WO2009053555A1 - Turbomoteur à émission de bruit réduite pour aéronef - Google Patents

Turbomoteur à émission de bruit réduite pour aéronef Download PDF

Info

Publication number
WO2009053555A1
WO2009053555A1 PCT/FR2008/001166 FR2008001166W WO2009053555A1 WO 2009053555 A1 WO2009053555 A1 WO 2009053555A1 FR 2008001166 W FR2008001166 W FR 2008001166W WO 2009053555 A1 WO2009053555 A1 WO 2009053555A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold flow
bosses
nacelle
periphery
fan cowl
Prior art date
Application number
PCT/FR2008/001166
Other languages
English (en)
Inventor
Amadou André SYLLA
Franck Crosta
Olivier Pelagatti
Damien Prat
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to EP08843033.5A priority Critical patent/EP2188514B1/fr
Priority to US12/673,042 priority patent/US8544278B2/en
Priority to CA2695626A priority patent/CA2695626C/fr
Priority to CN2008801037557A priority patent/CN101970843B/zh
Priority to BRPI0814484A priority patent/BRPI0814484A8/pt
Priority to JP2010520607A priority patent/JP5023213B2/ja
Publication of WO2009053555A1 publication Critical patent/WO2009053555A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbine engine with reduced noise emission for aircraft.
  • the object of the present invention is to improve such bosses to allow not only an attenuation of the jet noise, but also a reduction of the shock cell noise.
  • the turbofan turbine engine comprising, around its longitudinal axis:
  • a nacelle provided with an outer nacelle cover and enclosing a blower generating the cold flow and a central generator generating the hot flow;
  • annular cold flow channel formed around said central hot flow generator
  • each boss has a convex face forming said convergent and said divergent and two flat lateral faces, longitudinal with respect to said turbine engine, said convex face and the side faces conferring on said boss a section at least approximately rectangular, scalable parallel to said longitudinal axis.
  • the periphery of said cold flow is subjected, at the outlet of the corresponding nozzle, to a division into distinct jets of different orientations and structures, depending on whether said jets pass on the bosses or in the longitudinal channels. located between said bosses.
  • the cold flow jets passing in said longitudinal channels have a direction extending said outer fan cowl and have, at the edge of said cold flow outlet port, an acceleration value equal to the nominal value of the nozzle.
  • the jets of cold flow passing over the bosses are directed outwards, in extension of said divergent, and penetrate into the aerodynamic flow around the turbine engine. In addition, they have, at the edge of said outlet port of the cold flow, an acceleration much greater than said nominal value due to a greater expansion due to said bosses.
  • said bosses according to the present invention:
  • the bosses according to the present invention thus make it possible to influence both the turbulence (noise source) and the shock cells (amplification of this noise).
  • said bosses are regularly distributed at the periphery of said external fan cowl. They may further have a peripheral width equal to that of said longitudinal channels.
  • Said bosses may be shaped with said external blower cover to be an integral part thereof.
  • said bosses are inserts and attached to said outer blower cover.
  • Figure 1 shows, in schematic axial section, an improved turbomo- tor according to the present invention.
  • FIG. 2 illustrates, in an enlarged partial schematic view, the rear part of the cold flow nozzle of the turbine engine of FIG. Figure 3 is a rear view, schematic and partial, of the nozzle of Figure 2, seen along the arrow III of Figures 1 and 2.
  • FIG. 4 schematically illustrates the process according to which the bosses according to the present invention improve the mixing of flows at the outlet of the cold flow nozzle.
  • FIG. 5 schematically illustrates the process according to which the bosses according to the present invention deconstruct the cold flow.
  • FIG. 6 is a diagram indicating, for a known motor and for this same known improved motor according to the invention, the variation of P pressure at the rear of said engine, depending on the distance d along the axis of the latter.
