WO2009057814A1 - Spiral type heat exchanger - Google Patents

Spiral type heat exchanger Download PDF

Info

Publication number
WO2009057814A1
WO2009057814A1 PCT/JP2008/070157 JP2008070157W WO2009057814A1 WO 2009057814 A1 WO2009057814 A1 WO 2009057814A1 JP 2008070157 W JP2008070157 W JP 2008070157W WO 2009057814 A1 WO2009057814 A1 WO 2009057814A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
string
shaped
spiral
Prior art date
Application number
PCT/JP2008/070157
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Araya
Hideyuki Matumoto
Hisao Matumoto
Original Assignee
Matumoto Giken Co, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007285245A external-priority patent/JP2009024990A/en
Priority claimed from JP2007313225A external-priority patent/JP5140797B2/en
Application filed by Matumoto Giken Co, Ltd. filed Critical Matumoto Giken Co, Ltd.
Publication of WO2009057814A1 publication Critical patent/WO2009057814A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a spiral heat exchanger configured such that at least two strip-shaped heat transfer plates are wound many times in a spiral manner at a predetermined interval from each other.
  • a stud pin for supporting a lid and / or a string-like gasket to be pressed against the adjacent opening edge is slightly placed on the opening edge of the belt-shaped heat transfer plate.
  • the present invention relates to a spiral heat exchanger characterized in that a predetermined space is provided from the opening edge of the plate, and is provided continuously in a shelf shape with a gap with an adjacent stud pin.
  • the present invention also relates to a spiral heat exchanger characterized in that a string-like cleaning member is slid and moved on both opposing wall surfaces of the two belt-like heat transfer plates.
  • the present invention provides a spiral heat exchanger in which the two belt-like heat transfer plates constitute independent unit members, the unit members can be completely divided and separated, and can be easily assembled. About.
  • cylindrical casing and the lid which is a closed flange that closes the opening edge 3 of the spirally wound belt-shaped heat transfer plate, are integrally used with the ribbed end plate. It relates to a closed flange that has been significantly reduced in weight without reducing the required strength.
  • the spiral heat exchanger is generally a spiral heat exchanger plate 2 and 2 'wound many times in a vortex shape at predetermined intervals.
  • One is The flow path A flows from the outer periphery to the core cylinder E, and the other flow path B flows from the core cylinder E ′ to the outer periphery B ′ as a completely counterflow, and heat exchange is performed.
  • the sealing method for the opening edge 3 of the belt-like heat transfer plates 2, 2, 2 is as follows.
  • the open edges 3 of the belt-like heat transfer plates 2, 2 and 2 are open in the vertical direction in both the A and B flow paths.
  • the opening edge 3 in the axial direction is sealed, and two flow paths A, B, which circulate facing each other in a vortex shape are formed.
  • the opening edge 3 of one flow path A is sealed with a sealing material 7 by welding, as shown in FIG. 2 (A), and a closure flange cover (not shown).
  • the opening edge 3 of the other channel B is sealed with a belt-like cover body 21 such as a soft caterpillar as shown in FIG. 2 (B).
  • 8 is a stud pin
  • 2 2 is a slit
  • 2 3 is a spacer that ensures the distance between the belt-like heat transfer plates 2, 2.
  • the opening edge 3 of the belt-like heat transfer plates 2 and 2 ′ is bent in the longitudinal direction with a predetermined interval I, There is a method of sealing by welding 6 so that the overlapped areas are stitched together, but there is also a problem that it is difficult to wind these folded belt-like heat transfer plates in a spiral shape. 9 8 2).
  • the thickness of the belt-shaped heat transfer plates 2, 2, and 2 increases even if the heat transfer efficiency decreases. It was necessary to use a thick stainless steel plate.
  • the welded part and the vicinity of the welded part are inherently susceptible to corrosion, and further, stress is concentrated on weak areas due to strain caused by temperature changes during operation and fatigue caused by repeated expansion and contraction, and corrosion and fracture are likely to occur. There is a problem that the whole welded device cannot be used at once due to leakage due to some breakage.
  • a number of stud pins 8 or distance bars shown in FIG. 3 (C) are used as a spacer for maintaining the interval I between the belt-like heat transfer plates. It was necessary to weld 10 etc. to the belt-like heat transfer plates 2, 2, and so on.
  • a distance bar 10 (flat bar) that has a function of increasing the heat exchange rate by providing a turbulent action to the fluid flowing through the flow path by providing a predetermined interval between the two belt-shaped heat transfer plates. It was difficult to wind the belt-shaped heat transfer plate provided with a vortex so that the place was the trunk (Japanese Patent Laid-Open No. 6-2 7 3 0 8 1).
  • 12 is a string-like hollow gasket.
  • the normal cleaning procedure is to first stop the operating equipment and disassemble the heat exchanger.
  • the lid end plate
  • Many pipes are cleaned by cleaning balls or brushes by rotating them with water pressure, but the outside of the pipe is often left with other deposits, which are removed. To do that, it required more work.
  • spiral heat exchangers that use members such as distance pars and distance pins to maintain a gap between the belt-shaped heat transfer plates have a problem that the members protruding into these flow paths impede cleaning. .
  • the two edges of the thin belt-shaped heat transfer plate are bent and welded as shown in FIG. It was more difficult to clean the inside of the cylinder.
  • the spiral heat exchanger is constructed by winding the strip-shaped heat transfer plate many times in a spiral, the curvature differs at each position, and each wall surface of each strip-shaped heat transfer plate is swept away. It was extremely difficult to regenerate.
  • a cross-flow spiral heat exchanger rotates and moves the stick-removing stick-like member suspended in the flow path in the axial direction of the spiral, and cleans only one flow path.
  • the heat transfer area can be increased freely by sandwiching several to 100 or more heat exchange plates between both flanges.
  • the container is large (for example, the diameter is lm or more), it is necessary to have a thick closure flange as a cover.
  • This is a JIS (Japanese Industrial Standard) table, for example, (5 k flange, nominal diameter 1 5 0 0, flange thickness 5 It is clear from the view of 8 mm. In other words, this is about 2 tons with just two flanges.
  • semi-cylindrical cores E and E ′ are provided on both sides of one partition wall 18, and the end portions 24 of the heat transfer plate are fixed thereto. Once assembled, disassembly was difficult.
  • Figure 5 shows the above problem (a).
  • a stud bin 8 that performs a function corresponding to the L-shaped bent portion 20 of the opening edge shown in FIG. 4 of the belt-like heat transfer plate 2 that supports the string-like gasket 13 is connected to the opening end.
  • the problem can be solved by providing a predetermined gap 5 at a position corresponding to the L-shaped bent portion 20 of the edge and connecting them in a shelf shape. That is, as shown in Fig. 5 (B) and (C), a predetermined margin 14 for the lid F is provided from the opening edge 3 of the belt-like heat transfer plates 2 and 2 'so that the stud bin 8 has a constant gap 5
  • the stud pins 8 are stud bolts of a predetermined length, thickness and shape, or stud pins are planted by stud welding or the like.
  • a string-like gasket 13 is mounted and wound together with the belt-like heat transfer plates 2, 2 'in a vortex shape, or The belt-shaped heat transfer plates 2 and 2 ′ wound in a vortex are inserted into a predetermined position.
  • the gasket 13 is omitted for convenience of explanation.
  • the gap 5 becomes a bending element when winding the belt-like heat transfer plates 2 and 2 ′ in a vortex shape. Become.
  • the present invention is characterized in that this bending element is used when the support member 15 of the shelf-like string-like gasket 13 is provided on the belt-shaped heat transfer plate wound in a spiral shape.
  • the stud pins 8 are connected in a shelf shape, and a string-like gasket 13 is mounted thereon.
  • the stud pin 8 connected in a shelf shape has a stud-like gasket 13 so that the string-like gasket 13 can be maintained parallel to the lid F as shown in FIG. 5 (D).
  • the parallel surface portion 16 of the stud bin 8 or the support member 15 is arranged on the string-like gasket 13 side as shown in FIGS. 6 (B), (C), (D). 2 ′, a predetermined space 11 is provided from the end surface opening 3 of the 2 ′, and the parallel surface portions 16 are aligned in a line. This line corresponds to the L-shaped bent portion 20 shown in FIG.
  • FIGS. 6 (C) and (D) when the string-like gasket 13 is mounted and supported and the outer body flange D is pressed against the lid F, the parallel surface portion 1 of the support member 15 Uniform sealing is obtained when 6 is a continuous parallel surface to the lid F.
  • the string-like gasket 13 having a sufficient volume due to the tightening allowance 14 shown in FIG. 5 (B) is the parallel surface 1 of the support member 15 arranged in a continuous manner in the upper (lid F) and lower (shelf shape). 6), left (band-shaped heat transfer plate 2), right (band-shaped heat transfer plate 2 ') are filled in the enclosed area, and both the A and B flow paths can be sealed.
  • the string-like hollow gasket 12 shown in FIG. 4 is mounted and supported, and this is expanded and expanded by hydraulic pressure or the like, and the opening edge 3 is sealed to constitute both the A and B flow paths. You can.
  • the string-shaped cleaning member G is The long end P is the inlet A of the fluid A provided at one end 3 4 of the belt-shaped heat transfer plate 2 and the pressure wash water Starting from an intermediate point with the port b, it reaches the other end P of the belt-like heat transfer plate 2 where the outlet A ′ of the fluid A and the outlet b ′ of the pressure washing water are similarly provided.
  • 1 9 is a guide to protect the entrance.
  • the string-like cleaning member G is swung freely in the axial direction (perpendicular to the longitudinal direction of the belt-like heat transfer plate) by alternately opening and closing the fluid inlets and outlets of the plurality of fluids provided above, It can be swung and cleaned like a long wiper.
  • fluid A enters from inlet a, passes through channel A, and is discharged from outlet a '.
  • the string-like cleaning member G is in the state of sticking to the string-like gasket 13, side in FIG.
  • the outlet b ′ shown in FIG. 12 (A) is closed, and pressure wash water is injected from the inlet b. Then, the string-like cleaning member G moves upward from the curve L as shown by an arrow K shown in FIG. 12 (B), and becomes as shown in FIG. At this time, the fluid in the channel A is discharged from the entrances a and a ′.
  • the opposite operation is to change the inlet of the pressure washing water to a and change the direction of Fig. 12 (C) ⁇ (B) ⁇ (A), so that the string-like cleaning member G returns to the original state through the arrows K,.
  • the string-like cleaning member G filled between the belt-shaped heat transfer plate 2 and the belt-shaped heat transfer plate 2 ′ slides and moves strongly on the opposing wall surfaces of the belt-shaped heat transfer plates 2 and 2 ′ that are in contact with each other.
  • the attachment can be removed.
  • the prosthetic end plate is attached to the reinforcing rib.
  • FIG. 1 is a longitudinal sectional view in which a part of a conventional spiral heat exchanger is omitted.
  • Fig. 2 (A) is a cross-sectional view of a conventional example, in which a strip cover is combined with a sealing material.
  • FIG. 2 (B) is a perspective view of the belt-like cover body.
  • Fig. 3 (A) is a conventional example, and is an enlarged cross-sectional view of a main part in which one opening edge is bent at an obtuse angle.
  • Fig. 3 (B) is an enlarged cross-sectional view of the main part of one opening edge bent at a right angle.
  • FIG. 3 (C) is a perspective view showing a heat transfer plate of Japanese Patent Application Laid-Open No. Hei 6-2 7 30 8 1.
  • FIG. 4 is an explanatory view of the opening edge bent in an L shape in the example of Japanese Patent No. 4 0 2 9 4 4.
  • FIG. 5 is an explanatory diagram of the first embodiment
  • FIG. 5A is an explanatory diagram of an example in which the stud pins of the first embodiment are arranged in a shelf shape.
  • FIG. 6 is a vertical cross-sectional side view taken along the line A-A in Fig. 6 (B).
  • C is an explanatory view of part of Fig. 6 (C) together with the stringed gasket 13 and the lid F viewed from the front. It is.
  • D) and (E) are explanatory views showing other shapes of the stud pin 8.
  • FIG. 6 is an explanatory view of the second embodiment.
  • (A) is a bearing member 1 having a bowl-shaped cross section of the second embodiment.
  • FIG. (B) is an explanatory diagram in which the support member 15 having a bowl-shaped cross section of Example 2 is connected in a shelf shape, and the tightening margin 14 of the string-like gasket 13 is omitted.
  • FIG. 6 (C) is a vertical cross-sectional side view taken along the line A—A in which lid F is combined with FIG. 6 (B).
  • (D) is a vertical cross-sectional side view taken along line AA in FIG. 6 (C).
  • FIG. 7 is an explanatory diagram of Examples 1, 2, 8 and Example 9.
  • FIG. 8 (A) is an explanatory diagram of the folding cradle 20 of the third embodiment.
  • (B) is a longitudinal sectional view taken along line AA in FIG.
  • FIG. 9 is an explanatory view of the pin cradle 26 of the third embodiment, and (A) is a vertical side view taken along the line AA of FIG. 9 (B). (B) is a vertical cross-sectional side view taken along line AA in FIG. 9 (A).
  • FIGS. 10 (A) and (B) are explanatory views showing a mode in which the heat exchange fluids A and B of Example 4 are orthogonal to each other.
  • FIG. 10 (B) is a cross-sectional view of the porous plate 37 and
  • FIG. 5 is a vertical side view of the AA line combined with a bowl-shaped lid body 3 6.
  • FIG. 11 is an explanatory diagram of the sixth embodiment.
  • FIG. 12 (A) is an explanatory view showing Example 6 in an expanded manner.
  • FIG. 12 (B) shows the string-like cleaning member G forward path of Example 6, and
  • FIG. 12. (C) is an explanatory view showing the return path developed.
  • FIG. 13 is an explanatory diagram showing Example 7 in an expanded manner.
  • FIG. 14 (i) is an explanatory view of Example 9, and (mouth) and (c) are explanatory views of FIG. 14 (i).
  • FIG. 15 is an explanatory view of the lid body F of the closing flange in Example 10 and (i) is a plan view.
