WO2009053497A1 - Stents, valved-stents and methods and systems for delivery thereof - Google Patents
Stents, valved-stents and methods and systems for delivery thereof Download PDFInfo
- Publication number
- WO2009053497A1 WO2009053497A1 PCT/EP2008/064558 EP2008064558W WO2009053497A1 WO 2009053497 A1 WO2009053497 A1 WO 2009053497A1 EP 2008064558 W EP2008064558 W EP 2008064558W WO 2009053497 A1 WO2009053497 A1 WO 2009053497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stent
- valve
- section
- degree
- component
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2436—Deployment by retracting a sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0013—Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/0078—Quadric-shaped hyperboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
Definitions
- Embodiments of the present disclosure are directed to systems, methods, and devices for cardiac valve replacement in mammalian hearts.
- PHVT percutaneous heart valve replacement therapies
- a replacement valve for use within a human body where the replacement valve includes a valve component and a stent component (the replacement valve also being referred to as a valved-stent or a stent valve, and may be used interchangeably with replacement valve throughout the disclosure).
- the stent component defines a first (e.g., proximal) end and a second (e.g., distal) end and may include a plurality of stent section, and in some embodiments, at least four stent sections.
- the proximal end P of the stent component may be described as the end of the stent component/replacement valve which ultimately is positioned adjacent and/or within the left ventricle.
- the proximal end P of the stent component may be described as the end having anchoring elements for attachment to the delivery catheter (e.g., attachment end in a transapical delivery system).
- the distal end D of the stent component may be described as the end of the replacement valve/stent component which ultimately is positioned adjacent and/or near the ascending aorta, when, for example, the delivery catheter is advanced toward/into the ascending aorta in a transapical delivery system.
- the replacement valves are released distal-to-proximal, that is, the end of the stent (replacement valve) which ultimately is positioned within/near/adjacent the aorta is released first, and the end of the stent (replacement valve) which ultimate is positioned within/near/adjacent the ventricle is released last.
- a delivery is via a transapical approach, or through the heart muscle (as opposed to being delivered transvascularly). While preferred embodiments disclosed herein are described as being delivered through a direct heart access approach (e.g., transapical approach using transapical/direct access delivery systems), some embodiments of the present invention may be delivered transvascularly.
- the first stent section may define an at least partly conical body and the first end of the stent component.
- the conical body of the first stent section may slope outwardly in the direction of the first end.
- the first stent section may include at least one attachment element for removable attachment to a delivery device.
- the second stent section may be in communication with the first stent section and may define an at least partly conical body.
- the conical body of the second stent section may slope outwardly in the direction of the second end.
- the third stent section may be in communication with the second stent section and may define an at least partially cylindrical body.
- the third stent section may be configured to house at least a portion of the valve component.
- the third stent section may include a plurality of arches for fixation to a corresponding plurality of commissures of the valve component.
- the fourth stent section may be in communication with the third stent section and may define the second end.
- the fourth stent section may further define an at least partly conical body, which may slope outwardly in the direction of the second end.
- the fourth stent section may include a plurality of arches larger than, but aligned with, the plurality of arches included in the third stent section.
- the four stent sections may be formed, for example, by laser cutting a tube or single sheet of material (e.g., nitinol).
- the stent may be cut from a tube and then step-by-step expanded up to its final diameter by heat treatment on a mandrel.
- the stent may be cut from a single sheet of material, and then subsequently rolled and welded to the desired diameter.
- a stent component may be provided that includes a central, longitudinal axis and at least one attachment element for removable attachment to a delivery device.
- the at least one attachment element may be formed generally in the shape of a hook extending inwardly towards the central, longitudinal axis.
- the delivery device may include a stent holder comprising a groove for receiving the attachment element of the stent component, wherein release of the stent- valve from the stent holder may be facilitated by rotation of the stent holder relative to the attachment element.
- a replacement valve for use within a human body includes a valve component, a stent component for housing the valve component, and at least two skirts ⁇ e.g., polyester (PET) skirts).
- An inner skirt may be provided that covers at least a portion ⁇ e.g., all) of an outer surface of the valve component, where the inner skirt may be sutured to at least the inflow tract of the valve component and to an inner surface of the stent.
- An outer skirt may also be provided that is sutured onto an outer surface of the stent.
- a cardiac stent-valve delivery system that includes an inner assembly and an outer assembly.