  • the turbofan engine 1 with longitudinal axis L-L and shown in Figure 1, comprises a nacelle 2 externally bounded by an outer shell nacelle 3.
  • the nacelle 2 comprises, at the front, an air inlet 4 provided with a leading edge 5 and, at the rear, an air outlet orifice 6 provided with a trailing edge 7.
  • a fan 8 directed towards the air inlet 4 and adapted to generate the cold stream 9 for the turbine engine 1;
  • a central generator 10 comprising in a known manner low and high pressure compressors, a combustion chamber and turbines at low and high pressure, and generating the hot flow 1 1 of said turbine engine 1;
  • annular cold flow channel 12 formed around said central generator 10 between an inner fan cowl 13 and an outer fan cowl 14.
  • the external fan cowl 14 forms a nozzle for the cold flow and converges, towards the rear of the turbine engine 1, towards said external cowl of the pod 3, to form therewith the edge 7 of said orifice 6, which therefore constitutes the outlet port of the cold stream.
  • the turbine engine 1 comprises a plurality of bosses 20 (see also FIGS. 2 and 3) regularly distributed around the periphery of the external fan cowl 14.
  • the bosses 20 project into the channel annular cold flow 12 and delimit between them longitudinal channels 21.
  • the bosses 20 are inserts and attached to said outer cover of 14, by any known means (not shown) such as welding, screws, etc.
  • Each boss 20 has a convex face 22 forming, for the cold stream 9, a convergent 22C directed forwardly followed by a divergent 22D directed rearwardly.
  • the rear portion of each diverging portion 22D is connected to the trailing edge 7 of the orifice 6.
  • each boss 20 comprises two flat lateral faces 2OL, longitudinal with respect to the turbine engine 1, and the convex face 22 and said lateral faces 2OL confer on each boss 20 at least an approximately rectangular section. , evolutive parallel to said longitudinal axis LL.
  • the flat lateral faces 2OL may be radial, that is to say that their planes then pass through said longitudinal axis L-L.
  • the peripheral width 20 of the bosses 20 may be equal to the peripheral width 21 of the longitudinal channels 21.
  • the jets 9.21 are directed in extension of the outer fan cowl 14, while the jets 9.20 are directed in extension of the divergent 22D of the bosses 20.
  • the jets 9.20 intersect faster aerodynamic flow V than jets 9.21. This results in better penetration of the cold stream 9 in the aerodynamic flow V, and therefore a better mixture of the latter with said cold stream 9.
  • the jet noise is reduced.
  • the jets 9.20 of the cold flow 9 passing on the convergent-divergent 22C-22D present, at the trailing edge 7, an acceleration much greater than that of the jets 9.21 passing through the longitudinal channels. 21, between the bosses 20.
  • a boss 20 is shown in plan with the outer fan cover portion 14 surrounding it, as well as hatched zones of iso acceleration of the cold flow 9 (these zones 'iso acceleration result from tests and are even darker as the acceleration is higher).
  • FIG. 6 is a diagram showing the pressure oscillations P at the rear of the turbine engine as a function of the distance d thereto.
  • the curve 23 in the solid line of FIG. 6 corresponds to the improved turbine engine according to the invention by fixing 36 bosses 20 equispaced at the periphery of the outlet orifice of its external fan cowl, so as to provide as many longitudinal channels. 21 of the same peripheral width as said bosses, each of these having a length of the order of 200 mm.
  • the dashed curve 24 in FIG. 6 corresponds to the same non-improved turbine engine according to the invention.
  • the present invention reduces by about 20% the amplitude of these pressure oscillations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Selon l'invention, à la périphérie interne de l'orifice de sortie (7) du canal de soufflante (12), on agence une pluralité de bossages (20) à section rectangulaire, séparés par des canaux longitudinaux (21 ) et présentant un convergent (22C) et un divergent (22D) pour le flux froid (9).