  • (Mouth) is a vertical side view taken along line AA in Fig. 15 (i), and
  • (C) is a perspective explanatory view of the reinforcing rib.
  • the spiral heat exchanger according to the present invention is widely used not only for household use but also for food machinery, chemical plants, nuclear power generation, ocean thermal power generation and other various industries, and is used to regenerate, recover, and / or heat energy.
  • various heat exchangers indispensable for circulation it exhibits the best performance in terms of heat transfer between fluids with a small temperature difference.
  • it has the smallest volume and the materials such as heat transfer plates to be used are the smallest. It becomes a heat exchanger that requires less, and contributes greatly to measures to prevent global warming.
  • the belt-like heat transfer plates 2 and 2 ' are each a predetermined space 1 in which the string-like gasket 1 3 is mounted slightly inward from the opening edge 3 on both axial sides. 1 is placed, the specified gap 5 is provided, and the stud bins 8 are planted continuously by stud welding in the form of a row shelf.
  • the stud bin 8 is covered with a support member 15 having a parallel surface portion 16 on one side as shown in FIG. 6 (A).
  • FIGS. 6 (A), (B), (C), (D ), Parallel plane portions 16 are arranged side by side.
  • the end portions 24 of the belt-like heat transfer plates 2 and 2 ' have a core provided with a step. It is welded to a part of cylinders E and E '. .
  • the semicircular arc tube E and the core tube E ′ are configured so as to be shifted by the interval I (string-like gasket 13) between the strip-shaped heat transfer plates 2 and 2 to be applied one by one via the partition wall 18.
  • I string-like gasket 13
  • the flow path A enters from the outer cylinder, is wound in a spiral shape toward the core cylinder, passes through the through hole 3 1, and reaches A, surrounded by the partition wall 18 and the core cylinder E.
  • Channel B passes through hole 31 and leads to B surrounded by partition wall 18 and core tube E ′.
  • the string-like gasket 13 is connected to the opposite side of the band-shaped heat transfer plate 2 at the beginning and end of the band-shaped heat transfer plate, and is connected to the opposite side.
  • the string-like gasket 1 3 When the one shown in FIG. 7 is wrapped in the casing C shown in FIG. 6 (C) and tightened in the axial direction with the body flange D and the lid F, the string-like gasket 1 3 has a tightening margin of 14 Compressed by the belt-like heat transfer plates 2 and 2 ′ and the support members 15 connected to these in a shelf shape, and in the meantime, they are in close contact with the surfaces that are in contact with each other and are vertically and horizontally contacted. It becomes a spiral heat exchanger.
  • This embodiment is applied when the distance between the belt-shaped heat transfer plate 2 and the belt-shaped heat transfer plate 2 ′ is large.
  • the length of the stud pin 8 is naturally long. If the stud pin 8 used here is thickened, naturally the corresponding strip-shaped heat transfer plates 2 and 2 'must also be thickened. If the welding of the stud pin 8 is weak, the stud pin 8 is easily peeled off from the belt-shaped heat transfer plate, and if it is strong, the welded portion of the belt-shaped heat transfer plate is deformed to displace and move the stud pin 8 and leak from here. May occur. Therefore, in this embodiment, as shown in FIGS. 8 (A) and (B), one end of the stud bin 8 and / or the supporting member 15 which are connected to the belt-like heat transfer plate 2 in a shelf shape by welding.
  • the other end 3 4 is spirally wound at the same time, and is supported by a folding cradle 2 0 ′ provided on another belt-like heat transfer plate 2 that is in contact with each other. Since this bent pedestal 20 'may be a little in the diametrical direction (about 1 to 5mm), it does not provide much resistance to winding the belt-like heat transfer plate in a spiral shape.
  • the stud pin 8 which was in a cantilever state by welding the belt-like heat transfer plates 2 and 2 ′ having a large interval on one side, becomes a bridge (B ridge) supported on both sides, and is a thin stud pin. 8 can also be used with thin strip-shaped heat transfer plates 2, 2 '.
  • the stud bin or the support member 15 is suitable for the contact between the parallel surface portion 16 that receives the string-like gasket and the bent support 20 '. It has a prismatic shape.
  • a pin holder 26 is provided in place of the bending holder 20 of the second embodiment.
  • a pin holder 26 is connected to one side of the belt-like heat transfer plate 2 in a shelf shape, and a support member 15 is provided in a shelf shape on the other side. It is connected to.
  • the other end 3 4 of the support member 15 is supported by a pin support 26 provided on the belt-shaped heat transfer plate 2.
  • the belt-like heat transfer plates 2 and 2 ′ are combined and wound in a spiral shape.
  • the parallel surface shape 16 is continuously arranged in a shelf shape like the support member.
  • FIGS. 10 (A) and (B) This embodiment is shown in FIGS. 10 (A) and (B).
  • the flow path A is configured by mounting a string-like gasket 13 on a support member 15 connected in a shelf shape as in Examples 1 to 3. It winds in a spiral and becomes a flow in the circumferential direction.
  • the opening edge 3 on the channel B side is a state in which the stud bins 8 are connected in a shelf shape with a gap 5 and are opened in the axial direction. Then, the fluid in the channel B flows in a direction perpendicular to the fluid in the channel A, that is, in the axial direction, and is heat-exchanged.
  • the lid F that holds the opening edge 3 is preferably a porous plate such as a honeycomb plate or a net plate.
  • the saddle-like lid 27 that encloses these is indicated by a dotted line.
  • the lid F can be omitted.
  • a belt-like heat transfer plate having at least one surface laminated with a fluororesin film sheet is used.
  • the stud pins of the belt-shaped heat transfer plate are pre-determined to ensure that the belt-shaped heat transfer plate is stud welded with the stud bin.
  • the coating at the position (electrical insulator) is removed in advance.
  • a support member 15 covered with a fluororesin is put on a stud bin planted by stud welding.
  • the respective films are welded and bonded, and the removed portion of the film and the covering of the support member 15 are repaired and integrated, so that a spiral heat exchanger laminated with a fluororesin film sheet is obtained.
  • the belt-shaped heat transfer plate is laminated with a fluororesin film sheet, but it goes without saying that the combination is not limited to this.
  • the stud pin 8 and the support member 15 are not only round, but also have a saddle-like cross section shown in FIGS. 7 (A) to (D), a square shape shown in FIG.
  • the shape of the parallel plane is not limited to the embodiment as long as the non-uniformity of the pressing is suppressed, and the shape, line, strip, unevenness, pattern, etc., the surface state, etc. can be freely set.
  • the stud bin 8 that covers the support member 15 can be provided with a spline 30 as required.
  • This non-round spline 30 can be used for applications in which the support member 15 does not rotate relative to the stud bin 8.
  • a string-like cleaning member G having a cleaning function is applied to Japanese Patent Application No. 2 0 0 7-2 8 5 2 4 5.
  • a string-like gasket 13 supported by a connected stud bin 8 flows on the opening edge 3 of the belt-like heat transfer plates 2, 2, of the spiral heat exchanger 1.
  • Channel A and channel B are configured.
  • FIG. 12 (A) shows the flow path A with a string-like cleaning member G built therein.
  • the embodiments of the string-like cleaning member G of the present invention are shown in FIGS. 12 (A), (B), and (C).
  • the string-like greening member G has an end P at the intermediate point between the fluid inlet / outlet a and the inlet / outlet b.
  • the other end P whose intermediate point is between the entrances a and b, is reached.
  • the fluid for heat exchange enters from the inlet a, passes through the flow path A, and exits from the outlet a ′. Therefore, the apertures a and a 'are provided with the normal operation diameter.
  • the diameters of the entrances b and b ′ can be small because they only inject high-pressure washing water.
  • the first cleaning process (outward) is shown in Fig. 12 (A).
  • the inlet / outlet a and the inlet / outlet a ′ are opened, the inlet / outlet b ′ is closed, and high-pressure washing water is injected from the inlet b into the channel A ′.
  • the string-like cleaning member G leaves the string-like gasket 1 3 ′ by the pressure of the high-pressure washing water and moves while curving L in the direction of arrow K shown in FIG. 1 (B).
  • (C) it is in close contact with the string-like gasket 13.
  • the heat exchange fluid filled in the flow path A to the string gasket 1 3 sealing both wall surfaces of the opposed strip-shaped heat transfer plates 2 and 2 ′ and the opening edge 3 is It is discharged through the previously opened doors a and a '.
  • the entire area of the channel A ′ is occupied by high-pressure washing water.
  • (C) slides in the direction of the arrow K 'in the direction of the arrow G' while curving as shown by the dotted line G '.
  • the string-like cleaning member G used in this example is a fluoro rubber having a flexible X-shaped cross section, excellent in heat resistance and corrosion resistance, as shown in Fig. 11.
  • the wire H is wrapped around the core, The tip of the X-shaped fluororubber is pointed.
  • the string-like cleaning member G is free to bend and freely follows the uneven continuous arcs of the belt-like heat transfer plates 2 and 2 ′ wound in a spiral shape, deformed and moved from behind. It does not leak the high-pressure washing water that is received, and the strip-shaped heat transfer plate that scrapes off and removes the deposits on the wall surfaces of the strip-shaped heat transfer plates 2, 2 with the sharp tip of the X-shaped fluororubber is not cleaned and regenerated. Is done.
  • the string-like cleaning member G is suitable for removing the adhering matter by sliding and moving on the opposite wall surfaces of the belt-like heat transfer plate, and is widened so as to be easily subjected to the pressure of the high-pressure washing water.
  • the string-like cleaning member G has a wiper-shaped tip and both the forward and backward movements of the string-like cleaning member are in close contact with both wall surfaces of the belt-like heat transfer plates 2 and 2 ' Applicable.
  • the material, structure, cross-sectional shape and the like of the string-like cleaning member G are not limited to this example.
  • the strip-shaped heat transfer plates 2 and 2 'of the spiral heat exchanger 1 are connected to the partition pins (dotted lines) that also serve as distance bars in a shelf-like manner. It is
  • the pressure washing water inlet / outlet a.b.a'.b increases, but the moving distance of the string-like cleaning member G decreases to 1Z2. Therefore, the opposite strips It is good when the distance between both wall surfaces of the heat plate, that is, when the gap is narrow, or when the casing (body cylinder) is long, or when the curvature is small. As a result, the heat resistance is improved with a thin heat transfer plate.
  • the partition J may be a stud bin arranged in a shelf shape of the present invention, and the number and shape of the partitions J are not limited. No need to apply string-like cleaning member G.
  • FIG. A flat bar 25 corresponding to the bending of the trunk portion is detachably inserted into and attached to the stud bins 8 and 8 ′ planted in advance on the trunk portion of the belt-shaped heat transfer plate 2.
  • a notch 3 2 is provided on one side of the flat par 2 5 inserted into the two stud pins 8, 8. This plug-in is easy to attach and detach because it may be a little rattle.
  • the fluff bar 25 can also function as a distance bar 10 that defines the interval I, and at the same time, can freely set the agitation of the fluid in the flow path and the flow path change.
  • the mounting method of the stud pins 8, 8 'and the flat bar 25 is not limited to this example.
  • FIG. 14 (i) is an explanatory view of a spiral heat exchanger assembled with a casing and a belt-like heat transfer plate on a separable core cylinder of the present invention.
  • Fig. 14 (i) can be broken down into (mouth) and (c).
  • the wedge M of the semi-cylindrical core E 'of (c) prepared separately is wedge-received to the wedge receiver N provided in the partition wall 18 of the semi-cylindrical core E of Fig. 14 (mouth).
  • the spiral heat exchanger shown in Fig. 14 (i) is obtained. That is, as shown in FIGS. 7 and 11, the stud pins 8 are connected in a shelf shape, and the string-like gasket 13 mounted on the stud pins 8 is formed of the belt-like heat transfer plate as shown in FIG. Sealing is achieved by turning the edge around the endless.
  • a wedge and a wedge receiver are used to integrate the semi-cylindrical core tube, but it is needless to say that other fittings, screwing, and the like can be applied without being limited thereto. That is, a thin heat transfer plate can be used.
  • Fig. 15 (A) is a combination of a prosthetic end plate 9 with a lid F and an annular flange 29, and into the lumen 36 as shown in (B), the reinforcement shown in (C) A large number of ribs 35 are arranged radially, and these are integrated by welding at their contact points or lines.
  • the lid F which is a closing flange, is placed on a stud pin 8 disposed on the opening edge 3 of the belt-like heat transfer plates 2 and 2 ′ as shown in FIG. 15 (B).
  • the strip-shaped heat transfer plates 2, 2 and the like which are formed by being wound in a spiral manner at a predetermined interval I by the string-like gaskets 13 and / or the string-like hollow gaskets 1 2 are collected.
  • the open edge 3 of the cylindrical housing C can be sealed.
  • the reinforcing ribs 35 are radially arranged in the lumens 36 of the end plate 9.
  • the present invention is not limited to this. Anything is acceptable as long as it is provided on the body.
  • the joint surface 37 with the lid F is finished as a predetermined plane. This finishing process does not have to depend on a huge lathe.
  • the finished surface is the joining surface 3 7 of the thin plate-like reinforcing ribs 3 5.
  • the reinforcing ribs 35 are fixed to the lumens 36 of the prone-shaped end plate 9, the prone-type end plate 9 can be rotated and easily grinded with a grinder or the like. Therefore, any lid F can be processed with little effort, and correction is also easy.
  • the lid F which is the closing flange shown in Fig. 15 (B) and (C), may be a single plate.
  • the honeycomb sand of the upper plate 38, the lid plate 39, and the honeycomb 40 It consisted of a touch panel.

