WO2009053512A1 - Proteínas n, m, he de torovirus porcino, procedimiento de obtención y sus aplicaciones en diagnóstico y tratamiento de torovirus porcino. - Google Patents

Proteínas n, m, he de torovirus porcino, procedimiento de obtención y sus aplicaciones en diagnóstico y tratamiento de torovirus porcino. Download PDF

Info

Publication number
WO2009053512A1
WO2009053512A1 PCT/ES2008/070189 ES2008070189W WO2009053512A1 WO 2009053512 A1 WO2009053512 A1 WO 2009053512A1 ES 2008070189 W ES2008070189 W ES 2008070189W WO 2009053512 A1 WO2009053512 A1 WO 2009053512A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
seq
proteins
ptov
torovirus
Prior art date
Application number
PCT/ES2008/070189
Other languages
English (en)
French (fr)
Inventor
Dolores RODRÍGUEZ AGUIRRE
Jaime PIGNATELLI GARRIGÓS
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2009053512A1 publication Critical patent/WO2009053512A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • C12N2710/14043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vectore
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20071Demonstrated in vivo effect

Definitions

  • This invention could have application in the livestock sector and in particular, with utility for the diagnosis and veterinary treatment, by means of biotechnological tools of immunological type and vaccines, respectively, especially for the diagnosis and treatment of porcine torovirus.
  • the toroviruses belong to the family Coronaviridae, of the order Nidovirales. They are emerging viruses causing gastroenteritis in horses, calves, pigs and humans, of which there is hardly any information. This situation is due to the fact that toroviruses, with the exception of the BEV equine isolate, have not been adapted to in vitro culture, which has delayed the development of tools for their diagnosis and for their study.
  • RT-PCR systems (Koopmans et al., 1991; Duckmanton et al., 1998) have been used for the detection of torovirus. hybridization with probes based on the BEV sequence (Koopmans et al., 1991).
  • ELISA methods have also been used for diagnosis, especially for BToV (Brown et al., 1987; Woode, 1987; Durham et al., 1989; Koopmans et al., 1989; Koopmans et al., 1991; Liebler et al.
  • a polyclonal serum has been generated in guinea pigs against the HE protein of the bovine torovirus BRV expressed in insect cells by means of a recombinant baculovirus
  • a polyclonal serum has been generated in guinea pigs against the N protein of the bovine torovirus BRV expressed in E. coli, and
  • a rabbit polyclonal serum has been generated against a fragment of the bovine torovirus HE protein BRV (aa 35-391).
  • a specific diagnostic system for porcine torovirus has not been developed and commercialized, the only alternatives being the systems described above. Therefore, the decision-making based on the diagnosis with the described systems may be incorrect, which at the same time causes that the danger of porcine torovirus infections is not properly assessed or underestimated in the veterinary sector and a policy is not promoted of control in a sector, the pig, of great economic value.
  • the invention relates to a protein complex useful for the diagnosis and development of vaccines against porcine torovirus, hereinafter protein complex of the invention, comprising at least one protein and / or, a fragment or peptide thereof, from the following group: i) N protein of SEQ ID NO9, ii) M protein of SEQ ID NO11, and iii) HE protein of SEQ ID NO13.
  • the protein complex of the invention is constituted by a mixture of fragments or peptides of the same or different proteins belonging to the following group: protein of SEQ ID NO9, protein of SEQ ID NO11 and protein of SEQ ID NO13 ; preferably, a complex formed by fragments of protein N or HE protein, preferably peptides 286E1-HE (SEQ ID NO14) and / or 286F1-HE (SEQ ID NO15) (Example 4).
  • the invention relates to a process for the production of the porcine torovirus proteins of the invention, hereinafter the method of the invention, which comprises cultivating a microorganism that contains the nucleotide sequence that encodes one or more proteins of porcine torovirus of the invention and expressing said proteins, and, if desired, recovering said proteins of the invention.
  • the invention comprises the infection of an insect cell with a baculovirus comprising the nucleotide sequence of the N gene (SEQ ID NO8).
  • the invention provides a nucleotide sequence encoding the N, M and HE proteins of the invention, hereinafter nucleotide sequence of the invention useful for the construction of an expression vector comprising, at least, a sequence and / or a fragment thereof, of the following group: i) N nucleotide sequence of SEQ ID NO8, ii) M nucleotide sequence of SEQ ID NO10, and iii) HE nucleotide sequence of SEQ ID NO12.
  • the invention provides an expression system or vector useful for transforming (or infecting when the expression system is based on a recombinant virus derived from baculovirus or vaccinia virus) cells, which comprises a nucleotide sequence that encodes a protein of the invention, wherein said protein of the invention is a protein whose amino acid sequence is constituted by at least one amino acid sequence belonging to the following group: SEQ ID NO9, 11 and 13, said nucleotide sequence being coding for said protein of the invention operatively linked to transcription control elements and, optionally, translation.
  • the invention provides a host cell that contains a nucleotide sequence that encodes the proteins of the invention.
  • said host cell is an insect, mammalian or yeast cell transformed with an expression system provided by this invention comprising a gene construct comprising the nucleotide sequence that encodes a protein of the invention.
  • Virtually any type of eukaryotic cell can be used for the implementation of the method of the invention; however, in a particular embodiment, said cell is an insect to express the N or mammalian protein for express the HE protein.
  • a yeast of the genus Saccharomyces can be selected, for example, S. cerevisae, S. pombe, etc., or a yeast of the genus Pichia, for example,
  • Said proteins of the invention can be used to develop specific antibodies, to identify sera from infected animals and to immunize animals, in particular, pigs, so that they can be used for diagnostic or therapeutic purposes.
  • the invention provides an antibody specific to the protein of the invention, hereinafter antibody of the invention, either monoclonal or polyclonal, or specific to a fragment or peptide thereof.
  • the invention relates to the use of said antibodies of the invention in the elaboration of an immunological diagnostic system of porcine torovirus, such as, ELISA system, immunochromatography strip or Western blot, which allows the identification of said virus in a biological sample, for example feces of an animal suspected of suffering or having suffered a porcine torovirus infection, preferably a pig.
  • an immunological diagnostic system of porcine torovirus such as, ELISA system, immunochromatography strip or Western blot
  • the invention relates to the use of said proteins of the invention in the elaboration of an immunological diagnostic system for porcine torovirus, such as ELISA, immunochromatography strip or Western blot (immunoblot), which allows the simultaneous and simultaneous identification of antibodies against the proteins of the invention present in a biological sample of pigs.
  • an immunological diagnostic system for porcine torovirus such as ELISA, immunochromatography strip or Western blot (immunoblot)
  • the invention relates to the use of said proteins of the invention in the preparation of medicines such as vaccines.
  • said medicament is a vaccine intended to confer protection to animals, in particular pigs, against porcine torovirus infections.
  • the invention provides a vaccine comprising a therapeutically effective amount of one or more proteins of the invention, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • This vaccine is useful for protecting animals, in particular pigs, against porcine torovirus.
  • the invention relates to a diagnostic system of porcine torovirus from a biological sample by
  • Another particular aspect is a genomic identification procedure of the invention based on the amplification of DNA and comprising the following steps: i) isolation of gene material from a biological sample suspected of containing porcine torovirus and obtaining the corresponding cDNA, ii) PCR amplification of said cDNA by specific oligonucleotides for at least one of the genes of the invention, N, M and HE gene that correspond, by way of illustration and without limiting the scope of the invention, respectively, with the following : pair of oligo PToV-N5 'and PToV-N3' for the N gene (SEQ ID NOI and 2), pair of oligos PToV-M5 'and PToV-M3' for the M gene (SEQ ID NO3 and 4), Y - couple of oligo PToV-H E5 'and PToV-H E3' for the HE gene (SEQ ID NO5 and 6), and iii) diagnosis of a porcine
  • Another additional aspect constitutes oligonucleotides or primers used in the genomic identification of the invention based on DNA amplification, preferably the following oligonucleotide pairs: pair of oligo PToV-N5 'and PToV-N3' for the N gene (SEQ ID NOI and 2), - pair of oligo PToV-M5 'and PToV-M3' for the gene
  • the present invention faces the problem of providing new tools for the diagnosis and development of vaccines against infections caused by torovirus in mammals, preferably in animals, and more preferably in pigs.
  • the present invention describes the identification and characterization of the proteins of a porcine torovirus isolate from a stool sample in which the presence of torovirus particles had been observed by electron microscopy, and which has been given the name of PToV-BRES2.
  • the investigations were directed to the phylogenetic characterization of this isolated PToV-BRES2 through the amplification of the phases of open reading (ORFs) corresponding to the genes encoding three of the PToV structural proteins: nucleocapsid protein (N) corresponding to ORF5, membrane protein (M) corresponding to ORF3, and hemagglutinin esterase protein (HE) corresponding to the ORF4, present on the surface of the viral particle (Example 1, SEQ ID NO1-3, respectively), to then be able to develop new serological diagnostic tools for the detection of antibodies in animals against porcine torovirus, diagnosis of own virus and vaccines against this disease.
  • ORFs open reading
  • N nucleocapsid protein
  • M membrane protein
  • HE hemagglutinin esterase protein
  • the M and HE proteins have also been expressed and purified following the same procedure (SEQ ID NO11 and NO13, respectively), although the yields of purified protein quantity were significantly lower than those obtained with the N protein, especially in the case of Ia Protein M.
  • a recombinant vaccinia virus expressing said protein has also been generated, in this case devoid of Ia histidine tail (Example 3).
  • the protein is expressed in mammalian cells, and therefore, its post-translational processing is more similar to that experienced during torovirus infection than when expressed by the baculovirus recombinant, so that its ability to induce a immune response can significantly improve with respect to the protein initially produced with baculovirus
  • Its purification was performed by immunoaffinity chromatography for which a polyclonal serum in rabbit (anti-HEpept) was generated by immunization with a mixture of the corresponding synthetic peptides 286E1 (SEQ ID NO14) and 286F1 (SEQ ID NO15), respectively, to amino acids 50-60 and 150-160 of the PToV HE protein of the invention, coupled to KLH (Keyhole Limpet Hemocayanin).
  • polyclonal sera have been generated against the HE protein in rats (Example 4).
  • porcine torovirus protein complex refers to a set of at least one protein from a porcine torovirus and / or fragment or peptide thereof, with antigenic or immunogenic activity, belonging to the group of protein N, M and HE.
  • protein N protein N
  • protein M protein M
  • protein HE proteins of the invention / porcine torovirus proteins of the invention
  • proteins of the invention / porcine torovirus proteins of the invention refer, in general, to a protein whose amino acid sequence is constituted by the sequence of amino acids SEQ ID NO9, SEQ ID NO11, SEQ ID NO13 and the group consisting of all of them, respectively, and includes any of the different forms of said N, M and HE proteins representative of any of the existing strains of porcine torovirus as well as to proteins substantially homologous to said porcine torovirus N, M and HE proteins, that is, proteins whose amino acid sequences have a degree of identity, with respect to said proteins, of at least 60%, preferably of at least one 80%, more preferably of at least 90% and, even more preferably of at least 95%.
  • analog is intended to include any nucleotide sequence that can be isolated or constructed. based on the nucleotide sequence coding for porcine torovirus N, M and HE proteins, for example, by introducing conservative or non-conservative nucleotide substitutions, including the insertion of one or more nucleotides, the addition of one or more nucleotides at any of the ends of the molecule or the deletion of one or more nucleotides at any end or within the sequence.
  • a nucleotide sequence analogous to another nucleotide sequence is substantially homologous to said nucleotide sequence.
  • the expression "substantially homologous” means that the nucleotide sequences in question have a degree of identity, at the nucleotide level, of at least 80%, preferably of at least 90 %, more preferably of at least 95% and, even more preferably of at least 97%.
  • protein complex of the invention which comprises at least one protein and / or a fragment or peptide thereof, of the following group: i) N protein of SEQ ID NO9, ii) M protein of SEQ ID NO11, and iii) HE protein of SEQ ID NO13.
  • the protein complex of the invention is constituted by a single protein belonging to the following group: protein of SEQ ID NO9, protein of SEQ ID NO11 and protein of SEQ ID NO13 (Example 1).
  • the protein complex of the invention is constituted by a mixture of the proteins belonging to the following group: protein of SEQ ID NO9, protein of SEQ ID NO11 and protein of SEQ ID NO13; preferably, a protein complex formed by the N and M protein, or a protein complex formed by the N and HE protein.
  • the protein complex of the invention is constituted by a mixture of fragments or peptides of the same or different proteins belonging to the following group: protein of SEQ ID NO9, protein of SEQ ID NO11 and protein of SEQ ID NO13 ; preferably, a complex formed by fragments of protein N or HE protein, preferably peptides 286E1-HE (SEQ ID NO14) and / or 286F1-HE (SEQ ID NO15) (Example 4).
  • the proteins provided by this invention can be obtained by expressing each protein separately or together, in appropriate host cells, for example, bacteria, insect cells, yeasts, or preferably, in vaccinia virus in the case of the HE protein, which contain the nucleotide sequence that encodes said porcine torovirus protein (s) in a gene construct.
  • appropriate host cells are insect or mammalian cells or transformed yeasts (infected when the expression system is based on a recombinant virus derived from baculovirus or vaccinia virus) with a suitable expression system that includes a construct gene comprising the nucleotide sequence encoding one or more of the porcine torovirus proteins of the invention.
  • the invention relates to a process for the production of the porcine torovirus proteins of the invention, hereinafter the method of the invention, which comprises cultivating a microorganism that contains the nucleotide sequence that encodes one or more proteins of porcine torovirus of the invention and expressing said proteins, and, if desired, recovering said proteins of the invention.
  • the process of the invention comprises the steps of: a) culturing cells, preferably of an insect or a mammal, transformed with an expression system comprising the nucleotide sequence that encodes at least one protein of the invention, wherein said protein is a protein whose amino acid sequence is constituted by the sequence SEQ ID NO9, 11 and 13. b) if desired, isolate and, optionally, purify said proteins.
  • the process of the invention comprises, as a previous step, the obtaining of a gene expression system, such as a system constituted by a plasmid containing a nucleotide sequence that encodes said protein of the invention, followed by the transformation of a cell with said expression system, the expression of the recombinant proteins, and, if desired, the isolation of the proteins, and, optionally, the purification of said proteins.
  • a gene expression system such as a system constituted by a plasmid containing a nucleotide sequence that encodes said protein of the invention
  • microorganisms or transformed cells are grown under conditions, known to those skilled in the art, which allow the expression of recombinant proteins in isolation or together in the same construction.
  • isolation and purification of said proteins of the invention can be carried out by conventional methods, for example, by fractionation in sucrose gradients and affinity chromatography.
  • the method of expression of the invention comprises the infection of an insect cell with a baculovirus comprising the nucleotide sequence of the N gene (SEQ ID NO8).
  • the method of expression of the invention comprises the infection of a mammalian cell with a virus vaccinate comprising the nucleotide sequence of the HE gene (SEQ ID NO12).
  • the expression system or vector used to transfect host cells comprises the nucleotide sequence encoding a protein of the invention operably linked to transcription control elements, and, optionally, translation, and even purification and constitutes an aspect Additional of this invention.
  • the invention provides a nucleotide sequence encoding the N, M and HE proteins of the invention, hereinafter nucleotide sequence of the invention useful for the construction of an expression vector comprising, at least, a sequence and / or a fragment thereof, of the following group: i) N nucleotide sequence of SEQ ID NO8, ii) M nucleotide sequence of SEQ ID NO10, and iii) HE nucleotide sequence of SEQ ID NO12.
  • nucleotide sequence of the invention is constituted by a single sequence belonging to the following group: SEQ ID NO8, SEQ ID NO10 and SEQ ID NO12 (Example
  • the expression vectors containing the nucleotide sequence of the invention may contain several of the sequences of the invention, in different combinations, or different expression vectors may be used for the different sequences depending on the systems used or the applications develop.
  • the nucleotide sequence of the invention is constituted by a mixture of the sequences belonging to the following group: SEQ ID NO8, SEQ ID NO10 and SEQ ID NO12; preferably, a mixture of sequences formed by the sequence of nucleotides N and M (SEQ ID NO8 and NO10), or more preferably, a protein complex formed by the sequence of nucleotides N and HE (SEQ ID NO8 and NO12).
  • the nucleotide sequence of the invention is constituted by a mixture of the coding sequences of fragments of protein N or HE protein, preferably, peptides 286E1-HE (SEQ ID NO14) and / or 286F1- HE (SEQ ID NO15).
  • the invention provides an expression system or vector useful for transforming cells, which comprises a nucleotide sequence encoding a protein of the invention, wherein said protein of the invention is a protein whose amino acid sequence is constituted by , at least, an amino acid sequence belonging to the following group: SEQ ID NO9, 11 and 13, said nucleotide sequence encoding said protein of the invention operatively linked to transcription control elements and, optionally, translation.
  • said expression system comprises the nucleotide sequence comprising the open reading phase or coding region corresponding to a protein selected from the following group: SEQ ID NO 9, 11 and 13.
  • control elements of transcription and, optionally, of translation, present in said expression system include promoters, which direct the transcription of the sequence of the protein of the invention (to which it is operatively linked), and other necessary or appropriate sequences for the transcription and its adequate regulation in time and place, for example, start and end signals, cut sites, polyadenylation signal, origin of replication, transcriptional activators (enhancers), transcriptional silencers (silencers), etc., all of them useful in different types of cells.
