shorter in one cycle of the waveform, and accordingly, the duration of the low level becomes longer.
- the embodiment of the present invention controls the output voltage of the power source through the PWM wave output module and the low-pass filter unit, and the output port of the P-wave output module outputs P-wave, and the P is passed through the low-pass filter unit.
- Libo filter rectifies into a DC voltage wave KTLPHW081110 uses the DC voltage wave to control the reference voltage of the power supply, and adjusts the duty ratio of the PWM wave outputted by the PWM wave output module through the corresponding program, which can change the voltage average value of the DC voltage wave, thereby achieving the purpose of adjusting the output voltage of the power supply.
- the program adjusts the duty cycle of the PWM wave to achieve automatic adjustment of the power supply output voltage.
- Embodiments 1, 2, and 3 of the present invention respectively provide three different low-pass filtering units, and a circuit for adjusting a power supply output voltage through a PWM wave output module and a low-pass filtering unit.
- a power output voltage control apparatus provided in Embodiment 1 includes: a power adjustment unit 301, a low pass filter unit 308, a first resistor 302, a second resistor 303, and a PWM wave output module 307.
- the power adjustment unit 301 includes an input end, an output end, and an adjustment end.
- the input end of the power adjustment unit 301 is connected to the power supply, and supplies power to the power adjustment unit 301.
- the power adjustment unit 301 outputs a corresponding voltage from the output according to the input voltage of the adjustment end. The supply voltage of the circuit being powered.
- the first resistor 302 and the second resistor 303 function as peripheral circuits of the power supply adjusting unit 301.
- the first resistor 302 is connected between the adjustment end and the output end of the power adjustment unit 301
- the second resistor 303 is connected between the adjustment end of the power adjustment unit 301 and the ground.
- the output port of the P-wave output module 307 outputs P-wave.
- the PWM wave output module 307 can be a programmable logic device, or can be a processor or a single-chip microcomputer, and the programmable logic device can include a CPLD, an EPLD, or an FPGA.
- the P-wave output module 307 can output a P-wave with a variable duty cycle through the program control output port.
- the low pass filtering unit 308 includes a resistor Ry304, a resistor Rx306, and a capacitor Cx305.
- the low pass filter unit 308 is connected between the adjustment end of the power adjustment unit 301 and the output port of the P wave output module 307 for rectifying the PWM wave output from the output port of the P wave output module 307 into a DC wave.
- the resistor Ry304 and the resistor Rx306 are connected in series between the adjusting end of the power adjusting unit 301 and the output port of the P wave output module 307, the capacitor Cx305 is connected to the ground, and the other end is connected to the resistor Ry304. It is connected to the common connection of the resistor Rx306.
- the process of controlling the voltage change at the output of the power supply adjusting unit 301 is controlled by changing the duty cycle-adjustable PWM wave output from the output port of the PWM wave output module 307 as follows:
- Vout Vref ⁇ (—— + 1) ⁇ Rl
- the output port of the P-wave output module 307 outputs a P-wave with a duty ratio of 50%
- the P-wave is filtered by the low-pass filter unit, and the voltage effective value Vcon thereof is equivalent to P Li.
- the dc voltage is half the high level of the wave. At this time, it is equivalent to changing Vout with the DC voltage Vcon of the high level of P Libo.
- the capacitor Cx305 is charged and discharged, and the output PWM pulse is filtered to be close to the effective value Vcon of the PWM wave by the filtering action of the low-pass filter unit 308.
- DC waveform is not in the absolute sense of DC, it also has a certain ripple fluctuation, but in the time domain as a whole remains equivalent to Vcon The voltage value of KTLPHW081110.
- the capacitor Cx305 When the ⁇ 3 ⁇ 41 wave output from the output port of the PWM wave output module 307 is at a high level (ie, a forward pulse), the capacitor Cx305 is charged; when the output port of the P-wave output module 307 outputs a P-wave low (negative) When the pulse is applied, the capacitor Cx305 is discharged.
- the duty ratio of the P-wave output of the output port of the P-wave output module 307 is adjusted, for example, to a duty ratio of 20%, since the proportion of the positive pulse in the PM1 wave is decreased, the ratio of the negative pulse is increased, and the capacitance is increased.
- the charging time of the Cx305 is reduced, the discharge time is increased, the effective value of Vcon is decreased, and the voltage value filtered by the low-pass filter unit is lowered, and the voltage of the reference voltage Vref of the adjustment terminal of the power supply adjusting unit 301 is correspondingly lowered, resulting in the power adjustment unit.
- the output voltage Vout voltage at the output of 301 is also lowered.
- This is regulated by several limited DC voltages (e.g., 5V, 3. 3V, 2. 8V, etc.) in the prior art, with more variable voltage values.
- the voltage change value of the Vout output voltage can be much larger than the change value of the Vout output voltage adjusted by the output voltage of the output port of the programmable logic device in the prior art.
- Figure 4 the voltage wave diagram of P-wave and Vref with a duty ratio of 33%
- Figure 5 is a schematic diagram of the voltage wave of P-wave and Vref with a duty ratio of 67%.
- the low pass filtering unit 308 and the PWM wave output module 307 constitute a reference power generating device for changing the reference voltage of the adjusting terminal of the power adjusting unit 301.
- the DC voltage obtained by rectifying the P-wave filter is changed by changing the duty ratio of the P-wave, and the reference voltage of the power adjustment unit is changed by the DC voltage, thereby changing the output voltage of the power adjustment unit.
- the technology makes the output voltage change order of the power adjustment unit greatly increased, and can adapt to more voltage supply occasions.