- the inner assembly may include a guide wire lumen ⁇ e.g., polymeric tubing) and a stent holder for removable attachment to a stent-valve.
- the outer assembly may include a sheath.
- the inner member and the outer member may be co-axially positioned and slidable relative to one another in order to transition from a closed position to an open position, such that in the closed position the sheath encompasses the stent-valve still attached to the stent holder and thus constrains expansion of the stent-valve. In the open position, the outer sheath may not constrain expansion of the stent-valve and thus the stent-valve may detach from the stent holder and expand to a fully expanded configuration.
- the inner assembly of the delivery device may include a fluoroscopic marker fixed to the guide wire lumen distal of the stent holder.
- the diameter of the outer assembly of the delivery device varies over its longitudinal axis.
- the delivery system comprises a rigid (e.g., stainless steel) shaft in communication with a proximal end of the guide wire lumen.
- the delivery system comprises a luer connector in communication with the rigid shaft.
- a method for replacing an aortic valve within a human body.
- a stent-valve may be covered with a sheath in order to maintain the stent-valve in a collapsed configuration.
- the stent-valve may then may be inserted in the collapsed configuration into the human body without contacting the ascending aorta or aortic arch.
- the stent-valve may be partially expanded by sliding the sheath towards the left ventricle of the heart. This sliding of the sheath towards the left ventricle may cause expansion of a distal end of the stent-valve while the proximal end of the stent-valve remains constrained by the sheath.
- the sheath may be further slid towards the left ventricle of the heart in order to cause full expansion of the stent-valve.
- the stent-valve may be recaptured prior to its full expansion by sliding the sheath in the opposite direction.
- a method for cardiac valve replacement includes releasing a distal end of a stent-valve from a sheath, where the distal end includes a radiopaque marker positioned thereon.
- the stent-valve is rotated, if necessary, to orient the stent-valve appropriately with respect to the coronary arteries (e.g., to prevent the commissures from facing the coronary arteries).
- Arches of the stent-valve are released from the sheath, in order to cause the arches to contact the aorta.
- a first conical crown of the stent-valve is released from the sheath, in order to cause the first conical crown to contact the native valve leaflets.
- a second crown of the stent-valve is released from the sheath, in order to cause the second crown to contact an annulus/inflow tract.
- the second crown may be the proximal section of the stent- valve such that releasing the second crown causes the stent-valve to be fully released from the sheath.
- FIG. IA is a side view of a stent component configured for distal-to-proximal expansion according to some embodiments of the present disclosure.
- FIG. IB shows the placement of a double polyester (PET) fabric skirt (dashed line representing inner PET fabric skirt 122 and outer PET fabric skirt 126) relative to a stent component, as well as placement of a valve-component within the stent (e.g., aortic biologic valve prosthesis, dashed line 124).
- PET double polyester
- FIG. 2A shows an unrolled, flat depiction of another embodiment of a stent component according to some embodiments of the present disclosure.
- FIG. 2B is a side view of a stent component shown in FIG. 2A.
- FIG. 3A show a stent design with longitudinal elements for commissural valve fixation.
- FIG. 3B shows an unrolled, flat depiction of the stent design of FIG. 3 A.
- FIG. 4 shows an unrolled, flat depiction of an alternative design based on similar embodiments, without reinforcement crown.
- FIG. 5 and FIG. 6 show the size and shape of the anchoring crowns for the stent component in the expanded configuration according to some embodiments of the disclosure.
- FIG. 7 shows the size and shape of stabilization arches for the stent component in the expanded configuration according to some embodiments of the disclosure.
- FIG. 8 shows a mating couple between attachment elements of the stent component and a stent-holder of a delivery device, according to some embodiments of the present disclosure.
- FIG. 9 shows the design of multiple fixation elements (e.g., "holes") that allow for the fixation of the stent onto the catheter when the stent is crimped or in the collapsed configuration.
- fixation elements e.g., "holes”
- FIG. 10 shows the tip of the elements forming the anchoring crown, which may be bent towards the longitudinal axis of the stent thereby avoiding potential injury, such as injury to the sinus of vasalva during implantation of the device.
- FIG. HA shows an embodiment of the present disclosure, wherein the stabilization arches are designed to be independent of the valve fixation devices.
- FIG. HB shows an embodiment of the present disclosure, wherein the stabilization arches are designed with gradual stiffness change and connected to valve fixation arches.