  • any DNA sequence encoding a peptide or peptide sequence that allows the isolation or detection of the recombinant protein of interest can be used, for example, by way of illustration and without limiting the scope of the invention, a sequence of polyhistidine (6xHis), a peptide sequence recognizable by a monoclonal antibody (for example, E-tag for identification, or any other that serves to purify the resulting fusion protein by immunoaffinity chromatography: tag peptides such as c-myc, HA, FLAG) (Using antibodies: a laboratory manual Ed. Harlow and David La ⁇ e (1999) CoId Spring Harbor Laboratory Press. New York Chapter: Tagging proteins. Pp. 347-377).
  • 6xHis polyhistidine
  • a peptide sequence recognizable by a monoclonal antibody for example, E-tag for identification, or any other that serves to purify the resulting fusion protein by immunoaffinity chromatography: tag peptides such as c-myc, HA, FLAG
  • the invention provides a host cell that contains a nucleotide sequence that encodes the proteins of the invention.
  • said host cell is an insect, mammalian or yeast cell transformed with an expression system provided by this invention comprising a gene construct comprising the nucleotide sequence that encodes a protein of the invention.
  • Virtually any type of eukaryotic cell can be used for the implementation of the method of the invention; however, in a particular embodiment, said cell is an insect to express the N or mammalian protein to express the HE protein.
  • a yeast of the genus Saccharomyces can be selected, for example, S. cerevisae, S. pombe, etc., or a yeast of the genus Pichia, for example, P. pastoris, etc.
  • Said proteins of the invention can be used to develop specific antibodies, to identify sera from infected animals and to immunize animals, in particular, pigs, so that they can be used for diagnostic or therapeutic purposes.
  • the proteins of the invention preferably the purified N protein and fragments or peptides of the HE protein of the invention have been used to obtain functionally active antibodies.
  • the term "functionally active antibody” refers to a recombinant antibody that maintains its ability to bind to belonging antigen, including minibodies, which are defined as fragments derived from antibodies constructed by recombinant DNA technology, which , despite their smaller size, they retain the antigen binding capacity since they maintain at least one variable immunoglobulin domain where the antigen binding zones reside, and which belong, by way of illustration and without limiting the scope of the invention, to the following group: Fab, F (ab ') 2, scFv, and recombinant monodomain antibodies (dAbs).
  • recombinant monodomain antibodies and / or immunoglobulin-like domains with independent binding and recognition capacity are understood, both to the heavy chain variable domains (VH), to the light chain variable domains (VL) , to recombinant camelid (VHH) antibodies, recombinant humanized camelid antibodies, recombinant antibodies of other camelized species, IgNAR monodomain antibodies of cartilaginous fish; that is, that both domains that are naturally monodomain (case of VHH and IgNAR) are included, as well as engineering antibodies that have been altered so that by themselves they are able to interact with the antigen and improve its stability and solubility properties .
  • Any modification of the recombinant antibodies such as their multimerization or fusion to any molecule (eg toxins, enzymes, antigens, other antibody fragments, etc.) is included in this definition.
  • the functionally active antibody can be obtained from a human being or an animal (eg camels, llamas, vicu ⁇ as, mice, rats, rabbits, horses, nurse sharks, etc.) or by recombinant DNA techniques or chemical gene synthesis , and on the other hand, it includes both monoclonal antibodies and polyclonal antibodies.
  • the invention provides an antibody specific to the protein of the invention, hereinafter antibody of the invention, either monoclonal or polyclonal, or specific to a fragment or peptide thereof.
  • Another particular embodiment constitutes the antibody of the invention that is specific to a protein of the invention belonging to the following group: protein N of SEQ ID NO9 (see Example 4), protein M of SEQ ID NO11 and HE protein of SEQ ID NO13.
  • Another particular embodiment constitutes the antibody of the invention that is specific to a fragment of a protein of the invention belonging to the following group: protein N of SEQ ID NO9, protein M of SEQ ID NO11 and HE protein of SEQ ID NO13, preferably a fragment of the HE protein (see Example 4), and more preferably of peptides 286E1 (SEQ ID NO14) and 286F1 (SEQ ID NO15) corresponding, respectively, to amino acids 50-60 and 150-160 of the HE protein of Ia invention.
  • These polyclonal antibodies have been obtained in rabbit and rat (Example 4.2).
  • the above antibodies can be used in immunological diagnostic procedures for porcine torovirus, from pig stool samples or farm remains for infection control or epidemiological studies of torovirus, forming part of an immunological diagnostic system for porcine torovirus. .
  • the invention relates to the use of said antibodies of the invention in the elaboration of an immunological diagnostic system of porcine torovirus, such as, ELISA system, immunochromatography strip or Western blot, which allows The identification of said viruses in a biological sample, for example feces of an animal suspected of suffering or having suffered a porcine torovirus infection, preferably a pig.
  • an immunological diagnostic system for porcine torovirus comprising an effective amount of one or several antibodies of the invention, capable of interacting with a protein of a porcine torovirus.
  • said immunological diagnostic system is an ELISA comprising one of the antibodies of the invention against N, M and HE proteins, or a mixture of several of them, preferably a mixture of antibodies that recognize N proteins. and HE.
  • said diagnostic system is an immunochromatographic strip comprising one of the antibodies of the invention against N, M and HE proteins, or a mixture of several of them, preferably a mixture of antibodies that recognize N proteins. and HE.
  • said diagnostic system is an immunoblot system comprising one of the antibodies of the invention against N, M and HE proteins, or a mixture of several of them, preferably a mixture of antibodies that recognize proteins.
  • the invention relates to the use of said proteins of the invention in the preparation of medicines such as vaccines.
  • said medicament is a vaccine intended to confer protection to animals, in particular pigs, against porcine torovirus infections.
  • the antibodies generated during the immune response developed against a pathogen remain in the serum of the individual for several weeks, so that the detection of these antibodies in the pig sera allows obtaining information about the presence of a pathogen in the environment of the population and in said individuals.
  • the use as antigen of several of the proteins or fragments thereof (peptides) of this strain isolated from porcine torovirus PToV-BRES2, preferably the N 1 M or HE protein, and especially of the protein is described.
  • the nucleocapsid, N for the detection by immunological techniques, preferably by ELISA and by immunoblotting of antibodies against PToV in samples of mammalian sera, preferably animals, and more preferably of pig.
  • PToV N protein has several characteristics for which it is an ideal candidate to develop a diagnostic system and a vaccine, such as presenting a high degree of preservation in torovirus, being an abundant protein in the viral particle, and being very immunogenic. (Example 5).
  • the M protein is less immunogenic, so that its usefulness as an antigen for serological diagnosis is reduced, although it can be used in conjunction with the N protein and / or the HE protein for the identification of antibodies in animal sera.
  • the HE protein it has been proven that it induces the production of antibodies in animals infected with the BToV bovine virus (Cornelissen et al., 1997).
  • the PToV HE protein as an antigen in ELISA in the present invention it has been proven that the protein is recognized by porcine positive sera for torovirus, although the reactivity against this protein is lower than against the N protein (Example 5a) . Therefore, both M and HE proteins can be used as a second and / or third confirmation antigen in serological tests, together with protein N.
  • the invention relates to the use of said proteins of the invention in the elaboration of an immunological diagnostic system for porcine torovirus, such as, ELISA system, immunochromatography strip or Western blot, which allows Ia joint and simultaneous identification of antibodies against the proteins of the invention present in a biological sample of pigs.
  • an immunological diagnostic system for porcine torovirus such as, ELISA system, immunochromatography strip or Western blot
  • the term "biological sample” refers to a biological sample of the serum, plasma or blood type of an animal suspected of suffering from or having suffered a porcine torovirus infection, preferably a pig.
  • the invention provides a porcine torovirus immunological diagnostic system comprising an effective amount of one or more proteins of the invention, capable of interacting with porcine anti-torovirus antibodies.
  • said immunological diagnostic system is an ELISA comprising one of the proteins of the invention N, M and HE, or a mixture of several of them, preferably a mixture of N and HE (Example 5).
  • said diagnostic system is an immunochromatographic strip comprising one of the proteins of the invention N, M and HE, or a mixture of several of them, preferably a mixture of N and HE (Example 5).
  • an immunochromatographic strip comprising a visualization system of the antigen-antibody reaction (eg colloidal particles or colored microspheres coated by an antibody), the immobilization of the proteins of the invention, an inert support that allows the flow of said reconstituted elements by adding the serum or plasma, and a control system of the conditions of the immunochromatographic reaction itself, can be easily developed by an expert in the field and with the information provided by the invention.
  • a visualization system of the antigen-antibody reaction eg colloidal particles or colored microspheres coated by an antibody
  • an inert support that allows the flow of said reconstituted elements by adding the serum or plasma
  • a control system of the conditions of the immunochromatographic reaction itself can be easily developed by an expert in the field and with the information provided by the invention.
  • said diagnostic system is an immunoblot system comprising one of the proteins of the invention N, M and HE, or a mixture of several of them, preferably a mixture of N and HE (Example 5).
  • the invention relates to the use of said proteins of the invention in the preparation of medicines such as vaccines.
  • said medicament is a vaccine intended to confer protection to animals, in particular pigs, against porcine torovirus infections.
  • the invention provides a vaccine comprising a therapeutically effective amount of one or more proteins of the complex of the invention (N, M and HE proteins), together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • This vaccine is useful for protecting animals, in particular pigs, against porcine torovirus.
  • the vaccine provided by this invention is a vaccine useful for protecting lactating pigs from torovirus infection, although it may also be useful for preventing reinfections in adult individuals.
  • viruses for example vaccinia virus
  • the viruses can be used for the elaboration of DNA vaccines in an alternative way to that described above, being able to take as an example, the vaccinia virus developed for the expression of the protein as an illustration.
  • HE of this invention to make a vaccine.
  • another particular object of the invention constitutes a vaccine against porcine torovirus useful for protecting animals, in particular, pigs, characterized in that it comprises an vaccinia virus that comprises at least one of the nucleotide sequences of the N genes, M and HE (SEQ ID NO8, 10 and 12).
  • the preparation of this type of vaccine preferably attenuated, can easily be carried out by an expert in the field (Sutter G, Staib C. 2003.
  • Vaccinia vectors as candidate vaccines the development of modified vaccinia virus Ankara for antigen delivery.
  • SARS-CoV severe acute respiratory syndrome coronavirus
  • the expression “therapeutically effective amount” refers to the amount of the proteins of the invention calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of said proteins of the invention and the immunization effect to be achieved.
  • the pharmaceutically acceptable adjuvants and vehicles that can be used in said vaccines are the adjuvants and vehicles known to those skilled in the art and commonly used in the preparation of vaccines.
  • said vaccine is prepared in the form of an aqueous solution or suspension, in a pharmaceutically acceptable diluent, such as saline, phosphate buffered saline (PBS), or any other pharmaceutically acceptable diluent.
  • the vaccine provided by this invention can be administered by any appropriate route of administration that results in a protective immune response against the heterologous sequence or epitope used, for which said vaccine will be formulated in the appropriate pharmaceutical form to the route of administration chosen.
  • the administration of the vaccine provided by this invention is carried out parenterally, for example, intraperitoneally, subcutaneously, etc.
  • the characterization of the genes that express the N, M and HE proteins of the invention has allowed the development of specific viral detection techniques by PCR amplification of the DNA obtained by RT-PCR to from the RNA of this porcine torovirus (more specifically from cDNA obtained from its RNA) or by Northern blot that can be used in diagnostic procedures of porcine torovirus (see Example 1), from pig stool samples or from farm remains for infection control or epidemiological studies of torovirus.
  • the invention relates to a diagnostic system of porcine torovirus from a biological sample by means of the identification of genomic material, hereinafter genomic identification procedure of the invention, specific to porcine torovirus, based on the identification of the genes N, M and HE, of sequences SEQ ID NO8, 10 and 11, respectively.
  • Another particular aspect is what constitutes a genomic identification procedure of the invention based on the amplification of DNA and which comprises the following steps: iv) isolation of gene material from a biological sample suspected of containing porcine torovirus and obtaining the corresponding cDNA, v) PCR amplification of said cDNA by specific oligonucleotides for at least one of the genes of the invention, N, M and HE gene that correspond, by way of illustration and without limiting the scope of the invention, respectively, with the following : pair of oligo PToV-N5 'and PToV-N3' for the N gene (SEQ ID NOI and 2), - pair of oligos PToV-M5 'and PToV-M3' for the gene
  • Another additional aspect constitutes oligonucleotides or primers used in the genomic identification of the invention based on DNA amplification, preferably the following oligonucleotide pairs: - pair of oligo PToV-N5 'and PToV-N3' for the gene
  • N SEQ ID NOI and 2
  • pair of oligo PToV-M5 'and PToV-M3' for the gene M SEQ ID NO3 and 4
  • pair of oligos PToV-H E5 'and PToV-H E3' for HE gene SEQ ID NO5 and 6
  • Another particular aspect is a genomic identification procedure of the invention based on the Northern blot technique with specific polynucleotide probes of the N 1 M and HE genes, of sequences SEQ ID NO8, 10 and 1 1, respectively.
  • Figure 1 shows the sizes of the fragments amplified from the PToV-BRES2 cDNA using the oligonucleotides described in Table 1 as primers, analyzed by electrophoresis in a 1% agarose gel.
  • molecular weight markers a DNA ladder of 100 bp (on the left) and another of 1000 bp (on the right) were used. The molecular weights of each marker are indicated in bp.
  • Figure 2 shows the nucleotide sequences of the amplified fragments from cDNA PTOV-BRES2 corresponding to Ia ORF5 ( Figure 2A), ORF3 ( Figure 2B) and ORF4 ( Figure 2C), encoding the N 1 M protein and HE, respectively.
  • Figure 3 shows the analysis of the expression of PToV-BRES2 N protein in insect cells at different post-infection times (24, 48 and 72 hpi) with the rBac-PToVBRES2-N virus by SDS-PAGE and coomassie blue staining (A) and immunoblot with a commercial anti-his serum and with the anti-BRES serum corresponding to the animal infected with the PToV-BRES2 porcine torovirus isolate (B).
  • the position of protein N is indicated by an arrowhead.
  • the sizes of the molecular weight markers in kilodaltons are indicated to the left or to the right of each panel.
  • Figure 4 shows the analysis of the expression of the PToV-BRES2 M protein in insect cells at different post-infection times (24, 48 and 72 hpi) with the rBac-PToVBRES2-M virus by SDS-PAGE and coomassie blue staining (A) and immunoblot with the anti-his and anti-BEV-Misit (B) sera.
  • the position of the M protein is indicated by an arrowhead.
  • the sizes of the molecular weight markers in kilodaltons are indicated to the left of each panel.
  • Figure 5 shows the analysis of the expression of the PToV-BRES2 HE protein in insect cells at different post-infection times (24, 48 and 72 hpi) with the rBac-PToVBRES2-HE virus by SDS-PAGE and coomassie blue staining (A) and immunoblot with the anti-his and anti-BRES sera (B).
  • the position of the HE protein is indicated with an arrowhead.
  • the sizes of the molecular weight markers in kilodaltons are indicated to the left or to the right of each panel.
  • Figure 6 shows the different steps of the purification process of the recombinant protein N of PToV-BRES2.
  • the protein samples corresponding to the initial cell extract (Fo), insoluble fraction (Fi), the resin before (Ro) and after the elutions (Rf) and the elutions of the protein (E1, E2, and E3) were analyzed by immunoblot with anti-his serum.
  • the position of the recombinant N protein is indicated with an arrowhead.
  • the sizes of the molecular weight markers in kilodaltons are indicated to the left of the figure.
  • Figure 7 shows the analysis of the HE protein expressed in mammalian cells by the rW-HE recombinant virus analyzed by SDS-PAGE under non-reducing conditions, and observed after immunodetection with the swine sera anti-BRES (A) and Serotec ( commercial pig serum from the house Serotec Ltd. in which the presence of antibodies against torovirus has been verified) (B).
  • the position of the recombinant N protein is indicated with an arrowhead.
  • the sizes of the molecular weight markers in kilodaltons are indicated to the left of each panel.
  • Figure 8 shows the reactivity of the rabbit-generated polyclonal serum against the PToV HE protein by means of immunization with two synthetic peptides (286E1 and 286F1).
  • A Analysis by immunoblot of the reactivity of the serum with the protein expressed in mammalian cells by the recombinant virus rW-HE. Serum dilutions are indicated in The upper part of the gel. The position of the recombinant HE protein is indicated with an arrowhead.
  • B Analysis by electron immunomicroscopy of the reactivity of the anti-HE serum with the HE protein present on the surface of a PToV particle.
  • Figure 9 shows the reactivity of the rabbit-generated polyclonal serum against the PToV N protein by immunization with the purified recombinant protein from insect cells infected with the recombinant virus rBac-PToVBRES2-N. Extracts from uninfected (Mock) or infected insect cells for 24, 48 and 72 hours were separated by SDS-PAGE and the proteins were transferred to a nitrocellulose membrane and reacted with the 1: 1000 diluted polyclonal serum. The position of the recombinant N protein is indicated with an arrowhead. The sizes of the molecular weight markers in kilodaltons are indicated to the left of the figure.
  • Figure 10 shows the reactivity in ELISA against recombinant PToV-BRES2 N and HE proteins of the invention of different porcine sera.
  • Proteins purified from insect cells infected with the rBac-PToVBRES-N virus or from mammalian cells infected with the rW-HE virus were used to upholster the wells of an ELISA plate, using 400 ng of each protein per well.
  • the wells were incubated in duplicate with the Serotec and anti-Bres sera as well as with other samples of pig sera from different farms (ZAR 410, ZAR 1301, JA2, JA6 and EST512) and with rabbit control sera with anti-antibody N and anti-HEpept.
  • the figure shows the means of the optical density values obtained for each serum against the N and HE proteins.
  • Figure 11 shows the results of the titration of the antigen with the rabbit polyclonal serum anti-N for the optimization of the conditions of ELISA against protein N.
  • the figure shows the curves obtained for each quantity (400, 200, 100 and 50 ng) of purified N protein with the different serum dilutions.