Description

Turbomoteur à émission de bruit réduite pour aéronef.
La présente invention concerne un turbomoteur à émission de bruit réduite pour aéronef.
On sait que, à l'arrière d'un turbomoteur à double flux monté sur un aéronef, le flux froid supersonique, en s'écoulant vers l'aval dudit tur- bomoteur, entre en contact avec l'écoulement aérodynamique extérieur dudit turbomoteur. Comme les vitesses dudit flux froid et dudit écoulement sont différentes l'une de l'autre, il en résulte des cisaillements fluides de pénétration entre ceux-ci, ce qui engendre du bruit, appelé "bruit de jet" dans la technique aéronautique. De plus, par suite d'une discontinuité de pression statique entre la pression externe et la pression à la sortie de la tuyère, ce flux froid supersonique engendre une série de cellules de compression-détente (oscillations de vitesse) agissant comme des amplificateurs de bruit et produisant un bruit dit de "cellule de choc" dans la technique aéronautique, encore appelé "shock cell noise" en langue anglaise.
Pour atténuer le bruit émis à l'arrière d'un turbomoteur à double flux, on a déjà pensé à modifier la partie arrière de la tuyère du flux froid. Par exemple, on a déjà proposé de prolonger ladite tuyère vers l'arrière par des "chevrons" (voir par exemple US 4 284 170 et US 6 360 528) ou de conformer la partie arrière de ladite tuyère en "pétales ondulés" { voir par exemple GB 2 160 265, US 4 786 016 et US 6 082 635).
Outre le fait que ces tuyères connues exigent des conformations spéciales définitives qui, généralement, augmentent les coûts, la masse et la traînée, on doit constater que, bien qu'étant efficaces pour atténuer le bruit de jet en créant des turbulences favorisant le mélange du flux froid et de l'écoulement aérodynamique extérieur, elles ne produisent que peu d'effet dans la réduction du bruit de cellule de choc. Par ailleurs, le document EP-1 703 1 14 décrit un turbomoteur à bruit réduit dans lequel une pluralité de bossages sont répartis à la périphérie de l'orifice de sortie du flux froid en faisant saillie dans ce dernier, chacun desdits bossages formant un convergent suivi d'un divergent rac- cordé au bord dudit orifice de sortie du flux froid.
L'objet de la présente invention est de perfectionner de tels bossages pour permettre non seulement une atténuation du bruit de jet, mais encore une réduction du bruit de cellule de choc.
A cette fin, selon l'invention, le turbomoteur à double flux pour aé- ronef, comportant, autour de son axe longitudinal :
- une nacelle pourvue d'un capot externe de nacelle et enfermant une soufflante engendrant le flux froid et un générateur central engendrant le flux chaud ;
- un canal annulaire de flux froid ménagé autour dudit générateur central de flux chaud ;
- un capot externe de soufflante délimitant ledit canal annulaire de flux froid du côté dudit capot externe de nacelle ;
- un orifice de sortie du flux froid, dont le bord, qui forme le bord de fuite de ladite nacelle, est déterminé par ledit capot externe de nacelle et par ledit capot externe de soufflante convergeant l'un vers l'autre jusqu'à se rejoindre ; et
- au voisinage dudit orifice de sortie du flux froid, une pluralité de bossages répartis à la périphérie dudit capot externe de soufflante en faisant saillie dans ledit canal annulaire de flux froid et en formant, pour ledit flux froid, un convergent suivi d'un divergent raccordé au bord dudit orifice de sortie du flux froid, est remarquable en ce que chaque bossage présente une face convexe formant ledit convergent et ledit divergent et deux faces latérales planes, longitudinales par rapport audit turbomoteur, ladite face convexe et lesdi- tes faces latérales conférant audit bossage une section au moins approximativement rectangulaire, évolutive parallèlement audit axe longitudinal.