- the output voltage of the power adjustment unit is controlled by the output port of the P-wave output module, the output voltage of the power adjustment unit is controlled. Therefore, it is not necessary to manually adjust the resistance when the output voltage of the power adjustment unit needs to be changed. Value, only through the program changes to automatically complete the adjustment and change of the output voltage, improve the efficiency of adjusting the output voltage.
- An embodiment of the present invention provides a circuit for controlling a power supply voltage output range, as shown in FIG. 6, including: a power adjustment unit 601, a low pass filter unit 607, a first resistor 602, a second resistor 603, and a wave output module 606.
- the power adjustment unit 601 includes an input end, an output end, and an adjustment end, and the input end of the power adjustment unit 601 is connected to the power supply.
- KTLPHW081110 supplies power to the power adjusting unit 601.
- the power adjusting unit 601 outputs a corresponding voltage from the output terminal as the power supply voltage of the circuit to be powered according to the input voltage of the adjusting terminal.
- the first resistor 602 and the second resistor 603 serve as peripheral circuits of the power supply adjusting unit 601.
- the first resistor 602 is connected between the adjustment end and the output end of the power adjustment unit 601, and the second resistor 603 is connected between the adjustment end of the power adjustment unit 601 and the ground.
- the output port of the P-wave output module 606 outputs a PWM wave, and the P-wave output module 606 can control the output of the output port.
- the resistor Rx604, the capacitor Cx605 and the capacitor Cy608 form a low-pass filter unit 607 connected between the adjustment end of the power adjustment unit 601 and the output port of the P-wave output module 606 for outputting the output port of the P-wave output module 606.
- the P-wave filter is rectified into a DC wave.
- the resistor Rx604 is connected between the adjusting end of the power adjusting unit 601 and the output port of the PWM wave output module 606, and the capacitor Cx605 is connected between the output port of the PWM wave output module 606 and the ground.
- the Cy608 is connected between the adjustment end of the power adjustment unit 601 and the ground.
- the low-pass filtering unit 607 composed of the resistor Rx604 and the capacitor Cx605 can rectify the PWM wave output of the output port of the PWM wave output module 606 into a DC wave, and then control the voltage of the Vref to adjust the power supply.
- the unit changes the output voltage at the output.
- the low-pass filtering unit 607 and the PWM wave output module 606 constitute a reference power generating device for changing the reference voltage of the adjusting terminal of the power adjusting unit 601.
- the DC voltage obtained by rectifying the P-wave filter is changed by changing the duty ratio of the P-wave, and the reference voltage of the power adjustment unit is changed by the DC voltage, thereby changing the output voltage of the power adjustment unit.
- the technology makes the output voltage change order of the power adjustment unit greatly increased, and can adapt to more voltage supply occasions.
- the output voltage of the power adjustment unit is controlled by the output port of the P-wave output module, the output voltage of the power adjustment unit is controlled. Therefore, it is not necessary to manually adjust the resistance when the output voltage of the power adjustment unit needs to be changed. Value, only through the program changes to automatically complete the adjustment and change of the output voltage, improve the efficiency of adjusting the output voltage.
- the embodiment of the present invention provides a circuit for controlling the output range of the power supply voltage. As shown in FIG. 7, the power supply adjusting unit 701, the low-pass filtering unit 707, the first resistor 702, the second resistor 703, and the wave output module 706 are provided.
- the power adjustment unit 701 includes an input end, an output end, and an adjustment end.
- the input end of the power adjustment unit 701 is connected to the power supply, and supplies power to the power adjustment unit 701.
- the power adjustment unit 701 outputs a corresponding voltage from the output according to the input voltage of the adjustment terminal. The supply voltage of the circuit being powered.
- the first resistor 702 is connected between the adjustment end and the output end of the power adjustment unit 701, and the second resistor 703 is connected between the adjustment end of the power adjustment unit 701 and the ground.
- the output port output of the P-wave output module 06 P-wave, the P-wave output module 706 can control the duty cycle of the P-wave output of the output port.
- the resistor Rx704 and the capacitor Cx705 constitute a low-pass filter unit 707, and are connected between the power adjustment unit 701 and the output port of the P-wave output module 706 for rectifying the P-wave filter outputted by the output port of the PWM wave output module 706 to DC wave.
- the resistor Rx704 is connected to the adjusting end of the power adjusting unit 701 and the output of the P wave output module 706.
- the capacitor Cx705 is connected between the adjustment end of the power adjustment unit 701 and the ground.
- the low pass filtering unit 707 composed of the resistor Rx704 and the capacitor Cx705 can rectify the PWM wave output of the output port of the PWM wave output module 706 into a DC wave for controlling the voltage of the Vref, so that the power adjusting unit Change the output voltage at the output.
- the low pass filtering unit 707 and the PWM wave output module 706 constitute a reference power generating device for changing the reference voltage of the adjusting terminal of the power adjusting unit 701.
- the duty ratio of the PWM wave by changing the duty ratio of the PWM wave, the DC voltage obtained by filtering and rectifying the PWM wave is changed, and the reference voltage of the power adjustment unit is changed by the voltage, thereby changing the output voltage of the power adjustment unit.
- the number of changes in the output voltage of the power adjustment unit is greatly increased, and can be adapted to more voltage supply occasions.
- the output voltage of the power adjustment unit is controlled by the output port of the P-wave output module, the output voltage of the power adjustment unit is controlled. Therefore, it is not necessary to manually adjust the resistance when the output voltage of the power adjustment unit needs to be changed. Value, only through the program changes to automatically complete the adjustment and change of the output voltage, improve the efficiency of adjusting the output voltage.
- the PWM wave output module of the above embodiment can be implemented by adding a PWM wave output function to an existing logic device or a processor in the circuit board, and the low pass filter unit is mainly composed of a resistor and a capacitor, and is a very low cost power supply.