  • Figure 12 shows the results of the titration of the Serotec and anti-Bres swine sera against 400 ng of the N protein for the election of the optimal dilution of the swine sera to be analyzed in the ELISA.
  • Figure 13 shows the absence of cross-reactivity between the antibodies against the pig viruses TGEV and PRRSV and the N protein of PToV.
  • the figure shows the means of the optical density values obtained for each serum diluted 1: 100.
  • Figure 14 shows the absence of immunoblot reactivity of the anti-PRCV and anti-PRRSV sera against the purified N protein of PToV and against purified viral particles of BEV.
  • Serotec porcine serum recognizes the N protein of PToV, and to a lesser extent the N protein present in the viral particles of the equine BEV torovirus, but also presents antibodies that recognize the PRRSV M protein and the PRCV N protein. This result is unlikely to be due to cross-reactivity since a polyclonal serum produced against the equine virus (anti-BEV), which specifically recognizes the N proteins of both the BEV and PToV homologous virus, does not react with PRRSV proteins or PRCV.
  • anti-BEV polyclonal serum produced against the equine virus
  • the anti-PRCV and anti-PRRSV sera react specifically with homologous virus proteins, but do not recognize PToV N protein or BEV proteins.
  • Figure 15 shows the results obtained from the ELISA analysis against the PToV N protein in a sampling with field sera from different pig farms in Navarra (A), Aragón (B) and Galicia (C). In all three cases, Serotec serum was included as a positive control and spf animal serum as a negative control.
  • Figure 16 shows the results obtained from the immunoblot analysis against the PToV N protein of the same field sera used in Figure 15, which come from different farms in Navarra (A), Aragón (B) and Galicia (C) . In all three cases, Serotec serum was included as a positive control.
  • Example 1 Amplification and cloning of the ORFs corresponding to the N, M and HE proteins of the PToV-BRES2 isolate a. Extraction of viral RNA from the stool sample
  • RNA isolation kit The commercial high purity RNA isolation kit (Roche Applied Science) was used. Briefly, 200 ⁇ l of starting material was used and the RNA was recovered in 60 ⁇ l of elution buffer (RNase and DNase free water) provided by the manufacturer. The RNA obtained was stored at -8O 0 C. RNA extraction and manipulation was carried out using RNase-free materials and reagents exclusively dedicated to these procedures, and in an environment isolated from the rest of the laboratory.
  • cDNA using random hexamers as primers in order to achieve cDNA chains representative of the entire genome of the virus. More specifically, the reverse transcriptase (RT) reactions for the synthesis of the cDNA chains were carried out using the SuperScript Il system (Invitrogen, Corp) following the manufacturer's instructions. Briefly, 8 ⁇ l of RNA was added to a mixture of 10 pmoles of deoxynucleotide triphosphates (dNTPs) (Roche Applied Science) and 200 ng of random hexamers (Roche Applied Science). The mixture was incubated for 5 minutes at 65 0 C and 1 minute on ice.
  • dNTPs deoxynucleotide triphosphates
  • the N gene of PToV-BRES2 (ORF5) encoding the protein of nucleocapsid N was amplified by RT-PCR from a sample of pig feces containing the isolated PToV-BRES2 porcine torovirus. To amplify the sequence of the ORF5, oligonucleotides PToV-N5 '(SEQ ID NO1) and PToV-N3' (SEQ ID NO2) were used and the result was visualized on a 1% agarose gel and ethidium bromide staining. A single RT-PCR product was obtained.
  • This product has a length of 500 bp similar to that described for the ORF5 of toroviruses ( Figure 1).
  • the genes corresponding to M and HE proteins were amplified, respectively, obtaining fragments with the expected sizes of 700 and 1200 base pairs (bp) described for ORFs 3 and 4, respectively ( Figure 1).
  • the amplification of the coding sequence of the N protein was carried out using the oligonucleotides PToVN ⁇ '(SEQ ID NO1) and PToVN3' (SEQ ID NO2), in a PCR reaction containing 2 ⁇ l of cDNA, 2.5 ⁇ l of 10X PCR buffer (20 mM Tris-HCI, pH 8.0; 50 mM KCI), 1.5 mM MgCL2, 0.2 ⁇ M of each oligonucleotide, 0.2 ⁇ M dNTPs; 1 U of Taq platinum DNA polymerase (Invitrogen Corp.) and 18 ⁇ l of DNase free water.
  • the amplification program consisted of 2 minutes at 92 0 C; 30 cycles of 40 seconds at 92 0 C, 40 seconds at 5O 0 C, 40 seconds at 72 0 C; and a cycle of 5 minutes at 72 0 C.
  • the coding sequence of the M protein was amplified using the oligonucleotides PToV-M5 '(SEQ ID NO3) and PToV-M3' (SEQ ID NO4). The rest of the components of the reaction mixture were the same as in the previous case.
  • the amplification program was: 2 minutes at 92 0 C; 20 cycles of 40 seconds at 92 0 C, 40 seconds at 5O 0 C, 40 seconds at 72 0 C; and 10 cycles in which 20 seconds were added to the extension time for each cycle, and finally a 5 minute step at 72 0 C.
  • the coding sequence of the HE protein was amplified together with part of the M gene and The intergenic region between both genes.
  • the product of this reaction was sequenced, and based on this sequence, the oligonucleotide PToV-BRES2-HE5 '(SEQ ID NO5) was designed in the 5' region of the HE gene.
  • Oligonucleotides PToV-BRES2-HE5 'and PToV-HE3' were used to amplify the HE gene from cDNA.
  • the reaction was carried out using the High Fidelity System (Eppendorf) following the manufacturer's instructions. 2 ⁇ l of cDNA was added to a reaction mixture containing 1X high fidelity buffer (Eppendorf), 200 ⁇ M dNTPs, 200 nM of each oligonucleotide and 0.71 U / ⁇ l of the TripleMaster polymerase mix enzyme mixture. The reaction mixture was incubated at 93 0 C 3 minutes, followed by 10 cycles of 1 min at 93 0 C, 40 seconds at 5O 0 C and 5 minutes at 68 0 C, and 25 cycles in which the extension time is increased 20 seconds in each cycle. Finally, a 10 minute step was added at 68 0 C.
  • the 500 base pair fragment corresponding to the N gene of PToV-BRES2 (SEQ ID NO8) that was obtained by PCR was cloned into the commercial vector pGemT-Easy (Promega Corp.). After ligation with T4 Ligase DNA (New England Biolabs) the reaction mixture was used to transform E. coli DH5 ⁇ by thermal shock. The bacteria were seeded on agar plates in the presence of ampicillin and X-GaI. The positive colonies were selected by white / blue and the presence of the insert was checked by PCR. Positive clones were grown in LB medium and in the presence of ampicillin.
  • ORFs 3 and 4 SEQ ID NO10 and SEQ ID NO12 corresponding to the M ( Figure 2B) and HE ( Figure 2C) proteins were inserted into the same commercial vector pGemT-Easy (Promega Corp. ) and were sequenced, from different independent clones.
  • the sequences of the different clones showed that the products obtained corresponded to the porcine M and HE torovirus genes, showing a homology of 98% in the case of the M gene, and 92-80% in the case of the HE gene, compared to the rest of porcine isolates described in the literature.
  • Example 2 Generation of recombinant baculovirus expressing the N, M and HE proteins of PToV-BRES2 encoded by ORFs 5, 3 and 4, respectively a.- Construction of transfer vectors and bacmids for baculovirus containing ORFs 5 , 3 and 4 of PToV encoding the N, M and HE proteins, respectively.
  • the complete gene was cloned into the commercial transfer vector for baculovirus pFastBac-HTc (Invitrogen Corp.), by enzymatic digestion of the plasmid pGT-PToVBRES2-N with the endonucleases Bam ⁇ ⁇ ⁇ and Xba ⁇ and ligation in the same restriction sites in the plasmid pFastBac-HTc, obtaining the construction pFB-PToVBRES2-N, in which the PToV N protein gene is under the control of the early promoter / late of the baculovirus polyhedrin and in phase at its 5 'end with the sequence encoding a histidine tail (His-tag) present in the plasmid.
  • His-tag histidine tail
  • the plasmid generated pFB-PToVBRES2-N was used to transform E. coli DHIOBac bacteria, which contain a bacmid / acZ-mini-affTn7, for the generation of recombinant baculovirus by homologous recombination, and a plasmid in which they are encoded proteins mediating recombination.
  • the transformed bacteria were grown for 3 days until ⁇ -galactosidase activity was observed in the colonies carrying non-recombinant bacmids. Two independent clones of each transformation were selected, grown and the recombinant bacmids were purified by alkaline lysis (Sambroock et al., 2001).
  • the genes encoding the M and HE proteins of PToV-BRES2 were introduced into the baculovirus transfer vector pFastBac-HTc, giving rise to the pFB-PToVBRES2-M and pFB-PToVBRES2-HE constructs.
  • E. coli DHIOBac bacteria were transformed with these plasmids, and the corresponding recombinant bacmids containing the genes corresponding to the M and HE proteins, which were selected and purified as described above.
  • Recombinant bacmids containing the N gene of PToV-BRES2 were used to transfect High Five cells by using lipofectin (Invitrogen Corp.), following the instructions of the supplying commercial house. Transfected cultures were maintained at 28 0 C to observe extensive cytopathic effect, about 3 days, at which time the culture supernatants containing the recombinant virus, RBAC-PToVBRES2-N and stored at 4 0 C as stock were collected primary.
  • the recombinant rBac-PToVBRES2-N baculovirus was amplified from the primary stock by infection of High Five insect cells, and the culture supernatant was collected when the cytopathic effect was greatest, and was also stored at 4 0 C as a secondary stock . Following the same procedure, the recombinant baculoviruses containing the genes encoding the M and HE proteins of PTOV-BRES2, rBac-PToVBRES2-M and rBac-PToVBRES2-HE, respectively, were generated.
  • the generated recombinant baculoviruses were used to infect High Five cells, and analyze the expression of the recombinant N, M and HE proteins (SEQ ID NO9, SEQ ID NO11 and SEQ ID NO13) of PToV by immunodetection with a serum that recognizes the tail of histidines (anti-his) as well as with a pig serum with antibodies against PToV (anti-BRES). To do this, High Five cell cultures were infected to high multiplicity with the different recombinant viruses and were collected at different post-infection times to determine in each case the optimal moment of expression of the corresponding recombinant protein.
  • the cells were collected, they were washed twice with PBS by centrifugation at 1500 rpm for 5 minutes and resuspended in sample buffer (Laemmli, 1970) and the cell extracts were separated by electrophoresis in polyacrylamide gels (SDS-PAGE). The gels were stained with coomassie blue or transferred to nitrocellulose membranes. The membranes were blocked by incubation for 1 hour with a solution of 5% skimmed milk powder in PBS, and subsequently incubated with the serum that recognizes histidines or with pig sera that present antibodies against the PToV virus for 1 hour at room temperature or overnight at 4 0 C.
  • the membranes were washed and incubated with a secondary antibody conjugated with peroxidase diluted 1: 1000 in the blocking solution, for 1 hour at room temperature. Subsequently, the membrane was washed three times with PBS and the inmuonoblot was revealed by chemiluminescence using the commercial ECL system (Amersham Biosciences), followed by exposure to a high sensitivity autoradiography film (Biomax XAR film, Kodak).
  • the HE protein of torovirus is glycosylated (Cornelissen et al., 1997) and that the molecular weight of the glycosylated form is 65kDa. Therefore, the 65 kDa protein detected in the insect cell extracts would correspond to the glycosylated form of the protein.
  • the 12OkDa and 25OkDa proteins could correspond to dimeric and tetrameric forms of the HE protein. d.- Purification of recombinant PToV-BRES2 N, M and HE proteins.
  • Recombinant PToV N, M and HE proteins were purified by affinity chromatography using a commercial cobalt resin (Talon TM, Clontech). Briefly, High Five cells, infected at high multiplicity, were collected at the time of maximum infection, approximately 48 hpi. The cells were recovered by centrifugation at 3000 rpm 10 minutes and washed twice with PBS by centrifugation at 3000 rpm 10 minutes.
  • the cells were resuspended in a lysis solution containing 6M guanidine, 300 mM NaCI, H 2 NaPO April 50 mM, pH 8.0 and 1 mM imidazole, homogenized by stirring, incubated on ice for 30 minutes and were subjected to 3 sonication pulses at 80 V for 10 seconds.
  • the cell extract was centrifuged at 3000 rpm, 10 minutes at 4 0 C. The supernatant (10 ml) was added to 2 ml of cobalt resin previously stabilized in the same lysis solution and incubated for 2 hours at 4 0 C in a ferris wheel.
  • the resin was recovered by centrifugation at 1500 rpm for 5 minutes, and washed three times with lysis solution without imidazole. Then, three washes were performed with an 8 M urea solution, 300 mM NaCl, 50 mM H 2 NaPO 4 , pH 8.0, after which the different proteins were recovered using two volumes of a 1 M imidazole solution, 8 M urea, 300 mM NaCI, H 2 NaPO April 50 mM, pH 8.0.
  • the resin was kept under stirring in Ia wheel place overnight at 4 0 C and after centrifugation the supernatant (elution 1) was collected and added again elution buffer to the resin.
  • Figure 3 shows the analysis by SDS-PAGE electrophoresis and coomassie blue staining of the different purification steps of protein N. Once purified, the different proteins were dialyzed against H 2 O MiIIiQ to eliminate the imidazole, and after the dialysis they were lyophilized.
  • the purified proteins were dissolved in the same elution solution but in the absence of imidazole and were quantified by a BCA assay diluting each protein at least 1: 5 in H 2 O MiIIiQ to decrease the urea concentration below 3 M and thus not interfere in the essay.
  • the BSA curve was prepared in a solution identical to that of the diluted protein.
  • Example 3 Generation of recombinant vaccinia virus expressing the PToV-BRES2 HE protein encoded by the ORF4 a.- Construction of a transfer vector for vaccinia containing the PToV ORF4 encoding the HE protein
  • the DNA fragment corresponding to the PToV-BRES-2 HE gene was obtained by enzymatic restriction of plasmid pGT-BRES2-HE with BamH ⁇ and ⁇ / col and subcloned into vector pJR101
  • BSC40 cells were infected with a parental vaccinia virus of the Western Reserve (WR) strain at low multiplicity of infection and then transfected with the plasmid pJR101-BRES2 -HE, following a protocol similar to that used in the generation of baculovirus recombinants. At 48 hpi, the cells were collected and centrifuged at 1500 rpm for 10 minutes.
  • WR Western Reserve
  • the deposited cells were resuspended in DMEM culture medium and used by three freeze / thaw cycles followed by 3 sonication pulses of 10 seconds at 8OV each, and centrifuged at 1500 rpm for 10 minutes to remove cell debris.
  • the supernatant obtained was used to infect new cultures and the recombinant viruses, which we call rW-HE, were selected based on the blue color that the lysis plaques develop after the addition of X-gluc to the medium with agar in a plaque assay ( Carroll and Moss, 1995). This selection process was repeated three times and the selected recombinant virus was amplified by infection of new cell cultures and the extracts obtained after 72 hours of infection were used as described above, and the obtained supernatant served as virus stock.
  • the recombinant rVV-HE virus was used to infect BSC40 cells, and to analyze the expression of the PToV HE protein by immunodetection with two pig sera containing antibodies against PToV (anti-BRES and Serotec).
  • the cells were washed twice with PBS and collected in sample buffer (Laemmli, 1970) and the cell extracts were separated by electrophoresis in polyacrylamide gels (SDS-PAGE) and transferred to nitrocellulose membranes. Both porcine sera recognize a protein of approximately 65kDa in the extracts of cells infected with the recombinant virus rW-HE, which is not present in the extracts of cells infected with the parental virus WR.
  • Example 4 Obtaining polyclonal antibodies against proteins and peptides of PToVBRES2 of the invention.
  • the purified N protein (SEQ ID NO9) as described above was used as an antigen to immunize animals from experimentation, rabbits and rats, and generate polyclonal antibodies against it.
  • a first inoculation of purified N protein was used (500 ⁇ g in rabbits and 50 ⁇ g in rats) emulsified with Freund's complete adjuvant, followed by three souvenir doses with the antigen (250 ⁇ g for rabbits and 25 ⁇ g for rats) mixed with incomplete Freund's adjuvant.
  • the following description shows how the PToV N protein (SEQ ID NO9) produced by the baculovirus system, and the HE protein (SEQ ID NO11) expressed by a vaccinia virus recombinant, once purified following the procedure described in each case, they can be used for the detection of antibodies in ELISA and Western-blot assays, in isolation, especially the N protein, or together. to. ELISA test
  • the 96-well plate wells (Immunoplate F96 Maxisorp, Nunc) were upholstered in duplicate with 50 ⁇ l of the corresponding antigen (protein N, M and HE) diluted in 0.1 M carbonate-bicarbonate buffer, pH 9.6, and incubated overnight at 4 0 C. The wells were then washed three times with 200 ⁇ l of PBST (PBS containing 0.05% Tween 20) and saturated with 180 ⁇ l of bovine serum albumin (BSA), fraction V (Sigma) at 3% in PBST for 2 hours at 37 0 C.
  • PBST PBS containing 0.05% Tween 20
  • BSA bovine serum albumin
  • the specific sera produced against the recombinant proteins or against peptides thereof, and the porcine sera were diluted, at the dilution indicated in each case, in a 1% BSA solution in PBST, and were added to the wells once the saturation solution was removed. After 1 hour of incubation at 37 0 C, the wells were washed, the secondary antibody at a 1 is added 1000 to the solution of 1% BSA in PBST and incubated for 1 hour at 37 0 C.
  • the optimal amount of protein in the well was studied to have a greater sensitivity.
  • the wells were upholstered with different amounts of N protein (25, 100, 200 and 400 ng / well), and these were incubated with different dilutions of the specific rabbit serum anti-PToV-N. At intermediate dilutions of serum (1: 400 and 1: 1600) the highest sensitivity was obtained when 400 ng per well was used (Figure 11).
  • the wells were incubated in duplicate with a 1: 100 dilution of each of the pig sera.
  • the anti-PRRSV and anti-PRCV pig sera reacted with the corresponding homologous viruses but did not recognize the PToV N protein.
  • the anti-BRES and Serotec pig sera did react against PRRSV and TGEV although the reactivity against PToV N protein was always superior.
  • the absence of reactivity of the sera from spf animals immunized with PRRSV or PRCV against the N protein of PToV indicates the absence of cross-reactivity.
  • SDS-PAGE 2 Dg of purified virions of the equine torovirus BEV, 10 Dg of purified virions of TGEV and PRRSV were separated and 6 Dg of the PToV-N protein and these samples were reacted in immunoblot with Serotec, anti-PRCV and anti-PRRSV sera, diluted 1: 100.
  • the specific serum against PRRSV specifically recognizes the M protein of the homologous virus and, in the case of the serum against PRCV, it recognizes both the N protein and the TGEV M protein, but none of these sera reacted with the PToV-N protein nor with BEV ( Figure 14).
  • Serotec serum which comes from animals raised in natural conditions, showed a strong reactivity against PToV N protein, and a lower reactivity against the N protein of BEV, as well as against the M proteins of PRRSV and N of TGEV, indicating that the reactivity against these viruses observed by ELISA is due to the presence in the Serotec serum of antibodies against these viruses .
  • the polyclonal serum generated against BEV that recognizes the N protein of the homologous virus but also that of PToV, does not react with the PRRSV or PRCV proteins.
  • the purified recombinant N protein was subjected to electrophoresis in a 13% polyacrylamide gel (400 ng of protein per lane). After the electrophoresis, the protein was transferred to a nitrocellulose membrane, the membrane was stained with Ponceau Red and before removing the staining, the nitrocellulose was cut into strips corresponding to each of the rails and the immunodetection was carried out.
  • the immunoblot assay has also been carried out with the purified HE protein, again checking the lower reactivity of the swine sera against this protein compared to the protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención describe la capacidad inmunogénica de las proteínas N, M y HE de torovirus porcino, y el empleo de las mismas para el desarrollo de procedimientos de diagnóstico inmunológico de torovirus porcino así como para la elaboración de anticuerpos específicos. Por otro lado, estas proteínas pueden utilizarse para la elaboración de vacunas dirigidas a la prevención de esta enfermedad en cerdos.