Grâce à la présente invention, la périphérie dudit flux froid est soumise, à la sortie de la tuyère correspondante, à une division en jets distincts d'orientations et de structures différentes, selon que lesdits jets passent sur les bossages ou dans les canaux longitudinaux se trouvant entre lesdits bossages. En effet, les jets de flux froid passant dans lesdits canaux longitudinaux ont une direction prolongeant ledit capot externe de soufflante et présentent, au bord dudit orifice de sortie du flux froid, une valeur d'accélération égale à la valeur nominale de la tuyère. En revanche, les jets de flux froid passant sur les bossages sont dirigés vers l'extérieur, en prolongement dudit divergent, et pénètrent dans l'écoulement aérodynamique autour du turbomoteur. De plus, ils présentent, au bord dudit orifice de sortie du flux froid, une accélération très supérieure à ladite valeur nominale du fait d'une détente plus grande due auxdits bossages.
Par ailleurs, du fait de la présence desdites faces latérales planes, on engendre un fort cisaillement entre les jets de flux froid passant sur les bossages et ceux traversant lesdits canaux longitudinaux, ce qui provoque la formation de tourbillons favorisant le mélange entre l'écoulement aéro- dynamique extérieur et ledit flux froid. L'orientation desdites faces latérales planes peut par exemple être radiale, par rapport audit turbomoteur. Ainsi, lesdits bossages conformes à la présente invention :
- induisent des hétérogénéités radiales dans le champ de pression du flux froid à la sortie de la tuyère de soufflante, c'est-à-dire qu'ils désorgani- sent localement la structure dudit flux foid, ce qui entraîne à l'arrière du turbomoteur une réduction de l'intensité des cellules de chocs et donc de l'amplitude des oscillations de vitesse ; et, simultanément,
- favorisent le mélange entre le flux froid et l'écoulement aérodynamique autour du turbomoteur, ce qui entraîne une réduction du bruit de jet. Les bossages conformes à la présente invention permettent donc d'influer, à la fois, sur la turbulence (source de bruit) et sur les cellules de chocs (amplification de ce bruit).
De préférence, lesdits bossages sont régulièrement répartis à la périphérie dudit capot externe de soufflante. Ils peuvent de plus présenter une largeur périphérique égale à celle desdits canaux longitudinaux.
Lesdits bossages peuvent être conformés avec ledit capot externe de soufflante pour en être une partie intégrante. Toutefois, avantageusement, lesdits bossages sont des pièces rapportées et fixées audit capot externe de soufflante. Ainsi, il est possible de perfectionner selon l'invention non seulement les turbomoteurs en cours de construction, mais encore ceux antérieurement construits.
Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 représente, en coupe axiale schématique, un turbomo- teur perfectionné selon la présente invention.
La figure 2 illustre, en vue schématique partielle agrandie, la partie arrière de la tuyère de flux froid du turbomoteur de la figure 1 . La figure 3 est une vue de l'arrière, schématique et partielle, de la tuyère de la figure 2, vue selon la flèche III des figures 1 et 2.
La figure 4 illustre schématiquement le processus selon lequel les bossages conformes à la présente invention améliorent le mélange de flux à la sortie de la tuyère de flux froid. La figure 5 illustre schématiquement le processus selon lequel les bossages conformes à la présente invention déstructurent le flux froid.
La figure 6 est un schéma indiquant, pour un moteur connu et pour ce même moteur connu perfectionné selon l'invention, la variation de pression P à l'arrière dudit moteur, en fonction de la distance d le long de l'axe de ce dernier.
Le turbomoteur à double flux 1 , d'axe longitudinal L-L et montré sur la figure 1 , comporte une nacelle 2 délimitée extérieurement par un capot externe de nacelle 3.
La nacelle 2 comporte, à l'avant, une entrée d'air 4 pourvue d'un bord d'attaque 5 et, à l'arrière, un orifice de sortie d'air 6 pourvu d'un bord de fuite 7.
A l'intérieur de ladite nacelle 2, sont disposés : - une soufflante 8 dirigée vers l'entrée d'air 4 et apte à engendrer le flux froid 9 pour le turbomoteur 1 ;
- un générateur central 10, comprenant de façon connue des compresseurs à basse et haute pression, une chambre de combustion et des turbines à basse et haute pression, et engendrant le flux chaud 1 1 dudit turbomoteur 1 ; et
- un canal annulaire de flux froid 12, ménagé autour dudit générateur central 10, entre un capot interne de soufflante 13 et un capot externe de soufflante 14.