- FIG. 12 illustrates a placement of a double polyester (PET) fabric skirt relative to a stent component, according to some embodiments of the present disclosure.
- PET double polyester
- FIG. 13 shows the in vivo migration of a stent according to the present disclosure, wherein the design of the stent allows for a self-positioning under diastolic pressure.
- FIG. 14A shows a delivery system for distal-to-proximal expansion of a stent- valve, according to some embodiments of the present disclosure.
- FIG. 14B shows the size and shape of delivery system according to some embodiments.
- FIGS. 15A-D illustrate a method of implanting a stent- valve within a human heart according to some embodiments of the present disclosure.
- FIGS. 16A-D illustrate the partial release of a stent according to the present disclosure, the release of which is stopped by a security tab.
- FIGS. 17A-D illustrate the capture of the stent after partial release according to FIG. 16.
- FIGS. 18A-C illustrate the full release of a stent according to some embodiments of the present disclosure.
- Some embodiments of the present disclosure are directed to systems, methods, and devices for cardiac valve replacement.
- such methods, systems, and devices may be applicable to the full range of cardiac-valve therapies including, for example, replacement of failed aortic, mitral, tricuspid, and pulmonary valves.
- Some embodiments may facilitate a surgical approach on a beating heart without the need for an open-chest cavity and heart-lung bypass. This minimally-invasive surgical approach may reduce the risks associated with replacing a failed native valve in the first instance, as well as the risks associated with secondary or subsequent surgeries to replace failed artificial (e.g., biological or synthetic) valves.
- Valved-stents may include a valve component and at least one stent component (e.g., a single-stent- valve or a double-stent- valve).
- the valve component may include a biological valve (e.g., bovine harvested valve), a synthetic valve (e.g., either synthetic valve leaflet material and/or a mechanical valve assembly), any other suitable material(s).
- the stent and valve components may be capable of at least two configurations: a collapsed or contracted configuration (e.g., during delivery) and an expanded configuration (e.g., after implantation).
- the valved-stent or stent-valves of the present disclosure may be used as replacement heart valves and may be used in methods for replacing diseased or damaged heart valves.
- Heart valves are passive structures that simply open and close in response to differential pressures on either side of the particular valve.
- Heart valve comprise moveable "leaflets” that open and close in response to differential pressures on either side of the valve's leaflets.
- the mitral valve has two leaflets and the tricuspid valve has three.
- the aortic and pulmonary valves are referred to as "semilunar valves" due to the unique appearance of their leaflets or "cusps" and are shaped somewhat like a half-moon.
- the aortic and pulmonary valves each have three cusps.
- the valve component is preferably designed to be flexible, compressible, host- compatible, and non-thrombogenic.
- the valve component can be made from various materials, for example, fresh, cryopreserved or glutaraldehyde fixed allografts or xenografts. Synthetic biocompatible materials such as polytetrafluoroethylene, polyester, polyurethane, nitinol or other alloy/metal foil sheet material and the like may be used.
- the preferred material for the valve component is mammal pericardium tissue, particularly juvenile-age animal pericardium tissue.
- the valve component can be any replacement heart valve known or used and cardiac replacement valves.
- Replacement heart valves are generally categorized into one of three categories: artificial mechanical valves; transplanted valves; and tissue valves.
- Mechanical valves are typically constructed from nonbiological materials such as plastics, metals, and other artificial materials.
- Transplanted valves are natural valves taken from cadavers. These valves are typically removed and frozen in liquid nitrogen, and are stored for later use. They are typically fixed in glutaraldehyde to eliminate antigenicity.
- Artificial tissue valves are valves constructed from animal tissue, such as bovine or porcine tissue. Efforts have also been made at using tissue from the patient for which the valve will be constructed. Such regenerative valves may also me used in combination with the stent components described herein.
- the choice of which type of replacement heart valves are generally based on the following considerations: hemodynamic performance, thrombogenicity, durability, and ease of surgical implantation.
- tissue valves are constructed by sewing the leaflets of pig aortic valves to a stent to hold the leaflets in proper position, or by constructing valve leaflets from the pericardial sac of cows or pigs and sewing them to a stent. See e.g, U.S. Patent Publication No. 2005/0113910, the disclosure of which is herein incorporated by reference in its entirety. Methods of creating artificial tissue valves is described in U.S. Patent Nos. 5,163,955, 5,571,174, and 5,653,749, the disclosures of which are herein incorporated by reference in their entireties.