Description

PROTEÍNAS N, M Y HE DE TOROVIRUS PORCINO, PROCEDIMIENTO DE OBTENCIÓN Y SUS APLICACIONES EN DIAGNÓSTICO Y TRATAMIENTO DE TOROVIRUS PORCINO.
SECTOR DE LA TÉCNICA
Este invento podría tener aplicación en el sector ganadero y en particular, con utilidad para el diagnóstico y tratamiento veterinario, mediante herramientas biotecnológicas de tipo inmunológico y vacunas, respectivamente, especialmente para el diagnóstico y tratamiento de torovirus porcino.
ESTADO DE LA TÉCNICA
Los torovirus pertenecen a Ia familia Coronaviridae, del orden Nidovirales. Son virus emergentes causantes de gastroenteritis en caballos, terneras, cerdos y humanos, de los que apenas se tiene información. Esta situación es debida a que los torovirus a excepción del aislado equino BEV, no han sido adaptados al cultivo in vitro, Io que ha retrasado el desarrollo de herramientas para su diagnóstico y para su estudio. Los estudios iniciales sobre torovirus se llevaron a cabo mediante microscopía electrónica y mediante esta técnica se describió Ia existencia de torovirus equino (BEV), bovino (BToV) (Woode y col., 1982), humano (HToV) (Beards y col., 1984) y porcino (PToV) (Scott y col., 1987). Sin embargo, fue a partir de Ia adaptación al cultivo in vitro de BEV (Weiss y col., 1983), y el desarrollo de infecciones experimentales con BToV en terneras (Woode y col., 1982), cuando se inició el desarrollo de herramientas para el estudio de los torovirusτ. Así, basándose en el genoma de BEV, pues era el único del que se disponía de información, se han utilizado para Ia detección de torovirus sistemas de RT-PCR (Koopmans y col., 1991 ; Duckmanton y col., 1998) así como hibridación con sondas basadas en Ia secuencia de BEV (Koopmans y col., 1991 ). También se han utilizado para diagnóstico métodos de ELISA, especialmente para BToV (Brown y col., 1987; Woode, 1987; Durham y col., 1989; Koopmans y col., 1989; Koopmans y col., 1991 ; Liebler y col., 1992) y HToV (Koopmans y col., 1993; Koopmans y col., 1997). Los escasos trabajos realizados sobre PToV corresponden a estudios llevados a cabo mediante microscopía electrónica (Scott y col., 1987; Durham y col., 1989; Penrith y Gerdes, 1992) o mediante estudios serológicos utilizando BEV como antígeno. Hasta Ia fecha, Ia detección de anticuerpos frente a torovirus porcino se ha llevado a cabo mediante ensayos de neutralización de Ia infectividad de BEV y mediante ELISA frente a BEV (Brown y col., 1988; Liebermann, 1990). Estos métodos presentan varios inconvenientes, uno de ellos relacionado con Ia dificultad de Ia obtención de virus, que requiere un gran esfuerzo tanto económico como del personal de laboratorio. Por otra parte, para el ensayo de neutralización es necesaria además Ia utilización de cultivos celulares, algo que habitualmente no se lleva a cabo en el diagnóstico veterinario y que está reservado al diagnóstico en humanos. Además, este ensayo es laborioso y lento ya que se requieren varios días para obtener el resultado. Por otra parte, a pesar de que las distintas especies de torovirus están serológicamente relacionadas esta reactividad cruzada no es total, por Io que sistemas de diagnóstico basados en esta reactividad pueden producir un mayor porcentaje de falsos negativos.
La evidencia molecular de Ia existencia de PToV no se obtuvo hasta 1998 (Kroneman y col., 1998). En ese mismo trabajo se observó una elevada prevalencia de anticuerpos frente al virus mediante ensayos de neutralización del virus BEV. Hasta Ia fecha los únicos métodos de diagnóstico de torovirus que se utilizan (en investigación y/o comercializados) son específicos para las formas del virus que afectan al ganado equino y bovino: - ELISA para Ia detección de anticuerpos frente a torovirus usando el virus equino BEV como antígeno ELISA para Ia detección de anticuerpos frente a torovirus usando el virus bovino BRV como antígeno
Ensayo de neutralización de Ia infectividad de BEV para Ia detección de anticuerpos frente a torovirus - Proteína N del torovirus bovino BRV expresada en E. coli en westernblot para detectar anticuerpos frente a torovirus en sueros de terneras infectadas con BRV.
Se ha generado un suero policlonal en cobayas frente a Ia proteína HE del torovirus bovino BRV expresada en células de insecto mediante un baculovirus recombinante
Se ha generado un suero policlonal en cobayas frente a Ia proteína N del torovirus bovino BRV expresada en E. coli, y
Se ha generado un suero policlonal en conejo frente a un fragmento de Ia proteína HE de torovirus bovino BRV (aa 35-391 ). Sin embargo, y pasado todo este tiempo, no se ha desarrollado y comercializado un sistema de diagnóstico específico de torovirus porcino siendo las únicas alternativas los sistemas anteriormente descritos. Por tanto, Ia toma de decisiones basada en el diagnóstico con los sistemas descritos puede ser incorrecta, Io que al mismo tiempo provoca que el peligro de infecciones de torovirus porcino no se valore adecuadamente o se infravalore en el sector veterinario y no se promueva una política de control en un sector, el porcino, de gran valor económico. Únicamente, en relación con el torovirus porcino se ha expresado de forma transitoria (pero no se ha purificado) Ia proteína HE de tres aislados de torovirus porcino, pero en ningún caso se ha demostrado Ia capacidad antigénica o inmunogénica de estas proteínas (Smits, SL et al. 2003).
BIBLIOGRAFÍA
- Beards, G. M., C. Hall, J. Green, T. H. Flewett, F. Lamouliatte y P. Du Pasquier (1984). "An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves." Lancet 1(8385): 1050-2.
- Brown, D. W., G. M. Beards y T. H. Flewett (1987). "Detection of Breda virus antigen and antibody in humans and animáis by enzyme immunoassay." J Clin Microbiol 25(4): 637-40.
- Brown, D. W., R. Selvakumar, D. J. Daniel y V. I. Mathan (1988). "Prevalence of neutralising antibodies to Berne virus in animáis and humans in Vellore, South India. Brief report." Arch Virol 98(3-4): 267-9.
- Carroll, M. W. y B. Moss (1995). "E. coli beta-glucuronidase (GUS) as a marker for recombinant vaccinia viruses." Biotechniques 19(3): 352-4, 356.
- Cornelissen, L. A., C. M. Wierda, F. J. van der Meer, A. A. Herrewegh, M. C. Horzinek, H. F. Egberink y R. J. de Groot (1997). "Hemagglutinin- esterase, a novel structural protein of torovirus." J Virol 71 (7): 5277-86.
- Den Boon, J. A., E. J. Snijder, J. K. Locker, M. C. Horzinek y P. J. Rottier (1991 ). "Another triple-spanning envelope protein among intracellularly budding RNA viruses: the torovirus E protein." Virology 182(2): 655-63.
- Duckmanton, L., S. Carman, E. Nagy y M. Petric (1998). "Detection of bovine torovirus in fecal specimens of calves with diarrhea from Ontario farms." J Clin Microbiol 36(5): 1266-70. - Durham, P. J., L. E. Hassard, G. R. Norman y R. L. Yemen (1989). "Viruses and virus-like particles detected during examination of feces from calves and piglets with diarrhea." Can Vet J 30(11 ): 876-881.
- Gherardi, M. M., J. C. Ramírez, D. Rodríguez, J. R. Rodríguez, G. Sano, F. Zavala y M. Esteban (1999). "IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner." J Immunol 162(11 ): 6724-33.
- Ikonomou, L., Y. J. Schneider y S. N. Agathos (2003). "Insect cell culture for industrial production of recombinant proteins." Appl Microbiol Biotechnol 62(1 ): 1 -20. - Isaacs, S. N. (2004). "Working safely with vaccinia virus: laboratory technique and the role of vaccinia vaccination." Methods Mol Biol 269: 1- 14.
- Koopmans, M., M. Petric, R. I. Glass y S. S. Monroe (1993). "Enzyme- linked immunosorbent assay reactivity of torovirus-like particles in fecal specimens from humans with diarrhea." J Clin Microbiol 31(10): 2738-44. Koopmans, M., E. J. Snijder y M. C. Horzinek (1991 ). "cDNA probes for the diagnosis of bovine torovirus (Breda virus) infection." J Clin Microbiol 29(3): 493-7. - Koopmans, M., U. van den Boom, G. Woode y M. C. Horzinek (1989). "Seroepidemiology of Breda virus in cattle using ELISA." Vet Microbiol 19(3): 233-43.
- Koopmans, M., L. van Wuijckhuise-Sjouke, Y. H. Schukken, H. Cremers y M. C. Horzinek (1991 ). "Association of diarrhea in cattle with torovirus infections on farms." Am J Vet Res 52(11 ): 1769-73.
- Koopmans, M. P., E. S. Goosen, A. A. Lima, I. T. McAuliffe, J. P. Nataro, L. J. Barrett, R. I. Glass y R. L. Guerrant (1997). "Association of torovirus with acute and persistent diarrhea in children." Pediatr Infecí Dis J 16(5): 504-7. - Kroneman, A., L. A. Cornelissen, M. C. Horzinek, R. J. de Groot y H. F. Egberink (1998). "Identification and characterization of a porcine torovirus." J Virol 72(5): 3507-11.
- Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." Nature 227(5259): 680-5. - Liebermann, H. (1990). "[New types of virus infections of domestic animáis in the Germán Democratic Republic. 1. Serologic survey studies of the distribution of equine torovirus infections in the GDR]." Arch Exp Veterinarmed 44(2): 251-3.
- Liebler, E. M., S. Kluver, J. Pohlenz y M. Koopmans (1992). "[The significance of bredavirus as a diarrhea agent in calf herds in Lower
Saxony]." Dtsch Tierarztl Wochenschr 99(5): 195-200. - Penrith, M. L. y G. H. Gerdes (1992). "Breda virus-like partióles in pigs in South África." J S Afr Vet Assoc 63(3): 102.
- Sambroock, J., E. F. Fritsch y T. Maniatis (2001 ). "Molecular Cloning. A laboratory manual." CoId Spring Harbor Laboratory Press. - Scott, A. C, M. J. Chaplin, M. J. Stack y L. J. Lund (1987). "Porcine torovirus?" Vet Rec 120(24): 583.
- Smits SL, Gerwig GJ, van Vliet AL, Lissenberg A, Briza P, Kamerling JP, Vlasak R, de Groot RJ. (2005). "Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor- destroying enzymes". J Biol Chem. 25, 6933-41
-Smits, S. L., A. Lavazza, K. Matiz, M. C. Horzinek, M. P. Koopmans, and R. J. de Groot (2003). "Phylogenetic and Evolutionary Relationships among Torovirus Field Variants: Evidence for Múltiple Intertypic Recombination Events". J. Viral., 77: 9567-9577. - Weiss, M., F. Steck y M. C. Horzinek (1983). "Purification and partial characterization of a new enveloped RNA virus (Berne virus)." J Gen Virol 64 (Pt 9): 1849-58.
- Woode, G. N. (1987). "Breda and Breda-like viruses: diagnosis, pathology and epidemiology." Ciba Found Symp 128: 175-91. - Woode, G. N., D. E. Reed, P. L. Runnels, M. A. Herrig y H. T. HiII (1982). "Studies with an unclassified virus isolated from diarrheic calves." Vet Microbiol 7(3): 221-40.
- Zhang, X., M. Hasoksuz, D. Spiro, R. Halpin, S. Wang, S. Stollar, D. Janies, N. Hadya, Y. Tang, E. Ghedin y L. Saif (2007). "Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus." Virology 358(2): 424-35. DESCRIPCIÓN DE LA INVENCIÓN Descripción Breve
En un aspecto, Ia invención se relaciona con un complejo proteico útil para el diagnóstico y el desarrollo de vacunas frente a torovirus porcino, en adelante complejo proteico de Ia invención, que comprende, al menos, una proteína y/o, un fragmento o péptido de Ia misma, del siguiente grupo: i) proteína N de SEQ ID NO9, ii) proteína M de SEQ ID NO11 , y iii) proteína HE de SEQ ID NO13.
En otra realización particular, el complejo proteico de Ia invención está constituido por una mezcla de fragmentos o péptidos de las, mismas o distintas, proteínas pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13; preferentemente, un complejo formado por fragmentos de Ia proteína N o de Ia proteína HE, preferentemente los péptidos 286E1-HE (SEQ ID NO14) y/o 286F1-HE (SEQ ID NO15) (Ejemplo 4).
En otro aspecto, Ia invención se relaciona con un procedimiento para Ia producción de las proteínas de torovirus porcino de Ia invención, en adelante procedimiento de Ia invención, que comprende cultivar un microorganismo que contiene Ia secuencia de nucleótidos que codifica para una o varias proteínas de torovirus porcino de Ia invención y que expresa dichas proteínas, y, si se desea, recuperar dichas proteínas de Ia invención. En una realización más particular, el procedimiento de expresión de
Ia invención comprende Ia infección de una célula de insecto con un baculovirus que comprende Ia secuencia de nucleótidos del gen N (SEQ ID NO8).
En otra realización más particular, el procedimiento de expresión de Ia invención comprende Ia infección de una célula de mamífero con un virus vaccina que comprende Ia secuencia de nucleótidos del gen HE (SEQ ID NO12).
Por tanto, en otro aspecto, Ia invención proporciona una secuencia de nucleótidos codificante de las proteínas N, M y HE de Ia invención, en adelante secuencia de nucleótidos de Ia invención útil para Ia construcción de un vector de expresión que comprende, al menos, una secuencia y/o, un fragmento de Ia misma, del siguiente grupo: i) secuencia de nucleótidos N de SEQ ID NO8, ii) secuencia de nucleótidos M de SEQ ID NO10, y iii) secuencia de nucleótidos HE de SEQ ID NO12.
En otro aspecto, Ia invención proporciona un sistema o vector de expresión útil para transformar (o infectar cuando el sistema de expresión esté basado en un virus recombinante derivado de baculovirus o del virus vaccinia) células, que comprende una secuencia de nucleótidos que codifica para una proteína de Ia invención, en donde dicha proteína de Ia invención es una proteína cuya secuencia de aminoácidos está constituida por, al menos, una secuencia de aminoácidos perteneciente al siguiente grupo: SEQ ID NO9, 11 y 13, estando dicha secuencia de nucleótidos codificante para dicha proteína de Ia invención operativamente unida a unos elementos de control de transcripción y, opcionalmente, de traducción.
En otro aspecto, Ia invención proporciona una célula hospedadora que contiene una secuencia de nucleótidos que codifica para las proteínas de Ia invención. En una realización particular, dicha célula hospedadora es una célula de insecto, de mamífero o levadura transformada con un sistema de expresión proporcionado por esta invención que comprende una construcción génica que comprende Ia secuencia de nucleótidos que codifica para una proteína de Ia invención. Prácticamente cualquier tipo de célula eucariota puede ser utilizada para Ia puesta en práctica del procedimiento de Ia invención; no obstante, en una realización particular, dicha célula es de insecto para expresar Ia proteína N o de mamífero para expresar Ia proteína HE. En el caso de usar una levadura, se puede seleccionar una levadura del género Saccharomyces, por ejemplo, S. cerevisae, S. pombe, etc., o una levadura del género Pichia, por ejemplo,
P. pastoris, etc. Dichas proteínas de Ia invención pueden ser utilizadas para desarrollar anticuerpos específicos, para identificar sueros de animales infectados y para inmunizar animales, en particular, cerdos, por Io que pueden ser utilizadas con fines de diagnóstico o terapéuticos.
En otro aspecto, Ia invención proporciona un anticuerpo específico de Ia proteína de Ia invención, en adelante anticuerpo de Ia invención, ya sea monoclonal o policlonal, o específico de un fragmento o péptido de Ia misma.
Otra realización particular Io constituye el anticuerpo de Ia invención que es específico de una proteína de Ia invención perteneciente al siguiente grupo: proteína N de SEQ ID NO9 (ver Ejemplo 4), proteína M de
SEQ ID NO11 y proteína HE de SEQ ID NO13.
En otro aspecto, Ia invención se relaciona con el empleo de dichos anticuerpos de Ia invención en Ia elaboración de sistema de diagnóstico inmunológico de torovirus porcino, tales como, sistema de ELISA, tira de inmunocromatografía o de Western blot, que permita Ia identificación de dichos virus en una muestra biológica, por ejemplo heces de un animal sospechoso de padecer o haber padecido una infección por torovirus porcino, preferentemente un cerdo.
Además, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de medicamentos tales como, vacunas. En una realización particular, dicho medicamento es una vacuna destinada a conferir protección a animales, en particular, cerdos, frente a infecciones de torovirus porcino.
Por tanto, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de sistema de diagnóstico inmunológico de torovirus porcino, tales como, sistema de ELISA, tira de inmunocromatografía o de Western blot (inmunoblot), que permita Ia identificación conjunta y simultánea de anticuerpos frente a las proteínas de Ia invención presentes en una muestra biológica de cerdos.
Además, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de medicamentos tales como, vacunas. En una realización particular, dicho medicamento es una vacuna destinada a conferir protección a animales, en particular, cerdos, frente a infecciones de torovirus porcino.
En otro aspecto, Ia invención proporciona una vacuna que comprende una cantidad terapéuticamente efectiva de una o varias proteínas de Ia invención, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. Dicha vacuna es útil para proteger animales, en particular, cerdos, frente a torovirus porcino.
Así, en otro aspecto Ia invención se relaciona con un sistema de diagnóstico de torovirus porcino a partir de una muestra biológica mediante
Ia identificación de material genómico, en adelante procedimiento de identificación genómica de Ia invención, específico de torovirus porcino, basado en Ia identificación de los genes N, M y HE, de secuencias SEQ ID
NO8, 10 y 11 , respectivamente. Otro aspecto particular, Io constituye un procedimiento de identificación genómica de Ia invención basado en Ia amplificación de DNA y que comprende las siguientes etapas: i) aislamiento de material génico de una muestra biológica sospechosa de contener torovirus porcino y obtención del cDNA correspondiente, ii) amplificación por PCR de dicho cDNA mediante oligonucleótidos específicos para, al menos, uno de los genes de Ia invención, gen N, M y HE que se corresponden, a título ilustrativo y sin que limite el alcance de Ia invención, respectivamente, con los siguientes: pareja de oligos PToV-N5' y PToV-N3' para el gen N (SEQ ID NOI y 2), pareja de oligos PToV-M5' y PToV-M3' para el gen M (SEQ ID NO3 y 4), Y - pareja de oligos PToV-H E5' y PToV-H E3' para el gen HE (SEQ ID NO5 y 6), y iii) diagnóstico de un torovirus porcino si alguno de los genes de Ia invención es amplificado en ii).
Otro aspecto adicional Io constituyen oligonucleótidos o cebadores utilizados en Ia identificación genómica de Ia invención basado en Ia amplificación de DNA, preferentemente las parejas de oligonucleótidos siguientes: pareja de oligos PToV-N5' y PToV-N3' para el gen N (SEQ ID NOI y 2), - pareja de oligos PToV-M5' y PToV-M3' para el gen
M (SEQ ID NO3 y 4), Y pareja de oligos PToV-H E5' y PToV-H E3' para el gen HE (SEQ ID NO5 y 6).
Descripción Detallada
La presente invención se enfrenta al problema de proporcionar nuevas herramientas para el diagnóstico y el desarrollo de vacunas frente a infecciones provocadas por torovirus en mamíferos, preferentemente en animales, y más preferentemente en cerdos. La presente invención describe Ia identificación y caracterización de las proteínas de un aislado de torovirus porcino a partir de una muestra de heces en Ia que se había observado Ia presencia de partículas de torovirus mediante microscopía electrónica, y al que se Ie ha dado el nombre de PToV-BRES2. Así, las investigaciones se dirigieron a Ia caracterización filogenética de este aislado PToV-BRES2 mediante Ia amplificación de las fases de lectura abierta (ORFs) correspondientes a los genes que codifican tres de las proteínas estructurales de PToV: proteína de Ia nucleocápsida (N) correspondiente a Ia ORF5, proteína de membrana (M) correspondiente a Ia ORF3, y Ia proteína hemaglutinina esterasa (HE) correspondiente a Ia ORF4, presente en Ia superficie de Ia partícula viral (Ejemplo 1 , SEQ ID NO1-3, respectivamente), para a continuación poder desarrollar nuevas herramientas de diagnóstico serológico para Ia detección de anticuerpos en animales frente a torovirus porcino, diagnóstico del propio virus y vacunas frente a dicha enfermedad. Para producir Ia proteína N de este torovirus porcino (PToV-BRES2) se ha utilizado un sistema heterólogo basado en baculovirus que permite expresar dicha proteína en grandes cantidades (Ejemplo 2, SEQ ID NO9). Mediante el sistema utilizado Ia proteína se expresa como un producto de fusión que tiene una cola de seis histidinas en su extremo amino-terminal, Io que facilita su purificación mediante métodos convencionales de cromatografía.
Las proteínas M y HE también han sido expresadas y purificadas siguiendo el mismo procedimiento (SEQ ID NO11 y NO13, respectivamente), aunque los rendimientos de cantidad de proteína purificada fueron significativamente menores que los obtenidos con Ia proteína N, especialmente en el caso de Ia proteína M. Además, como ejemplo ilustrativo de las distintas alternativas para producir estas proteínas y de cara a obtener mejores rendimientos a su producción industrial para Ia proteína HE se ha generado también un virus vaccinia recombinante que expresa dicha proteína, en este caso desprovista de Ia cola de histidinas (Ejemplo 3). Mediante este sistema Ia proteína se expresa en células de mamífero, y por tanto, su procesamiento post- traduccional es más similar al que experimenta durante Ia infección por torovirus que cuando se expresa mediante el recombinante de baculovirus, por Io que su capacidad de inducir una respuesta inmune puede mejorar ostensiblemente con respecto a Ia proteína producida inicialmente con baculovirus. Su purificación se realizó mediante cromatografía de inmunoafinidad para Io cual se generó un suero policlonal en conejo (anti- HEpept) mediante Ia inmunización con una mezcla de los péptidos sintéticos 286E1 (SEQ ID NO14) y 286F1 (SEQ ID NO15) correspondientes, respectivamente, a los aminoácidos 50-60 y 150-160 de Ia proteína HE de PToV de Ia invención, acoplados a KLH (Keyhole Limpet Hemocayanin). Asimismo, mediante Ia inmunización con estos péptidos se han generado sueros policlonales frente a Ia proteína HE en ratas (Ejemplo 4).
Definiciones
El término "complejo proteico de torovirus porcino", tal como se utiliza en esta descripción, se refiere a un conjunto de, al menos, una proteína de un torovirus porcino y/o fragmento o péptido de Ia misma, con actividad antigénica o inmunogénica, perteneciente al grupo de proteína N, M y HE.