Le capot externe de soufflante 14 forme une tuyère pour le flux froid et converge, vers l'arrière du turbomoteur 1 , en direction dudit capot externe de la nacelle 3, pour former avec celui-ci le bord 7 dudit orifice 6, qui constitue donc l'orifice de sortie du flux froid.
Au voisinage dudit orifice 6 de sortie du flux froid 9, le turbomoteur 1 comporte une pluralité de bossages 20 (voir également les figures 2 et 3) régulièrement répartis à la périphérie du capot externe de soufflante 14. Les bossages 20 font saillie dans le canal annulaire de flux froid 12 et délimitent entre eux des canaux longitudinaux 21 . De préférence, les bossages 20 sont des pièces rapportées et fixées audit capot externe de souf- fiante 14, par tout moyen connu (non représenté) tel que soudure, vis, etc ...
Chaque bossage 20 présente une face convexe 22 formant, pour le flux froid 9, un convergent 22C dirigé vers l'avant suivi d'un divergent 22D dirigé vers l'arrière. De plus, la partie arrière de chaque divergent 22D est raccordée au bord de fuite 7 de l'orifice 6.
Comme on peut le voir sur les figures 2 et 3, chaque bossage 20 comporte deux faces latérales planes 2OL, longitudinales par rapport au turbomoteur 1 , et la face convexe 22 et lesdites faces latérales 2OL confèrent à chaque bossage 20 une section au moins approximativement rectangulaire, évolutive parallèlement audit axe longitudinal L-L.
Les faces latérales planes 2OL peuvent être radiales, c'est-à-dire qu'alors leurs plans passent par ledit axe longitudinal L-L. De plus, la largeur périphérique £20 des bossages 20 peut être égale à la largeur péri- phérique £21 des canaux longitudinaux 21 .
Lorsque l'aéronef (non représenté) qui porte le turbomoteur 1 se déplace, un écoulement aérodynamique V s'écoule autour de la nacelle 2, au contact du capot externe de nacelle 3 (voir les figures 1 et 4). Par ailleurs, comme l'illustre la figure 4, à la périphérie du flux froid 9, des jets 9.20 de celui-ci passent sur les bossages 20, alors que d'autres jets 9.21 dudit flux froid passent entre lesdits bossages, à travers les canaux longitudinaux 21 .
Bien entendu, à la sortie de l'orifice de fuite 6, les jets 9.21 sont dirigés en prolongement du capot externe de soufflante 14, alors que les jets 9.20 sont dirigés en prolongement des divergents 22D des bossages 20. Ainsi, les jets 9.20 croisent plus rapidement l'écoulement aérodynamique V que les jets 9.21 . Il en résulte une meilleure pénétration du flux froid 9 dans l'écoulement aérodynamique V, et donc un meilleur mélange de ce dernier avec ledit flux froid 9. Le bruit de jet est donc réduit. Par ailleurs, comme cela est illustré par la figure 5, les jets 9.20 du flux froid 9 passant sur les convergents-divergents 22C-22D présentent, au bord de fuite 7, une accélération très supérieure à celle des jets 9.21 passant dans les canaux longitudinaux 21 , entre les bossages 20. Sur la figure 5, on a représenté en plan un bossage 20 avec la partie de capot externe de soufflante 14 l'entourant, ainsi que des zones hachurées d'iso accélération du flux froid 9 (ces zones d'iso accélération résultent d'essais et sont d'autant plus sombres que l'accélération est plus élevée).
De la différence des accélérations des jets 9.20 et 9.21 à la sortie de l'orifice 6, il résulte que, au moins à la périphérie, le flux froid 9 est déstructuré, de sorte que les cellules de choc de bruit sont réduites.
Cette conséquence est illustrée par la figure 6.
Sur cette figure 6, on a représenté des résultats d'essais sur un turbomoteur équipant un avion long-courrier. Cette figure 6 est un dia- gramme indiquant les oscillations de pression P à l'arrière du turbomoteur en fonction de la distance d à celui-ci.
La courbe 23 en trait plein de la figure 6 correspond audit turbomoteur perfectionné selon l'invention en fixant 36 bossages 20 équirépar- tis à la périphérie de l'orifice de sortie de son capot externe de soufflante, de façon à fournir autant de canaux longitudinaux 21 de même largeur périphérique que lesdits bossages, chacun de ces derniers ayant une longueur de l'ordre de 200 mm.
En revanche la courbe 24 en pointillés de la figure 6 correspond au même turbomoteur non perfectionné selon l'invention. Par comparaison des courbes 23 et 24, on peut constater que la présente invention permet de réduire d'environ 20% l'amplitude de ces oscillations de pression.