Abstract

This aims to provide a spiral heat exchanger having at least two band-shaped heat transfer plates wound spirally. Stud pins are continuously disposed in a shelf shape through a predetermined clearance at a predetermined space from the individual open end edges of the two band-shaped heat transfer plates. A string-shaped gasket is mounted and spirally wound on the stud pins, and is fastened by a cover so that the spiral heat exchanger can be easily manufactured. A string-shaped cleaning member extending along a passage in the longitudinal direction of the band-shaped heat transfer plates is operated to switch the entrance and exit of a fluid so that the string-shaped cleaning member can be freely slid like a long wiper in the axial direction of the spiral, thereby to clean the heat transfer faces of the confronting the band-shaped heat transfer plates. The two band-shaped heat transfer plates are joined to a semicylindrical core cylinder, of which a central core cylinder can be assembled and disassembled, to constitute mutually independent unit members, so that the band-shaped heat transfer plates can be easily manufactured and cleaned. An inverted cup-shaped end plate and reinforcing ribs can be integrally used in the cover or a closed flange, so that not only the closed flange but also the spiral heat exchanger can be reduced in weight.

Description

明細書 スパイラル式熱交換器 技術分野  Description Spiral Heat Exchanger Technical Field
この発明は少なく とも 2枚の帯状伝熱板を互いに所定の間隔をあけて渦卷き 状に多数回卷回して構成されたスパイラル式熱交換器に関する。  The present invention relates to a spiral heat exchanger configured such that at least two strip-shaped heat transfer plates are wound many times in a spiral manner at a predetermined interval from each other.
詳しくは、 前記帯状伝熱板の開口端縁の少し內方に、 蓋体および又は隣接の 開口端縁に対して圧締めされる紐状ガスケッ トを支受するスタッ ドピンを、 帯 状伝熱板の該開口端縁から所定のスペースをおき、 且つ隣のスタッドピンとの 隙間をあけて棚状に連設して設けたことを特徴とするスパイラル式熱交換器に 関するものである。  Specifically, a stud pin for supporting a lid and / or a string-like gasket to be pressed against the adjacent opening edge is slightly placed on the opening edge of the belt-shaped heat transfer plate. The present invention relates to a spiral heat exchanger characterized in that a predetermined space is provided from the opening edge of the plate, and is provided continuously in a shelf shape with a gap with an adjacent stud pin.
そして前記 2枚の帯状伝熱板の相対向する両壁面に、 紐状クリーニング部材 を摺動移動せしめることをことを特徴とするスパイラル式熱交換器に関するも のである。  The present invention also relates to a spiral heat exchanger characterized in that a string-like cleaning member is slid and moved on both opposing wall surfaces of the two belt-like heat transfer plates.
またこの発明は、 前記 2 枚の帯状伝熱板が夫々独立したュニッ ト部材を構成 し、 そのユニッ ト部材が完全に分割して分離ができ、 且つ組立ても容易にでき るスパイラル式熱交換器に関する。  Also, the present invention provides a spiral heat exchanger in which the two belt-like heat transfer plates constitute independent unit members, the unit members can be completely divided and separated, and can be easily assembled. About.
更に上記円筒状の筐体と、 渦巻状に卷回された帯状伝熱板の開口端縁 3を閉 じる閉止フランジである蓋体に、 伏椀状の鏡板に補強リブを一体にして用いた 蓋体に関し、 必要な強度を低下させること無く、 大幅に軽量化された閉止フラ ンジに関するものである。 背景技術  In addition, the cylindrical casing and the lid, which is a closed flange that closes the opening edge 3 of the spirally wound belt-shaped heat transfer plate, are integrally used with the ribbed end plate. It relates to a closed flange that has been significantly reduced in weight without reducing the required strength. Background art
スパイラル式熱交換器は一般に第 1図に示すように、 2枚の長尺の帯状伝熱板 2、 2 ' を所定の間隔をあけて渦卷状に多数回卷回したもので、 流体の一方は 流路 Aを外周から芯筒 E へ、 他方流路 Bは芯筒 E ' から外周の B ' へ、 それぞ れ完全な対向流となって流れ、 熱交換するようになつている。 As shown in Fig. 1, the spiral heat exchanger is generally a spiral heat exchanger plate 2 and 2 'wound many times in a vortex shape at predetermined intervals. One is The flow path A flows from the outer periphery to the core cylinder E, and the other flow path B flows from the core cylinder E ′ to the outer periphery B ′ as a completely counterflow, and heat exchange is performed.
そしてその帯状伝熱板 2 、 2, の開口端縁 3の封止方法は次のようになって いる。  The sealing method for the opening edge 3 of the belt-like heat transfer plates 2, 2, 2 is as follows.
第 1図に示すものは、 帯状伝熱板 2 、 2, の開口端縁 3は、 A、 B両流路とも 上下方向にも開放されているが、 円盤状ガスケット 4で上下両側の胴部フラン ジ Dと蓋体フランジ Fを締め付けることによって軸方向の開口端縁 3を封止し て、 渦卷状に向かい合って回流する A、 B 、 2つの流路を構成するようになつ ている。  As shown in Fig. 1, the open edges 3 of the belt-like heat transfer plates 2, 2 and 2 are open in the vertical direction in both the A and B flow paths. By tightening the flange D and the lid flange F, the opening edge 3 in the axial direction is sealed, and two flow paths A, B, which circulate facing each other in a vortex shape are formed.
また第 2図に示すものは、 一方の流路 Aの開口端縁 3は 第 2図 (A) のよう に、 シール材 7を溶接で封止して閉止フランジの蓋体 (図示しない) と接し、 他方の流路 Bの開口端縁 3は 第 2図 (B) に示すように、 軟質のキャタピラー のような帯状カバー体 2 1で封止されるようになっている。  As shown in FIG. 2, the opening edge 3 of one flow path A is sealed with a sealing material 7 by welding, as shown in FIG. 2 (A), and a closure flange cover (not shown). The opening edge 3 of the other channel B is sealed with a belt-like cover body 21 such as a soft caterpillar as shown in FIG. 2 (B).
図中 8はスタッドピン、 2 2はスリ ッ ト、 2 3は帯状伝熱板 2 、 2, の間隔 を保障するスぺーサ一である。  In the figure, 8 is a stud pin, 2 2 is a slit, 2 3 is a spacer that ensures the distance between the belt-like heat transfer plates 2, 2.
この第 2図の開口端縁 3は、 厚い金属製シール材 7と渦卷状に卷回してから 溶接 6するので、 完全に溶接接合することが困難であった。  Since the opening edge 3 in FIG. 2 is wound with a thick metal seal 7 in a vortex shape and then welded 6, it is difficult to completely weld and join.
異なる手段として、 第 3図 (A) 及び (B) に示すように、 帯状伝熱板 2 、 2 ' の開口端縁 3を所定の間隔 I を設けて長手方向に折り曲げ突合せ或いは重ねて から、 重ねた所を縫い合わせるように溶接 6 して封止する方法があるが、 これ らも折り曲げた帯状伝熱板を渦巻状に卷回することが難しい問題があった (特 開平 8— 2 9 1 9 8 2号)。  As a different means, as shown in FIGS. 3 (A) and 3 (B), the opening edge 3 of the belt-like heat transfer plates 2 and 2 ′ is bent in the longitudinal direction with a predetermined interval I, There is a method of sealing by welding 6 so that the overlapped areas are stitched together, but there is also a problem that it is difficult to wind these folded belt-like heat transfer plates in a spiral shape. 9 8 2).
更に、 上記渦巻状に卷回する溶接は、 帯状伝熱板 2の肉厚が薄くなるほど溶 接の難度が増すので、 伝熱効率が低下しても帯状伝熱板 2 、 2, に肉厚が厚い ステンレス鋼板等を使う必要があった。 また溶接部分や溶接部附近は本質的に腐食されやすく、 更に運転中の温度の 変化で生じる歪みや、 膨脹収縮の繰り返しによって生じる疲労から、 弱いとこ ろに応力が集中し腐食や破壊が生じ易く、 一体に溶接された装置全体が、 一部 の破断による漏洩で一挙に使用できなくなる問題がある。 Further, in the spirally wound welding, since the difficulty of welding increases as the thickness of the belt-shaped heat transfer plate 2 decreases, the thickness of the belt-shaped heat transfer plates 2, 2, and 2 increases even if the heat transfer efficiency decreases. It was necessary to use a thick stainless steel plate. In addition, the welded part and the vicinity of the welded part are inherently susceptible to corrosion, and further, stress is concentrated on weak areas due to strain caused by temperature changes during operation and fatigue caused by repeated expansion and contraction, and corrosion and fracture are likely to occur. There is a problem that the whole welded device cannot be used at once due to leakage due to some breakage.
このためこれち帯状伝熱板 2、 2 ' の開口端縁 3を溶接する方式のスパイラ ル式熱交換器は一度組み立てると修理ができない、 即ちスクラップになる問題 があった。  For this reason, the spiral heat exchanger that welds the opening edges 3 of the belt-like heat transfer plates 2 and 2 'cannot be repaired once assembled, that is, it becomes a scrap.
更に、 従来の別のスパイラル式熱交換器では、 各帯状伝熱板の間隔 Iを維持 するためのスぺーサ一として、 第 3図 (C) に示す多数のスタッドピン 8又はデ ィスタンスバー 1 0等を帯状伝熱板 2、 2, に溶接する必要があった。  Furthermore, in another conventional spiral heat exchanger, a number of stud pins 8 or distance bars shown in FIG. 3 (C) are used as a spacer for maintaining the interval I between the belt-like heat transfer plates. It was necessary to weld 10 etc. to the belt-like heat transfer plates 2, 2, and so on.
而して、 2枚の帯状伝熱板に所定の間隔をあけ、 且つ流路を流れる流体に乱 流作用を与え、 熱交換率を高める機能を併せて持つディスタンスバー 1 0 (フ ラッ トバー) を設けた帯状伝熱板を渦卷状に卷回することは、 場所が胴部であ るだけに困難であった (特開平 6— 2 7 3 0 8 1号)。  Thus, a distance bar 10 (flat bar) that has a function of increasing the heat exchange rate by providing a turbulent action to the fluid flowing through the flow path by providing a predetermined interval between the two belt-shaped heat transfer plates. It was difficult to wind the belt-shaped heat transfer plate provided with a vortex so that the place was the trunk (Japanese Patent Laid-Open No. 6-2 7 3 0 8 1).
そこで本発明者はこれらを改良するものとして、 第 4図に示すスパイラル式 熱交換器を提案している (特許第 4 0 0 2 9 4 4号)。  Accordingly, the present inventor has proposed a spiral heat exchanger shown in FIG. 4 as an improvement (Patent No. 4 0 0 2 9 4 4).
図中 1 2は紐状中空ガスケッ トである。  In the figure, 12 is a string-like hollow gasket.
しかし、 このものも開口端縁 3を L字型折曲部 2 0とした帯状伝熱板である ステンレス鋼板を精度よく渦卷状に卷回することが困難である問題があった。 他方、 熱交換器にはスパイラル式熱交換器の他に、 多管式、 プレート式その 他、 家庭用から産業用まで沢山の種類があるが、 どの形式であっても伝熱板に 付着堆積して熱の伝導を低下させ、 熱交換器め効率を悪化させる付着物を除去、 掃除して再生しなければならない問題がある。  However, this also has a problem that it is difficult to wind a stainless steel plate, which is a belt-like heat transfer plate having an opening edge 3 as an L-shaped bent portion 20 in a spiral shape with high accuracy. On the other hand, in addition to spiral heat exchangers, there are many types of heat exchangers such as multi-tube type, plate type, and others for home use and industrial use. Therefore, there is a problem that it is necessary to remove, clean, and regenerate the deposits which reduce the heat conduction and deteriorate the efficiency of the heat exchanger.
通常掃除の手順としては、先ず稼働中の装置の運転を止め、 当該熱交換器が分 解される。 そして、 多管式熱交換器では、 先ず蓋 (鏡板) を開ける。 多数の管の中はクリ 一二ングボールや、 ブラシを水圧で回転移動させて掃除をするが、 管の外側に は鲭ゃ煤その他の付着物が付いたままのことが多く、 これ等を除去するには更 に大変な作業を必要としていた。 The normal cleaning procedure is to first stop the operating equipment and disassemble the heat exchanger. In the multi-tube heat exchanger, first, the lid (end plate) is opened. Many pipes are cleaned by cleaning balls or brushes by rotating them with water pressure, but the outside of the pipe is often left with other deposits, which are removed. To do that, it required more work.
また産業用で次に使用されているプレート式熱交換器では、伝熱板の 4周の組 み立てボルトナットを緩め、 伝熱板を 1枚づっずらせて分解、 ガスケッ トを外 し、 伝熱板と伝熱板の間を開け、 その隙間に掃除具を入れて伝熱板の両面を清 掃するのである。  Also, in the plate type heat exchanger that is used next for industrial use, loosen the assembly bolts and nuts around the four turns of the heat transfer plate, disassemble the heat transfer plate one by one, disassemble the gasket, remove the gasket, Open the space between the heat plate and the heat transfer plate, and put a cleaning tool in the gap to clean both sides of the heat transfer plate.
然し、 スパイラル式熱交換器は、 帯状伝熱板の間に間隔を維持するための、 ディスタンスパー、 ディスタンスピン等の部材を使用したものは、 これ等流路 に突き出た部材が掃除を妨げる問題がある。  However, spiral heat exchangers that use members such as distance pars and distance pins to maintain a gap between the belt-shaped heat transfer plates have a problem that the members protruding into these flow paths impede cleaning. .
またディスタンスバー等に依らず、 2枚の薄い帯状伝熱板の両開口端縁を第 3 図に示すように折り曲げて溶接して帯筒状の 1 όの流路としたものは、 前記帯 筒状の中を掃除することが更に困難であった。  Regardless of the distance bar or the like, the two edges of the thin belt-shaped heat transfer plate are bent and welded as shown in FIG. It was more difficult to clean the inside of the cylinder.
そしてスパイラル式熱交換器は、帯状伝熱板が渦巻状に多数回卷回されて構成 されているため、 夫々の位置で曲率が異なり、 夫々の帯状伝熱板の各壁面を掃 除して再生することは極めて困難であった。  Since the spiral heat exchanger is constructed by winding the strip-shaped heat transfer plate many times in a spiral, the curvature differs at each position, and each wall surface of each strip-shaped heat transfer plate is swept away. It was extremely difficult to regenerate.