- the valve component is preferably attached to the inner channel of the stent member. This may be accomplished using any means known in the art.
- the valve component is preferably attached to the inner channel of the stent member by suture or stitch, for example, by suturing the outer surface of the valve component pericardium material to the stent member.
- the third stent section may be configured to house at least a portion of the valve component. Other fixation schemes can also be utilized.
- the attachment position of the valve is preferably closer to the proximal end of the stent chosen with the understanding that the annulus of the valve will preferably engage the outer surface of the stent at the groove (see FIG 15D; 1560) created at the junction between the first and second sections of the stent component.
- the stent component defines a first (e.g., proximal) end and a second (e.g., distal) end and includes at least four stent sections: a proximal conically shaped first section; a conically shaped second section; an optional cylindrically shaped third section; and a distal conically shaped forth section.
- the first stent section may define an at least partly conical body and the first end of the stent component.
- the conical body of the first stent section may slope outwardly in the direction of the first end.
- Figure 2 shows a conically shaped first section 202 with an anchoring crown towards the ascending aorta.
- the first stent section may include at least one attachment element for removable attachment to a delivery device.
- the second stent section may be in communication with the first stent section and may define an at least partly conical body.
- the conical body of the second stent section may slope outwardly in the direction of the second end.
- Figure 2 shows a conically shaped second section 204 with an anchoring crown towards the left ventricle, or in the direction of blood flow (see e.g, Figure 1).
- the radial force of this section may be increased by adjusting the length and angle (i.e., increased length Hl and angle ⁇ l ; see FIG. 5) of the stent struts to reduce the risk of migration towards the left ventricle.
- the tip of the elements forming the anchoring crown may be bent towards the longitudinal axis of the stent thereby avoiding potential injury of the sinus of vasalva (see eg, FIG.10).
- the third stent section may be in communication with the second stent section and may define an at least partially cylindrical body.
- the third stent section may be configured to house at least a portion of the valve component.
- the third stent section may include a plurality of arches for fixation to a corresponding plurality of commissures of the valve component.
- Figure 2 shows a cylindrical third section 206 which acts as a reinforcement crown.
- the free area between the three valve fixation arches may be adjusted (i.e., increased or decreased) to improve the blood flow to the coronary arteries.
- This section of the stent may be attached to the previous anchoring crown (conically shaped section no 2) at three positions (see e.g., FIG. 11). This may allow for the out of plane bending of the elements of the section no 2 to form the conical shape.
- the fourth stent section may be in communication with the third stent section and may define the second end.
- the fourth stent section may further define an at least partly conical body, which may slope outwardly in the direction of the second end.
- the fourth stent section may include a plurality of arches larger than, but aligned axially and/or circumferentially with, the plurality of arches included in the third stent section.
- Stabilization arches may be provided within the ascending aorta that work independently of the valve fixation arches. Variations of the ascending aorta diameter may therefore have no impact on the valve fixation arches and thus on the valve haemodynamic properties. Furthermore, in some embodiments, stabilization arches may be provided that are connected to the valve fixation arches in order to increase the free area between the three valve fixation arches and thus improve the blood flow to the coronary arteries. The specific design of the stabilization arches with a gradual stiffness change allows the stabilization arches to work independently of the valve fixation arches (see e.g., Fig. 11).
- the three stabilization arches may reinforce in this configuration the three valve fixation arches and thus reduce their deflection towards the longitudinal axis of the stent under diastolic pressure.
- the stabilization arches may be designed to be independent of the valve fixation devices. See FIG. HA.
- the stabilization arches may be designed with gradual stiffness change and connected to valve fixation arches. See FIG. HB.
- These four stent sections may be formed, for example, by laser cutting a tube or single sheet of material (e.g., nitinol).
- the stent may be cut from a tube and then step-by-step expanded up to its final diameter by heat treatment on a mandrel.
- the stent may be cut from a single sheet of material, and then subsequently rolled and welded to the desired diameter.
- FIG. IA is a side view of a stent component 100 for supporting a replacement valve, according to some embodiments of the present disclosure, which is generally symmetrical in the vertical plane about a longitudinal axis 101.
- the stent component may be self-expanding and/or may be expanded via, for example, a balloon.