Claims

REVENDICATIONS
1 . Turbomoteur à double flux pour aéronef comportant, autour de son axe longitudinal (L-L) :
- une nacelle (2) pourvue d'un capot externe de nacelle (3) et enfermant une soufflante (8) engendrant le flux froid (9) et un générateur central
(10) engendrant le flux chaud (1 1 ) ;
- un canal annulaire de flux froid (12) ménagé autour dudit générateur central de flux chaud (10) ;
- un capot externe de soufflante (14) délimitant ledit canal annulaire de flux froid (12) du côté dudit capot externe de nacelle (3) ;
- un orifice de sortie du flux froid (6), dont le bord (7), qui forme le bord de fuite de ladite nacelle (2), est déterminé par ledit capot externe de nacelle (3) et par ledit capot externe de soufflante (14) convergeant l'un vers l'autre jusqu'à se rejoindre ; et - au voisinage dudit orifice de sortie du flux froid (6), une pluralité de bossages (20) répartis à la périphérie dudit capot externe de soufflante (14) en faisant saillie dans ledit canal annulaire de flux froid (12) et en formant, pour ledit flux froid (9), un convergent suivi d'un divergent raccordé au bord (7) dudit orifice de sortie du flux froid (6), caractérisé en ce que chaque bossage (20) présente une face convexe (22) formant ledit convergent (22C) et ledit divergent (22D) et deux faces latérales (20L) planes, longitudinales par rapport audit turbomoteur, ladite face convexe (22) et lesdites faces latérales (20L) conférant audit bossage (20) une section au moins approximativement rectangulaire, évolutive pa- rallèlement audit axe longitudinal (L-L).
2. Turbomoteur selon la revendication 1 , caractérisé en ce que lesdits bossages (20) sont régulièrement répartis à la périphérie dudit capot externe de soufflante (14).
3. Turbomoteur selon l'une des revendications 1 ou 2, caractérisé en ce que la largeur périphérique (f20) des bossages (20) est égale à la largeur périphérie (121 ) desdits canaux longitudinaux (21 ).
4. Turbomoteur selon l'une des revendications 1 à 3, caractérisé en ce que lesdits bossages (20) sont des pièces rapportées et fixées audit capot externe de soufflante (14).
PCT/FR2008/001166 2007-08-17 2008-08-04 Turbomoteur à émission de bruit réduite pour aéronef WO2009053555A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08843033.5A EP2188514B1 (fr) 2007-08-17 2008-08-04 Turbomoteur à émission de bruit réduite pour aéronef
US12/673,042 US8544278B2 (en) 2007-08-17 2008-08-04 Turboshaft engine with reduced noise emission for aircraft
CA2695626A CA2695626C (fr) 2007-08-17 2008-08-04 Turbomoteur a emission de bruit reduite pour aeronef
CN2008801037557A CN101970843B (zh) 2007-08-17 2008-08-04 用于飞行器的发出减少噪音的涡轮发动机
BRPI0814484A BRPI0814484A8 (pt) 2007-08-17 2008-08-04 motor a jato de fluxo duplo para aeronave
JP2010520607A JP5023213B2 (ja) 2007-08-17 2008-08-04 噴射騒音が軽減される航空機用ターボシャフト・エンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705875A FR2920035B1 (fr) 2007-08-17 2007-08-17 Turbomoteur a emission de bruit reduite pour aeronef
FR0705875 2007-08-17

Publications (1)

Publication Number Publication Date
WO2009053555A1 true WO2009053555A1 (fr) 2009-04-30

Family

ID=39185778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001166 WO2009053555A1 (fr) 2007-08-17 2008-08-04 Turbomoteur à émission de bruit réduite pour aéronef

Country Status (9)