この困難な条件下において、直交流型のスパイラル式熱交換器で渦巻の軸方向 に流路に垂下される付着物除去用棒状部材を回転させて移動し、 一流路だけを 掃除する特開平 9一 1 2 6 6 8 8号がある。  Under these difficult conditions, a cross-flow spiral heat exchanger rotates and moves the stick-removing stick-like member suspended in the flow path in the axial direction of the spiral, and cleans only one flow path. There is 1 2 6 6 8 No. 8.
而して、 プレート式熱交換器では両フランジの間に熱交換プレートを、数枚か ら 1 0 0枚以上も挟んで自在に伝熱面積を増加させることができるが、 スパイ ラル式熱交換器は、 大型 (例えば直径が l m以上) になると直径に比例して、 当然蓋.体である閉止フランジの厚い物が要求される。 これは J I S (日本工業 規格) の表、 例えば ( 5 kフランジ、 呼び径 1 5 0 0で、 フランジの厚さが 5 8 m m . 約 1, 0 0 0 k g ) から見ても明らかである。 即ちこのものほ 2枚の フランジだけで約 2 トンにもなる。 Thus, in a plate heat exchanger, the heat transfer area can be increased freely by sandwiching several to 100 or more heat exchange plates between both flanges. If the container is large (for example, the diameter is lm or more), it is necessary to have a thick closure flange as a cover. This is a JIS (Japanese Industrial Standard) table, for example, (5 k flange, nominal diameter 1 5 0 0, flange thickness 5 It is clear from the view of 8 mm. In other words, this is about 2 tons with just two flanges.
このため従来のスパイラル式熱交換器では閉止フランジの肉厚が大で蓋体が 重く、 加工も容易でないために大型の装置を作るには大きなコス 卜が掛かって いた。  For this reason, in the conventional spiral heat exchanger, the thickness of the closing flange is large, the lid is heavy, and the processing is not easy, so it has been expensive to make a large device.
更に通常は第 7図に示すように、 1つの隔壁 1 8の両側に半円筒の芯筒 E、 E ' が設けられ、 これに伝熱板の端部 2 4が夫々固定されているために、 一度組立 てると分解が困難となっていた。  Furthermore, as shown in FIG. 7, normally, semi-cylindrical cores E and E ′ are provided on both sides of one partition wall 18, and the end portions 24 of the heat transfer plate are fixed thereto. Once assembled, disassembly was difficult.
発明の開示 Disclosure of the invention
この発明が解決しょうとする課題は、 以下の通りである。  The problems to be solved by the present invention are as follows.
(a) 本発明者が既に開示した特許 4 0 0 2 9 4 4号では、 第 4図に示すように 開口端縁 3に L字型折曲部 2 0が設けられることによって、 渦卷状に卷回する ことが困難であった帯状伝熱板を、 平板同然に自在に渦巻状に卷回できるよう にすることである。  (a) In Patent No. 4 0 0 2 9 4 4 already disclosed by the present inventor, as shown in FIG. 4, by providing an L-shaped bent portion 20 at the opening edge 3, It is to make it possible to wind the belt-shaped heat transfer plate that was difficult to wind in a spiral shape as freely as a flat plate.
そして、 紐状ガスケッ ト、 または紐状中空ガスケットを用いて、 容易に組立て 分解ができ、 且つ流体を周方向は勿論、 軸方向にも気密に封止できる、 製造容 易で廉価なスパイラル式熱交換器を提供することである。  And it can be easily assembled and disassembled using a string-like gasket or string-like hollow gasket, and the fluid can be sealed hermetically in the axial direction as well as in the circumferential direction. Is to provide an exchanger.
更に大型等のため、 帯状伝熱板の間隔が広くなるスパイラル式熱交換器にお いて、 長いスタツドビンを安全且つ容易に適用できるようにすることである (b) 上記した渦卷状に卷回された 2枚の帯状伝熱板の両壁面を、 容易に、 分 解することなく有姿のまま且つ同時に掃除して再生することができるスパイラ ル式熱交換器を提供することである。  Furthermore, in a spiral heat exchanger where the interval between the belt-like heat transfer plates is wide due to the large size, etc., it is to make it possible to apply a long stud bin safely and easily. It is an object of the present invention to provide a spiral heat exchanger that can easily clean and regenerate both the wall surfaces of the two strip-shaped heat transfer plates while remaining intact and at the same time without disassembly.
(c) そして、 芯筒を夫々の隔壁で半円筒状芯筒として独立させ、 組立て分解 が容易となり、 完全な分解掃除ができるスパイラル式熱交換器を提供すること である (d) 閉止フランジである蓋体の必要な強度を保ちながら、 閉止フランジはも とより、 スパイラル式熱交換器全体の軽量化を可能とすることである。 (c) To provide a spiral heat exchanger in which the core cylinder is made independent of each partition as a semi-cylindrical core cylinder, which is easy to assemble and disassemble and can be completely disassembled and cleaned. (d) It is possible to reduce the weight of the entire spiral heat exchanger while maintaining the necessary strength of the lid, which is a closing flange.
上記課題 (a) に対しては、 第 5図に示す。 紐状ガスケット 1 3を支受する帯 状伝熱板 2の、 前記第 4図に示す開口端縁の L字状折曲部 2 0に相当する機能 を発揮するスタッ ドビン 8を、 前記開口端縁の L字状折曲部 2 0に対応する位 置に、 所定の隙間 5をあけて棚状に連設せしめることによって解決される。 即ち 第 5図 (B) (C) に示すように、 帯状伝熱板 2、 2 ' の開口端縁 3から 蓋体 Fに対する所定の締め代 1 4を設けてスタッ ドビン 8が一定の隙間 5をあ けて帯状伝熱板 2、 2 'の長手方向へ棚状に連設される。  Figure 5 shows the above problem (a). A stud bin 8 that performs a function corresponding to the L-shaped bent portion 20 of the opening edge shown in FIG. 4 of the belt-like heat transfer plate 2 that supports the string-like gasket 13 is connected to the opening end. The problem can be solved by providing a predetermined gap 5 at a position corresponding to the L-shaped bent portion 20 of the edge and connecting them in a shelf shape. That is, as shown in Fig. 5 (B) and (C), a predetermined margin 14 for the lid F is provided from the opening edge 3 of the belt-like heat transfer plates 2 and 2 'so that the stud bin 8 has a constant gap 5 The strip-shaped heat transfer plates 2, 2 'are connected in a shelf shape in the longitudinal direction.
スタッドピン 8は所定の長さ、 太さ、 形状のスタッ ドボルト、 又はスタッ ド ピンがスタツド溶接等によって植えられる。  The stud pins 8 are stud bolts of a predetermined length, thickness and shape, or stud pins are planted by stud welding or the like.
そして 第 5図 (A)、 (B)、 (C) に示すように紐状ガスケッ ト 1 3が搭載さ れ、 帯状伝熱板 2、 2 ' と共に渦卷状に卷回されるか、 或いは渦卷状に卷回さ れた帯状伝熱板 2、 2 ' の所定の位置に揷し込まれる。  And, as shown in Fig. 5 (A), (B), (C), a string-like gasket 13 is mounted and wound together with the belt-like heat transfer plates 2, 2 'in a vortex shape, or The belt-shaped heat transfer plates 2 and 2 ′ wound in a vortex are inserted into a predetermined position.
第 5図 (A) 中のガスケッ ト 1 3は説明の都合で締め代 1 4を省略している。 このスタッ ドビン 8が一定のピッチで隙間 5をあけて棚状に連設せしめられ ると、 この隙間 5が帯状伝熱板 2、 2 ' を渦卷状に卷回するときの曲げの要素 になる。  In Fig. 5 (A), the gasket 13 is omitted for convenience of explanation. When the stud bins 8 are continuously arranged in a shelf shape with a gap 5 at a constant pitch, the gap 5 becomes a bending element when winding the belt-like heat transfer plates 2 and 2 ′ in a vortex shape. Become.
この発明は、 渦巻状に卷回される帯状伝熱板に、 棚状の紐状ガスケッ ト 1 3 の支受部材 1 5を設けるに際してこの曲げの要素を利用することを特徴として いる。  The present invention is characterized in that this bending element is used when the support member 15 of the shelf-like string-like gasket 13 is provided on the belt-shaped heat transfer plate wound in a spiral shape.
而してスタッドピン 8は 第 5図 (A)、 (B)、 ( C) に示すように棚状に連設 され、 この上に紐状ガスケッ ト 1 3が搭載される。  Thus, as shown in FIGS. 5 (A), (B), and (C), the stud pins 8 are connected in a shelf shape, and a string-like gasket 13 is mounted thereon.
この丸いスタツ ドビン 8で紐状ガスケッ ト 1 3を支受し、 蓋体 Fに締め付け ると、 第 5図 (C) に示すように紐状ガスケット 1 3の一部が垂れた状態で圧締 めとなるため、 蓋体 Fと紐状ガスケッ ト 1 3との間に空隙 1 7を生じ、 圧締め が不均一となり封止効果が不充分となる虞れがある。 When the string-like gasket 13 is supported by this round stud bin 8 and tightened to the lid F, as shown in Fig. 5 (C), the string-like gasket 13 is partially pressed down and clamped. Therefore, there is a possibility that a gap 17 is formed between the lid F and the string-like gasket 13, so that the pressing is not uniform and the sealing effect is insufficient.
そこで、 この発明では前記棚状に連設されたスタッドピン 8, には、 第 5 図 (D) に示すように蓋体 Fに対して紐状ガスケット 1 3が平行に維持できるよ う、 スタッドピン 8, の少なく とも一部に平行面部 1 6を設ける力 、 或いは 第 6図 (A) に示すようにスタツドビン 8に少なく とも 1辺が平行面部 1 6に構成 された支受部材 1 5が被せられる。  Therefore, in the present invention, the stud pin 8 connected in a shelf shape has a stud-like gasket 13 so that the string-like gasket 13 can be maintained parallel to the lid F as shown in FIG. 5 (D). The force of providing a parallel surface portion 16 on at least a part of the pin 8, or a support member 15 having a parallel surface portion 16 having at least one side formed in the stud bin 8 as shown in FIG. Covered.
そして該スタッドビン 8又は支受部材 1 5の平行面部 1 6が、 紐状ガスケッ ト 1 3の側に 第 6図 (B)、 (C)、 (D) に示すように帯状伝熱板 2、 2 ' の端 面開口部 3から所定のスペース 1 1を設けて棚状に連設され、 平行面部 1 6が 一線に揃えられる。 この一線が 第 4図に示す L字型折曲部 2 0に相当する。 而して 第 6図 (C)、 (D) に示すように紐状ガスケット 1 3を搭載支受して 外胴フランジ Dを蓋体 Fに圧締めすると、 支受部材 1 5の平行面部 1 6が前記 蓋体 Fに対して連続した平行面になることで均一な封止が得られる。  The parallel surface portion 16 of the stud bin 8 or the support member 15 is arranged on the string-like gasket 13 side as shown in FIGS. 6 (B), (C), (D). 2 ′, a predetermined space 11 is provided from the end surface opening 3 of the 2 ′, and the parallel surface portions 16 are aligned in a line. This line corresponds to the L-shaped bent portion 20 shown in FIG. Thus, as shown in FIGS. 6 (C) and (D), when the string-like gasket 13 is mounted and supported and the outer body flange D is pressed against the lid F, the parallel surface portion 1 of the support member 15 Uniform sealing is obtained when 6 is a continuous parallel surface to the lid F.
即ち 第 5図 (B) の締め代 1 4によって充分な体積を持つ紐状ガスケット 1 3は、 上 (蓋体 F )、 下 (棚状に連設された支受部材 1 5の平行面 1 6 )、 左 (帯 状伝熱板 2 )、 右 (帯状伝熱板 2 ' ) の四方が囲まれた中で充満し、 A、 B両流 路を密封することができる。  That is, the string-like gasket 13 having a sufficient volume due to the tightening allowance 14 shown in FIG. 5 (B) is the parallel surface 1 of the support member 15 arranged in a continuous manner in the upper (lid F) and lower (shelf shape). 6), left (band-shaped heat transfer plate 2), right (band-shaped heat transfer plate 2 ') are filled in the enclosed area, and both the A and B flow paths can be sealed.
或いは、 第 4図の紐状中空ガスケッ ト 1 2を搭載支受し、 これを液圧などで 膨充張拡せしめて開口端縁 3を密封して、 A、 B両流路を構成することができ る。  Alternatively, the string-like hollow gasket 12 shown in FIG. 4 is mounted and supported, and this is expanded and expanded by hydraulic pressure or the like, and the opening edge 3 is sealed to constitute both the A and B flow paths. You can.
課題 (b) について以下に説明する。  Problem (b) is described below.
卷回された 2枚の帯状伝熱板の両壁面を、 掃除して再生するには、 第 1 1〜 1 3図に示すように、 紐状クリ一ニング部材 Gは帯状伝熱板 2より長く、 端部 Pは帯状伝熱板 2の一端 3 4に設けられた流体 Aの入口 a と、 圧力洗浄水の入 口 bとの中間点から始まり、 流体 Aの出口 a ' と圧力洗浄水の出口 b ' が同様 に設けられた帯状伝熱板 2, の他の端部 P, に至っている。 1 9は出入口を保 護するガイ ドである。 To clean and regenerate both wall surfaces of the two wound belt-shaped heat transfer plates, as shown in FIGS. 11 to 13, the string-shaped cleaning member G is The long end P is the inlet A of the fluid A provided at one end 3 4 of the belt-shaped heat transfer plate 2 and the pressure wash water Starting from an intermediate point with the port b, it reaches the other end P of the belt-like heat transfer plate 2 where the outlet A ′ of the fluid A and the outlet b ′ of the pressure washing water are similarly provided. 1 9 is a guide to protect the entrance.
この紐状クリ一ニング部材 Gを前記複数設けた流体の入口及ぴ又出口を交互 に開閉操作することによって、 自在に軸方向 (帯状伝熱板の長手方向と直角方 向) に振って、 長いワイパーのように摺動移動せしめ掃除ができる。  The string-like cleaning member G is swung freely in the axial direction (perpendicular to the longitudinal direction of the belt-like heat transfer plate) by alternately opening and closing the fluid inlets and outlets of the plurality of fluids provided above, It can be swung and cleaned like a long wiper.
即ち第 1 2図 (A) に示すように、 スパイラル式熱交換器の通常運転中に於い ては、 流体 Aは入口 aから入って流路 Aを通り、 出口 a ' から排出される。 この時紐状クリーニング部材 Gは流体 Aの圧力で、 図 1 2 (A) では下方に広 がり、 紐状ガスケッ ト 1 3, 側に張り付いた態様になつている。  That is, as shown in Fig. 12 (A), during normal operation of the spiral heat exchanger, fluid A enters from inlet a, passes through channel A, and is discharged from outlet a '. At this time, the string-like cleaning member G is in the state of sticking to the string-like gasket 13, side in FIG.
この状態でスパイラル式熱交換器を長時間運転する。  In this state, the spiral heat exchanger is operated for a long time.