Los términos "proteína N", "proteína M", "proteína HE" y "proteínas de Ia invención/proteínas de torovirus porcino de Ia invención" se refieren, en general, a una proteína cuya secuencia de aminoácidos está constituida por Ia secuencia de aminoácidos SEQ ID NO9, SEQ ID NO11 , SEQ ID NO13 y al grupo formado por todas ellas, respectivamente, e incluye a cualquiera de las diferentes formas de dichas proteínas N, M y HE representativas de cualquiera de las cepas existentes de torovirus porcino así como a proteínas sustancialmente homologas a dichas proteínas N, M y HE de torovirus porcino, es decir, proteínas cuyas secuencias de aminoácidos tienen un grado de identidad, respecto a dichas proteínas, de, al menos, un 60%, preferentemente de, al menos un 80%, más preferentemente de, al menos, un 90% y, aún más preferentemente de, al menos, un 95%. El término "análoga", tal como aquí se utiliza, pretende incluir cualquier secuencia de nucleótidos que puede ser aislada o construida sobre Ia base de Ia secuencia de nucleótidos codificantes de las proteínas N, M y HE de torovirus porcino, por ejemplo, mediante Ia introducción de sustituciones de nucleótidos conservativas o no conservativas, incluyendo Ia inserción de uno o más nucleótidos, Ia adición de uno o más nucleótidos en cualquiera de los extremos de Ia molécula o Ia deleción de uno o más nucleótidos en cualquier extremo o en el interior de Ia secuencia. En general, una secuencia de nucleótidos análoga a otra secuencia de nucleótidos es sustancialmente homologa a dicha secuencia de nucleótidos. En el sentido utilizado en esta descripción, Ia expresión "sustancialmente homologa" significa que las secuencias de nucleótidos en cuestión tienen un grado de identidad, a nivel de nucleótidos, de, al menos, un 80%, preferentemente de, al menos, un 90%, más preferentemente de, al menos, un 95% y, aún más preferentemente de, al menos, un 97%. Así, en un aspecto, Ia invención se relaciona con un complejo proteico útil para el diagnóstico y el desarrollo de vacunas frente a torovirus porcino, en adelante complejo proteico de Ia invención, que comprende, al menos, una proteína y/o, un fragmento o péptido de Ia misma, del siguiente grupo: i) proteína N de SEQ ID NO9, ii) proteína M de SEQ ID NO11 , y iii) proteína HE de SEQ ID NO13.
En una realización particular, el complejo proteico de Ia invención está constituido por una única proteína de las pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13 (Ejemplo 1 ).
En otra realización particular, el complejo proteico de Ia invención está constituido por una mezcla de las proteínas pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13; preferentemente, un complejo proteico formado por Ia proteína N y M, o un complejo proteico formando por Ia proteína N y HE.
En otra realización particular, el complejo proteico de Ia invención está constituido por una mezcla de fragmentos o péptidos de las, mismas o distintas, proteínas pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13; preferentemente, un complejo formado por fragmentos de Ia proteína N o de Ia proteína HE, preferentemente los péptidos 286E1-HE (SEQ ID NO14) y/o 286F1-HE (SEQ ID NO15) (Ejemplo 4). Las proteínas proporcionadas por esta invención pueden obtenerse mediante Ia expresión de cada proteína de forma separada o conjunta, en células hospedadoras apropiadas, por ejemplo, bacterias, células de insecto, levaduras, o preferentemente, en virus vaccinia para el caso de Ia proteína HE, las cuales contienen Ia secuencia de nucleótidos que codifica para dicha/s proteína/s de torovirus porcino en una construcción génica. En una realización particular, dichas células hospedadoras apropiadas son células de insecto o de mamífero o levaduras transformadas (infectadas cuando el sistema de expresión esté basado en un virus recombinante derivado de baculovirus o del virus vaccinia) con un sistema de expresión adecuado que incluye una construcción génica que comprende Ia secuencia de nucleótidos codificante para una o varias de las proteínas de torovirus porcino de Ia invención.
En otro aspecto, Ia invención se relaciona con un procedimiento para Ia producción de las proteínas de torovirus porcino de Ia invención, en adelante procedimiento de Ia invención, que comprende cultivar un microorganismo que contiene Ia secuencia de nucleótidos que codifica para una o varias proteínas de torovirus porcino de Ia invención y que expresa dichas proteínas, y, si se desea, recuperar dichas proteínas de Ia invención. En una realización particular, el procedimiento de Ia invención comprende las etapas de: a) cultivar células, preferentemente de insecto o de mamífero, transformadas con un sistema de expresión que comprende Ia secuencia de nucleótidos que codifica para, al menos, una proteína de Ia invención, en donde dicha proteína es una proteína cuya secuencia de aminoácidos está constituida por Ia secuencia SEQ ID NO9, 11 Y 13. b) si se desea, aislar y, opcionalmente, purificar, dichas proteínas.
Para ello, el procedimiento de Ia invención comprende, como paso previo, Ia obtención de un sistema de expresión génica, tal como un sistema constituido por un plásmido que contiene una secuencia de nucleótidos que codifica para dicha proteína de Ia invención, seguido de Ia transformación de una célula con dicho sistema de expresión, Ia expresión de las proteínas recombinantes, y, si se desea, el aislamiento de las proteínas, y, opcionalmente, Ia purificación de dichas proteínas. La obtención de células transformadas con un sistema o vector de expresión que permite Ia expresión de las proteínas de Ia invención puede ser realizada por un experto en Ia materia en base a Io aquí descrito y al estado de Ia técnica sobre esta tecnología (Ikonomou y col., 2003; Isaacs, 2004). Los microorganismos o células transformadas se cultivan bajo condiciones, conocidas por los expertos en Ia materia, que permiten Ia expresión de las proteínas recombinantes de forma aislada o conjuntamente en una misma construcción. El aislamiento y purificación de dichas proteínas de Ia invención puede realizarse por métodos convencionales, por ejemplo, mediante fraccionamiento en gradientes de sacarosa y cromatografía de afinidad.
En una realización más particular, el procedimiento de expresión Ia invención comprende Ia infección de una célula de insecto con un baculovirus que comprende Ia secuencia de nucleótidos del gen N (SEQ ID NO8). En otra realización más particular, el procedimiento de expresión Ia invención comprende Ia infección de una célula de mamífero con un virus vaccina que comprende Ia secuencia de nucleótidos del gen HE (SEQ ID NO12).
El sistema o vector de expresión utilizado para transfectar las células huésped comprende Ia secuencia de nucleótidos que codifica para una proteína de Ia invención operativamente unida a unos elementos de control de transcripción, y, opcionalmente, de traducción, e incluso de purificación y constituye un aspecto adicional de esta invención.
Por tanto, en otro aspecto, Ia invención proporciona una secuencia de nucleótidos codificante de las proteínas N, M y HE de Ia invención, en adelante secuencia de nucleótidos de Ia invención útil para Ia construcción de un vector de expresión que comprende, al menos, una secuencia y/o, un fragmento de Ia misma, del siguiente grupo: i) secuencia de nucleótidos N de SEQ ID NO8, ii) secuencia de nucleótidos M de SEQ ID NO10, y iii) secuencia de nucleótidos HE de SEQ ID NO12.
En otra realización particular, Ia secuencia de nucleótidos de Ia invención está constituida por una única secuencia de las pertenecientes al siguiente grupo: SEQ ID NO8, SEQ ID NO10 y SEQ ID NO12 (Ejemplo
1 )- Los vectores de expresión que contienen Ia secuencia de nucleótidos de Ia invención pueden contener varias de las secuencias de Ia invención, en distintas combinaciones, o utilizarse vectores de expresión distintos para las distintas secuencias en función de los sistemas utilizados o de las aplicaciones a desarrollar. En otra realización particular, Ia secuencia de nucleótidos de Ia invención está constituida por una mezcla de las secuencias pertenecientes al siguiente grupo: SEQ ID NO8, SEQ ID NO10 y SEQ ID NO12; preferentemente, una mezcla de secuencias formada por Ia secuencia de nucleótidos N y M (SEQ ID NO8 y NO10), o más preferentemente, un complejo proteico formando por Ia secuencia de nucleótidos N y HE (SEQ ID NO8 y NO12). En otra realización particular, Ia secuencia de nucleótidos de Ia invención está constituida por una mezcla de las secuencias codificantes de fragmentos de Ia proteína N o de Ia proteína HE, preferentemente, los péptidos 286E1-HE (SEQ ID NO14) y/o 286F1-HE (SEQ ID NO15). En otro aspecto, Ia invención proporciona un sistema o vector de expresión útil para transformar células, que comprende una secuencia de nucleótidos que codifica para una proteína de Ia invención, en donde dicha proteína de Ia invención es una proteína cuya secuencia de aminoácidos está constituida por, al menos, una secuencia de aminoácidos perteneciente al siguiente grupo: SEQ ID NO9, 11 y 13, estando dicha secuencia de nucleótidos codificante para dicha proteína de Ia invención operativamente unida a unos elementos de control de transcripción y, opcionalmente, de traducción.
En una realización particular, dicho sistema de expresión proporcionado por esta invención comprende Ia secuencia de nucleótidos que comprende Ia fase de lectura abierta o región codificante correspondiente a una proteína seleccionada entre el siguiente grupo: SEQ ID NO 9, 11 Y 13.
Los elementos de control de transcripción y, opcionalmente, de traducción, presentes en dicho sistema de expresión incluyen promotores, que dirigen Ia transcripción de Ia secuencia de Ia proteína de Ia invención (a Ia que está operativamente unido), y otras secuencias necesarias o apropiadas para Ia transcripción y su regulación adecuada en tiempo y lugar, por ejemplo, señales de inicio y terminación, sitios de corte, señal de poliadenilación, origen de replicación, activadores transcripcionales (enhancers), silenciadores transcripcionales (silencers), etc., todas ellas útiles en distintos tipos de células. Por otro lado, puede utilizarse cualquier secuencia de ADN codificante de un péptido o secuencia peptídica que permita el aislamiento o Ia detección de las proteína recombinante de interés, por ejemplo, a título ilustrativo y sin que limite el alcance de Ia invención, una secuencia de polihistidina (6xHis), una secuencia peptídica reconocible por un anticuerpo monoclonal (por ejemplo, E-tag para su identificación, o cualquier otra que sirva para purificar Ia proteína de fusión resultante por cromatografía de inmunoafinidad: péptidos etiqueta tales como c-myc, HA, FLAG) (Using antibodies: a laboratory manual. Ed. Harlow and David Lañe (1999). CoId Spring Harbor Laboratory Press. New York. Capítulo: Tagging proteins. Pp. 347-377).
El empleo del sistema de expresión génica proporcionado por esta invención para Ia producción y obtención de las proteínas de Ia invención constituye un aspecto adicional de esta invención. En otro aspecto, Ia invención proporciona una célula hospedadora que contiene una secuencia de nucleótidos que codifica para las proteínas de Ia invención. En una realización particular, dicha célula hospedadora es una célula de insecto, de mamífero o levadura transformada con un sistema de expresión proporcionado por esta invención que comprende una construcción génica que comprende Ia secuencia de nucleótidos que codifica para una proteína de Ia invención. Prácticamente cualquier tipo de célula eucariota puede ser utilizada para Ia puesta en práctica del procedimiento de Ia invención; no obstante, en una realización particular, dicha célula es de insecto para expresar Ia proteína N o de mamífero para expresar Ia proteína HE. En el caso de usar una levadura, se puede seleccionar una levadura del género Saccharomyces, por ejemplo, S. cerevisae, S. pombe, etc., o una levadura del género Pichia, por ejemplo, P. pastoris, etc.
Dichas proteínas de Ia invención pueden ser utilizadas para desarrollar anticuerpos específicos, para identificar sueros de animales infectados y para inmunizar animales, en particular, cerdos, por Io que pueden ser utilizadas con fines de diagnóstico o terapéuticos.
En primer lugar, las proteínas de Ia invención, preferentemente Ia proteína N purificada y fragmentos o péptidos de Ia proteína HE de Ia invención se han utilizado para Ia obtención de anticuerpos funcionalmente activos. Tal como se utiliza en Ia presente invención el término "anticuerpo funcionalmente activo" se refiere a un anticuerpo recombinante que mantiene su capacidad de unión a antígeno perteneciente, incluyendo minianticuerpos, que se definen como fragmentos derivados de anticuerpos construidos por tecnología de ADN recombinante, que, pese a su menor tamaño, conservan Ia capacidad de unión al antígeno ya que mantienen al menos un dominio variable de inmunoglobulina donde residen las zonas de unión a antígenos, y que pertenece, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: Fab, F(ab')2, scFv, y anticuerpos recombinantes monodominio (dAbs). En el marco de Ia presente invención, se entiende por anticuerpos recombinantes monodominio y/o dominios tipo inmunoglobulina con capacidad de unión y reconocimiento independiente, tanto a los dominios variables de cadena pesada (VH), a los dominios variables de cadena ligera (VL), a los anticuerpos recombinantes de camélidos (VHH), los anticuerpos recombinantes de camélidos humanizados, los anticuerpos recombinantes de otras especies camelizados, los anticuerpos monodominio IgNAR de peces cartilaginosos; es decir, que se incluyen tanto dominios que de forma natural son monodominio (caso de VHH e IgNAR), como anticuerpos que por ingeniería se han alterado para que por sí solos sean capaces de interaccionar con el antígeno y mejorar sus propiedades de estabilidad y solubilidad. Se incluye en esta definición cualquier modificación de los anticuerpos recombinantes como su multimerización o Ia fusión a cualquier molécula (p.ej. toxinas, enzimas, antígenos, otros fragmentos de anticuerpos, etc.).
El anticuerpo funcionalmente activo puede ser obtenido de un ser humano o un animal (p.ej. camellos, llamas, vicuñas, ratones, ratas, conejos, caballos, tiburones nodriza, etc.) o mediante técnicas de DNA recombinante o síntesis química de genes, y por otro lado, incluye tanto a anticuerpos monoclonales como a anticuerpos policlonales. En otro aspecto, Ia invención proporciona un anticuerpo específico de Ia proteína de Ia invención, en adelante anticuerpo de Ia invención, ya sea monoclonal o policlonal, o específico de un fragmento o péptido de Ia misma. Otra realización particular Io constituye el anticuerpo de Ia invención que es específico de una proteína de Ia invención perteneciente al siguiente grupo: proteína N de SEQ ID NO9 (ver Ejemplo 4), proteína M de SEQ ID NO11 y proteína HE de SEQ ID NO13.
Otra realización particular Io constituye el anticuerpo de Ia invención que es específico de un fragmento de una proteína de Ia invención perteneciente al siguiente grupo: proteína N de SEQ ID NO9, proteína M de SEQ ID NO11 y proteína HE de SEQ ID NO13, preferentemente un fragmento de Ia proteína HE (ver Ejemplo 4), y más preferentemente de los péptidos 286E1 (SEQ ID NO14) y 286F1 (SEQ ID NO15) correspondientes, respectivamente, a los aminoácidos 50-60 y 150-160 de Ia proteína HE de Ia invención. Estos anticuerpos policlonales se han obtenido en conejo y rata (Ejemplo 4.2).
Los anticuerpos anteriores pueden ser utilizados en procedimientos inmunológicos de diagnóstico de torovirus porcino, a partir de muestras de heces de cerdos o de restos de granjas para el control de infecciones o estudios epidemiológicos de torovirus, formando parte de un sistema de diagnóstico inmunológico de torovirus porcino.
Por Io tanto, en otro aspecto, Ia invención se relaciona con el empleo de dichos anticuerpos de Ia invención en Ia elaboración de sistema de diagnóstico inmunológico de torovirus porcino, tales como, sistema de ELISA, tira de inmunocromatografía o de Western blot, que permita Ia identificación de dichos virus en una muestra biológica, por ejemplo heces de un animal sospechoso de padecer o haber padecido una infección por torovirus porcino, preferentemente un cerdo. En otro aspecto, Ia invención proporciona un sistema de diagnóstico inmunológico de torovirus porcino que comprende una cantidad efectiva de uno o varios anticuerpos de Ia invención, capaces de interactuar con una proteína de un torovirus porcino.
En otra realización particular, dicho sistema de diagnóstico inmunológico es un ELISA que comprende uno de los anticuerpos de Ia invención frente a las proteínas N, M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas N y HE.
En otra realización particular, dicho sistema de diagnóstico es una tira inmunocromatográfica que comprende uno de los anticuerpos de Ia invención frente a las proteínas N, M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas N y HE.
En otra realización particular, dicho sistema de diagnóstico es un sistema inmunoblot que comprende uno de los anticuerpos de Ia invención frente a las proteínas N, M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas
N y HE.
Además, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de medicamentos tales como, vacunas. En una realización particular, dicho medicamento es una vacuna destinada a conferir protección a animales, en particular, cerdos, frente a infecciones de torovirus porcino.
Los anticuerpos generados durante Ia respuesta inmune desarrollada frente a un patógeno, por ejemplo, por un cerdo, permanecen en el suero del individuo durante varias semanas, por Io que Ia detección de estos anticuerpos en los sueros de los cerdos permite obtener información acerca de Ia presencia de un patógeno en el ambiente de Ia población y en dichos individuos. Así, en esta invención se describe Ia utilización como antígeno de varias de las proteínas o fragmentos de las mismas (péptidos) de esta cepa aislada de torovirus porcino PToV-BRES2, preferentemente Ia proteína N1 M o HE, y especialmente de Ia proteína de Ia nucleocápsida, N, para Ia detección por técnicas inmunológicas, preferentemente por ELISA y por inmunoblot de anticuerpos frente a PToV en muestras de sueros de mamíferos, preferentemente animales, y más preferentemente de cerdo. La proteína N de PToV reúne varias características por las que es un candidato idóneo para desarrollar un sistema de diagnóstico y una vacuna, como es el presentar un alto grado de conservación en torovirus, ser una proteína abundante en Ia partícula viral, y ser muy inmunogénica (Ejemplo 5).
Frente a Ia alta inmunogenicidad de Ia proteína N, Ia proteína M es menos inmunogénica, por Io que su utilidad como antígeno para diagnóstico serológico es reducida, aunque puede utilizarse conjuntamente con Ia proteína N y/o Ia proteína HE para Ia identificación de anticuerpos en sueros de animales. En cuanto a Ia proteína HE, se ha comprobado que induce Ia producción de anticuerpos en animales infectados con el virus bovino BToV (Cornelissen y col., 1997). Además, utilizando Ia proteína HE de PToV como antígeno en ELISA en Ia presente invención se ha comprobado que Ia proteína es reconocida por sueros porcinos positivos para torovirus, aunque Ia reactividad frente a esta proteína es menor que frente a Ia proteína N (Ejemplo 5a). Por tanto, ambas proteínas M y HE pueden utilizarse como un segundo y/o tercero antígeno de confirmación en ensayos serológicos, conjuntamente con Ia proteína N.
Por tanto, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de sistema de diagnóstico inmunológico de torovirus porcino, tales como, sistema de ELISA, tira de inmunocromatografía o de Western blot, que permita Ia identificación conjunta y simultánea de anticuerpos frente a las proteínas de Ia invención presentes en una muestra biológica de cerdos.
Tal como se utiliza en Ia presente invención el término "muestra biológica" se refiere a una muestra biológica tipo suero, plasma o sangre de un animal sospechoso de padecer o haber padecido una infección por torovirus porcino, preferentemente un cerdo. En otro aspecto, Ia invención proporciona un sistema de diagnóstico inmunológico torovirus porcino que comprende una cantidad efectiva de una o varias proteínas de Ia invención, capaces de interactuar con anticuerpos anti-torovirus porcino. En otra realización particular, dicho sistema de diagnóstico inmunológico es un ELISA que comprende una de las proteínas de Ia invención N, M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE (Ejemplo 5).
En otra realización particular, dicho sistema de diagnóstico es una tira inmunocromatográfica que comprende una de las proteínas de Ia invención N, M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE (Ejemplo 5).
La realización de una tira inmunocromatográfica que comprenda un sistema de visualización de Ia reacción antígeno-anticuerpo (pj. partículas coloidales o microesferas coloreadas recubiertas por un anticuerpo), Ia inmovilización de las proteínas de Ia invención, un soporte inerte que permita el flujo de dichos elementos reconstituidos al añadir el suero o plasma, y un sistema control de las condiciones de Ia propia reacción inmunocromatográfica, puede ser desarrollado fácilmente por un experto en Ia materia y con Ia información suministrada por Ia invención.
En otra realización particular, dicho sistema de diagnóstico es un sistema inmunoblot que comprende una de las proteínas de Ia invención N, M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE (Ejemplo 5). Además, en otro aspecto, Ia invención se relaciona con el empleo de dichas proteínas de Ia invención en Ia elaboración de medicamentos tales como, vacunas. En una realización particular, dicho medicamento es una vacuna destinada a conferir protección a animales, en particular, cerdos, frente a infecciones de torovirus porcino. En otro aspecto, Ia invención proporciona una vacuna que comprende una cantidad terapéuticamente efectiva de una o varias proteínas del complejo de Ia invención (proteínas N, M y HE), junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. Dicha vacuna es útil para proteger animales, en particular, cerdos, frente a torovirus porcino. En una realización preferida, Ia vacuna proporcionada por esta invención es una vacuna útil para proteger cerdos lactantes de Ia infección causada por torovirus, aunque también puede tener utilidad para prevenir reinfecciones en individuos adultos.
En este sentido, además los virus, por ejemplo virus vaccinia, pueden utilizarse para Ia elaboración de vacunas de DNA de forma alternativa a Ia descrita anteriormente, pudiéndose tomar como ejemplo, a titulo ilustrativo, el propio virus vaccinia desarrollado para Ia expresión de Ia proteína HE de esta invención para elaborar una vacuna. Así, otro objeto particular de Ia invención Io constituye una vacuna frente torovirus porcino útil para proteger animales, en particular, cerdos, caracterizada porque comprende un virus vaccina que comprende a su vez, al menos una, las secuencias de nucleótidos de los genes N, M y HE (SEQ ID NO8, 10 y12). La elaboración de este tipo de vacunas, preferentemente atenuadas puede ser llevada a cabo fácilmente por un experto en Ia materia (Sutter G, Staib C. 2003. "Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery". Curr Drug Targets Infecí Disord., 3:263-71 ; lshii K, Hasegawa H, Nagata N, Mizutani T, Morikawa S, Suzuki T, Taguchi F, Tashiro M, Takemori T, Miyamura T, Tsunetsugu-Yokota Y. 2006. "Induction of protective immunity against severe acute respiratory syndrome coronavirus (SARS-CoV) infection using highly attenuated recombinant vaccinia virus DIs". Virology,351 : 368-80).