- Such stents may be formed from a suitable material familiar to those of skill in the art, which may include, for example, stainless steel or a shape-memory material (e.g., nitinol) or a combination of materials.
- the stent component may be laser cut from a single tube or sheet of such material(s).
- the stent component may comprise a plurality of sections.
- a stent may comprise four sections: 102, 104, 106, 108).
- Stent section 102 may define a proximal end of the stent component.
- stent section 102 may be generally conically shaped, and represent a section of a cone (e.g., a truncated cone, frustrum, etc.), having a first plane of a first smaller diameter, and a second plane spaced apart from the first plane and having a second larger diameter than the first diameter.
- the two planes may be parallel.
- stent section 102 has a shape and size configured such that it may create a form fit with one side (e.g., the inflow side) of the cardiac valve being replaced (e.g., aortic valve), for example, and therefore prevent migration of the valved-stent. If the stent is used in an aortic valve replacement, the fit of section 102 that prevents (or substantially prevents) migration of the valved-stent towards the ascending aorta (or prevents migration of the stent component if the stent is used as a positioning stent for receiving a second stent having the valve component). Furthermore, section 102 may provide a radial force, for example, that creates an additional friction fit against the inflow tract/aortic annulus.
- the second stent section 104 also may also have a generally conical shape, according to some embodiments, and like section 102, may represent a section of a cone (e.g., a truncated cone, a frustrum, etc.) having a first plane of a first smaller diameter, and a second plane spaced apart from the first plane and having a second larger diameter than the first diameter.
- the two planes may be parallel. Blood flow may be in the direction shown in Fig. IA by arrow 110.
- the first planes of section 102 and section 104 having the smaller radii, match (or substantially match) and lie immediately adjacent one another, and may be joined thereto as well.
- stent section 104 has a size and shape configured such that it may create a form fit with a second tract of the valve being replaced (e.g., the outflow tract/native leaflets of the aortic valve).
- the fit of section 104 may prevent (or substantially prevent) migration of the valved-stent towards the left ventricle (or may prevent/substantially prevent migration of the stent component if the stent is used as a positioning stent for receiving a second stent having the valve component). Furthermore, stent section 104 may also provide a radial force that creates an additional friction fit against the valve annulus (e.g., aortic annulus/outflow tract/native leaflets, for example (e.g., an aortic valve replacement).
- the third stent section 106 which may overlap with stent section 104, and may also have a generally conical shape, according to some embodiments, but in other embodiments, a substantial portion or all of section 106 preferably more cylindrical in shape.
- Section 106 preferably designates the portion of the stent component to which the valve component/prosthesis may be affixed onto the stent component.
- stent section 106 may comprise a plurality of (e.g., two, three, four, five, six, eight, etc.) arches which may be used, for example, for the fixation of the valve commissures.
- one or more of the arches may also comprise additional reinforcements for fixation of the valve prosthesis.
- the fourth stent section 108 may define a distal end of the stent component.
- stent section 108 may have a generally conical shape, with the slant height of the conical shape oriented at an angle having a direction which may correspond to a direction of the angle of the slant height of stent section 104.
- stent section 108 may comprise a plurality of (e.g., two, three, four, five, six, eight, etc.) arches, which may be larger than the arches noted for section 106, where such arches may also be aligned in the same direction with the arches of stent section 106.
- a radiopaque marker 112 may be positioned on or close to an end (e.g., the distal end) of at least one of the arches. A function of such a radiopaque marker is described below in connection with FIGS. 15A-D.
- the larger arches of stent section 108 may be at least partially of cylindrical shape when fully expanded and may deform to a conical shape when only partially deployed. This may result in lower local stresses in the aortic wall, thus reducing the risks of inflammation / perforation.
- the overall stent length may be sufficiently small so as to avoid conflict with, for example, the mitral valve when the stent is being used for aortic valve replacement.
- these dimensions will vary depending on, for example, the type of valve used and the dimensions given above are included as examples only and other sizes/ranges are available which conform to the present disclosure.
- a replacement valve for use within a human body includes a valve component, a stent component for housing the valve component, and at least two skirts (e.g., polyester (PET) skirts).
- An inner skirt may be provided that covers at least a portion (e.g., all) of an outer surface of the valve component, where the inner skirt may be sutured to at least the inflow tract of the valve component and to an inner surface of the stent.
- An outer skirt may also be provided that is sutured onto an outer surface of the stent.
- FIG. IB shows one embodiment of a self expanding stent 100.