帯状伝熱板 2と、 これに向き合って流路 Aを構成する帯状伝熱板 2 ' の相対向 する両壁面に付着する付着物を除去するには以下の通りである。  To remove the adhering material adhering to the opposite wall surfaces of the belt-shaped heat transfer plate 2 and the belt-shaped heat transfer plate 2 ′ that faces the surface of the belt-shaped heat transfer plate 2 ′, it is as follows.
先ず 第 1 2図 (A) に示す出口 b ' を閉じ、 入口 bから圧力洗浄水を注入す る。 すると紐状クリーニング部材 Gは図 1 2 (B) に示す矢印 Kのように湾曲 L から上方に移動し、 第 1 2図 (C) に示すようになる。 このとき、 流路 Aにあ つた流体は出入口 a及び a ' から排出される。  First, the outlet b ′ shown in FIG. 12 (A) is closed, and pressure wash water is injected from the inlet b. Then, the string-like cleaning member G moves upward from the curve L as shown by an arrow K shown in FIG. 12 (B), and becomes as shown in FIG. At this time, the fluid in the channel A is discharged from the entrances a and a ′.
反対の動作は圧力洗浄水の入口を aに変えて第 1 2図 (C) → (B) → (A) とすることで紐状クリーニング部材 Gが矢印 K, を経て元に戻る。  The opposite operation is to change the inlet of the pressure washing water to a and change the direction of Fig. 12 (C) → (B) → (A), so that the string-like cleaning member G returns to the original state through the arrows K,.
帯状伝熱板 2と、 帯状伝熱板 2 ' の間に充満する紐状クリーニング部材 Gは、 接触している帯状伝熱板 2、 2 ' の相対向する両壁面を強力に摺動移動して付 着物を除去することができる。  The string-like cleaning member G filled between the belt-shaped heat transfer plate 2 and the belt-shaped heat transfer plate 2 ′ slides and moves strongly on the opposing wall surfaces of the belt-shaped heat transfer plates 2 and 2 ′ that are in contact with each other. The attachment can be removed.
(c)そして、夫々独立した半円筒状芯筒を夫々の隔壁 1 8で組立てることで、 組立て分解が容易となり完全な分解掃除ができる。  (c) And, by assembling each independent semi-cylindrical core cylinder with each partition wall 18, assembly and disassembly becomes easy and complete disassembly and cleaning can be performed.
(d) に対して閉止フランジである蓋体に於いては、 伏椀状の鏡板を捕強リブ と一体に用いることにより、 大型閉止フランジの大幅な軽量化とコス トダウン ができる 図面の簡単な説明 In the case of a lid that is a closed flange with respect to (d), the prosthetic end plate is attached to the reinforcing rib. Can be used together with a large weight to reduce the weight and cost of a large closing flange.
第 1図は、 従来のスパイラル式熱交換器の一部を削除した縦断面図である。 第 2図 (A) は従来の例で、 シール材に帯状カバー体を組み合わせた断面図で ある。  FIG. 1 is a longitudinal sectional view in which a part of a conventional spiral heat exchanger is omitted. Fig. 2 (A) is a cross-sectional view of a conventional example, in which a strip cover is combined with a sealing material.
第 2図 (B) は前記帯状カバー体の斜視図である。  FIG. 2 (B) is a perspective view of the belt-like cover body.
第 3図 (A) は従来の例で、 一方の開口端縁を鈍角に折り曲げた要部拡大断面 図である。 第 3図 (B) は一方の開口端縁を直角に折り曲げた要部拡大断面図 である。  Fig. 3 (A) is a conventional example, and is an enlarged cross-sectional view of a main part in which one opening edge is bent at an obtuse angle. Fig. 3 (B) is an enlarged cross-sectional view of the main part of one opening edge bent at a right angle.
第 3図 (C) 特開平 6— 2 7 3 0 8 1号の伝熱板を示す斜視図である。  FIG. 3 (C) is a perspective view showing a heat transfer plate of Japanese Patent Application Laid-Open No. Hei 6-2 7 30 8 1.
第 4図は特許第 4 0 0 2 9 4 4号の例で L字状に折り曲げた開口端縁の説明 図である。  FIG. 4 is an explanatory view of the opening edge bent in an L shape in the example of Japanese Patent No. 4 0 2 9 4 4.
第 5図は実施例 1の説明図で (A) は実施例 1 のスタッドピンを棚状に連設し た例の説明図である。  FIG. 5 is an explanatory diagram of the first embodiment, and FIG. 5A is an explanatory diagram of an example in which the stud pins of the first embodiment are arranged in a shelf shape.
(B) は第 6図 (B) の A— A線縦断側面図 (C) は第 6図 (C) の一部を紐 状ガスケッ ト 1 3と共に、 蓋体 Fを正面から見た説明図である。 (D), (E) はス タッドピン 8の他の形状を示す説明図である。  (B) is a vertical cross-sectional side view taken along the line A-A in Fig. 6 (B). (C) is an explanatory view of part of Fig. 6 (C) together with the stringed gasket 13 and the lid F viewed from the front. It is. (D) and (E) are explanatory views showing other shapes of the stud pin 8.
第 6図は実施例 2の説明図で、 (A) は実施例 2の蒲鋅状断面の支受部材 1 FIG. 6 is an explanatory view of the second embodiment. (A) is a bearing member 1 having a bowl-shaped cross section of the second embodiment.
5を拡大した説明図である。 (B) は実施例 2の蒲鋅状断面の支受部材 1 5を 棚状に連設し、 紐状ガスケッ ト 1 3の締め代 1 4を省略した説明図である。 FIG. (B) is an explanatory diagram in which the support member 15 having a bowl-shaped cross section of Example 2 is connected in a shelf shape, and the tightening margin 14 of the string-like gasket 13 is omitted.
(C) は第 6図 (B) に蓋体 Fを組み合わせた A— A線縦断側面図。 (D) は 第 6図 (C) の A— A線縦断側面図である。  (C) is a vertical cross-sectional side view taken along the line A—A in which lid F is combined with FIG. 6 (B). (D) is a vertical cross-sectional side view taken along line AA in FIG. 6 (C).
第 7図は実施例 1、 2、 8及ぴ実施例 9の説明図である。 第 8図 (A) は実施例 3の折曲受台 20, の説明図である。 (B) は第 8図 の A— A線縦断説明図である。 FIG. 7 is an explanatory diagram of Examples 1, 2, 8 and Example 9. FIG. 8 (A) is an explanatory diagram of the folding cradle 20 of the third embodiment. (B) is a longitudinal sectional view taken along line AA in FIG.
第 9図は実施例 3のピン受台 26の説明図で、 (A) は第 9図 (B) の A— A線 縦断側面図である。 (B) は第 9図 (A) の A— A線縦断側面図である。  FIG. 9 is an explanatory view of the pin cradle 26 of the third embodiment, and (A) is a vertical side view taken along the line AA of FIG. 9 (B). (B) is a vertical cross-sectional side view taken along line AA in FIG. 9 (A).
第 1 0図 (A), (B) は、 実施例 4の熱交換流体 A、 Bが直交する態様を示す 説明図で、 第 1 0図 (B) は (A) に多孔板 3 7と椀状蓋体 3 6を組み合わせ た A— A線縦断側面図である。  FIGS. 10 (A) and (B) are explanatory views showing a mode in which the heat exchange fluids A and B of Example 4 are orthogonal to each other. FIG. 10 (B) is a cross-sectional view of the porous plate 37 and FIG. FIG. 5 is a vertical side view of the AA line combined with a bowl-shaped lid body 3 6.
第 1 1図は実施例 6の説明図である。  FIG. 11 is an explanatory diagram of the sixth embodiment.
第 1 2図 (A) は実施例 6を展開して示した説明図である。 第 1 2図 (B) は 実施例 6の紐状クリーニング部材 G往路を示し、 第 1 2.図 (C) は復路を展開し て示した説明図である。  FIG. 12 (A) is an explanatory view showing Example 6 in an expanded manner. FIG. 12 (B) shows the string-like cleaning member G forward path of Example 6, and FIG. 12. (C) is an explanatory view showing the return path developed.
第 1 3図は実施例 7を展開して示した説明図である。  FIG. 13 is an explanatory diagram showing Example 7 in an expanded manner.
第 14図 (ィ) は実施例 9の説明図で、 (口) と (ハ) は第 14図 (ィ) を分 解した説明図である。  FIG. 14 (i) is an explanatory view of Example 9, and (mouth) and (c) are explanatory views of FIG. 14 (i).
第 1 5図は実施例 1 0、 閉止フランジの蓋体 F の説明図で、 (ィ) は平面図。 (口) は第 1 5図 (ィ) の A - A線縦断側面図であり、 (ハ) は補強リブの斜視 説明図である。 符号の説明  FIG. 15 is an explanatory view of the lid body F of the closing flange in Example 10 and (i) is a plan view. (Mouth) is a vertical side view taken along line AA in Fig. 15 (i), and (C) is a perspective explanatory view of the reinforcing rib. Explanation of symbols
A. 流路  A. Flow path
B. 流路  B. Flow path
C. 筐体  C. Enclosure
D. 胴部フランジ  D. Body flange
E. 芯筒 E. Core tube
F. 蓋体 G. 紐状クリ一ニング部材F. Lid G. String cleaning member
H. ワイヤー H. Wire
I . 間隔  I. Interval
J . 仕切り  J. Partition
K. 矢印 K. Arrow
L. 湾曲 L. Curve
M. 楔 M. Wedge
N. 楔受 N. Wedge holder
◦. 一端 ◦. One end
P. 端部 P. end
Q. 部材 Q. Material
P. 端部 P. end
T. フランジの厚さ  T. Flange thickness
a . 出入口 a. Entrance
b . 出入口 b. Doorway
t . 筐体の厚さ  t. Case thickness
1. スパイラル式熱交換器 1. Spiral heat exchanger
2. 帯状伝熱板 2. Strip heat transfer plate
3. 開口端縁  3. Open edge
4. 板状ガスケッ ト 4. Plate gasket
5. 隙間 5. Clearance
6. 溶接  6. Welding
7. シール材  7. Sealing material
8. スタッ ドピン  8. Stud pins
9. 潁板 1 0 . ディスタンスバー9. Mortarboard 1 0. Distance bar
1 1 . スぺ一ス 1 1. Space
1 2 . 紐状中空ガスケッ ト 1 2. Stringed hollow gasket
1 3 . 紐状ガスケッ ト1 3. Stringed gasket
1 4 . 締め代 1 4.
1 5 . 支受部材  1 5. Bearing member
1 6 . 平行面部  1 6. Parallel surface
1 7 . 空隙  1 7. Air gap
1 8 . 隔壁  1 8. Bulkhead
1 9 . ガイ ド  1 9 Guide
2 0 . L字状折曲部  2 0. L-shaped bend
2 1 . 帯状カバー体  2 1. Strip cover
2 2 . スリ ッ ト  2 2 .Slit
2 3 . スぺーサー  2 3. Spacer
2 4 . 端部  2 4. Edge
2 5 . フラッ トノ 一  2 5.
2 6 . ピン受台  2 6. Pin holder
2 7 . 椀状蓋体  2 7. Spider lid
2 8 . 折曲受台  2 8. Folding cradle
2 9 . 環状フランジ  2 9. Annular flange
3 0 . スプライン  3 0. Spline
3 1 . 通孔 3 1. Through hole
3 2 . 欠き 3 2. Missing
3 3 . 端部  3 3. Edge
3 4 . —端 3 5 . 補強リブ 3 4. —End 3 5. Reinforcing rib
3 6 . 內腔  3 6.
3 7 . 接合面  3 7. Joint surface
3 8 . 上板  3 8. Top plate
3 9 , 蓋板  3 9, cover plate
4 0 . ハニカム 産業上の利用可能性  4 0. Honeycomb Industrial Applicability
この発明のスパイラル式熱交換器は、 家庭用は勿論、 食品機械、 化学プラン ト、 原子力発電、 海洋温度差発電その他各種産業に、 多岐に亘つて使用され、 熱エネルギーの再生、 回収、 及び又は循環に不可欠な各種熱交換器の中で最も 性能の優劣が現れる温度差の少ない流体間の熱移動に抜群の性能を示すと同時 に、最も嵩が小さく、使用する伝熱板等の資材が少なくて済む熱交換器となり、 地球温暖化防止対策に大きく寄与するものである。  The spiral heat exchanger according to the present invention is widely used not only for household use but also for food machinery, chemical plants, nuclear power generation, ocean thermal power generation and other various industries, and is used to regenerate, recover, and / or heat energy. Among the various heat exchangers indispensable for circulation, it exhibits the best performance in terms of heat transfer between fluids with a small temperature difference. At the same time, it has the smallest volume and the materials such as heat transfer plates to be used are the smallest. It becomes a heat exchanger that requires less, and contributes greatly to measures to prevent global warming.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を以下の実施例 1〜実施例 1 0に基づいて説明する。  Embodiments of the present invention will be described based on the following Examples 1 to 10.
【実施例 1】  [Example 1]
第 6図 (B) に示すように、 帯状伝熱板 2、 2 ' はそれぞれ、 軸方向両側の開 口端縁 3から少し内方へ、 紐状ガスケッ ト 1 3を搭載する所定のスペース 1 1 を置き、 所定の隙間 5を設けてスタツドビン 8がー列棚状にスタツ ド溶接で連 設植えられる。  As shown in Fig. 6 (B), the belt-like heat transfer plates 2 and 2 'are each a predetermined space 1 in which the string-like gasket 1 3 is mounted slightly inward from the opening edge 3 on both axial sides. 1 is placed, the specified gap 5 is provided, and the stud bins 8 are planted continuously by stud welding in the form of a row shelf.
そしてこのスタツ ドビン 8には第 6図 (A) に示す 1辺を平行面部 1 6とした 支受部材 1 5が被せられ、 第 6図 (A)、 (B)、 (C)、 (D) に示すように平行面部 1 6がー線に並んで構成される。  The stud bin 8 is covered with a support member 15 having a parallel surface portion 16 on one side as shown in FIG. 6 (A). FIGS. 6 (A), (B), (C), (D ), Parallel plane portions 16 are arranged side by side.
この帯状伝熱板 2、 2 ' の端部 2 4は第 7図に示すように、 段差を設けた芯 筒 E、 E ' の一部に溶接接合される。 . As shown in FIG. 7, the end portions 24 of the belt-like heat transfer plates 2 and 2 'have a core provided with a step. It is welded to a part of cylinders E and E '. .
この半円弧の芯筒 E、 芯筒 E ' は、 隔壁 1 8を介し、 片方ずつ適用する帯状 伝熱板 2、 2, の間隔 I (紐状ガスケッ ト 1 3 ) だけ、 ずれて構成され、 帯状 伝熱板 2、 2, が互いに半周する毎に段差無く円滑にその上に乗って渦巻状に 卷回され、 それぞれの帯状伝熱板 2、 2, の間に A、 B、 2つの流路が構成さ れる。  The semicircular arc tube E and the core tube E ′ are configured so as to be shifted by the interval I (string-like gasket 13) between the strip-shaped heat transfer plates 2 and 2 to be applied one by one via the partition wall 18. Each time the belt-like heat transfer plates 2, 2 and half are half-turned each other, the belt-like heat transfer plates 2 and 2 are smoothly stepped on and wound in a spiral shape. A road is constructed.
即ち、 流路 Aは外筒から入って芯筒に向かって渦卷状に卷回され、 通孔 3 1 を通って隔壁 1 8と芯筒 Eで囲まれた A, に至っている。  That is, the flow path A enters from the outer cylinder, is wound in a spiral shape toward the core cylinder, passes through the through hole 3 1, and reaches A, surrounded by the partition wall 18 and the core cylinder E.