En el sentido utilizado en esta descripción, Ia expresión "cantidad terapéuticamente efectiva" se refiere a Ia cantidad de las proteínas de Ia invención calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dichas proteínas de Ia invención y el efecto de inmunización a conseguir. Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas vacunas son los adyuvantes y vehículos conocidos por los técnicos en Ia materia y utilizados habitualmente en Ia elaboración de vacunas. En una realización particular, dicha vacuna se prepara en forma de una solución o suspensión acuosa, en un diluyente farmacéuticamente aceptable, tal como solución salina, solución salina tamponada con fosfato (PBS), o cualquier otro diluyente aceptable farmacéuticamente.
La vacuna proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada que dé como resultado una respuesta inmune protectora frente a Ia secuencia heteróloga o epítopo utilizado, para Io cual dicha vacuna se formulará en Ia forma farmacéutica adecuada a Ia vía de administración elegida. En una realización particular, Ia administración de Ia vacuna proporcionada por esta invención se efectúa por vía parenteral, por ejemplo, por vía intraperitoneal, subcutánea, etc.
Finalmente, Ia caracterización de los genes que expresan las proteínas N, M y HE de Ia invención (SEQ ID NO8, 10 Y 12) ha permitido el desarrollo de técnicas específicas de detección viral mediante amplificación por PCR del DNA obtenido por RT-PCR a partir del RNA de este torovirus porcino (más concretamente de cDNA obtenido a partir de su RNA)o mediante Northern blot que pueden ser utilizadas en procedimientos de diagnóstico de torovirus porcino (ver Ejemplo 1 ), a partir de muestras de heces de cerdos o de restos de granjas para el control de infecciones o estudios epidemiológicos de torovirus.
Así, en otro aspecto Ia invención se relaciona con un sistema de diagnóstico de torovirus porcino a partir de una muestra biológica mediante Ia identificación de material genómico, en adelante procedimiento de identificación genómica de Ia invención, específico de torovirus porcino, basado en Ia identificación de los genes N, M y HE, de secuencias SEQ ID NO8, 10 y 11 , respectivamente. Otro aspecto particular, Io constituye un procedimiento de identificación genómica de Ia invención basado en Ia amplificación de DNA y que comprende las siguientes etapas: iv) aislamiento de material génico de una muestra biológica sospechosa de contener torovirus porcino y obtención del cDNA correspondiente, v) amplificación por PCR de dicho cDNA mediante oligonucleótidos específicos para, al menos, uno de los genes de Ia invención, gen N, M y HE que se corresponden, a título ilustrativo y sin que limite el alcance de Ia invención, respectivamente, con los siguientes: pareja de oligos PToV-N5' y PToV-N3' para el gen N (SEQ ID NOI y 2), - pareja de oligos PToV-M5' y PToV-M3' para el gen
M (SEQ ID NO3 y 4), Y pareja de oligos PToV-H E5' y PToV-H E3' para el gen HE (SEQ ID NO5 y 6), y vi) diagnóstico de un torovirus porcino si alguno de los genes de Ia invención es amplificado en ii).
Otro aspecto adicional Io constituyen oligonucleótidos o cebadores utilizados en Ia identificación genómica de Ia invención basado en Ia amplificación de DNA, preferentemente las parejas de oligonucleótidos siguientes: - pareja de oligos PToV-N5' y PToV-N3' para el gen
N (SEQ ID NOI y 2), pareja de oligos PToV-M5' y PToV-M3' para el gen M (SEQ ID NO3 y 4), Y pareja de oligos PToV-H E5' y PToV-H E3' para el gen HE (SEQ ID NO5 y 6). Otro aspecto particular, Io constituye un procedimiento de identificación genómica de Ia invención basado en Ia técnica de Northern blot con sondas de polinucleótidos específicas de los genes N1 M y HE, de secuencias SEQ ID NO8, 10 y 1 1 , respectivamente.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra los tamaños de los fragmentos amplificados a partir del cDNA de PToV-BRES2 utilizando como cebadores los oligonucleótidos descritos en Ia Tabla 1 , analizados por electroforesis en un gel de agarosa al 1 %. Como marcadores de peso molecular se utilizaron una escalera de DNA de 100 pb (a Ia izquierda) y otra de 1000 pb (a Ia derecha). Los pesos moleculares de cada marcador se indican en pb.
La Figura 2 muestra las secuencias de nucleótidos de los fragmentos amplificados a partir del cDNA de PToV-BRES2, correspondientes a Ia ORF5 (Figura 2A), ORF3 (Figura 2B) y ORF4 (Figura 2C), que codifican las proteína N1 M y HE, respectivamente.
La Figura 3 muestra el análisis de Ia expresión de Ia proteína N de PToV- BRES2 en células de insecto a diferentes tiempos postinfección (24, 48 y 72 hpi) con el virus rBac-PToVBRES2-N mediante SDS-PAGE y tinción con azul coomassie (A) e inmunoblot con un suero comercial anti-his y con el suero anti-BRES que corresponde al animal infectado con el aislado de torovirus porcino PToV-BRES2 (B). La posición de Ia proteína N se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda o a Ia derecha de cada panel.
La Figura 4 muestra el análisis de Ia expresión de Ia proteína M de PToV- BRES2 en células de insecto a diferentes tiempos postinfección (24, 48 y 72 hpi) con el virus rBac-PToVBRES2-M mediante SDS-PAGE y tinción con azul coomassie (A) e inmunoblot con los sueros anti-his y anti-BEV- Misit (B). La posición de Ia proteína M se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda de cada panel.
La Figura 5 muestra el análisis de Ia expresión de Ia proteína HE de PToV-BRES2 en células de insecto a diferentes tiempos postinfección (24, 48 y 72 hpi) con el virus rBac-PToVBRES2-HE mediante SDS-PAGE y tinción con azul coomassie (A) e inmunoblot con los sueros anti-his y anti- BRES (B). La posición de Ia proteína HE se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda o a Ia derecha de cada panel. La Figura 6 muestra los distintos pasos del proceso de purificación de Ia proteína recombinante N de PToV-BRES2. Las muestras de proteína correspondientes al extracto celular inicial (Fo), fracción insoluble (Fi), Ia resina antes (Ro) y después de las eluciones (Rf) y las eluciones de Ia proteína (E1 , E2, y E3) fueron analizadas mediante inmunoblot con el suero anti-his. La posición de Ia proteína N recombinante se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda de Ia figura. La Figura 7 muestra el análisis de Ia proteína HE expresada en células de mamífero por el virus recombinante rW-HE analizada mediante SDS- PAGE en condiciones no reductoras, y observada tras Ia inmunodetección con los sueros porcinos anti-BRES (A) y Serotec (suero porcino comercial de Ia casa Serotec Ltd. en el que se ha comprobado Ia presencia de anticuerpos frente a torovirus) (B). La posición de Ia proteína N recombinante se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda de cada panel.
La Figura 8 muestra Ia reactividad del suero policlonal generado en conejo frente a Ia proteína HE de PToV mediante Ia inmunización con dos péptidos sintéticos (286E1 y 286F1 ). (A) Análisis mediante inmunoblot de Ia reactividad del suero con Ia proteína expresada en células de mamífero por el virus recombinante rW-HE. Las diluciones del suero se indican en Ia parte superior del gel. La posición de Ia proteína HE recombinante se indica con una punta de flecha. (B) Análisis por inmunomicroscopía electrónica de Ia reactividad del suero anti-HE con Ia proteína HE presente en Ia superficie de una partícula de PToV. La Figura 9 muestra Ia reactividad del suero policlonal generado en conejo frente a Ia proteína N de PToV mediante Ia inmunización con Ia proteína recombinante purificada a partir de células de insecto infectadas con el virus recombinante rBac-PToVBRES2-N. Extractos de células de insecto no infectadas (Mock) o infectadas durante 24, 48 y 72 horas se separaron mediante SDS-PAGE y las proteínas se transfirieron a una membrana de nitrocelulosa y se hicieron reaccionar con el suero policlonal diluido 1 :1000. La posición de Ia proteína N recombinante se indica con una punta de flecha. Los tamaños de los marcadores de peso molecular en kilodaltons se indican a Ia izquierda de Ia figura. La Figura 10 muestra Ia reactividad en ELISA frente a las proteínas N y HE de PToV-BRES2 recombinantes de Ia invención de diferentes sueros porcinos. Las proteínas purificadas a partir de células de insecto infectadas con el virus rBac-PToVBRES-N o a partir de células de mamífero infectadas con el virus rW-HE se utilizaron para tapizar los pocilios de una placa de ELISA, utilizando 400 ng de cada proteína por pocilio. Los pocilios se incubaron por duplicado con los sueros Serotec y anti-Bres así como con otras muestras de sueros porcinos procedentes de distintas granjas (ZAR 410, ZAR 1301 , JA2, JA6 y EST512) y con los sueros control de conejo con anticuerpos anti-N y anti-HEpept. En Ia figura se muestran las medias de los valores de densidad óptica obtenidos para cada suero frente a las proteínas N y HE.
La Figura 11 muestra los resultados de Ia titulación del antígeno con el suero policlonal de conejo anti-N para Ia optimización de las condiciones del ELISA frente a Ia proteína N. En Ia figura se muestran las curvas obtenidas para cada cantidad (400, 200, 100 y 50 ng) de proteína N purificada con las distintas diluciones del suero. La Figura 12 muestra los resultados de Ia titulación de los sueros porcinos Serotec y anti-Bres frente a 400 ng de Ia proteína N para Ia elección de Ia dilución óptima de los sueros porcinos a analizar en el ELISA. La Figura 13 muestra Ia ausencia de reactividad cruzada entre los anticuerpos frente a los virus de cerdo TGEV y PRRSV y Ia proteína N de PToV. Se analizó Ia reactividad en ELISA de sueros de animales libres de patógenos no inmunizados (spf), o inoculados con los virus PRCV (anti- PRCV) y PRRSV (anti-PRRSV), y de los sueros porcinos positivos para PToV anti-BRES y Serotec, frente a Ia proteína N de PToV purificada, y frente a partículas virales purificadas de PRRSV y TGEV. En Ia figura se muestran las medias de los valores de densidad óptica obtenidos para cada suero diluido 1 :100.
La Figura 14 muestra Ia ausencia de reactividad en inmunoblot de los sueros anti-PRCV y anti-PRRSV frente a Ia proteína N de PToV purificada y frente a partículas virales purificadas de BEV. El suero porcino Serotec reconoce Ia proteína N de PToV, y en menor medida Ia proteína N presente en las partículas virales del torovirus equino BEV, pero también presenta anticuerpos que reconocen Ia proteína M de PRRSV y Ia proteína N de PRCV. Este resultado es improbable que se deba a una reactividad cruzada ya que un suero policlonal producido frente al virus equino (anti- BEV), que reconoce específicamente las proteínas N tanto del virus homólogo BEV como de PToV, no reacciona con las proteínas de PRRSV o PRCV. Además los sueros anti-PRCV y anti-PRRSV reaccionan específicamente con las proteínas del virus homólogo, pero no reconocen Ia proteína N de PToV ni las proteínas de BEV.
La Figura 15 muestra los resultados obtenidos del análisis por ELISA frente a Ia proteína N de PToV en un muestreo con sueros de campo procedentes de diferentes granjas de cerdos de Navarra (A), Aragón (B) y Galicia (C). En los tres casos se incluyó el suero Serotec como control positivo y suero de animales spf como control negativo. La Figura 16 muestra los resultados obtenidos del análisis por inmunoblot frente a Ia proteína N de PToV de los mismos sueros de campo utilizados en Ia Figura 15, que proceden de diferentes granjas de Navarra (A), Aragón (B) y Galicia (C). En los tres casos se incluyó el suero Serotec como control positivo.
EJEMPLOS DE LA INVENCIÓN
Ejemplo 1.- Amplificación y clonaje de las ORFs correspondientes a las proteínas N, M y HE del aislado PToV-BRES2 a. Extracción de RNA viral a partir de Ia muestra de heces
Se utilizó el kit comercial High puré RNA isolation kit (Roche Applied Science). Brevemente, se utilizaron 200 μl de material de partida y el RNA se recuperó en 60 μl de tampón de elución (agua libre de RNasas y DNasas) provisto por el fabricante. El RNA obtenido se conservó a -8O0C. La extracción y manipulación de RNA se llevó a cabo utilizando materiales y reactivos libres de RNasas y dedicados exclusivamente a estos procedimientos, y en un ambiente aislado del resto del laboratorio.
b.- Obtención de cDNA viral A partir de este RNA, se obtuvo su cadena de DNA complementaria
(cDNA) utilizando hexámeros aleatorios como cebadores a fin de conseguir cadenas de cDNA representativas de todo el genoma del virus. Más concretamente, las reacciones de Ia transcriptasa reversa (RT) para Ia síntesis de las cadenas de cDNA se llevaron a cabo utilizando el sistema SuperScript Il (Invitrogen, Corp) siguiendo las instrucciones del fabricante. Brevemente, se añadieron 8 μl de RNA a una mezcla de 10 pmoles de desoxinucleótidos trifosfatos (dNTPs) (Roche Applied Science) y 200 ng de hexámeros aleatorios (Roche Applied Science). La mezcla se incubó durante 5 minutos a 650C y 1 minuto en hielo. A continuación se añadieron 9 μl de una mezcla de reacción RT que contenía Tris-HCI 50 mM, pH 8,3; KCI 75 m M, MgCI27,5 mM; dithiotreiol (DTT) 10 mM y 40 U de inhibidor de ribonucleasas (Fermentas). Se incubó esta mezcla 2 minutos a 420C y se añadieron 200 U (1 μl) de transcriptasa reversa SuperScriptlI (Invitrogen, Corp) y se incubó de nuevo 50 minutos a 420C. Transcurrido este tiempo Ia enzima se inactivo mediante una incubación a 750C, 15 minutos. El cDNA obtenido se almacenó a -2O0C.
Todo el proceso se llevó a cabo en instalaciones separadas de Ia extracción de RNA, con pipetas y puntas con filtro dedicadas exclusivamente a este procedimiento.
c- Obtención de las ORFs correspondientes a las proteínas N, M y HE de
PToV mediante reacción en cadena de Ia polimerasa (PCR) a partir del cDNA.
A continuación, para obtener por separado las ORFs 5, 3 y 4 correspondientes a las proteínas N, M y HE de torovirus porcino, se utilizó Ia reacción en cadena de Ia polimerasa (PCR), utilizando para ello los oligonucleótidos descritos en Ia Tabla 1.
Tabla 1.- Oligonucleótidos utilizados para el clonaje de los genes de PToV.
Figure imgf000034_0001
Las secuencias para el reconocimiento de enzimas de restricción se indican subrayadas. Los codones de inicio y de parada de Ia traducción se indican en negrita. El gen N de PToV-BRES2 (ORF5) que codifica Ia proteína de Ia nucleocápsida N se amplificó por RT-PCR a partir de una muestra de heces de cerdo que contiene el aislado de torovirus porcino PToV-BRES2. Para amplificar Ia secuencia de Ia ORF5 se utilizaron los oligonucleótidos PToV-N5' (SEQ ID NO1 ) y PToV-N3' (SEQ ID NO2) y el resultado se visualizó en un gel de agarosa al 1 % y tinción con bromuro de etidio. Se obtuvo un único producto de RT-PCR. Este producto tiene una longitud de 500 pb similar al descrito para Ia ORF5 de los torovirus (Figura 1 ). De forma similar y utilizando las parejas de oligonucleótidos SEQ ID NO3 y 4 y SEQ ID NO5 y 6 se amplificaron los genes correspondientes a proteínas M y HE, respectivamente, obteniéndose fragmentos con los tamaños esperados de 700 y 1200 pares de bases (pb) descritos para las ORFs 3 y 4, respectivamente (Figura 1 ).
Más en detalle, para Ia amplificación de los genes N, M y HE se llevaron a cabo las siguientes reacciones de PCR:
• PToV-BRES2-N:
La amplificación de Ia secuencia codificante de Ia proteína N se llevó a cabo utilizando los oligonucleótidos PToVNδ' (SEQ ID NO1 ) y PToVN3' (SEQ ID NO2), en una reacción de PCR que contenía 2 μl de cDNA, 2,5 μl de tampón de PCR 10X (20 mM de Tris-HCI, pH 8,0; KCI 50 mM), 1 ,5 mM de MgCL2, 0,2 μM de cada oligonucleótido, 0,2 μM de dNTPs; 1 U de Ia DNA polimerasa Taq platinum (Invitrogen Corp.) y 18 μl de agua libre de DNasas. El programa de amplificación consistió en 2 minutos a 920C; 30 ciclos de 40 segundos a 920C, 40 segundos a 5O0C, 40 segundos a 720C; y un ciclo de 5 minutos a 720C.
• PToV-BRES2-M:
La secuencia codificante de Ia proteína M se amplificó utilizando los oligonucleótidos PToV-M5' (SEQ ID NO3) y PToV-M3' (SEQ ID NO4). El resto de los componentes de Ia mezcla de reacción fueron los mismos que en el caso anterior. El programa de amplificación fue: 2 minutos a 920C; 20 ciclos de 40 segundos a 920C, 40 segundos a 5O0C, 40 segundos a 720C; y 10 ciclos en los que a cada ciclo se añadía 20 segundos más al tiempo de extensión, y finalmente un paso de 5 minutos a 720C.
• PToV-BRES2-HE:
En primer lugar, a partir del cDNA obtenido por RT y utilizando los oligonucleótidos PToV-HE3' (SEQ ID NO6) y ToV-M5' (SEQ ID NO7) se amplificó Ia secuencia codificante de Ia proteína HE junto con parte del gen M y Ia región intergénica entre ambos genes. El producto de esta reacción se secuenció, y en base a esta secuencia se diseñó el oligonucleótido PToV-BRES2-HE5' (SEQ ID NO5) en Ia región 5' del gen HE. Los oligonucleótidos PToV-BRES2-HE5' y PToV-HE3' se utilizaron para amplificar el gen HE a partir del cDNA. La reacción se llevó a cabo utilizando el sistema High Fidelity System (Eppendorf) siguiendo las instrucciones del fabricante. Se añadieron 2 μl de cDNA a una mezcla de reacción que contenía 1X high fidelity buffer (Eppendorf), 200 μM dNTPs, 200 nM de cada oligonucleótido y 0.71 U/μl de Ia mezcla de enzimas TripleMaster polymerase mix. La mezcla de reacción se incubó a 930C 3 minutos, seguido de 10 ciclos de 1 minuto a 930C, 40 segundos a 5O0C y 5 minutos a 680C, y 25 ciclos en los que el tiempo de extensión se aumentaba 20 segundos en cada ciclo. Por último, se añadió un paso de 10 minutos a 680C.
d.- Clonaje y secuenciación de las ORFs correspondientes a las proteínas N, M y HE de PToV-BRES2
El fragmento de 500 pares de bases correspondiente al gen N de PToV-BRES2 (SEQ ID NO8) que se obtuvo mediante PCR se clonó en el vector comercial pGemT-Easy (Promega Corp.). Después de Ia ligación con DNA T4 Ligasa (New England Biolabs) Ia mezcla de reacción se utilizó para transformar E. coli DH5α por choque térmico. Las bacterias se sembraron en placas de agar en presencia de ampicilina y X-GaI. Las colonias positivas se seleccionaron por blanco/azul y Ia presencia del inserto se comprobó por PCR. Los clones positivos se crecieron en medio LB y en presencia de ampicilina. A partir de estos cultivos se obtuvieron preparaciones de los DNA plasmídicos de los distintos clones seleccionados mediante Ia utilización del kit comercial Quiaprep® miniprep kit (Quiagen), siguiendo las instrucciones del fabricante. La correcta inserción del fragmento correspondiente al gen N en los distintos clones se confirmó mediante digestión enzimática con las enzimas de restricción Bam\λ\ y Xba\ y mediante secuenciación a partir de los oligonucleótidos correspondientes a las secuencias de los promotores T7 y Sp6 presentes en el vector. En total se secuenciaron 4 clones independientes. La secuencia consenso de estos 4 clones (Figura 2A) queda agrupada con el resto de las secuencias del gen N de los aislados porcinos con las que presenta un 91-93% de homología. La homología respecto a las cepas de BToV B145, B150, B155 y B156 y B1314 fue de un 91-93%, mientras que respecto al aislado bovino BRV fue solo de un 69%. Finalmente Ia homología frente a BEV, fue del 70%.
A continuación, y de forma similar las ORFs 3 y 4 (SEQ ID NO10 y SEQ ID NO12) correspondientes a las proteínas M (Figura 2B) y HE (Figura 2C) se insertaron en el mismo vector comercial pGemT-Easy (Promega Corp.) y se secuenciaron, a partir de distintos clones independientes. Las secuencias de los distintos clones demostraron que los productos obtenidos correspondían a los genes M y HE torovirus porcino, mostrando una homología del 98% en el caso del gen M, y del 92- 80% en el caso del gen HE, frente al resto de aislados porcinos descritos en Ia bibliografía. Ejemplo 2.- Generación de baculovirus recombinantes que expresen las proteínas N, M y HE de PToV-BRES2 codificadas por las ORFs 5, 3 y 4, respectivamente a.- Construcción de vectores de transferencia y de bácmidos para baculovirus que contengan las ORFs 5, 3 y 4 de PToV que codifican las proteínas N, M y HE, respectivamente.
Para Ia generación del baculovirus recombinante que exprese Ia ORF5 de PToV-BRES2, el gen completo se clonó en el vector comercial de transferencia para baculovirus pFastBac-HTc (Invitrogen Corp.), mediante digestión enzimática del plásmido pGT-PToVBRES2-N con las endonucleasas Bam\λ\ y Xba\ y ligación en los mismos lugares de restricción en el plásmido pFastBac-HTc, obteniéndose Ia construcción pFB-PToVBRES2-N, en Ia que el gen de Ia proteína N de PToV, queda bajo el control del promotor temprano/tardío de Ia polihedrina de baculovirus y en fase en su extremo 5' con Ia secuencia que codifica una cola de histidinas (His-tag) presente en el plásmido.
A continuación, el plásmido generado pFB-PToVBRES2-N, se utilizó para transformar bacterias E. coli DHIOBac, que contienen un bácmido /acZ-mini-affTn7, para Ia generación de baculovirus recombinantes por recombinación homologa, y un plásmido en el que están codificadas las proteínas mediadoras de Ia recombinación. Las bacterias transformadas se crecieron durante 3 días hasta observarse actividad β-galactosidasa en las colonias que portan los bácmidos no recombinantes. Se seleccionaron dos clones independientes de cada transformación, se crecieron y los bácmidos recombinantes se purificaron mediante lisis alcalina (Sambroock y col., 2001 ).
Siguiendo Ia misma estrategia se introdujeron los genes que codifican las proteínas M y HE de PToV-BRES2 en el vector de transferencia para baculovirus pFastBac-HTc, dando lugar a las construcciones pFB-PToVBRES2-M y pFB-PToVBRES2-HE. Con estos plásmidos se transformaron bacterias E. coli DHIOBac, y se obtuvieron los correspondientes bácmidos recombinantes conteniendo los genes correspondientes a las proteínas M y HE, los cuales fueron seleccionados y purificados según se ha descrito anteriormente.
b.- Obtención de baculovirus recombinantes que contengan las ORFs 5, 3 y 4 de PToV que codifican las proteínas N, M y HE, respectivamente.
Los bácmidos recombinantes conteniendo el gen N de PToV- BRES2 se utilizaron para transfectar células High Five mediante el uso de lipofectina (Invitrogen Corp.), siguiendo las instrucciones de Ia casa comercial suministradora. Los cultivos transfectados se mantuvieron a 280C hasta observar un extenso efecto citopático, aproximadamente 3 días, momento en qué se recogieron los sobrenadantes de los cultivos que contienen el virus recombinante, rBac-PToVBRES2-N y se guardaron a 40C como stock primario. El baculovirus recombinante rBac-PToVBRES2-N se amplificó a partir del stock primario mediante infección de células de insecto High Five, y el sobrenadante de los cultivos se recogió cuando el efecto citopático era mayor, y se guardó igualmente a 40C como stock secundario. Siguiendo el mismo procedimiento se generaron los baculovirus recombinantes que contienen los genes que codifican las proteínas M y HE de PTOV-BRES2, rBac-PToVBRES2-M y rBac-PToVBRES2-HE, respectivamente.
c- Análisis de las proteínas recombinantes