- FIG. IB shows the placement of a double polyester (PET) fabric skirt (dashed line representing inner PET fabric skirt 122 and outer PET fabric skirt 126) relative to a stent component, as well as placement of a valve-component within the stent (e.g., aortic biologic valve prosthesis, dashed line 124), according to some embodiments of the present disclosure.
- An inner skirt may cover at least a portion ⁇ for example, either a minor portion (e.g. , less than about 20% coverage), a substantial portion (e.g., about 50-90% coverage), or all (e.g., 90%+) of the stent) of the outer surface of the replacement valve.
- the skirt may be sutured to at least the inflow tract of the valve and to the inner surface of the stent, and may serve as a sealing member between the stent and the valve.
- the topology of the inner surface of this fabric may be configured to improve blood flow.
- An outer skirt may also be sutured onto the outer surface of the stent (dashed line 126) and may serve as a sealing member between the stent and, for example, a native valve leaflets/cardiac valve (e.g., aortic) annulus/inflow and/or outflow tract.
- the topology of the outer surface of this fabric may be configured to improve endothelialisation, for example.
- the skirt may be made using any know material used for such purposes.
- the skirt is comprised of a polyester material, such as a single ply polyester material.
- the preferred polyester is polyethylene terephthalate (PET).
- a double PET fabric skirt may be provided in which the free edge of the stent is covered to avoid injuries of the left ventricle wall and mitral valve (see eg, Fig.12).
- FIG. 2A shows an unrolled, flat depiction of another embodiment of a stent component according to some embodiments of the present disclosure.
- This stent component may be the same or similar to the stent component of FIG. 1, and include the same numbering scheme as set out for Fig. 1, except that the corresponding reference numeral starts with a "2" instead of a "1".
- the stent component illustrated in FIG. 2A includes some additional features, mainly one or more additional reinforcements 214 for stent section 206, as well as one or more attachment elements 216 in stent section 202. This numbering scheme is generally used throughout the specification.
- Additional reinforcements 214 may comprise arches, which may be inverted as compared to the commissural arches currently provided in stent section 206.
- Attachment elements 216 may be used to removable attach the stent component to a delivery device (e.g., a catheter based system).
- elements 216 may serve to hold the stent-valve onto the delivery system until full release of the stent during delivery/implantation, thus allowing for, in some embodiments, the recapture of the stent upon partial release. See FIG. 16-18.
- the attachment elements 216 may also prevent the stent from "jumping out" of the delivery system just prior to its full release - such jumping out may result in inaccurate positioning of the replacement valve.
- a radiopaque marker 212 may be positioned on or close to an end (e.g., the distal end) of at least one of the arches. A function of such a radiopaque marker is described below in connection with FIGS. 15A-D.
- FIG. 2B show another design of the devices of the current embodiments.
- the stent component illustrated in FIG. 2A-B includes some additional features, mainly one or more additional reinforcements 214 for stent section 206, as well as one or more attachment elements 216 in stent section 202.
- Such attachment elements may be formed generally in the shape of a bent, or curved angled member (e.g., an "L” or "J” like shape). In some embodiments, such attachment elements may be a hook (e.g., a "J” like shape).
- Some embodiments of the present disclosure include, for example stents and valved-stents: for anchoring towards the ascending aorta; for anchoring towards the left ventricle; for valve fixation; and/or for valved-stent stabilization, as well as other possible applications.
- Figures 3A-B and 4 show examples of stent designs based on such embodiments.
- FIG. 3A and 3B show a stent design with longitudinal elements for commissural valve fixation.
- Figure 3B shows an unrolled, flat depiction of the above stent design.
- These figures show the stabilization arch 308 (conically shaped section), reinforcement crown 306 (cylindrical section), longitudinal valve fixation elements 320 (cylindrical section), forward anchoring crown 304 (eg, towards LV or otherwise preventing movement of device in a direction opposite of blood flow) (conically shaped section), and reverse anchoring crown 302 (eg, towards ascending aorta or otherwise preventing movement of device in the direction of blood flow) (conically shaped section).
- FIG. 4 shows the stabilization arch 408 (conically shaped section), longitudinal valve fixation elements 420 (cylindrical section), forward anchoring crown 404 (eg, towards LV or otherwise preventing movement of device in the direction of blood flow) (conically shaped section), and reverse anchoring crown 402 (e.g., towards ascending aorta or otherwise preventing movement of device in a direction opposite of blood flow) (conically shaped section).