Country Link
US (1) US8544278B2 (fr)
EP (1) EP2188514B1 (fr)
JP (1) JP5023213B2 (fr)
CN (1) CN101970843B (fr)
BR (1) BRPI0814484A8 (fr)
CA (1) CA2695626C (fr)
FR (1) FR2920035B1 (fr)
RU (1) RU2451814C2 (fr)
WO (1) WO2009053555A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219541A1 (de) 2012-10-25 2014-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Düse, Strukturelement und Verfahren zur Herstellung einer Düse
CN103835810B (zh) * 2012-11-27 2017-02-08 中航商用航空发动机有限责任公司 一种航空发动机进气短舱的声衬装置及航空发动机
CN103790733A (zh) * 2014-01-22 2014-05-14 李竟儒 一种能降低喷气式飞机喷气噪声的装置
CN105464838B (zh) * 2014-09-25 2019-05-21 波音公司 用于被动推力导向和羽流偏转的方法和装置
US10927792B2 (en) * 2018-06-22 2021-02-23 The Boeing Company Jet noise suppressor
FR3095675B1 (fr) * 2019-05-03 2021-04-09 Safran Aircraft Engines Mélangeur à flux séparés de turbomachine
US10815833B1 (en) 2019-05-21 2020-10-27 Marine Turbine Technologies, LLC Exhaust baffle apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340901A2 (fr) * 2002-02-28 2003-09-03 The Boeing Company Tuyère ondulée pour l'atténuation du bruit
EP1482160A1 (fr) * 2003-05-28 2004-12-01 Snecma Moteurs Tuyère de turbomachine à réduction de bruit
EP1703114A1 (fr) * 2005-03-15 2006-09-20 Rolls-Royce plc Bruit du moteur

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974744A (en) * 1961-03-14 Silencer
US2486019A (en) * 1943-01-11 1949-10-25 Daniel And Florence Guggenheim Jet control apparatus applicable to entrainment of fluids
US2956400A (en) * 1957-06-05 1960-10-18 Curtiss Wright Corp Internal-ribbed exhaust nozzle for jet propulsion devices
US3161257A (en) * 1959-05-01 1964-12-15 Young Alec David Jet pipe nozzle silencers
US3776363A (en) * 1971-05-10 1973-12-04 A Kuethe Control of noise and instabilities in jet engines, compressors, turbines, heat exchangers and the like
US4284170A (en) 1979-10-22 1981-08-18 United Technologies Corporation Gas turbine noise suppressor
US4354648A (en) * 1980-02-06 1982-10-19 Gates Learjet Corporation Airstream modification device for airfoils
GB2160265A (en) 1984-06-12 1985-12-18 Rolls Royce Turbofan exhaust mixers
CA1324999C (fr) 1986-04-30 1993-12-07 Walter M. Presz, Jr. Elements a surfaces offrant une faible resistance au frottement
JP3192854B2 (ja) * 1993-12-28 2001-07-30 株式会社東芝 タービン冷却翼
RU2153591C2 (ru) * 1995-09-22 2000-07-27 Открытое акционерное общество "Самарский научно-технический комплекс им. Н.Д.Кузнецова" Плоское сопло с центральным телом
US6360528B1 (en) 1997-10-31 2002-03-26 General Electric Company Chevron exhaust nozzle for a gas turbine engine
US6082632A (en) 1998-08-31 2000-07-04 Hunter Industries, Inc. Co-molded split containment ring for riser retraction spring of a pop-up sprinkler
US6502383B1 (en) * 2000-08-31 2003-01-07 General Electric Company Stub airfoil exhaust nozzle
CN2530236Y (zh) * 2001-11-23 2003-01-08 财团法人工业技术研究院 一种具有肋条型涡流产生器的新型鳍片
US7017331B2 (en) * 2002-12-07 2006-03-28 Anderson Jack H Jet nozzle mixer
JP3962981B2 (ja) * 2001-12-07 2007-08-22 石川島播磨重工業株式会社 ジェット噴流用ミキサ
GB0226228D0 (en) * 2002-11-09 2002-12-18 Rolls Royce Plc Suppression of part of the noise from a gas turbine engine
FR2863666B1 (fr) * 2003-12-10 2006-03-24 Snecma Propulsion Solide Dispositif d'adaptation pour tuyere de moteur fusee a divergent mobile
US7607306B2 (en) * 2005-08-03 2009-10-27 General Electric Company Infrared suppressor apparatus and method
FR2890696B1 (fr) * 2005-09-12 2010-09-17 Airbus France Turbomoteur a bruit de jet attenue
DE102007063018A1 (de) * 2007-12-21 2009-06-25 Rolls-Royce Deutschland Ltd & Co Kg Düse mit Leitelementen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340901A2 (fr) * 2002-02-28 2003-09-03 The Boeing Company Tuyère ondulée pour l'atténuation du bruit
EP1482160A1 (fr) * 2003-05-28 2004-12-01 Snecma Moteurs Tuyère de turbomachine à réduction de bruit
EP1703114A1 (fr) * 2005-03-15 2006-09-20 Rolls-Royce plc Bruit du moteur