- the adjustment scheme is less costly than other methods of implementing multi-level voltage regulation, such as the method of outputting an adjustable voltage by a digital-to-analog converter.
- the program can be upgraded in the field to fine-tune the duty cycle of the PWM wave, thereby fine-tuning the output voltage of the power adjustment unit.
- Provide the appropriate voltage to the board which improves the stability and reliability of the system, and avoids returning the board for maintenance, saving the cost of returning to repair.
- the duty cycle of the P-wave can be automatically adjusted by the software, thereby adjusting the output voltage of the power supply adjusting unit, and the power supply voltage of the board can be automatically adjusted to the extreme value range of the voltage. Any value of the integrated circuit for observing and detecting the single board satisfies the requirements, and improves the testing efficiency of the single board product in the mass production process.
- the duty cycle of the P-wave can be adjusted by software to change the output voltage of the power adjustment unit, that is, the power supply voltage of the board is changed, and the debugging means is added.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
KTLPHW081110 参考电源生成装置和电源输出电压控制装置 本发明要求于 2007年 10月 29日提交中国专利局、 申请号为 200710165464. 8、 发明名称为 "一种电源输出电压控制装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及控制电源技术, 尤其涉及一种通过控制电源参考电压来控制电源输出电压的技术。 发明背景
集成电路的性能与输入电压紧密相关, 输入电压的变化影响到集成电路的时序和噪声容限等。 为了保证集成电路的性能满足器件手册的规定,一般生产厂家都会规定集成电路输入电压的上下限。 而为了验证电路性能在电源变化范围内满足设计要求, 需要调整电源的输出电压, 使之达到设计的 上下限。 由于普通电源电路无法自动调整输出电压, 一般在测试时都是通过手工调整, 如图 1所示, 将电源调整单元 110的输出电压用 Vout表示, 电源调整单元 110调整端的参考电压用 Vref表示, 则输出电压可以表示为公式 1 :
Vout =Vref ( 1 + R1/R2) ( 1 )
从而手工调整时, 可以通过调整第一电阻 120和第二电阻 130的电阻值 (例如用滑动变阻器实 现, 图中未显示), 达到电压调整的目的, 但该手工调整手段的测试效率很低, 而且无法在大规模生 产时实现自动测试。
在现有技术中, 如图 2所示, 利用复杂可编程逻辑器件 (Complicated Programmable Logical Device, CPLD)、 电可擦除可编程逻辑器件 (Erasable Programmable Logic Device, EPLD) 或现场 可编程门阵列 (Field Programmable Gate Array, FPGA)来输出控制电压, 其输出包括三种状态, 高电平、 低电平或三态(高阻态), 分别对应将电压调高, 调低和不调整, 来改变电源的调整端的参 考电压, 从而改变电源的输出电压。
具体地, 图 2中的电路包括: 电源调整单元 201、 第一电阻 202、 第二电阻 203和第三电阻 204 以及可编程逻辑器件 205。
电源调整单元 201具有输入端、 输出端和调整端, 第一电阻 202连接在电源调整单元 201的调 整端与输出端之间, 第二电阻 203连接在电源调整单元 201的调整端与地之间, 而第三电阻 204连 接在电源调整单元 201的调整端与可编程逻辑器件 205的输出端口之间。
若定义该电路的输出电压为 Vout, 电源调整单元调整端的参考电压为 Vref, 可编程逻辑器件输 出的控制电压为 Vcon, 第一电阻、 第二电阻和第三电阻的阻值分别为 Rl、 R2以及 R3。 则 Vout可表 示为公式 2:
Vout=Vref ( 1 + R1/ 2) - (Vcon-Vref) R1/R3 (2)