- the reverse anchoring crown 402 may be comprised of two rows (plurality) of meanders for improved stability.
- the fixation elements 420 together help to form the cylindrical shape of the optional third section of the stent. That is, the fixation elements 420 are preferably curved around the longitudinal axis of the stent and, in some embodiments, may form the circumference of the third section of the stent.
- a stent which includes a section for commissural valve fixation which is composed of a plurality (e.g., two, three, four, five, six, eight, etc.) longitudinal elements connected on one side to a conically shaped section (for example) used for anchoring towards the left ventricle and on the other side to the conically shaped section (for example) used for stabilization.
- a section for commissural valve fixation which is composed of a plurality (e.g., two, three, four, five, six, eight, etc.) longitudinal elements connected on one side to a conically shaped section (for example) used for anchoring towards the left ventricle and on the other side to the conically shaped section (for example) used for stabilization.
- the stent is designed to better match the size and shape of a biological valve with narrow commissural posts and, in some embodiments, allow a more robust suturing of the valve commissural posts to the stent.
- Narrow commissural posts according to some embodiments improve the perfusion of the coronary arteries via the sinus of vasalva.
- an additional reinforcement crown may be added as well in some embodiments.
- the stent design allowing for the fixation of the valve commissural posts provides a further advantage, as the size and shape of such stents preferably does not change substantially, and even more preferably, does not change during a required crimping process for loading the stent (with valve, "valved-stent") onto a delivery catheter. Accordingly, this may reduce (and preferably does reduce) the risks of suture damage and facilitating crimping and subsequently releasing of the valved-stent (for example).
- FIG. 5 is provided to illustrate the dimensions of the first and second sections of the stent component.
- D3 represents the diameter of the most proximal edge of the stent component in the expanded configuration.
- D2 represents the diameter of the stent component at the juncture between the first conical section 502 and second conical section 504 of the stent component.
- H2 represents the axial distance between the planes of the diameters D2 and D3 in the expanded configuration, or the length of the first conical section in the expanded configuration.
- Dl represents the diameter of the most distal edge of the second conical section of the stent component in the expanded configuration.
- Hl represents the axial distance between the planes of the diameters Dl and D2 in the expanded configuration, or the length of the second conical section in the expanded configuration.
- the length of the first conical section H2 is between about 3 to about 15 mm (e.g., about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, and about 15 mm).
- the length of the first conical section H2 may been adjusted depending on the intended application of the stent of stent-valve.
- the length of the first conical section H2 may range from about 3 to about 5 mm, about 3 to about 7 mm, about 3 to about 12 mm, about 3 to about 15 mm, about 3 to about 20 mm, about 5 to about 10 mm, about 5 to about 12 mm, about 5 to about 15 mm, about 7 to about 10 mm, about 7 to about 12 mm, about 7 to about 15 mm, about 10 to about 13 mm, about 10 to about 15 mm, or about 7 to about 20 mm.
- the length of this section may be on the smaller end of the scale to avoid potential conflict with a cardiac valve, such as the mitral valve.
- the diameter of the first conical section at D3 is preferably between about 22 mm to about 40 mm (eg., about 22 mm, about 23 mm, about 24 mm, about 25 mm, about 26 mm, about 27 mm, about 28 mm, about 29 mm, about 30 mm, about 31 mm, about 32 mm, about 33 mm, about 34 mm, about 35 mm, about 36 mm, about 37 mm, about 38 mm, about 39 mm, and about 40 mm).
- This diameter of the first conical section D3 may been adjusted depending on the intended application of the stent of stent-valve.
- the diameter of the first conical section in the expanded configuration D3 may be from between about 15 mm to about 50 mm, from between about 15 mm to about 40 mm, from between about 20 mm to about 40 mm, from between about 24 mm to about 40 mm, from between about 26 mm to about 40 mm, from between about 28 mm to about 40 mm, from between about 30 mm to about 40 mm, from between about 32 mm to about 40 mm, from between about 34 mm to about 40 mm, from between about 36 mm to about 40 mm, from between about 38 mm to about 40 mm, from between about 22 mm to about 38 mm, from between about 22 mm to about 36 mm, from between about 22 mm to about 34 mm, from between about 22 mm to about 32 mm, from between about 22 mm to about 30 mm, from between about 22 mm to about 28 mm, from between about 24 mm to about 34 mm, from between about 25 mm to about 35 mm, or from between about 25 mm to about
- the diameter of the stent component D2 at the juncture of the first and second conical sections D2 is preferably between about 20 mm to about 30 mm (eg., about 20 mm, about 21 mm, about 22 mm, about 23 mm, about 24 mm, about 25 mm, about 26 mm, about 27 mm, about 28 mm, about 29 mm, and about 30 mm).