Also Published As

Publication number Publication date
US8544278B2 (en) 2013-10-01
CA2695626C (fr) 2015-03-31
US20120117939A1 (en) 2012-05-17
CA2695626A1 (fr) 2009-04-30
RU2451814C2 (ru) 2012-05-27
JP5023213B2 (ja) 2012-09-12
EP2188514B1 (fr) 2017-04-12
EP2188514A1 (fr) 2010-05-26
BRPI0814484A2 (pt) 2015-11-03
CN101970843A (zh) 2011-02-09
RU2010109892A (ru) 2011-09-27
FR2920035B1 (fr) 2013-09-06
JP2010537098A (ja) 2010-12-02
FR2920035A1 (fr) 2009-02-20
BRPI0814484A8 (pt) 2018-12-11
CN101970843B (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
CA2695626C (fr) Turbomoteur a emission de bruit reduite pour aeronef
EP1934456B1 (fr) Turbomoteur à double flux muni d'un dispositif pour atténuer le bruit de jet
EP2179163B1 (fr) Chevron pour tuyère, tuyère et turbomoteur associés
FR2892152A1 (fr) Turbomoteur a bruit de jet attenue
EP2773557B1 (fr) Pylone d'accrochage pour turbomachine
FR2938502A1 (fr) Turbomachine comportant une helice non carenee equipee de moyens de guidage d'air
FR2915461A1 (fr) Agencement d'entree d'air pour vehicule, notamment un aeronef.
EP3921527B1 (fr) Entrée d'air d'une nacelle de turboréacteur d'aéronef comportant des ouvertures de ventilation d'un flux d'air chaud de dégivrage
CA2893254A1 (fr) Pale d'helice pour turbomachine
EP3039341A1 (fr) Chambre de combustion de turbomachine pourvue de moyens de déflection d'air pour réduire le sillage créé par une bougie d'allumage
EP2297445A1 (fr) Turbomoteur à double flux pour aéronef à émission de bruit réduite
EP3921528B1 (fr) Entrée d'air d'une nacelle de turboréacteur d'aéronef comportant des ouvertures de ventilation d'un flux d'air chaud de dégivrage
CA2798679C (fr) Dispositif pour attenuer le bruit emis par le jet d'un moteur de propulsion d'un aeronef
EP3286500B1 (fr) Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d'air de forme spécifique
FR2921977A1 (fr) Turbomoteur a double flux pour aeronef
EP3274578B1 (fr) Dispositif a grilles d'ejection de microjets pour la reduction du bruit de jet d'une turbomachine
FR2477100A1 (fr) Systeme d'ejection d'air de dilution de moteur a turbosoufflante
EP3921525A1 (fr) Entree d'air d'une nacelle de turboreacteur d'aeronef comportant des ouvertures de ventilation d'un flux d'air chaud de degivrage
FR3105987A1 (fr) Inverseur de poussée à portes comprenant un déflecteur pour rediriger un flux d’air vers un empennage
FR3034142A1 (fr) Dispositif a grilles d'ejection de microjets pour la reduction du bruit de jet d'une turbomachine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880103755.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08843033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520607

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2695626

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12673042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008843033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008843033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010109892

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0814484

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100212