由上式 (2)可得, 通过调整、 改变控制电压 Vcon, 就可以达到调整输出电压 Vout的目的。 本发明人发现, 现有利用可编程逻辑器件控制输出电压时, 由于可编程逻辑器件的输出端口输 出的电压值有限, 一般为 3. 3V、 2. 5V、 5. 0V等, 所以使得电源也只能输出几个相应的固定电压值,
KTLPHW081110 而无法输出这几个电压值中间的电压值。
发明内容
本发明实施例提供了一种控制电源输出电压的电路, 实现多极调节电源输出电压的目的。 本发明具体实施方式提供一种电源输出电压控制装置, 包括电源调整单元、 第一电阻和第二电 阻, 其中: 所述第一电阻连接在所述电源调整单元的调整端与输出端之间, 所述第二电阻连接在所 述电源调整单元的调整端与地之间; 其特征在于, 所述电源输出电压控制装置还包括:
P丽波输出模块, 用于在其输出端口输出可变占空比的 P丽波;
低通滤波单元,连接在所述 PWM波输出模块的输出端和电源调整单元的调整端之间,用于对所述 PWM 波输出模块输出的 P丽波进行滤波, 所述滤波后所得的直流波用于控制所述电源调整单元的调整端 电压。
本发明具体实施方式还提供一种参考电源生成装置, 包括:
P丽波输出模块, 用于在其输出端口输出可变占空比的 P丽波;
低通滤波单元, 连接所述 PWM波输出模块的输出端, 用于对所述 P丽波输出模块输出的 P丽波 进行滤波。
本发明实施例由于通过 P丽波输出模块的输出端口输出 P霊波, 再通过低通滤波单元将 PWM波 滤波整流为直流波, 用该直流波去调节电源的参考电压, 从而调节电源输出电压, 而通过程序改变 PWM波的占空比来自动改变电源的参考电压可以是多级调节, 且实现了通过程序调节占空比自动调 节电源的输出电压。
附图简要说明
图 1为现有技术的电源输出电压控制装置示意图;
图 2为现有技术的控制电源改变输出电压的电路示意图;
图 3a为本发明实施例的电源输出电压控制装置的原理框图;
图 3b为本发明实施例一的控制电源改变输出电压的电路示意图;
图 4为本发明实施例一的占空比为 33%的 P¾m波与 Vref 的波形示意图;
图 5为本发明实施例一的占空比为 67%的 P丽波与 Vref 的波形示意图;
图 6为本发明实施例二的控制电源改变输出电压的电路示意图;
图 7为本发明实施例三的控制电源改变输出电压的电路示意图。
具体实施方式
方波的占空比为一个周期内方波的高电平持续时间与方波的周期的比例, 脉冲宽度调制(Pulse Width Modulation, PWM)波的占空比是可以调整的, 也就是说, 可以调整 PWM波各周期时间内高电 平的持续时间。如果 P丽波的占空比变大, 则意味着波形的一个周期时间内高电平的持续时间变长, 相应的, 低电平持续时间变短; 如果 P丽波的占空比变小, 则意味着波形的一个周期时间内高电平 的持续时间变短, 相应的, 低电平持续时间变长。
基于此, 如图 3a所示, 本发明实施例通过 PWM波输出模块和低通滤波单元对电源输出电压进行 控制, P丽波输出模块的输出端口输出 P丽波, 通过低通滤波单元将 P丽波滤波整流为直流电压波,
KTLPHW081110 使用该直流电压波去控制电源的参考电压, 通过相应程序调整 PWM波输出模块输出的 PWM波的占空 比, 可以改变直流电压波的电压平均值, 从而达到调节电源输出电压的目的, 而通过程序调节 PWM 波的占空比, 实现了电源输出电压的自动调节。
本发明实施例一、 二、 三分别提供了三种不同的低通滤波单元, 并通过 PWM波输出模块和低通 滤波单元调节电源输出电压的电路。
实施例一
如图 3b所示, 实施例一提供的一种电源输出电压控制装置包括: 电源调整单元 301、 低通滤波 单元 308、 第一电阻 302、 第二电阻 303、 以及 PWM波输出模块 307。
电源调整单元 301包括输入端、输出端和调整端, 电源调整单元 301的输入端与供电电源相连, 给电源调整单元 301供电, 电源调整单元 301根据调整端的输入电压从输出端输出相应的电压作为 被供电的电路的供电电压。
第一电阻 302和第二电阻 303作为电源调整单元 301的外围电路。 第一电阻 302连接在电源调 整单元 301的调整端与输出端之间, 第二电阻 303连接在电源调整单元 301的调整端与地之间。
P丽波输出模块 307的输出端口输出 P丽波。 PWM波输出模块 307可以是可编程逻辑器件, 也可 以是处理器或者单片机, 所述的可编程逻辑器件可包括 CPLD、 EPLD或 FPGA等。 P丽波输出模块 307 可以通过程序控制输出端口输出占空比可变的 P丽波。
低通滤波单元 308包括电阻 Ry304、 电阻 Rx306和电容 Cx305。低通滤波单元 308连接在电源调 整单元 301的调整端与 P丽波输出模块 307的输出端口之间, 用于将 P丽波输出模块 307的输出端 口输出的 PWM波滤波整流为直流波。 在该低通滤波单元 308中, 电阻 Ry304与电阻 Rx306串连于电 源调整单元 301的调整端与 P丽波输出模块 307的输出端口之间, 电容 Cx305—端与地连接, 另一 端与电阻 Ry304和电阻 Rx306的共同连接端相连。
通过改变 PWM波输出模块 307的输出端口输出的占空比可调的 PWM波来控制电源调整单元 301 的输出端输出的电压变化的过程, 如下所述:
先分析当 PWM波输出模块 307的输出端口输出直流波的情况, 假设 PWM波输出模块 307的输出 端口输出直流电压, 其有效值为 Vcon, 改变 P丽波输出模块 307的输出端口输出的直流电压的有效 值 Vcon, 那么 Vout就会随之改变, 具体如公式 3所示:
, Μ Λ, R1 Vcon - Vref n .