流路 Bは通孔 3 1,を通って隔壁 1 8と芯筒 E 'で囲まれた B,に通じている。 紐状ガスケッ ト 1 3は帯状伝熱板の始めと終わりで帯状伝熱板 2を横切って 対辺の紐状ガスケットと繋がり、 エンドレスになっている。  Channel B passes through hole 31 and leads to B surrounded by partition wall 18 and core tube E ′. The string-like gasket 13 is connected to the opposite side of the band-shaped heat transfer plate 2 at the beginning and end of the band-shaped heat transfer plate, and is connected to the opposite side.
この第 7図に示すものを、 第 6図 (C) に示す筐体 Cで包み、 胴部フランジ D と蓋体 Fで軸方向に締め付けると、 紐状ガスケッ ト 1 3は締め代 1 4が帯状伝 熱板 2、 2 ' とこれらに棚状に連設された支受部材 1 5によって圧縮されて、 その間に充満、 上下左右それぞれ接触する面に密着してこれらを気密に封止し たスパイラル式熱交換器となる。  When the one shown in FIG. 7 is wrapped in the casing C shown in FIG. 6 (C) and tightened in the axial direction with the body flange D and the lid F, the string-like gasket 1 3 has a tightening margin of 14 Compressed by the belt-like heat transfer plates 2 and 2 ′ and the support members 15 connected to these in a shelf shape, and in the meantime, they are in close contact with the surfaces that are in contact with each other and are vertically and horizontally contacted. It becomes a spiral heat exchanger.
【実施例 2】  [Example 2]
この実施例は帯状伝熱板 2、 と帯状伝熱板 2 ' の間隔が大きい場合に適用さ れる。  This embodiment is applied when the distance between the belt-shaped heat transfer plate 2 and the belt-shaped heat transfer plate 2 ′ is large.
即ち、 間隔が大きい場合にはスタッ ドピン 8の長さは当然長くなる。 ここで 用いられるスタッドピン 8を太くすれば、 当然これに対応する帯状伝熱板 2、 2 ' も厚く しなければならないことになる。 そしてスタッ ドピン 8の溶接が弱 ければ、 スタッドピン 8は帯状伝熱板から剥離し易くなり、 強ければ帯状伝熱 板の溶接箇所を変形させてスタッ ドピン 8を変位、 移動せしめ、 ここから洩れ を生じる虞れがある。 そこで、 この実施例では第 8図 (A)、 (B) に示すように、 一端が帯状伝熱板 2に棚状に溶接で連設されたスタッ ドビン 8及ぴ又は支受部材 1 5の他の一端 3 4が、 同時に渦卷状に卷回され、 向かい合って接触している他の帯状伝熱板 2, に設けられた折曲受台 2 0 ' に支えられるようになつている。 この折曲受 台 2 0 ' は直径方向に些少 ( l〜 5 m m程度) で良いために帯状伝熱板を渦巻 状に卷回するのに余り抵抗にならない。 That is, when the interval is large, the length of the stud pin 8 is naturally long. If the stud pin 8 used here is thickened, naturally the corresponding strip-shaped heat transfer plates 2 and 2 'must also be thickened. If the welding of the stud pin 8 is weak, the stud pin 8 is easily peeled off from the belt-shaped heat transfer plate, and if it is strong, the welded portion of the belt-shaped heat transfer plate is deformed to displace and move the stud pin 8 and leak from here. May occur. Therefore, in this embodiment, as shown in FIGS. 8 (A) and (B), one end of the stud bin 8 and / or the supporting member 15 which are connected to the belt-like heat transfer plate 2 in a shelf shape by welding. The other end 3 4 is spirally wound at the same time, and is supported by a folding cradle 2 0 ′ provided on another belt-like heat transfer plate 2 that is in contact with each other. Since this bent pedestal 20 'may be a little in the diametrical direction (about 1 to 5mm), it does not provide much resistance to winding the belt-like heat transfer plate in a spiral shape.
而して間隔が大きい帯状伝熱板 2 、 2 ' を片側だけ溶接して片持梁 ( Cantilever) 状態であったスタッドピン 8は、 両側が支えられた橋 (B ridge) となり、 細いスタッ ドピン 8でも、 同時に薄い帯状伝熱板 2、 2 ' でも使用で きる。  Thus, the stud pin 8 which was in a cantilever state by welding the belt-like heat transfer plates 2 and 2 ′ having a large interval on one side, becomes a bridge (B ridge) supported on both sides, and is a thin stud pin. 8 can also be used with thin strip-shaped heat transfer plates 2, 2 '.
この実施例では第 8図、 第 9図に示すようにスタツ ドビン又は支受部材 1 5 は、 紐状ガスケッ トを受ける平行面部 1 6と、 折曲受台 2 0 ' との接触に好適 なように角柱状をなしている。  In this embodiment, as shown in FIG. 8 and FIG. 9, the stud bin or the support member 15 is suitable for the contact between the parallel surface portion 16 that receives the string-like gasket and the bent support 20 '. It has a prismatic shape.
【実施例 3】  [Example 3]
この実施例は実施例 2の折曲受台 2 0, の代りに、 ピン受台 2 6を設けたも のである。 第 9図 (A)、 (B) に示すように、 帯状伝熱板 2の片側にはピン受 台 2 6が棚状に連設され、 他の片側には支受部材 1 5が棚状に連設されている。 而して支受部材 1 5の他の一端 3 4は、 帯状伝熱板 2, に設けられたピン受台 2 6で支えられるようになつている。  In this embodiment, a pin holder 26 is provided in place of the bending holder 20 of the second embodiment. As shown in Fig. 9 (A) and (B), a pin holder 26 is connected to one side of the belt-like heat transfer plate 2 in a shelf shape, and a support member 15 is provided in a shelf shape on the other side. It is connected to. Thus, the other end 3 4 of the support member 15 is supported by a pin support 26 provided on the belt-shaped heat transfer plate 2.
そして実施例 2と同様に帯状伝熱板 2、 2 ' は組み合わせられて渦巻状に卷 回される。  As in the second embodiment, the belt-like heat transfer plates 2 and 2 ′ are combined and wound in a spiral shape.
ここで用いられるピン受台 2 6は、 支受部材と同様に平行面状 1 6が棚状に 連設構成ざれることが望ましい。  As for the pin stand 26 used here, it is desirable that the parallel surface shape 16 is continuously arranged in a shelf shape like the support member.
【実施例 4】  [Example 4]
この実施例は 第 1 0図 (A) 及び (B) に示す。 流路 Aは実施例 1〜3のように棚状に連設された支受部材 1 5に、 紐状ガス ケット 1 3を搭載して構成。 渦巻状に卷回して周方向の流れとなる。 This embodiment is shown in FIGS. 10 (A) and (B). The flow path A is configured by mounting a string-like gasket 13 on a support member 15 connected in a shelf shape as in Examples 1 to 3. It winds in a spiral and becomes a flow in the circumferential direction.
他方流路 B側の開口端縁 3はスタッドビン 8が隙間 5をあけて棚状に連設さ れ、 軸方向に開放された態様である。 随つて流路 Bの流体は、 流路 Aの流体と 直角方向即ち軸方向に流れて熱交換される。  On the other hand, the opening edge 3 on the channel B side is a state in which the stud bins 8 are connected in a shelf shape with a gap 5 and are opened in the axial direction. Then, the fluid in the channel B flows in a direction perpendicular to the fluid in the channel A, that is, in the axial direction, and is heat-exchanged.
このとき開口端縁 3を抑える蓋体 Fはハニカム板、 網板等の多孔板であるこ とが好ましい。 これらを包む椀状蓋体 2 7は点線で示す。  At this time, the lid F that holds the opening edge 3 is preferably a porous plate such as a honeycomb plate or a net plate. The saddle-like lid 27 that encloses these is indicated by a dotted line.
ここで使用される紐状ガスケッ ト 1 3が紐状中空ガスケッ ト 1 2であれば、 前記蓋体 Fを省略することが可能となる。  If the string-like gasket 13 used here is the string-like hollow gasket 12, the lid F can be omitted.
【実施例 5】  [Example 5]
この実施例では少なく とも一面がフッ素樹脂フィルムシ一トでラミネ一トさ れた帯状伝熱板が用いられる。  In this embodiment, a belt-like heat transfer plate having at least one surface laminated with a fluororesin film sheet is used.
フッ素樹脂フィルムシ一トをラミネートされた面にスタッ ドピンを植える前 処理として、 帯状伝熱板にスタツ ドビンとのスタッ ド溶接が確実に行われるた めに、 帯状伝熱板のスタッドピンの所定の位置の被覆 (電気的絶縁体) が予め 除去される。  As a pretreatment for planting the stud pins on the surface laminated with the fluororesin film sheet, the stud pins of the belt-shaped heat transfer plate are pre-determined to ensure that the belt-shaped heat transfer plate is stud welded with the stud bin. The coating at the position (electrical insulator) is removed in advance.
そしてスタツ ド溶接で植えられたスタッドビンにフッ素樹脂で被覆された支 受部材 1 5が被せられる。  Then, a support member 15 covered with a fluororesin is put on a stud bin planted by stud welding.
而してそれぞれの皮膜が溶着、 接着されて前記皮膜の除去部と支受部材 1 5 の被覆が修復一体化され、 フッ素樹脂フィルムシートをラミネートしたスパイ ラル式熱交換器となる。  Thus, the respective films are welded and bonded, and the removed portion of the film and the covering of the support member 15 are repaired and integrated, so that a spiral heat exchanger laminated with a fluororesin film sheet is obtained.
尚上記では帯状伝熱板にフッ素樹脂フィルムシ一トをラミネートしたものに ついて説明したが組合せがこれに限定しないことは言うまでもない。  In the above description, the belt-shaped heat transfer plate is laminated with a fluororesin film sheet, but it goes without saying that the combination is not limited to this.
即ち金属板とプラスチックシードだけでなく、 スタツ ド溶接ができる金属板 と金属板との組み合わせは当然である。 またスタッ ドピン 8、 支受部材 1 5も丸いものだけではなく、 第 7図 (A) 〜 (D) に示す蒲鋅状断面、 第 8図に示す角型、 その他、 紐状ガスケッ トへの圧 締めの不均一を抑えるものであれば平行面の態様も実施例に限定せず、 形状、 線、 条、 凹凸、 紋様、 等、 表面の状態などが自由に設定できる。 In other words, not only metal plates and plastic seeds, but also combinations of metal plates and metal plates that can be stud welded are natural. In addition, the stud pin 8 and the support member 15 are not only round, but also have a saddle-like cross section shown in FIGS. 7 (A) to (D), a square shape shown in FIG. The shape of the parallel plane is not limited to the embodiment as long as the non-uniformity of the pressing is suppressed, and the shape, line, strip, unevenness, pattern, etc., the surface state, etc. can be freely set.
支受部材 1 5を被せるスタツドビン 8は必要に応じて第 5図 (D)、 (E)、 に示 すようにスプライン 3 0が設けちれる。 この丸くないスプライン 3 0によって 支受部材 1 5がスタツドビン 8に対して回転しない用途に適用できる。  As shown in FIGS. 5 (D) and 5 (E), the stud bin 8 that covers the support member 15 can be provided with a spline 30 as required. This non-round spline 30 can be used for applications in which the support member 15 does not rotate relative to the stud bin 8.
【実施例 6】  [Example 6]
この実施例は掃除機能を持つ紐状クリ一ニング部材 Gを特願 2 0 0 7— 2 8 5 2 4 5号に適用したものである。  In this embodiment, a string-like cleaning member G having a cleaning function is applied to Japanese Patent Application No. 2 0 0 7-2 8 5 2 4 5.
即ち、 第 1 1図に示すようにスパイラル式熱交換器 1 の帯状伝熱板 2、 2, の 開口端縁 3には連接されたスタッ ドビン 8で支えられた紐状ガスケッ ト 1 3が 流路 Aと流路 Bを構成している。  That is, as shown in FIG. 11, a string-like gasket 13 supported by a connected stud bin 8 flows on the opening edge 3 of the belt-like heat transfer plates 2, 2, of the spiral heat exchanger 1. Channel A and channel B are configured.
この実施例のスパイラル式熱交換器 1の芯筒 Eには、 第 1 1図はに示すよう に、 流体の出入口 aと、 出入口 bとが設けられ、 その外側を帯状伝熱板 2の開 口端縁 3に沿って紐状ガスケッ ト 1 3、 1 3, が渦卷状に卷回され、 開口端縁 3から芯筒 E及び又は筐体 Cから周回してェンドレスに設置されている。 第 1 2図 (A) はこの流路 Aに紐状クリーニング部材 Gを内装したものである。 以下 にこの発明の紐状クリーニング部材 Gの態様を第 1 2図 (A) (B) ( C) に展開 して示す。  As shown in FIG. 11, the core tube E of the spiral heat exchanger 1 of this embodiment is provided with a fluid inlet / outlet a and an inlet / outlet b, and the outer side of the belt-shaped heat transfer plate 2 is opened. The string-like gaskets 1 3, 1 3, are wound in a spiral shape along the edge 3 of the mouth, and installed around the core E and / or the case C from the opening edge 3 to the endless. FIG. 12 (A) shows the flow path A with a string-like cleaning member G built therein. The embodiments of the string-like cleaning member G of the present invention are shown in FIGS. 12 (A), (B), and (C).
第 1 2図 (A) (B) ( C) に示すように紐状グリーニング部材 Gは、 端部 Pが 流体の出入口 aをと出入口 b との中間点を始点とし、 帯状伝熱板 2の開口端縁 3の内側に沿って出入口 a, と出入口 b, との中間点を終点とする他の端部 P, に到る。  As shown in Fig. 1 (2) (A), (B), and (C), the string-like greening member G has an end P at the intermediate point between the fluid inlet / outlet a and the inlet / outlet b. Along the inner edge of the opening edge 3, the other end P, whose intermediate point is between the entrances a and b, is reached.
そしてこれら流体の出入口 a と出入口 b、 及び流体の出入口 a, と出入口 b ' はバルブ (図示しない) で操作する事が出来る。 この紐状クリーニング部材 G は途中蛇行などができる充分な長さがある。 図中 1 9はガイ ドである。 These fluid inlets and outlets a and b, and fluid inlets and outlets a and b ' Can be operated with a valve (not shown). This string-like cleaning member G is long enough to meander on the way. In the figure, 19 is a guide.
この例の紐状クリ一ニング部材 Gの操作は以下の通りである。  The operation of the string-like cleaning member G in this example is as follows.
①スパイラル式熱交換器としての通常の運転は第 1 2図 (A) に示す状態で行 われる。  ① Normal operation as a spiral heat exchanger is performed in the state shown in Fig. 12 (A).
即ち、熱交換する流体は入口 aから入って流路 Aを通り、 出口 a ' から出る。 したがって出入口 a、 a ' は通常運転の口径が設けられる。  That is, the fluid for heat exchange enters from the inlet a, passes through the flow path A, and exits from the outlet a ′. Therefore, the apertures a and a 'are provided with the normal operation diameter.
他方出入口 b、 b ' の口径は高圧洗浄水を注入するだけであるから小さくて よい。  On the other hand, the diameters of the entrances b and b ′ can be small because they only inject high-pressure washing water.