Los baculovirus recombinantes generados se utilizaron para infectar células High Five, y analizar Ia expresión de las proteínas recombinantes N, M y HE (SEQ ID NO9, SEQ ID NO11 y SEQ ID NO13) de PToV mediante inmunodetección con un suero que reconoce Ia cola de histidinas (anti-his) así como con un suero de cerdo con anticuerpos frente a PToV (anti-BRES). Para ello, cultivos de células High Five fueron infectados a alta multiplicidad con los diferentes virus recombinantes y fueron recogidos a diferentes tiempos post-infección para determinar en cada caso el momento óptimo de expresión de Ia correspondiente proteína recombinante. Una vez recogidas las células se lavaron dos veces con PBS mediante centrifugación a 1500 rpm 5 minutos y se resuspendieron en tampón de muestra (Laemmli, 1970) y los extractos celulares se separaron mediante electroforesis en geles de poliacrilamida (SDS-PAGE). Los geles se tiñeron con azul de coomassie o se transfirieron a membranas de nitrocelulosa. Las membranas se bloquearon mediante incubación durante 1 hora con una solución de leche desnatada en polvo al 5% en PBS, y posteriormente se incubaron con el suero que reconoce las histidinas o con sueros de cerdos que presentan anticuerpos frente al virus PToV durante 1 hora a temperatura ambiente o toda Ia noche a 40C. Tras Ia incubación se lavaron las membranas y se incubaron con un anticuerpo secundario conjugado con peroxidasa diluido 1 :1000 en Ia solución de bloqueo, durante 1 hora a temperatura ambiente. Posteriormente, Ia membrana se lavó tres veces con PBS y el inmuonoblot se reveló mediante quimioluminiscencia utilizando el sistema comercial ECL (Amersham Biosciences), seguido de Ia exposición a una película de autorradiografía de alta sensibilidad (Biomax XAR film, Kodak).
En los extractos de células infectadas con el virus rBac- PToVBRES2-N analizados por SDS-PAGE y tinción con azul de coomassie se observó Ia aparición de una proteína de 2OkDa a las 48 hpi, cuya cantidad aumenta a las 72 hpi. Además, tanto el suero anti-his como el suero de cerdo anti-BRES reconocen una proteína mayoritaria de 2OkDa, que se acumula en las células y se observa desde las 24 hpi. La proteína N de PToV tiene peso molecular teórico de 16kDa, por Io que el tamaño esperado de Ia proteína final una vez fusionada a Ia cola de histidinas (3kDa) sería de 2OkDa, que coincide con el tamaño observado en los inmunoblots (Figura 3). En los extractos de células infectadas con el virus rBac- PToVBRES2-M tanto el suero anti-his como un suero policlonal dirigido contra el extremo amino terminal de Ia proteína (anti-MNt) reconocen una proteína de 23kDa detectable a partir de las 48 hpi (Figura 4B). En el gel teñido con azul de coomassie partir de las 72 hpi se puede observar Ia acumulación de Ia proteína M sobre el fondo de proteínas celulares presentes en el extracto (Figura 4A). El peso molecular teórico de Ia proteína M de PToV es de 26kDa y contando con Ia cola de histidinas, el peso total teórico de Ia proteína sería de 29kDa. Sin embargo, previamente se ha descrito que en el caso del torovirus equino BEV el carácter altamente hidrofóbico de Ia proteína M hace que su movilidad electroforética corresponda a Ia de una proteína de 22kDa (Den Boon y col., 1991 ).
En muestras de células infectadas con el baculovirus recombinante rBac-PToV-HE el suero anti-his y el suero porcino anti-BRES reconocen una proteína de 65 kDa presente desde las 24 hpi, y a las 48 y 72 hpi se detectaron además proteínas de 120 y 25OkDa con ambos sueros (Figura 5B). Estas mismas bandas se observan en el gel teñido con coomassie en los extractos recogidos a 48 y 72 hpi (Figura 5A). El peso molecular teórico de Ia proteína HE recombinante es de 51 kDa, 48kDa correspondiente a Ia proteína HE y 3kDa más de Ia cola de histidinas. Sin embargo, se ha descrito que Ia proteína HE de torovirus está glicosilada (Cornelissen y col., 1997) y que el peso molecular de Ia forma glicosilada es de 65kDa. Por Io tanto, Ia proteína de 65kDa detectada en los extractos de células de insecto correspondería a Ia forma glicosilada de Ia proteína. Las proteínas de 12OkDa y de 25OkDa podrían corresponder a formas diméricas y tetraméricas de Ia proteína HE. d.- Purificación de las proteínas N, M y HE de PToV-BRES2 recombinantes.
Las proteínas N, M y HE recombinantes de PToV se purificaron mediante cromatografía de afinidad utilizando una resina comercial de cobalto (Talón™, Clontech). Brevemente, las células High Five, infectadas a alta multiplicidad, se recogieron en el momento de máxima infección, aproximadamente 48 hpi. Las células se recuperaron por centrifugación a 3000 rpm 10 minutos y se lavaron dos veces con PBS mediante centrifugación a 3000 rpm 10 minutos. Tras los lavados, las células se resuspendieron en una solución de lisis que contenía guanidina 6 M, NaCI 300 mM, H2NaPO450 mM, pH 8,0 e imidazol 1 mM, se homogenizaron por agitación, se incubaron en hielo durante 30 minutos y se sometieron a 3 pulsos de sonicación a 80 V durante 10 segundos. Para eliminar los restos celulares se centrifugó el extracto de células a 3000 rpm, 10 minutos a 40C. El sobrenadante (10 mi) se añadió a 2 mi de resina de cobalto previamente estabilizada en Ia misma solución de lisis y se incubó durante 2 horas a 40C en una noria. Transcurrido este tiempo se recuperó Ia resina mediante centrifugación a 1500 rpm 5 minutos, y se lavó tres veces con solución de lisis sin imidazol. A continuación, se realizaron tres lavados con una solución de urea 8 M, NaCI 300 mM, H2NaPO4 50 mM, pH 8,0, tras los cuales se recuperaron las distintas proteínas utilizando dos volúmenes de una solución de imidazol 1 M, urea 8 M, 300 mM NaCI, H2NaPO4 50 mM, pH 8,0. La resina se mantuvo en agitación en Ia noria toda Ia noche a 40C y tras una centrifugación se recogió el sobrenadante (elución 1 ) y se añadió de nuevo tampón de elución a Ia resina. Tras 20 minutos de agitación en Ia noria a temperatura ambiente Ia mezcla se centrifugó y se recogió el sobrenadante (elución 2), este proceso se repitió una tercera vez (elución 3). La Figura 3 muestra el análisis mediante electroforesis en SDS-PAGE y tinción con azul de coomassie de los distintos pasos de purificación de Ia proteína N. Una vez purificadas, se dializaron las distintas proteínas frente H2O MiIIiQ para eliminar el imidazol, y tras Ia diálisis se liofilizaron. Las proteínas purificadas se disolvieron en Ia misma solución de elución pero en ausencia de imidazol y se cuantificaron mediante un ensayo BCA diluyendo cada proteína al menos 1 :5 en H2O MiIIiQ para disminuir Ia concentración de urea por debajo de 3 M y así no interfiera en el ensayo. La curva de BSA se preparó en una solución idéntica a Ia de Ia proteína diluida.
Ejemplo 3.- Generación de virus vaccinia recombinante que exprese Ia proteína HE de PToV-BRES2 codificada por Ia ORF4 a.- Construcción de un vector de transferencia para vaccinia que contenga Ia ORF4 de PToV que codifica Ia proteína HE
El fragmento de DNA correspondiente al gen HE de PToV-BRES-2 (SEQ ID NO12) se obtuvo mediante restricción enzimática del plásmido pGT-BRES2-HE con BamH\ y Λ/col y se subclonó en el vector pJR101
(Gherardi y col., 1999), previamente digerido con las mismas enzimas, obteniéndose el vector pJR-BRES2-HE.
b.- Obtención de un recombinante del virus vaccinia que exprese Ia proteína HE de PToV codificada por Ia ORF4
Para Ia obtención del virus vaccinia recombinante que exprese Ia proteína HE (SEQ ID NO13) se infectaron células BSC40 con un virus vaccinia parental de Ia cepa Western Reserve (WR) a baja multiplicidad de infección y se transfectaron a continuación con el plásmido pJR101- BRES2-HE, siguiendo un protocolo similar al utilizado en Ia generación de los recombinantes de baculovirus. A las 48 hpi, se recogieron las células y se centrifugaron a 1500 rpm durante 10 minutos. Las células depositadas se resuspendieron en medio de cultivo DMEM y se usaron mediante tres ciclos de congelación/descongelación seguidos de 3 pulsos de sonicación de 10 segundos a 8OV cada uno, y se centrifugaron a 1500 rpm durante 10 minutos para eliminar los restos celulares. El sobrenadante obtenido se utilizó para infectar nuevos cultivos y los virus recombinantes, que denominamos rW-HE, fueron seleccionados en base al color azul que desarrollan las placas de lisis tras Ia adición de X-gluc al medio con agar en un ensayo de placa (Carroll y Moss, 1995). Este proceso de selección se repitió tres veces y el virus recombinante seleccionado fue amplificado mediante infección de nuevos cultivos celulares y los extractos obtenidos tras 72 horas de infección fueron usados según se ha descrito anteriormente, y el sobrenadante obtenido sirvió como stock de virus.
c- Análisis de Ia proteína recombinante HE
El virus recombinante rVV-HE se utilizó para infectar células BSC40, y analizar Ia expresión de Ia proteína HE de PToV mediante inmunodetección con dos sueros de cerdo que contienen anticuerpos frente a PToV (anti-BRES y Serotec). Las células se lavaron dos veces con PBS y se recogieron en tampón de muestra (Laemmli, 1970) y los extractos celulares se separaron mediante electroforesis en geles de poliacrilamida (SDS-PAGE) y se transfirieron a membranas de nitrocelulosa. Ambos sueros porcinos reconocen una proteína de aproximadamente 65kDa en los extractos de células infectadas con el virus recombinante rW-HE, que no está presente en los extractos de células infectadas con el virus parental WR. Por otra parte, se comprobó que el suero anti-HEpept producido frente a dos péptidos correspondientes a Ia proteína HE reconocía asimismo una proteína de 65kDa en los extractos de células infectadas con rW-HE (Figuras 7A y 7B). Además, por inmunomicroscopía electrónica se comprobó que este suero marcaba Ia superficie de las partículas virales del asilado PToV-BRES2, indicando que estaba reconociendo específicamente Ia proteína HE presente en Ia superficie de los viriones (Figura 8). d.- Purificación de Ia proteína recombinante HE
Para purificar Ia proteína HE se infectaron células BSC40 a alta multiplicidad con el virus rVV-HE. A las 24 hpi se recogieron las células en una solución de lisis (Tris-HCI 20 mM, pH 6,5, NaCI 40 mM, EDTA 20 mM y Tritón X-100 al 0,1%). Los restos celulares se descartaron mediante centrifugación y el sobrenadante se añadió sobre una décima parte del volumen de proteína A unida a sefarosa, a Ia que previamente se Ie habían acoplado anticuerpos anti-HEpept. La mezcla se incubó durante 2 horas a temperatura ambiente en agitación. Tras 3 lavados con Ia solución de lisis se eluyó Ia proteína por competición utilizando una mezcla de los péptidos 286E1 y 286F1 cada uno a una concentración de 1 mg/ml e incubando en agitación a 40C durante toda Ia noche. Posteriormente se hicieron dos eluciones más incubando 2 horas a temperatura ambiente. La proteína HE es capturada por los anticuerpos anti-HEpept (ver Ejemplo 4.2) y posteriormente eluida con los péptidos sintéticos. Cuando se analiza Ia preparación de proteína purificada mediante SDS-PAGE se observa una banda principal de 65kDa y una escalera de bandas superiores sensibles a Ia reducción con β-mercaptoetanol y que son reconocidas por un suero de rata producido frente al péptido 286E1 (SEQ ID NO14). Las muestras de elución se dializaron frente a Ia solución de lisis pero sin Tritón X-100 y Ia proteína obtenida se cuantificó por BCA, comparándola con una curva patrón de BSA. Se obtuvieron 1 ,5 μg de proteína por 2-107 células. Esta proteína purificada ha sido utilizada en ensayos de ELISA para Ia detección de anticuerpos frente a PToV, como se detallará en el siguiente apartado.
Ejemplo 4.- Obtención de anticuerpos policlonales frente a proteínas y péptidos de PToVBRES2 de Ia invención.
4.1. - Sueros policlonales frente a Ia proteína N de PToV (Figura 9) La proteína N (SEQ ID NO9) purificada según se ha descrito anteriormente se utilizó como antígeno para inmunizar animales de experimentación, conejos y ratas, y generar anticuerpos policlonales frente a Ia misma. Para Ia generación de anticuerpos se utilizó una primera inoculación de proteína N purificada (500 μg en conejos y 50 μg en ratas) emulsionada con adyuvante completo de Freund, seguida de tres dosis de recuerdo con el antígeno (250 μg para los conejos y 25 μg para las ratas) mezclado con adyuvante incompleto de Freund.
10 días después de Ia última dosis se extrajo sangre para comprobar Ia reactividad de los sueros mediante inmunoblot. Los sueros policlonales generados tanto en conejos como en ratas reconocen específicamente Ia proteína N recombinante expresada en células de insecto mediante el baculovirus rBac-PToV-(N), así como Ia proteína N del torovirus equino BEV, aunque frente a ésta última muestra una menor reactividad. Por tanto, estos resultados confirman Ia inmunogenicidad de Ia proteína N, y proporcionan un nuevo reactivo específico frente a torovirus porcino que puede tener utilidad para detectar Ia presencia de partículas virales en muestras biológicas mediante ensayos de ELISA o de inmunocaptura de complejos RNA-proteína N y posterior análisis por RT-PCR.
4.2.- Suero policlonal frente a Ia proteína HE de PToV (Figura 8) Por otro lado, se generó un suero policlonal en conejo (anti-HEpept) mediante Ia inmunización con una mezcla de los péptidos sintéticos 286E1 (SEQ ID NO14) y 286F1 (SEQ ID NO15) correspondientes respectivamente a los aminoácidos 50-60 y 150-160 de Ia proteína HE de PToV, acoplados a KLH (Keyhole Limpet Hemocyanin). Asimismo, mediante Ia inmunización con estos péptidos se han generado sueros policlonales frente a Ia proteína HE en ratas. Las inmunizaciones en conejos y en ratas con estos péptidos se llevó a cabo siguiendo el procedimiento descrito en el ejemplo 4.1. Ejemplo 5.- Utilización de las proteínas N y HE en ensayos serológicos para Ia detección de anticuerpos frente a PToV en muestras de sueros de cerdos
La siguiente descripción muestra cómo Ia proteína N de PToV (SEQ ID NO9) producida mediante el sistema de baculovirus, y Ia proteína HE (SEQ ID NO11 ) expresada mediante un recombinante del virus vaccinia, una vez purificadas siguiendo el procedimiento descrito en cada caso, pueden ser utilizadas para Ia detección de anticuerpos en ensayos de ELISA y de Western-blot, de forma aislada, especialmente Ia proteína N, o de forma conjunta. a. Ensayo de ELISA
Los pocilios de placas de 96 pocilios (Immunoplate F96 Maxisorp, Nunc) se tapizaron por duplicado con 50 μl del antígeno correspondiente (proteína N, M y HE) diluido en tampón carbonato-bicarbonato 0,1 M, pH 9,6, y se incubaron toda Ia noche a 40C. A continuación se lavaron los pocilios tres veces con 200 μl de PBST (PBS conteniendo Tween 20 al 0,05%) y se saturaron con 180 μl de albúmina de suero bovino (BSA), fracción V (Sigma) al 3% en PBST durante 2 horas a 370C. Los sueros específicos producidos frente a las proteínas recombinantes o frente a péptidos de las mismas, y los sueros porcinos se diluyeron, a Ia dilución indicada en cada caso, en una solución de BSA al 1 % en PBST, y se añadieron a los pocilios una vez retirada Ia solución de saturación. Tras 1 hora de incubación a 370C, se lavaron los pocilios, se añadió el anticuerpo secundario a una dilución 1 :1000 en Ia solución de BSA al 1 % en PBST, y se incubó durante 1 hora a 370C. Se lavaron de nuevo los pocilios tres veces y se reveló el ELISA añadiendo 50 μl por pocilio del sustrato dihidrocloruro de o-fenilendiamina (OPD FAST™, Sigma), preparado según las instrucciones del fabricante e incubando durante 10 minutos a temperatura ambiente. La reacción se detuvo mediante Ia adición de 50 μl por pocilio de ácido sulfúrico 2 N. Los valores de absorbancia se midieron a 492 nm en un espectrofotómetro multicanal (Titertek Multiscan MCC/340).
En un ensayo de ELISA se comparó Ia reactividad frente a las proteínas N y HE purificadas de dos sueros porcinos que contienen anticuerpos frente a torovirus anti-BRES y Serotec, así como de otros sueros de campo (Figura 10). En el mismo ensayo se pusieron como controles positivos los sueros de conejo específicos producidos frente a Ia proteína N (anti-PToV-N) y Ia proteína HE (anti-HEpept). Todos los sueros porcinos mostraron mayor reactividad frente a Ia proteína N que frente a Ia proteína HE (Figura 10). Cada una de las proteínas fue reconocida por el suero de conejo homólogo y no se observó reactividad cuando los anticuerpos de conejo se utilizaron frente a Ia proteína no homologa.
Una vez comprobada Ia mayor utilidad de Ia proteína N como antígeno para detección de anticuerpos frente a torovirus en sueros porcinos, se estudió cuál sería Ia cantidad óptima de proteína en el pocilio para tener una mayor sensibilidad. Para ello, se tapizaron los pocilios con distintas cantidades de proteína N (25, 100, 200 y 400 ng/pocillo), y estos se incubaron con distintas diluciones del suero de conejo específico anti- PToV-N. A diluciones intermedias del suero (1 :400 y 1 :1600) Ia mayor sensibilidad se obtuvo cuando se utilizaron 400 ng por pocilio (Figura 11 ). Utilizando esta cantidad de antígeno en el ELISA se analizó Ia curva de reactividad frente a Ia proteína N recombinante, de dos sueros porcinos con anticuerpos frente a torovirus, Serotec y anti-Bres, observándose que el suero Serotec produce una mayor reactividad, efecto que se observa más claramente cuando se utiliza Ia dilución 1 :100 de cada uno de los sueros (Figura 12).
Una vez establecidas las condiciones del ELISA frente a Ia proteína N, se evaluaron las posibles reacciones de reactividad cruzada con otros virus relacionados que infectan cerdos, como el virus del síndrome respiratorio reproductivo de cerdo (PRRSV) y el virus de Ia gastroenteritis de cerdo (TGEV), pertenecientes a las familias Arteriviridae y Coronaviridae, respectivamente y ambas pertenecientes al orden Nidovirales (Figura 13). En concreto, se analizó Ia reactividad de los sueros de cerdo con anticuerpos frente a torovirus anti-BRES y Serotec, y de sueros de cerdos libres de patógenos inmunizados frente a PRRSV (anti-PRRSV) y frente al coronavirus respiratorio de cerdo PRCV (anti- PRCV), que es un muíante de deleción de TGEV, serológicamente casi idéntico a TGEV (Zhang y col., 2007). Como control negativo se utilizó un suero de un cerdo libre de patógenos no inmunizado. Como antígenos para este ensayo de ELISA se utilizaron 250 ng/pocillo de los virus TGEV y PRRSV purificados mediante ultracentrifugación en gradientes de sacarosa, y 400 ng/pocillo de proteína N purificada. Los pocilios se incubaron por duplicado con una dilución 1 :100 de cada uno de los sueros de cerdo. Los sueros de cerdo anti-PRRSV y anti-PRCV reaccionaron con los correspondientes virus homólogos pero no reconocieron Ia proteína N de PToV. Por su parte, los sueros de cerdo anti-BRES y Serotec sí reaccionaron frente a PRRSV y TGEV si bien Ia reactividad frente a Ia proteína N de PToV fue siempre superior. La ausencia de reactividad de los sueros procedentes de animales spf inmunizados con PRRSV o PRCV frente a Ia proteína N de PToV indica Ia ausencia de reactividad cruzada. Para comprobar que Ia reactividad del suero Serotec frente a los otros virus de cerdo es específica y no debida a reactividad cruzada, se separaron por SDS-PAGE 2 Dg de viriones purificados del torovirus equino BEV, 10 Dg de viriones purificados de TGEV y PRRSV y 6 Dg de Ia proteína PToV-N y estas muestras se hicieron reaccionar en inmunoblot con los sueros Serotec, anti-PRCV y anti-PRRSV, diluidos 1 :100. El suero específico frente a PRRSV reconoce específicamente Ia proteína M del virus homólogo y, en el caso del suero frente a PRCV, éste reconoce tanto Ia proteína N como Ia proteína M de TGEV, pero ninguno de estos sueros reaccionó con Ia proteína PToV-N ni con BEV (Figura 14). Sin embargo, el suero Serotec, que proviene de animales criados en condiciones naturales, mostró una fuerte reactividad frente a Ia proteína N de PToV, y una reactividad menor frente a Ia proteína N de BEV, así como frente a las proteínas M de PRRSV y N de TGEV, indicando que Ia reactividad frente a estos virus observada por ELISA se debe a Ia presencia en el suero Serotec de anticuerpos frente a estos virus. Además, el suero policlonal generado frente a BEV (anti-BEV) que reconoce Ia proteína N del virus homólogo pero también Ia de PToV, no reacciona con las proteínas de PRRSV ni PRCV. Estos resultados ponen de manifiesto Ia especificidad del ensayo de ELISA desarrollado con Ia proteína N de PToV como antígeno para Ia detección de anticuerpos frente a PToV en sueros porcinos.
Una vez determinada Ia especificidad del ensayo se llevó a cabo un ELISA con sueros porcinos procedentes de distintas granjas españolas situadas en distintas áreas geográficas (Navarra, Aragón y Galicia) (Figura 15). Todos los sueros se utilizaron a una dilución 1 :100, y como control positivo se utilizó el suero Serotec y como control negativo una mezcla de sueros de cerdo libres de patógenos. Para establecer el valor de densidad óptica a partir de cuál consideramos una muestra como positiva se utilizó el valor de 0.202, que corresponde al valor medio de densidad óptica del suero control negativo más tres veces Ia desviación estándar. Con este criterio todos los sueros porcinos analizados resultaron positivos por ELISA.
b. Ensayo de inmunoblot
Para Ia detección de anticuerpos frente a PToV por inmunoblot, Ia proteína N recombinante purificada se sometió a electroforesis en un gel de poliacrilamida al 13% (400 ng de proteína por carril). Tras Ia electroforesis se transfirió Ia proteína a una membrana de nitrocelulosa, se tiñó Ia membrana con Rojo Ponceau y antes de retirar Ia tinción se cortó Ia nitrocelulosa en tiras correspondientes a cada uno de los carriles y se procedió a Ia inmunodetección. Se utilizaron los sueros porcinos procedentes de las granjas de Navarra, Aragón y Galicia a una dilución 1 :100, y tras Ia incubación con el anticuerpo secundario acoplado a peroxidasa las membranas se revelaron utilizando una solución de 4- cloronaftol (0.5 mg/ml) en PBS conteniendo peróxido de hidrogeno al 0.05% (Sigma) (Figura 16). De los 44 sueros analizados, 37 mostraron reactividad frente a Ia proteína N en este ensayo de inmunoblot. Al comparar estos resultados con los obtenidos por ELISA con estos mismos sueros (Tabla 2) se comprobó Ia mayor sensibilidad del ELISA frente al inmunoblot.
Tabla 2.- Detección de anticuerpos frente a torovirus porcino mediante ELISA e inmunoblot
Positivos Mecja ti vos
ELISA 45 0 n=4
S?est,ern 37 7 n=44 -blot
El ensayo de inmunoblot se ha llevado a cabo asimismo con Ia proteína HE purificada, comprobándose de nuevo Ia menor reactividad de los sueros porcinos frente a esta proteína en comparación con Ia proteína
N. Además, se observó que Ia intensidad de Ia banda detectada era similar para todos los sueros, a diferencia de Io que ocurre con Ia proteína N con
Ia que se observan variaciones significativas en intensidad, que se correlacionan con diferencias en los valores de densidad óptica obtenidos frente a Ia misma proteína en ELISA.