Vout = Vref · (—— + 1) · Rl
R2 Rx + Ry ( 3 ) 其中, Rl为第一电阻 302的电阻值, R2为第二电阻 303的电阻值。
那么, 当 P丽波输出模块 307的输出端口输出占空比为 50%的 P丽波时, 该 P丽波经过低通滤 波单元滤波后,其电压有效值 Vcon将会得到效果相当于 P丽波高电平一半的直流电压。这时就相当 于用 P丽波的高电平一半的直流电压 Vcon来改变 Vout。
具体地, 当 PWM波输出模块 307的输出端口输出 P丽波时, 向电容 Cx305充、 放电, 通过低通 滤波单元 308的滤波作用, 将输出的 PWM波滤为接近 PWM波的有效值 Vcon的直流波形。 当然, 该直 流波形并非绝对意义上的直流,其还会具有一定的紋波波动,但是在时间域上总体保持为相当于 Vcon
KTLPHW081110 的电压值。当 PWM波输出模块 307的输出端口输出的 Ρ¾1波为高电平(即正向脉冲)时, 电容 Cx305 充电; 当 P丽波输出模块 307的输出端口输出的 P丽波为低电平(负向脉冲)时, 电容 Cx305放电。
如果调节 P丽波输出模块 307的输出端口输出的 P丽波的占空比, 比如调到 20%的占空比, 由 于 PM1波中的正向脉冲比例减少, 负向脉冲比例增加了, 电容 Cx305的充电时间减少, 放电时间增 加, Vcon有效值减少, 通过低通滤波单元滤波后的电压值会降低, 电源调整单元 301的调整端的参 考电压 Vref 的电压也会相应的降低,导致电源调整单元 301的输出端的输出电压 Vout电压也降低。
反之, 如果调高 P丽波的占空比, 比如调到 80%, 这时, P丽波中的正向脉冲比例增加, 负向脉 冲比例减少, 电容 Cx305的充电时间增加,放电时间减少, Vcon有效值增加,通过低通滤波单元 308 滤波后的电压值会升高, 电源调整单元 301的调整端的参考电压 Vref 的电压也会相应的升高, 导致 电源调整单元 301的输出端的输出电压 Vout电压也升高。
如此实现了通过改变 P丽波输出模块 307的输出端口输出的 P丽波的占空比来调节 Vout输出电 压的目的。 由于该 P丽波的占空比是通过改变可编程逻辑器件、 单片机或者处理器的 PWM输出单元 中的占空比寄存器中保存的值进行调节的, 而寄存器通常至少是 8位以上的, 也就是说占空比的调 节数值至少有 28 = 256个, 那么根据至少 256个 PWM波的占空比, 可以调节出至少 256个 Vcon电 压, 也就相应的调节出 256个 Vout输出电压。 这比现有技术中通过几个有限的直流电压(如 5V、 3. 3V、 2. 8V等)进行调节, 具有更多级可变的电压值。所以, 通过调节 PWM波的占空比实现了 Vout 输出电压的多级可调。 这时, Vout输出电压的电压改变值可以远远多于现有技术中通过可编程逻辑 器件的输出端口输出直流电压方式进行调节的 Vout输出电压的改变值。
如图 4所示, 为占空比为 33%的 P丽波与 Vref 的电压波示意图; 图 5为占空比为 67%的 P丽波 与 Vref 的电压波示意图。
可以看出, 对于占空比越大的 P丽波, Vref 的电压则越高; 反之, Vref 的电压越低。 这样, 就 可以通过调节 Ρΐ«波的占空比, 达到调节直流电压 Vcon, 进而改变电源调整单元 301的调整端的参 考电压 Vref, 使得电源调整单元 301的输出端的输出电压 Vout发生改变的目的。
其中, 低通滤波单元 308和 PWM波输出模块 307组成了参考电源生成装置, 用于改变电源调整 单元 301调整端的参考电压。
本发明实施例通过改变 P丽波的占空比, 从而改变了对该 P丽波滤波整流后得到的直流电压, 并用该直流电压改变电源调整单元的参考电压, 从而改变电源调整单元的输出电压的技术, 使得电 源调整单元的输出电压的变化级数大大增加了, 可以适应更多的电压供应场合。
本发明实施例由于采用通过 P丽波输出模块的输出端口输出占空比可调的 P丽波来控制调节电 源调整单元的输出电压, 所以在需要改变电源调整单元的输出电压时无需手工调整电阻值, 只需通 过程序的改变来自动完成对输出电压的调整与改变, 提高了调整输出电压的效率。
实施例二
本发明实施例提供了一种控制电源电压输出范围的电路如图 6所示, 包括: 电源调整单元 601、 低通滤波单元 607、 第一电阻 602、 第二电阻 603以及 波输出模块 606。
电源调整单元 601包括输入端、输出端和调整端, 电源调整单元 601的输入端与供电电源相连,
KTLPHW081110 给电源调整单元 601供电, 电源调整单元 601根据调整端的输入电压从输出端输出相应的电压作为 被供电的电路的供电电压。
第一电阻 602和第二电阻 603作为电源调整单元 601的外围电路。 第一电阻 602连接在电源调 整单元 601的调整端与输出端之间, 第二电阻 603连接在电源调整单元 601的调整端与地之间。 P丽波输出模块 606的输出端口输出 PWM波, P丽波输出模块 606可以控制该输出端口输出的
PWM波的占空比。
电阻 Rx604、 电容 Cx605以及电容 Cy608组成低通滤波单元 607,连接在电源调整单元 601的调 整端与 P丽波输出模块 606的输出端口之间, 用于将 P丽波输出模块 606的输出端口输出的 P丽波 滤波整流为直流波。在该低通滤波单元 607中,电阻 Rx604连接在电源调整单元 601的调整端与 PWM 波输出模块 606的输出端口之间, 电容 Cx605连接在 PWM波输出模块 606的输出端口与地之间, 电 容 Cy608连接在电源调整单元 601的调整端与地之间。
与实施例一同样地, 电阻 Rx604和电容 Cx605组成的低通滤波单元 607可以将 PWM波输出模块 606的输出端口输出的 PWM波滤波整流为直流波后, 用以控制 Vref 的电压, 使得电源调整单元改变 输出端的输出电压。
其中, 低通滤波单元 607和 PWM波输出模块 606组成了参考电源生成装置, 用于改变电源调整 单元 601调整端的参考电压。
本发明实施例通过改变 P丽波的占空比, 从而改变了对该 P丽波滤波整流后得到的直流电压, 并用该直流电压改变电源调整单元的参考电压, 从而改变电源调整单元的输出电压的技术, 使得电 源调整单元的输出电压的变化级数大大增加了, 可以适应更多的电压供应场合。
本发明实施例由于采用通过 P丽波输出模块的输出端口输出占空比可调的 P丽波来控制调节电 源调整单元的输出电压, 所以在需要改变电源调整单元的输出电压时无需手工调整电阻值, 只需通 过程序的改变来自动完成对输出电压的调整与改变, 提高了调整输出电压的效率。
实施例三
本发明实施例提供了一种控制电源电压输出范围的电路如图 7所示, 包括: 电源调整单元 701、 低通滤波单元 707、 第一电阻 702、 第二电阻 703以及 波输出模块 706。
电源调整单元 701包括输入端、输出端和调整端, 电源调整单元 701的输入端与供电电源相连, 给电源调整单元 701供电, 电源调整单元 701根据调整端的输入电压从输出端输出相应的电压作为 被供电的电路的供电电压。
第一电阻 702连接在电源调整单元 701的调整端与输出端之间, 第二电阻 703连接在电源调整 单元 701的调整端与地之间。
P丽波输出模块 06的输出端口输出 P丽波, P丽波输出模块 706可以控制该输出端口输出的 P丽波的占空比。