②掃除の第一工程 (往路) は第 1 2図 (A) に示す。 先ず出入口 a及び出入口 a ' を開放してから、 出入口 b ' を閉じ、 入口 bから流路 A ' に高圧洗浄水を 注入する。 すると、 高圧洗浄水の圧力によって紐状クリーニング部材 Gは紐状 ガスケット 1 3 ' を離れ、 第 1 2図 (B) に示す矢印 Kの方向に湾曲 Lしながら 移動し、 最後は第 1 2図 (C) のように紐状ガスケッ ト 1 3に密着する。 このと き、 相対向する帯状伝熱板 2、 2 ' の両壁面及び開口端縁 3を封止している紐 状ガスケッ ト 1 3までの流路 Aに充満していた熱交換の流体は、 予め開放され ている出入口 a及ぴ又は a ' から排出される。 而して流路 A ' は全域が高圧洗 浄水に占められる。  ② The first cleaning process (outward) is shown in Fig. 12 (A). First, the inlet / outlet a and the inlet / outlet a ′ are opened, the inlet / outlet b ′ is closed, and high-pressure washing water is injected from the inlet b into the channel A ′. Then, the string-like cleaning member G leaves the string-like gasket 1 3 ′ by the pressure of the high-pressure washing water and moves while curving L in the direction of arrow K shown in FIG. 1 (B). As shown in (C), it is in close contact with the string-like gasket 13. At this time, the heat exchange fluid filled in the flow path A to the string gasket 1 3 sealing both wall surfaces of the opposed strip-shaped heat transfer plates 2 and 2 ′ and the opening edge 3 is It is discharged through the previously opened doors a and a '. Thus, the entire area of the channel A ′ is occupied by high-pressure washing water.
③掃除の第二工程 (復路) は、 まず出入口 b、 b ' を開放してから出入口 a ' を閉じ、 出入口 aから流路 Aに高圧洗浄水を注入する。 すると、 高圧洗浄水の 圧力によって紐状クリ一ニング部材 Gは紐状ガスケッ ト 1 3を離れて第 1 2図 (3) In the second cleaning process (return path), firstly, the inlets and outlets b and b ′ are opened, the inlet and outlet a ′ are closed, and high-pressure washing water is injected into the channel A from the inlet and outlet a. Then, the string-like cleaning member G is separated from the string-like gasket 13 by the pressure of the high-pressure washing water and is shown in Fig. 1 2
(C) から矢印 K ' の方向に点線 G ' のように湾曲しながら摺動移動し、 元の第(C) slides in the direction of the arrow K 'in the direction of the arrow G' while curving as shown by the dotted line G '.
1 2図 (A) に戻る。 この時、 流路 A ' に充満していた第一工程 (往路) の洗浄 水は、 予め開放されている出入口 b及び又は出入口 b ' から排出される。 1 Return to Fig. 2 (A). At this time, the washing water in the first step (outward path) filled in the flow path A ′ is discharged from the entrance / exit b and / or the entrance / exit b ′ opened in advance.
而して流路 Aは全域が第二工程 (復路) の洗浄水で占められる。 上記往路、 復路は必要に応じて繰り返す。 Thus, the entire area of the channel A is occupied by the washing water of the second process (return path). The above outbound and return routes are repeated as necessary.
高圧洗浄水の圧力を強弱変化や、 脈動、 蛇行、 同一箇所の摺動移動など自由 である。  It is free to change the pressure of the high pressure washing water, pulsation, meandering, sliding movement of the same part.
この実施例で使用される紐状クリ一ニング部材 Gは、 第 1 1図に示すように 断面が X字状の柔軟で、 耐熱、 耐蝕に優れたフッ素ゴムで、 芯にワイヤー Hを 包み、 X字状のフッ素ゴムの先端は尖った態様である。  The string-like cleaning member G used in this example is a fluoro rubber having a flexible X-shaped cross section, excellent in heat resistance and corrosion resistance, as shown in Fig. 11. The wire H is wrapped around the core, The tip of the X-shaped fluororubber is pointed.
従って紐状クリ一ニング部材 Gは屈曲自在で、渦卷状に卷回された帯状伝熱板 2、 2 ' の不均一に連続する円弧にも自在に追随、 変形して移動し、 背後より 受ける高圧洗浄水を洩らさず、 X字状フッ素ゴムの尖った先端で帯状伝熱板 2、 2, の両壁面にある付着物を削ぎ落とし除去する帯状伝熱板の掃除と再生がな される。  Therefore, the string-like cleaning member G is free to bend and freely follows the uneven continuous arcs of the belt-like heat transfer plates 2 and 2 ′ wound in a spiral shape, deformed and moved from behind. It does not leak the high-pressure washing water that is received, and the strip-shaped heat transfer plate that scrapes off and removes the deposits on the wall surfaces of the strip-shaped heat transfer plates 2, 2 with the sharp tip of the X-shaped fluororubber is not cleaned and regenerated. Is done.
即ち、 紐状クリ一ニング部材 Gは帯状伝熱板の相対向する両壁面を摺動移動 してその付着物を除去するのに好適、 かつ高圧洗浄水の圧力を受け易いように 裾広がりで、 少なく とも一部がワイパー状の尖端をなし、 紐状クリーニング部 材の移動の往路、 復路共に帯状伝熱板 2、 2 ' の両壁面に密着して摺動移動す るものであれば適宜適用できる。  In other words, the string-like cleaning member G is suitable for removing the adhering matter by sliding and moving on the opposite wall surfaces of the belt-like heat transfer plate, and is widened so as to be easily subjected to the pressure of the high-pressure washing water. As long as at least a part of it has a wiper-shaped tip and both the forward and backward movements of the string-like cleaning member are in close contact with both wall surfaces of the belt-like heat transfer plates 2 and 2 ' Applicable.
然しながら紐状クリーニング部材 Gの材質、 構造、 断面形状その他がこの例 に限定しないことは言うまでもない。  However, it goes without saying that the material, structure, cross-sectional shape and the like of the string-like cleaning member G are not limited to this example.
【実施例 7】  [Example 7]
この例は実施例 6の紐状クリ一ニング部材 Gを 2本にしたものである。  In this example, two string-like cleaning members G of Example 6 are used.
第 1 3図に示すように、 スパイラル式熱交換器 1 の帯状伝熱板 2、 2 ' にはデ ィスタンスバーを兼ねた仕切り (点線) のスタッ ドピン Jが棚状に連設して設 けられている。 As shown in Fig. 13, the strip-shaped heat transfer plates 2 and 2 'of the spiral heat exchanger 1 are connected to the partition pins (dotted lines) that also serve as distance bars in a shelf-like manner. It is
この発明の例では圧力洗浄水の出入口 a . b . a ' . b, は増加するが、 紐状 クリーニング部材 Gの移動距離は 1 Z 2に減少する。 従って相対向する帯状伝 熱板の両壁面の距離、 即ち、 隙間が狭いとき、 又は. 筐体 (胴部筒体) が長い とき、 曲率が小さいときによい。 これによつて薄い伝熱板でよぐ又耐圧性が良 くなる In the example of the present invention, the pressure washing water inlet / outlet a.b.a'.b, increases, but the moving distance of the string-like cleaning member G decreases to 1Z2. Therefore, the opposite strips It is good when the distance between both wall surfaces of the heat plate, that is, when the gap is narrow, or when the casing (body cylinder) is long, or when the curvature is small. As a result, the heat resistance is improved with a thin heat transfer plate.
仕切り Jは勿論この発明の棚状に連設したスタッドビンをでもよく、また仕切 り Jの数も形状も限定しない。 紐状クリ一ニング部材 Gを適用しなくても良レ、。  Of course, the partition J may be a stud bin arranged in a shelf shape of the present invention, and the number and shape of the partitions J are not limited. No need to apply string-like cleaning member G.
【実施例 8】  [Example 8]
この例は図 7に示す。 帯状伝熱板 2の胴部には予め植えられたスタツ ドビン 8、 8 ' に、 後から該胴部の曲りに合ったフラッ トバー 2 5が着脱自在に差し 込装着ざれる。  An example of this is shown in FIG. A flat bar 25 corresponding to the bending of the trunk portion is detachably inserted into and attached to the stud bins 8 and 8 ′ planted in advance on the trunk portion of the belt-shaped heat transfer plate 2.
而して 2本のスタッ ドピン 8、 8, に差し込まれるフラットパー 2 5の片方 には、切り欠き 3 2を設けて置く。 この差し込は、 少しがたがたでも良いため、 着脱が容易である。  Therefore, a notch 3 2 is provided on one side of the flat par 2 5 inserted into the two stud pins 8, 8. This plug-in is easy to attach and detach because it may be a little rattle.
このフラッ 卜バー 2 5には間隔 Iを規定するデイスタンスバー 1 0の機能を 兼ねることが出来ると同時に、 流路における流体の攪拌、 流路変更などが自在 に設定できる。  The fluff bar 25 can also function as a distance bar 10 that defines the interval I, and at the same time, can freely set the agitation of the fluid in the flow path and the flow path change.
尚スタッ ドピン 8、 8 ' とフラッ トバー 2 5の取り付け手段はこの例に限定 しない。  The mounting method of the stud pins 8, 8 'and the flat bar 25 is not limited to this example.
【実施例 9】  [Example 9]
この例は第 1 1図及ぴ第 1 4図に示す。  Examples of this are shown in Figs. 11 and 14.
第 1 4図 (ィ) は、 この発明の分割可能な芯筒に、 筐体及び帯状伝熱板と組立 てられたスパイラル式熱交換器の説明図である。 FIG. 14 (i) is an explanatory view of a spiral heat exchanger assembled with a casing and a belt-like heat transfer plate on a separable core cylinder of the present invention.
即ち第 1 4図 (ィ) は (口)、 (ハ) に分解できる。  In other words, Fig. 14 (i) can be broken down into (mouth) and (c).
そして第 1 4図 (口) の半円筒状芯筒 Eの隔壁 1 8に設けられた楔受 Nに、 別途作成された (ハ) の半円筒状芯筒 E ' の楔 Mを楔受合して一体化すると第 1 4図 (ィ) に示すスパイラル式熱交換器となる。 即ち、 第 7図、 第 1 1図のようにスタッドピン 8が棚状に連設され、 これに 搭載される紐状ガスケッ ト 1 3が、 第 1 2図に示すように帯状伝熱板の端縁を エンドレスに周回されることによって封止がなされる。 Then, the wedge M of the semi-cylindrical core E 'of (c) prepared separately is wedge-received to the wedge receiver N provided in the partition wall 18 of the semi-cylindrical core E of Fig. 14 (mouth). When integrated, the spiral heat exchanger shown in Fig. 14 (i) is obtained. That is, as shown in FIGS. 7 and 11, the stud pins 8 are connected in a shelf shape, and the string-like gasket 13 mounted on the stud pins 8 is formed of the belt-like heat transfer plate as shown in FIG. Sealing is achieved by turning the edge around the endless.
この例では半円筒状の芯筒を一体化するために楔と楔受を使用したが、 これ に限定することなく、 他の嵌め合い、 螺子止めその他が適用できることは言う までもない。 即ち、 薄い伝熱板が使用できる。  In this example, a wedge and a wedge receiver are used to integrate the semi-cylindrical core tube, but it is needless to say that other fittings, screwing, and the like can be applied without being limited thereto. That is, a thin heat transfer plate can be used.
【実施例 1 0】  [Example 10]
この例はスパイラル式熱交換器の軽量化、 大型化を可能とするものである。 即ち、 第 1 5図 (A) は伏椀状の鏡板 9に、 蓋体 Fと環状フランジ 2 9を組み 合わせ、 そして (B) に示すようにその内腔 3 6へ (C) に示す補強リブ 3 5を 多数放射状に配設し、 これらをその接触点又は線で溶接一体化したものである。 この実施例では、 閉止フランジである蓋体 Fは第 1 5図 (B) に示すように、 帯状伝熱板 2 , 2 ' の開口端縁 3に配設されたスタッ ドピン 8の上に置かれた 紐状ガスケッ ト 1 3と、 及び又は紐状中空ガスケッ ト 1 2によって所定の間隔 Iで渦卷状に多数回卷回されて構成された帯状伝熱板 2、 2 \ 及びこれらを収 容した円筒状の筐体 Cの開口端縁 3が密封できる。  In this example, the spiral heat exchanger can be made lighter and larger. That is, Fig. 15 (A) is a combination of a prosthetic end plate 9 with a lid F and an annular flange 29, and into the lumen 36 as shown in (B), the reinforcement shown in (C) A large number of ribs 35 are arranged radially, and these are integrated by welding at their contact points or lines. In this embodiment, the lid F, which is a closing flange, is placed on a stud pin 8 disposed on the opening edge 3 of the belt-like heat transfer plates 2 and 2 ′ as shown in FIG. 15 (B). The strip-shaped heat transfer plates 2, 2 and the like, which are formed by being wound in a spiral manner at a predetermined interval I by the string-like gaskets 13 and / or the string-like hollow gaskets 1 2 are collected. The open edge 3 of the cylindrical housing C can be sealed.
尚この例では鏡板 9の内腔 3 6に補強リブ 3 5を放射状に配設することで説. 明したが、 これに限定せず升目状、 平行線状、 その他薄い板状の補強リブ 3 5 がー体に設けられれば何でも良い。  In this example, it is explained that the reinforcing ribs 35 are radially arranged in the lumens 36 of the end plate 9. However, the present invention is not limited to this. Anything is acceptable as long as it is provided on the body.
上記伏椀状の鏡板 9の内腔 3 6に補強リブ 3 5が固定されてから、 蓋体 Fと の接合面 3 7が所定の平面として仕上げられる。 この仕上げの加工は巨大な旋 盤に依らずともよい。  After the reinforcing rib 35 is fixed to the lumen 36 of the prone-shaped end plate 9, the joint surface 37 with the lid F is finished as a predetermined plane. This finishing process does not have to depend on a huge lathe.
即ち、 仕上げるのは薄い板状の補強リブ 3 5の接合面 3 7であるため、 例え ば上記伏椀状の鏡板 9の内腔 3 6に補強リブ 3 5が固定されてから伏椀状の鏡 板 9を回転させ、 グラインダー等で容易に削ることもできる。 従って少ない労 力で任意の蓋体 Fが加工でき、 修正もまた容易である。 In other words, the finished surface is the joining surface 3 7 of the thin plate-like reinforcing ribs 3 5. For example, after the reinforcing ribs 35 are fixed to the lumens 36 of the prone-shaped end plate 9, the prone-type end plate 9 can be rotated and easily grinded with a grinder or the like. Therefore, any lid F can be processed with little effort, and correction is also easy.
尚第 1 5図 (B) 及ぴ (C) に示す閉止フランジである蓋体 Fは 1枚の板でも 良いが、 この例では上板 3 8、 蓋板 3 9、 ハニカム 4 0の ハニカムサンドィ ツチパネルで構成した。  The lid F, which is the closing flange shown in Fig. 15 (B) and (C), may be a single plate. In this example, however, the honeycomb sand of the upper plate 38, the lid plate 39, and the honeycomb 40 It consisted of a touch panel.