Claims

REIVINDICACIONES
1.- Complejo proteico útil para el diagnóstico y el desarrollo de vacunas frente a torovirus porcino caracterizado porque comprende, al menos, una proteína y/o, un fragmento o péptido de Ia misma, del siguiente grupo: i) proteína N de SEQ ID NO9, ii) proteína M de SEQ ID NO11 , y iii) proteína HE de SEQ ID NO13.
2.- Complejo proteico según Ia reivindicación 1 caracterizado porque está constituido por una única proteína de las pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13.
3.- Complejo proteico según Ia reivindicación 1 caracterizado porque está constituido por una mezcla de las proteínas pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13; preferentemente, un complejo proteico formado por Ia proteína N y M, o un complejo proteico formando por Ia proteína N y HE.
A - Complejo proteico según Ia reivindicación 1 caracterizado porque está constituido por una mezcla de fragmentos o péptidos de las, mismas o distintas, proteínas pertenecientes al siguiente grupo: proteína de SEQ ID NO9, proteína de SEQ ID NO11 y proteína de SEQ ID NO13; preferentemente, un complejo formado por fragmentos de Ia proteína N o de Ia proteína HE, preferentemente los péptidos 286E1-HE (SEQ ID NO14) y/o 286F1-HE (SEQ ID NO15).
5.- Procedimiento para Ia producción de las proteínas de torovirus porcino del complejo proteico según las reivindicaciones 1 a Ia 4 caracterizado porque comprende cultivar un microorganismo que contiene Ia secuencia de nucleótidos que codifica para una o varias de dichas proteínas de torovirus porcino, Ia expresión y, si se desea, Ia recuperación de dichas proteínas.
6.- Procedimiento según Ia reivindicación 5 caracterizado porque comprende las etapas de: a) cultivar células, preferentemente de insecto o de mamífero, transformadas con un sistema de expresión que comprende Ia secuencia de nucleótidos que codifica para, al menos, una proteína de Ia invención, en donde dicha proteína es una proteína cuya secuencia de aminoácidos está constituida por Ia secuencia SEQ ID NO9, 11 y 13. b) si se desea, aislar y, opcionalmente, purificar, dichas proteínas.
7.- Procedimiento según Ia reivindicación 6 caracterizado porque comprende Ia transfección de una célula de insecto con un baculovirus que comprende Ia secuencia de nucleótidos del gen N (SEQ ID NO8).
8.- Procedimiento según Ia reivindicación 6 caracterizado porque comprende Ia transformación de una célula de mamífero con un virus vaccina que comprende Ia secuencia de nucleótidos del gen HE (SEQ ID NO12).
9.- Secuencia de nucleótidos caracterizada porque codifica las proteínas N, M o HE según las reivindicaciones 1 a Ia 4 útil para Ia construcción de un vector de expresión y que puede comprender, al menos, una secuencia y/o, un fragmento de Ia misma, del siguiente grupo: i) secuencia de nucleótidos N de SEQ ID NO8, ii) secuencia de nucleótidos M de SEQ ID NO10, y iii) secuencia de nucleótidos HE de SEQ ID NO12.
10.- Secuencia de nucleótidos según Ia reivindicación 9 caracterizada porqué está constituida por una única secuencia de las pertenecientes al siguiente grupo: SEQ ID NO8, SEQ ID NO10 y SEQ ID NO12.
11.- Secuencia de nucleótidos según Ia reivindicación 9 caracterizada porqué está constituida por una mezcla de las secuencias pertenecientes al siguiente grupo: SEQ ID NO8, SEQ ID NO10 y SEQ ID NO12; preferentemente, una mezcla de secuencias formada por Ia secuencia de nucleótidos N y M (SEQ ID NO8 y NO10), o más preferentemente, un complejo proteico formando por Ia secuencia de nucleótidos N y HE (SEQ ID NO8 y NO12).
12.- Secuencia de nucleótidos según Ia reivindicación 9 caracterizada porque está constituida por una mezcla de las secuencias codificantes de fragmentos de Ia proteína N o de Ia proteína HE, preferentemente, los péptidos 286E1-HE (SEQ ID NO14) y/o 286F1-HE (SEQ ID NO15).
13.- Proteína o péptido caracterizado porque es codificada por una secuencia de nucleótidos según las reivindicaciones 9 a Ia 12.
14.- Sistema o vector de expresión útil para transformar células caracterizado porque comprende una secuencia de nucleótidos según las reivindicaciones 9 a Ia 12.
15.- Sistema según Ia reivindicación 14 caracterizado porque el sistema de expresión comprende una secuencia de nucleótidos que comprende Ia fase de lectura abierta o región codificante correspondiente a una proteína seleccionada entre el siguiente grupo: SEQ ID NO 9, 11 Y 13.
16.- Célula hospedadora caracterizada porque contiene una secuencia de nucleótidos según las reivindicaciones 9 a Ia 12.
17.- Célula hospedadora según Ia reivindicación 16 caracterizada porque es una célula de insecto, de mamífero o levadura transformada.
18.- Uso de Ia proteína o péptido según Ia reivindicación 13 para desarrollar anticuerpos específicos útiles para identificar sueros de animales infectados y para inmunizar animales, en particular, cerdos.
19.- Anticuerpo caracterizado porque es específico de una proteína según Ia reivindicación 13, o específico de un fragmento o péptido de Ia misma, ya sea monoclonal o policlonal.
20.- Anticuerpo según Ia reivindicación 19 caracterizado porque es específico de una proteína perteneciente al siguiente grupo: proteína N de SEQ ID NO9, proteína M de SEQ ID NO11 y proteína HE de SEQ ID NO13.
21.- Anticuerpo según Ia reivindicación 19 caracterizado porque es específico de un fragmento de una proteína según Ia reivindicación 13 y perteneciente al siguiente grupo: proteína N de SEQ ID NO9, proteína M de SEQ ID NO11 y proteína HE de SEQ ID NO13, preferentemente un fragmento de Ia proteína HE, y más preferentemente de los péptidos 286E1 (SEQ ID NO14) y 286F1 (SEQ ID NO15) correspondientes, respectivamente, a los aminoácidos 50-60 y 150-160 de Ia proteína HE de Ia invención.
22.- Empleo de un anticuerpo según las reivindicaciones 19 a Ia 21 en Ia elaboración de sistema de diagnóstico inmunológico de torovirus porcino que permita Ia identificación de dichos virus en una muestra biológica.
23.- Empleo de un anticuerpo según Ia reivindicación 22 caracterizado porque el sistema inmunológico pertenece al siguiente grupo: sistema de ELISA, tira de inmunocromatografía o de Western blot, que permita Ia identificación de dichos virus en una muestra biológica.
24.- Sistema de diagnóstico inmunológico de torovirus porcino caracterizado porque comprende una cantidad efectiva de uno o varios anticuerpos según las reivindicaciones 19 a Ia 21 , capaces de interactuar con una proteína de un torovirus porcino.
25.- Sistema de diagnóstico inmunológico según Ia reivindicación 24 caracterizado porque es un ELISA que comprende uno de los anticuerpos de Ia invención frente a las proteínas N, M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas N y HE porcinas.
26.- Sistema de diagnóstico inmunológico según Ia reivindicación 24 caracterizado porque es una tira inmunocromatográfica que comprende uno de los anticuerpos de Ia invención frente a las proteínas N, M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas N y HE porcinas.
27.- Sistema de diagnóstico inmunológico según Ia reivindicación 24 caracterizado porque es un sistema inmunoblot que comprende uno de los anticuerpos de Ia invención frente a las proteínas N1 M y HE, o una mezcla de varios de ellos, preferentemente una mezcla de anticuerpos que reconocen las proteínas N y HE porcinas.
28.- Uso de Ia proteína o péptido según Ia reivindicación 13 para desarrollar anticuerpos específicos útiles para identificar sueros de animales infectados y para inmunizar animales, en particular, cerdos.
29.- Empleo de Ia proteína según Ia reivindicación 13 en Ia elaboración de un sistema inmunológico de identificación de anticuerpos frente a PToV en muestras de sueros de mamíferos, preferentemente animales, y más preferentemente de cerdo.
30.- Empleo de Ia proteína según Ia reivindicación 29 caracterizado porque el sistema pertenece al siguiente grupo: sistema de ELISA, tira de inmunocromatografía o de Western blot, que permite Ia identificación conjunta y simultánea de anticuerpos frente a dichas proteínas presentes en una muestra biológica de cerdos.
31.- Empleo según Ia reivindicación 30 caracterizado porque Ia muestra biológica pertenece al siguiente grupo: suero, plasma o sangre de un animal sospechoso de padecer o haber padecido una infección por torovirus porcino, preferentemente un cerdo.
32.- Sistema de diagnóstico inmunológico de torovirus porcino caracterizado porque comprende una cantidad efectiva de una o varias proteínas según Ia reivindicación 13, capaces de interactuar con anticuerpos anti-torovirus porcino.
33.- Sistema de diagnóstico inmunológico según Ia reivindicación 32 caracterizado porque es un ELISA que comprende una de las proteínas de Ia invención N, M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE.
34.- Sistema de diagnóstico inmunológico según Ia reivindicación 32 caracterizado porque es una tira inmunocromatográfica que comprende una de las proteínas de Ia invención N1 M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE.
35.- Sistema de diagnóstico inmunológico según Ia reivindicación 32 caracterizado porque es un sistema inmunoblot que comprende una de las proteínas de Ia invención N, M y HE, o una mezcla de varias de ellas, preferentemente una mezcla de N y HE.
36.- Uso de Ia proteína o péptido según Ia reivindicación 13 en Ia elaboración de una vacuna destinada a conferir protección a animales, en particular, cerdos, frente a infecciones de torovirus porcino.
37.- Vacuna frente torovirus porcino útil para proteger animales, en particular, cerdos, caracterizada porque comprende una cantidad terapéuticamente efectiva de una o varias proteínas según Ia reivindicación 13, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.
38.- Vacuna frente torovirus porcino útil para proteger animales, en particular, cerdos, caracterizada porque comprende un virus vaccina que comprende a su vez, al menos una, las secuencias de nucleótidos de los genes N, M y HE (SEQ ID NO8, 10 y 12).
39.- Sistema de diagnóstico de torovirus porcino a partir de una muestra biológica mediante Ia identificación de material genómico específico de torovirus porcino caracterizado porque comprende Ia identificación de los genes N, M y HE, de secuencias SEQ ID NO8, 10 y 11 , respectivamente.
40.- Procedimiento de identificación genómica según Ia reivindicación 39 caracterizado porque se basa en Ia amplificación de DNA y porque comprende las siguientes etapas: i) aislamiento de material génico de una muestra biológica sospechosa de contener torovirus porcino y obtención del cDNA correspondiente, ii) amplificación por PCR de dicho cDNA mediante oligonucleótidos específicos para, al menos, uno de los genes de Ia invención, gen N, M y HE que se corresponden, con los siguientes: a. pareja de oligos PToV-N5' y PToV-N3' para el gen N
(SEQ ID NO1 y 2), b. pareja de oligos PToV-M5' y PToV-M3' para el gen M (SEQ ID NO3 y 4), Y c. pareja de oligos PToV-HE5' y PToV-HE3' para el gen HE (SEQ ID NO5 y 6), y iii) diagnóstico de un torovirus porcino si alguno de los genes de Ia invención es amplificado en ii).
41.- Oligonucleótidos o cebadores útiles para Ia amplificación por PCR según Ia reivindicación 40 ii) constituidos por parejas caracterizados porque pertenecen al siguiente grupo: a. pareja de oligos PToV-N5' y PToV-N3' para el gen N (SEQ ID NO1 y 2), b. pareja de oligos PToV-M5' y PToV-M3' para el gen M (SEQ ID NO3 y 4), Y c. pareja de oligos PToV-HE5' y PToV-HE3' para el gen HE (SEQ ID NO5 y 6).
42.- Procedimiento de identificación genómica según Ia reivindicación 39 caracterizado porque se basa en Ia técnica de Northern blot mediante sondas de polinucleótidos específicas de los genes N, M y HE, de secuencias SEQ ID NO8, 10 y 11 , respectivamente.
PCT/ES2008/070189 2007-10-23 2008-10-20 Proteínas n, m, he de torovirus porcino, procedimiento de obtención y sus aplicaciones en diagnóstico y tratamiento de torovirus porcino. WO2009053512A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200702776A ES2339728B1 (es) 2007-10-23 2007-10-23 Proteinas n, m y he de torovirus porcino, procedimiento de obtencion y sus aplicaciones en diagnostico y tratamiento de torovirus porcino.
ESP200702776 2007-10-23

Publications (1)

Publication Number Publication Date
WO2009053512A1 true WO2009053512A1 (es) 2009-04-30

Family

ID=40579116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070189 WO2009053512A1 (es) 2007-10-23 2008-10-20 Proteínas n, m, he de torovirus porcino, procedimiento de obtención y sus aplicaciones en diagnóstico y tratamiento de torovirus porcino.

Country Status (2)

Country Link
ES (1) ES2339728B1 (es)
WO (1) WO2009053512A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952898A (zh) * 2012-10-10 2013-03-06 四川农业大学 一种猪环曲病毒rt-pcr检测试剂盒及其检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007671A2 (en) * 2003-04-29 2005-01-27 Epitomics, Inc. Compositions and methods for treating sars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007671A2 (en) * 2003-04-29 2005-01-27 Epitomics, Inc. Compositions and methods for treating sars

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRONEMAN, A. ET AL.: "Identification and characterization of a porcine Torovirus", JOURNAL OF VIROLOGY., vol. 72, no. 5, 1 May 1998 (1998-05-01), pages 3507 - 3511 *
SMITS, S.L. ET AL.: "Phylogenetic and evolutionary relationships among Torovirus field variants: evidence for multiple intertypic recombination events", JOURNAL OF VIROLOGY., vol. 77, no. 17, 1 September 2003 (2003-09-01), pages 9567 - 9577 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952898A (zh) * 2012-10-10 2013-03-06 四川农业大学 一种猪环曲病毒rt-pcr检测试剂盒及其检测方法

Also Published As

Publication number Publication date
ES2339728B1 (es) 2011-04-06
ES2339728A1 (es) 2010-05-24

Similar Documents

Publication Publication Date Title
JP5847116B2 (ja) ワクチン投与の方法、新たなネコカリシウイルス、ならびにネコパルボウイルスおよびネコヘルペスウイルスに対して動物を免疫感作する治療
US10421790B2 (en) Feline calicivirus vaccine
JPH03502687A (ja) レスピラトリイ・シンシチアル・ウイルス:ワクチンおよび診断法
KR100927221B1 (ko) E형 간염 바이러스의 폴리펩티드 단편, 그를 이용한 백신조성물 및 진단용 키트
US20150290314A1 (en) Marker vaccine
JPH03504963A (ja) 仮性狂犬病感染に対する組換えサブユニットワクチンの調製
WO2001089562A1 (en) F-protein epitope-based vaccine for respiratory syncytial virus infection
US10772953B2 (en) Recombinant spike ectodomain proteins, compositions, vectors, kits, and methods for immunizing against avian infectious bronchitis virus
WO2022003119A1 (en) Cross-reactive coronavirus vaccine
KR20220009960A (ko) 재조합 고전적 돼지 열병 바이러스
AU2008256939A1 (en) A live attenuated antigenically marked classical swine fever vaccine
ZA200210354B (en) BVDV virus-like particles.
CN105085672B (zh) 3d蛋白特异性单克隆免疫球蛋白a抗体及其组合物
Wang et al. A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J
Zakhartchouk et al. Optimization of a DNA vaccine against SARS
ES2339728B1 (es) Proteinas n, m y he de torovirus porcino, procedimiento de obtencion y sus aplicaciones en diagnostico y tratamiento de torovirus porcino.
Viaplana et al. Antigenicity of VP60 structural proteinof rabbit haemorrhagic disease virus
CN105085671B (zh) 抗肠道病毒3d蛋白的单克隆免疫球蛋白g抗体及其免疫原性组合物
US9352032B2 (en) Live attenuated antigenically marked classical swine fever vaccine
DK2571519T3 (en) Marker vaccine against classical swine fever
Pasandideh et al. Production of monoclonal antibody against prokaryotically expressed G1 protein of bovine ephemeral fever virus
AU2013204339A1 (en) Methods of vaccine administration, new feline caliciviruses, and treatments for immunizing animals against feline parvovirus and feline herpes virus
US20090311284A1 (en) Recombinant Viral Proteins And Particles
US9919044B2 (en) Vaccines for diseases caused by viruses of the family of reoviridae
RU2765658C9 (ru) Выделение нового пестивируса, вызывающего врожденный тремор а

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08842237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08842237

Country of ref document: EP

Kind code of ref document: A1