电阻 Rx704和电容 Cx705组成低通滤波单元 707, 连接在电源调整单元 701与 P丽波输出模块 706的输出端口之间, 用于将 PWM波输出模块 706的输出端口输出的 P丽波滤波整流为直流波。 在 该低通滤波单元 707中, 电阻 Rx704连接在电源调整单元 701的调整端与 P丽波输出模块 706的输
KTLPHW081110 出端口之间, 电容 Cx705连接在电源调整单元 701的调整端与地之间。
与实施例一同样地, 电阻 Rx704和电容 Cx705组成的低通滤波单元 707可以将 PWM波输出模块 706的输出端口输出的 PWM波滤波整流为直流波, 用以控制 Vref 的电压, 使得电源调整单元改变输 出端的输出电压。
其中, 低通滤波单元 707和 PWM波输出模块 706组成了参考电源生成装置, 用于改变电源调整 单元 701调整端的参考电压。
本发明实施例通过改变 PWM波的占空比,从而改变了对该 PWM波滤波整流后得到的直流的电压, 并用该电压改变电源调整单元的参考电压, 从而改变电源调整单元的输出电压的技术, 使得电源调 整单元的输出电压的变化级数大大增加了, 可以适应更多的电压供应场合。
本发明实施例由于采用通过 P丽波输出模块的输出端口输出占空比可调的 P丽波来控制调节电 源调整单元的输出电压, 所以在需要改变电源调整单元的输出电压时无需手工调整电阻值, 只需通 过程序的改变来自动完成对输出电压的调整与改变, 提高了调整输出电压的效率。
以上实施例的 PWM波输出模块可以在电路板中已有的逻辑器件或者处理器中添加一个 PWM波输 出功能实现, 而低通滤波单元主要是由电阻、 电容构成, 是一个成本十分低廉的电源调节方案, 相 对于其它实现多级电压调节的方法, 如釆用数模转换器输出可调电压的方法而言, 成本较低。
以上的实施例在不同的应用场合还可以具有如下的有益效果:
当现场单板出现故障时, 而该故障主要是由于供电电压不合适引起的, 则可以通过在现场升级 版本改变程序, 微调 PWM波的占空比, 进而微调了电源调整单元的输出电压, 从而给单板提供合适 的电压, 这样提高了系统的稳定性和可靠性, 并避免了返回单板进行维修, 节约了返回维修的成本。
在大批量生产与测试单板的过程中, 可以通过软件自动调节 P丽波的占空比, 从而调节了电源 调整单元的输出电压, 可以使得单板的供电电压自动调整到电压极值范围内的任意值, 观察与检测 单板的集成电路的性能是否满足要求, 提高了大批量生产过程中对单板产品的测试效率。
在对单板进行调试时, 可以通过软件调节 P丽波的占空比, 从而改变电源调整单元的输出电压, 也就是改变了单板的供电电压, 增加了调试手段。
本领域技术人员可以根据本发明实施例公开的技术轻易实现其它变化种类的低通滤波单元, 来 实现对 P丽波的滤波整流, 从而调节电源的参考电压, 达到调节电源输出电压的目的。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员来说, 在不 脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范 围。
Claims
1、 一种电源输出电压控制装置, 包括电源调整单元、第一电阻和第二电阻, 其中: 所述第一电 阻连接在所述电源调整单元的调整端与输出端之间, 所述第二电阻连接在所述电源调整单元的调整 端与地之间; 其特征在于, 所述电源输出电压控制装置还包括:
P丽波输出模块, 用于在其输出端口输出可变占空比的 P丽波;
低通滤波单元, 连接在所述 PWM波输出模块的输出端和电源调整单元的调整端之间, 用于对所 述 PWM波输出模块输出的 P丽波进行滤波, 所述滤波后所得的直流波用于控制所述电源调整单元的 调整端电压。
2、 如权利要求 1所述的电源输出电压控制装置, 其特征在于, 所述低通滤波单元包括: 第三电阻和第四电阻, 串连于所述电源调整单元的调整端与所述 P丽波输出模块的输出端口之 间;
第一电容, 其一端与地连接, 另一端与所述第三电阻和第四电阻的共同连接端相连。
3、如权利要求 2所述的电源输出电压控制装置, 其特征在于, 所述电源调整单元的输出端电压
Rl 1 Vcon - Vref π 1
Vout = Vref · (— + l) · Rl
与调整端电压的关系为: R2 x + Ky
其中, Vout为所述电源调整单元的输出端电压; Vref 为所述电源调整单元的调整端电压; R1 为所述第一电阻的阻值; R2为所述第二电阻的阻值; Rx和 Ry分别为所述第三电阻和所述第四电阻 的阻值; Vcon为所述 PWM波输出模块输出端口输出 PWM波的直流电压有效值。
4、 如权利要求 1所述的电源输出电压控制装置, 其特征在于, 所述低通滤波单元包括: 第五电阻, 连接于所述电源调整单元的调整端与所述 PWM波输出模块的输出端口之间; 第二电容, 连接于所述电源调整单元的调整端与地之间。
5、 如权利要求 1所述的电源输出电压控制装置, 其特征在于, 所述低通滤波单元包括: 第六电阻, 连接于所述电源调整单元的调整端与所述 PWM波输出模块的输出端口之间; 第三电容, 连接于所述 P丽波输出模块的输出端口与地之间;
第四电容, 连接于所述电源调整单元的调整端与地之间。
6、如权利要求 1所述的电源输出电压控制装置, 其特征在于, 所述 PWM波输出模块为复杂可编 程逻辑器件 CPLD、 电可擦除可编程逻辑器件 EPLD、 现场可编程门阵列 FPGA、 处理器或者单片机。
7、 一种参考电源生成装置, 其特征在于, 包括:
P丽波输出模块, 用于在其输出端口输出可变占空比的 P丽波;
低通滤波单元, 连接所述 PWM波输出模块的输出端, 用于对所述 P丽波输出模块输出的 P丽波 进行滤波。
8、 如权利要求 7所述的参考电源生成装置, 其特征在于, 所述低通滤波单元包括: 第三电阻和第四电阻, 串连后连接所述 PWM波输出模块的输出端口;
第一电容, 其一端与地连接, 另一端与所述第三电阻和第四电阻的共同连接端相连。
9、 如权利要求 7所述的参考电源生成装置, 其特征在于, 所述低通滤波单元包括:
KTLPHW081110 第五电阻, 连接于所述电源调整单元的调整端与所述 PWM波输出模块的输出端口之间; 第二电容, 连接于所述电源调整单元的调整端与地之间。
10、 如权利要求 7所述的参考电源生成装置, 其特征在于, 所述低通滤波单元包括: 第六电阻, 连接于所述电源调整单元的调整端与所述 PWM波输出模块的输出端口之间; 第三电容, 连接于所述 PW1波输出模块的输出端口与地之间;
第四电容, 连接于所述电源调整单元的调整端与地之间。
11、 如权利要求 7所述的参考电源生成装置, 其特征在于, 所述 PWM波输出模块为复杂可编程 逻辑器件 CPLD、 电可擦除可编程逻辑器件 EPLD、 现场可编程门阵列 FPGA、 处理器或者单片机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710165464.8 | 2007-10-29 | ||
CN200710165464A CN100578902C (zh) | 2007-10-29 | 2007-10-29 | 一种电源输出电压控制装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009059527A1 true WO2009059527A1 (fr) | 2009-05-14 |
Family