Claims

請求の範囲 . 少なく とも 2枚の長尺の帯状伝熱板を互いに所定の間隔をあけて渦卷状に 卷回して構成したスパイラル式熱交換器であって、前記帯状伝熱板の開口端縁 の少し内方に、蓋体に対して圧締めされる紐状ガスケットを収容するスペース を設けて、 スタツドビンを隙間をあけて棚状に連設し、 これに紐状ガスケット を搭載支受せしめたことを特徴とするスパイラル式熱交換器。 . 前記紐状ガスケッ トを蓋体に対して均一に圧締めさせるために、 前記スタ ッドビンの少なく とも 1辺が平行面状に構成される力、及び又は前記スタツド ピンに少なく とも 1辺が平行面状に構成されている支受部材を被せたことを 特徵とする請求の範囲第 1項に記載のスパイラル式熱交換器。 . 前記一端が帯状伝熱板に棚状に連設されたスタシ ドビン及び又は支受部材 の他の一端は、 必要に応じて、 同時に渦卷状に卷回され、 互いに向かい合って いる他の帯状伝熱板に設けられた受台に支えられるようになしたことを特徴 とする請求項 1又は 2に記載のスパイラル式熱交換器 . 少なく とも 2枚の長尺の帯状伝熱板を互いに所定の間隔をあけて渦卷状に 卷回して構成されたスパイラル式熱交換器であって、前記スタツドビンには必 要に応じてスプラインが設けられていることを特徴とする請求項 1 ~ 3のい ずれかに記載のスパイラル式熱交換器。 . 少なく とも 2枚の長尺の帯状伝熱板を互いに所定の間隔をあけて渦卷状に 卷回して構 ^¾されたスパイラル式熱交換器であって、 A流路には棚状に連設さ れた支受部材に紐状ガスケッ トが搭載され、 B流路には開口端縁に隙間をあけ たスタツドビンが棚状に連設され、 B流路は A流路と直角、即ち A流路が渦卷 状の卷回に対して B流路は軸方向に流れるようにしたことを特徴とする請求 項 1〜4のいずれかに記載のスパイラル式熱交換器。 . 上記帯状伝熱板の流路の一端に、 流体の入口及び又は出口をそれぞれ 1組 又は複数組設け、前記入口及び又は出口の中間に前記流路を長手方向に縦断す る前記帯状伝熱板より長い紐状クリーニング部材の端部を固定し、そして前記 入口及び又は出口を開閉操作することによって、紐状クリ一ユング部材の中間 部を自在に軸方向 (帯状伝熱板の長手方向と直角方向) に振って、 長いワイパ 一のように捃動移動させることを特徴とする請求項 1〜 5のいずれかに記載 のスパイラル式熱交換器。 . 前記流路が帯状伝熱板の長手方向に棚状に連設しされたスタツドビンで少 なく とも 2分割され、それに対応した出入口、及び必要に応じて紐状クリー二 ング部材が設けられたことを特徴とする請求項 1〜 6のいずれかに記載のス パイラル式熱交換器。 . 前記スパイラル式熱交換器の流路を掃除するための紐状クリ一ニング部材 は、好ましくは断面が X字状のゴム等の柔軟な紐状素材の中に、屈曲自在なヮ ィャ一等の芯材を包んで成ることをことを特徴とする請求項 6又は 7に記載 のスパイラル式熱交換器。 . 芯筒は、 半円筒状芯筒 E隔壁に設けられた楔受 Nに、 別途作成された半円 筒状芯筒 E, の楔 Mを嵌合して一体化し、且つ夫々が 1つのユニット部材とし て分解ができることを特徴とするスパイラル式熱交換器。 0 . 蓋体の外側に伏椀状の鏡板を設け、 該伏椀状の鏡板の内腔に内接し、 耳 つ少なく とも蓋板との間に多数の補強リブを介在させて前記蓋板と鏡板とを 一体に接合して構成したことを特徴とする熱交換器の閉止フランジを有する スパイラル式熱交換器 Claim: A spiral heat exchanger comprising at least two elongated belt-like heat transfer plates wound in a spiral shape at a predetermined interval from each other, the open end of the belt-like heat transfer plate A space for accommodating the string-like gasket to be pressed against the lid is provided slightly inside the edge, and the stud bins are connected in a shelf shape with a gap, and the string-like gasket is mounted and supported on this. Spiral heat exchanger characterized by that. In order to uniformly press the string-like gasket against the lid body, at least one side of the stud bin is configured to be parallel and / or at least one side is parallel to the stud pin. The spiral heat exchanger according to claim 1, characterized in that it is covered with a support member configured in a planar shape. The other end of the stud bin and / or the support member, which is connected to the belt-shaped heat transfer plate in the form of a shelf, is wound in a vortex shape at the same time, if necessary. The spiral heat exchanger according to claim 1 or 2, characterized in that it is supported by a cradle provided on the heat transfer plate. At least two long belt-like heat transfer plates are mutually connected. The spiral heat exchanger configured to be wound in a spiral shape with a gap between the studs, wherein the stud bin is provided with a spline as required. A spiral heat exchanger according to any one of the above. A spiral heat exchanger constructed by winding at least two long belt-shaped heat transfer plates in a vortex shape at a predetermined interval from each other. A string-like gasket is mounted on the support member provided continuously, a stud bin with a gap at the opening edge is continuously provided in the B channel, and the B channel is perpendicular to the A channel. A channel is swirl The spiral heat exchanger according to any one of claims 1 to 4, wherein the B channel flows in an axial direction with respect to the coiled winding. One or more sets of fluid inlets and / or outlets are provided at one end of the flow path of the belt-shaped heat transfer plate, respectively, and the belt-shaped heat transfer is longitudinally cut in the longitudinal direction between the inlet and / or the outlet. By fixing the end of the string-like cleaning member that is longer than the plate and opening and closing the inlet and / or the outlet, the middle part of the string-like cleaning member can be freely moved in the axial direction (the longitudinal direction of the belt-like heat transfer plate). The spiral heat exchanger according to any one of claims 1 to 5, wherein the spiral-type heat exchanger is swung in a direction perpendicular to a long direction and moved like a long wiper. The flow path was divided into at least two by a stud bin connected in a shelf shape in the longitudinal direction of the belt-shaped heat transfer plate, and a corresponding entrance and exit, and a string-like cleaning member was provided if necessary. The spiral heat exchanger according to any one of claims 1 to 6, wherein The string-shaped cleaning member for cleaning the flow path of the spiral heat exchanger is preferably a flexible string material in a flexible string-shaped material such as rubber having an X-shaped cross section. The spiral heat exchanger according to claim 6 or 7, characterized by wrapping a core material such as the above. The semi-cylindrical core E is a single unit, with a semi-cylindrical core E, which is a separately prepared semi-cylindrical core E, fitted to a wedge receiver N provided on the partition wall E. Spiral heat exchanger characterized in that it can be disassembled as a member. A prone-shaped end plate is provided on the outside of the lid, is inscribed in the lumen of the prone-type end plate, and a plurality of reinforcing ribs are interposed between the ear plate and at least the cover plate. With the end plate A spiral heat exchanger having a closed flange of a heat exchanger characterized by being integrally joined
PCT/JP2008/070157 2007-11-01 2008-10-29 Spiral type heat exchanger WO2009057814A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007285245A JP2009024990A (en) 2007-06-20 2007-11-01 Spiral heat exchanger
JP2007-285245 2007-11-01
JP2007313225A JP5140797B2 (en) 2007-12-04 2007-12-04 Spiral heat exchanger
JP2007-313225 2007-12-04
JP2008173322 2008-07-02
JP2008-173322 2008-07-02

Publications (1)

Publication Number Publication Date
WO2009057814A1 true WO2009057814A1 (en) 2009-05-07

Family

ID=40591188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070157 WO2009057814A1 (en) 2007-11-01 2008-10-29 Spiral type heat exchanger

Country Status (1)

Country Link
WO (1) WO2009057814A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112597A (en) * 2008-11-05 2010-05-20 Matsumoto Giken Kk Spiral heat exchanger
WO2011002429A1 (en) * 2009-06-29 2011-01-06 Utc Power Corporation Spiral heat exchanger for hydrodesulfurizer feedstock
JP2012526263A (en) * 2009-05-11 2012-10-25 アルファ・ラバル・コーポレイト・エービー Spiral heat exchanger
EP3800420A1 (en) * 2019-10-03 2021-04-07 Alfa Laval Corporate AB Spiral heat exchanger
CN117404941A (en) * 2023-12-14 2024-01-16 陕西金河洗涤有限公司 Heat exchanger for washing articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148878U (en) * 1984-03-12 1985-10-03 株式会社日阪製作所 spiral heat exchanger
JPS62131271U (en) * 1986-02-05 1987-08-19
JPH11248377A (en) * 1997-12-18 1999-09-14 Matsumoto Giken Kk Spiral plate heat exchanger
JP2005121252A (en) * 2003-10-14 2005-05-12 Kobe Steel Ltd Dust remover for plate type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148878U (en) * 1984-03-12 1985-10-03 株式会社日阪製作所 spiral heat exchanger
JPS62131271U (en) * 1986-02-05 1987-08-19
JPH11248377A (en) * 1997-12-18 1999-09-14 Matsumoto Giken Kk Spiral plate heat exchanger
JP2005121252A (en) * 2003-10-14 2005-05-12 Kobe Steel Ltd Dust remover for plate type heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112597A (en) * 2008-11-05 2010-05-20 Matsumoto Giken Kk Spiral heat exchanger
JP2012526263A (en) * 2009-05-11 2012-10-25 アルファ・ラバル・コーポレイト・エービー Spiral heat exchanger
KR101377913B1 (en) * 2009-05-11 2014-03-25 알파 라발 코포레이트 에이비 A spiral heat exchanger
WO2011002429A1 (en) * 2009-06-29 2011-01-06 Utc Power Corporation Spiral heat exchanger for hydrodesulfurizer feedstock
EP3800420A1 (en) * 2019-10-03 2021-04-07 Alfa Laval Corporate AB Spiral heat exchanger
CN117404941A (en) * 2023-12-14 2024-01-16 陕西金河洗涤有限公司 Heat exchanger for washing articles
CN117404941B (en) * 2023-12-14 2024-03-08 陕西金河洗涤有限公司 Heat exchanger for washing articles

Similar Documents

Publication Publication Date Title
WO2009057814A1 (en) Spiral type heat exchanger
JP5124753B2 (en) Corrosion-resistant bimetal tubes and their use in tube bundle devices
US20020179292A1 (en) Assembling heat exchanger of spiral sleeve
US20150129181A1 (en) Modular heat exchanger
EP2778559B1 (en) Heat exchanger and body therefore, and a method for forming a heat exchanger body
MX2011005959A (en) Gas turbine regenerator apparatus and method of manufacture.
US5787974A (en) Spiral heat exchanger and method of manufacture
JP4268818B2 (en) Distribution tube support for heat exchanger
US20140305620A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
KR20140009220A (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
US20120193072A1 (en) Heat exchanger
JP2008116196A (en) Tube type heat exchanger
US20150168017A1 (en) Solar Water Heating Systems and Methods of Making and Using the Same
EP1724543A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
US20060260789A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
RU2543094C1 (en) Tube and shell heat exchanger
JP5140797B2 (en) Spiral heat exchanger
CN205784723U (en) A kind of convenient heat exchanger cleaned
WO2018158843A1 (en) Heat exchanger
US5509470A (en) Molded or cast short radius return bends for horizontal shell and tube vessel
CN201555485U (en) Coil pipe and heat exchanger with same
CN201193742Y (en) Solderless flange-connected stainless steel metal hose of word 'omega' shap
RU2770347C1 (en) Recuperative heat exchanger and method for its manufacture
RU2451887C1 (en) Shell-and-tube heat exchanger
RU2473034C1 (en) Heat exchanger (versions)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08844975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08844975

Country of ref document: EP

Kind code of ref document: A1