ID=39423113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/072852 WO2009059527A1 (fr) | 2007-10-29 | 2008-10-28 | Générateur de source électrique de référence et dispositif de commande de sortie de tension de la source électrique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100578902C (zh) |
WO (1) | WO2009059527A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015103766A1 (en) * | 2014-01-10 | 2015-07-16 | Astec International Limited | Control circuits and methods for regulating output voltages based on adjustable references voltages |
CN105182018A (zh) * | 2015-10-28 | 2015-12-23 | 硅谷数模半导体(北京)有限公司 | 电压调节电路及其电压调节方法 |
CN105429437A (zh) * | 2015-12-11 | 2016-03-23 | 魅族科技(中国)有限公司 | 一种输出电压的控制电路 |
US9866134B2 (en) | 2014-01-10 | 2018-01-09 | Astec International Limited | Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages |
CN112422387A (zh) * | 2020-11-17 | 2021-02-26 | 深圳市博诺技术有限公司 | Kwp协议通讯总线高阻态电路及设备 |
US11223289B2 (en) | 2020-01-17 | 2022-01-11 | Astec International Limited | Regulated switched mode power supplies having adjustable output voltages |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100578902C (zh) * | 2007-10-29 | 2010-01-06 | 华为技术有限公司 | 一种电源输出电压控制装置 |
JP5394984B2 (ja) * | 2010-05-21 | 2014-01-22 | トヨタ自動車株式会社 | デューティ比/電圧変換回路 |
CN102739039A (zh) * | 2012-06-15 | 2012-10-17 | 三一重机有限公司 | 电子直流转换装置、印刷电路板及电子直流转换方法 |
CN102931842A (zh) * | 2012-10-12 | 2013-02-13 | 华为技术有限公司 | 芯片动态调压电路和终端设备 |
CN103079099A (zh) * | 2013-01-21 | 2013-05-01 | 深圳创维数字技术股份有限公司 | 一种机顶盒供电电路及控制机顶盒供电电压的方法 |
CN103311987B (zh) * | 2013-06-07 | 2015-05-20 | 国电南瑞科技股份有限公司 | 基于pwm信号电平比较的充电枪连接状态判别电路 |
CN105100608B (zh) * | 2015-07-03 | 2018-07-13 | 浙江宇视科技有限公司 | 一种智能摄像机的内核电压调节方法和装置 |
CN105974184A (zh) * | 2016-05-05 | 2016-09-28 | 浪潮电子信息产业股份有限公司 | 一种实现内存Vref Margin自动测试的方法 |
CN107765576A (zh) * | 2016-08-19 | 2018-03-06 | 智瑞佳(苏州)半导体科技有限公司 | 一种电源转换芯片 |
CN106921293A (zh) * | 2017-05-08 | 2017-07-04 | 深圳陆巡科技有限公司 | 基于数字控制的可实时线性调节输出的dc‑dc变换电路 |
CN114895741A (zh) * | 2022-06-09 | 2022-08-12 | 盈帜科技(常州)有限公司 | 一种输出电压调节电路 |
CN116566197B (zh) * | 2023-05-09 | 2024-04-09 | 广州市依歌智能科技有限公司 | 一种智能窗口导通取电芯片、供电电路 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312468A (ja) * | 1999-04-23 | 2000-11-07 | Seiko Instruments Inc | スイッチング・レギュレータ制御回路 |
US6650074B1 (en) * | 2002-05-29 | 2003-11-18 | Dell Products, L.P. | Fan speed controller with conditioned tachometer signal |
CN1753292A (zh) * | 2005-09-08 | 2006-03-29 | 吴浩 | 电流模式pwm直流-直流变换器芯片内的锯齿波发生装置 |
CN1889347A (zh) * | 2006-07-27 | 2007-01-03 | 华为技术有限公司 | 一种控制电源电压输出范围的电路 |
US20070145965A1 (en) * | 2005-12-05 | 2007-06-28 | Richard Oswald | Hysteretic switching regulator |
CN101068095A (zh) * | 2007-05-30 | 2007-11-07 | 吴壬华 | 一种开关电源输出电压调节的方法及实现电路 |
CN101174791A (zh) * | 2007-10-29 | 2008-05-07 | 华为技术有限公司 | 一种电源输出电压控制装置 |
-
2007
- 2007-10-29 CN CN200710165464A patent/CN100578902C/zh active Active
-
2008
- 2008-10-28 WO PCT/CN2008/072852 patent/WO2009059527A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312468A (ja) * | 1999-04-23 | 2000-11-07 | Seiko Instruments Inc | スイッチング・レギュレータ制御回路 |
US6650074B1 (en) * | 2002-05-29 | 2003-11-18 | Dell Products, L.P. | Fan speed controller with conditioned tachometer signal |
CN1753292A (zh) * | 2005-09-08 | 2006-03-29 | 吴浩 | 电流模式pwm直流-直流变换器芯片内的锯齿波发生装置 |
US20070145965A1 (en) * | 2005-12-05 | 2007-06-28 | Richard Oswald | Hysteretic switching regulator |
CN1889347A (zh) * | 2006-07-27 | 2007-01-03 | 华为技术有限公司 | 一种控制电源电压输出范围的电路 |
CN101068095A (zh) * | 2007-05-30 | 2007-11-07 | 吴壬华 | 一种开关电源输出电压调节的方法及实现电路 |
CN101174791A (zh) * | 2007-10-29 | 2008-05-07 | 华为技术有限公司 | 一种电源输出电压控制装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015103766A1 (en) * | 2014-01-10 | 2015-07-16 | Astec International Limited | Control circuits and methods for regulating output voltages based on adjustable references voltages |
US9698694B2 (en) | 2014-01-10 | 2017-07-04 | Astec International Limited | Control circuits and methods for regulating output voltages based on adjustable references voltages |
US9866134B2 (en) | 2014-01-10 | 2018-01-09 | Astec International Limited | Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages |
US9866133B2 (en) | 2014-01-10 | 2018-01-09 | Astec International Limited | Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages |
US9979307B2 (en) | 2014-01-10 | 2018-05-22 | Astec International Limited | Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages |
CN105182018A (zh) * | 2015-10-28 | 2015-12-23 | 硅谷数模半导体(北京)有限公司 | 电压调节电路及其电压调节方法 |
CN105429437A (zh) * | 2015-12-11 | 2016-03-23 | 魅族科技(中国)有限公司 | 一种输出电压的控制电路 |
US11223289B2 (en) | 2020-01-17 | 2022-01-11 | Astec International Limited | Regulated switched mode power supplies having adjustable output voltages |
US11671024B2 (en) | 2020-01-17 | 2023-06-06 | Astec International Limited | Regulated switched mode power supplies having adjustable output voltages |
CN112422387A (zh) * | 2020-11-17 | 2021-02-26 | 深圳市博诺技术有限公司 | Kwp协议通讯总线高阻态电路及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN100578902C (zh) | 2010-01-06 |
CN101174791A (zh) | 2008-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009059527A1 (fr) | Générateur de source électrique de référence et dispositif de commande de sortie de tension de la source électrique | |
US9055629B2 (en) | SCR dimming circuit and method | |
CN108631578B (zh) | 操作于连续传导和峰值电流控制模式的开关变换器的控制单元 | |
TWI508613B (zh) | High efficiency LED driver circuit and its driving method | |
CN103503563B (zh) | 可调光led驱动器及其控制方法 | |
CN106533154B (zh) | 改进的dc-dc转换器的负载瞬变和抖动 | |
TWI499183B (zh) | 電源轉換器的功率因數校正電路 | |
BRPI0920588B1 (pt) | circuito fotossensor | |
CN109247047B (zh) | 一种BiFRED转换器和驱动输出负载的方法 | |
CN108933529A (zh) | 电源控制装置及电源控制系统 | |
TW200952315A (en) | The frequency jitter of frequency generator and PWM controller | |
CN202889703U (zh) | 一种直流调光型led驱动电路 | |
CN101944740B (zh) | 一种多通道直流均流方法及装置 | |
CN113193540B (zh) | 控制电路、控制电路系统及电源芯片 | |
TWI547083B (zh) | 電源轉換器的控制電路及相關方法 | |
CN202750021U (zh) | 一种将交流电转换成直流电的转换器 | |
CN209676109U (zh) | 一种调节电流的控制电路及设备 | |
CN209964330U (zh) | 用于可控硅调光器的泄放模块、led驱动电路 | |
CN104753156A (zh) | 基于tl494脉宽调制芯片的单片机控制技术充电器 | |
CN111796150A (zh) | 占空比检测电路及占空比检测方法 | |
CN105722274B (zh) | 有源功率因数校正控制电路、芯片及led驱动电路 | |
CN106571742A (zh) | 一种升压转换器 | |
CN203801109U (zh) | 最大亮度提升模块、可控硅调光led驱动电路及系统 | |
CN206759315U (zh) | 一种降压型直流开关稳压电源 | |
CN213342018U (zh) | 一种太阳能控制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08847083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08847083 Country of ref document: EP Kind code of ref document: A1 |