- This diameter of the stent component D2 may been adjusted depending on the intended application of the stent of stent-valve. For example, this diameter of the stent component D2 may be sized according to the shape of the annulus of the cardiac valve.
- the diameter of the stent component D2 may be from between about 15 mm to about 40 mm, from between about 15 mm to about 30 mm, from between about 18 mm to about 35 mm, from between about 22 mm to about 30 mm, from between about 24 mm to about 30 mm, from between about 26 mm to about 30 mm, from between about 28 mm to about 30 mm, from between about 22 mm to about 28 mm, from between about 22 mm to about 26 mm, from between about 20 mm to about 24 mm, from between about 20 mm to about 26 mm, from between about 20 mm to about 28 mm, and from between about 22 mm to about 32 mm.
- the diameter of the second conical section at Dl is preferably between about 22 mm to about 40 mm (e.g., about 22 mm, about 23 mm, about 24 mm, about 25 mm, about 26 mm, about 27 mm, about 28 mm, about 29 mm, about 30 mm, about 31 mm, about 32 mm, about 33 mm, 34 mm, 35 mm, 36 mm, 37 mm, about 38 mm, about 39 mm, and about 40 mm).
- This diameter of the second conical section Dl may been adjusted depending on the intended application of the stent of stent- valve.
- the diameter of the first conical section in the expanded configuration Dl may be from between about 15 mm to about 50 mm, from between about 15 mm to about 40 mm, from between about 20 mm to about 40 mm, from between about 24 mm to about 40 mm, from between about 26 mm to about 40 mm, from between about 28 mm to about 40 mm, from between about 30 mm to about 40 mm, from between about 32 mm to about 40 mm, from between about 34 mm to about 40 mm, from between about 36 mm to about 40 mm, from between about 38 mm to about 40 mm, from between about 22 mm to about 38 mm, from between about 22 mm to about 36 mm, from between about 22 mm to about 34 mm, from between about 22 mm to about 32 mm, from between about 22 mm to about 30 mm, from between about 22 mm to about 28 mm, from between about 24 mm to about 34 mm, from between about 25 mm to about 35 mm, or from between about 25 mm to about
- the length of the second conical section Hl is between about 3 to about 10 mm (e.g., about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, and about 10 mm).
- the length of the first conical section Hl may been adjusted depending on the intended application of the stent of stent-valve.
- the length of the first conical section H2 may range from about 3 to about 5 mm, about 3 to about 15 mm, about 3 to about 20 mm, about 5 to about 10 mm, about 7 to about 10 mm, about 7 to about 12 mm, about 7 to about 15 mm, about 10 to about 13 mm, about 5 to about 15 mm, about 7 to about 20 mm.
- the length of this section may be on the smaller end of the scale to avoid potential conflict with a cardiac valve, such as the mitral valve.
- FIG. 6 is provided to illustrate the dimensions of the first and second sections of the stent component, and particularly the angles of the anchoring crowns that help to define these conical sections.
- the ⁇ l angle defines the angle of the anchoring crown of the second conical section of the stent component in the expanded configuration.
- the ⁇ 2 angle defines the angle of the anchoring crown of the first conical section of the stent component in the expanded configuration.
- the ⁇ 3 angle defines the angle of bending of the tip, which is done so as to prevent injuries of sinus (see also, FIG. 10).
- the ⁇ l angle is preferably between from about 10 degree to about 80 degree (eg., about 10 degree, about 15 degree, about 20 degree, about 25 degree, about 30 degree, about 35 degree, about 40 degree, about 45 degree, about 50 degree, about 55 degree, about 60 degree, about 65 degree, about 70 degree, about 75 degree, and about 80 degree), more preferably between from about 20 degree to about 70 degree, most preferable between from about 30 degree to about 60 degree.
- the ⁇ l angle is between from about 20 degree to about 80 degree, between from about 20 degree to about 60 degree, between from about 20 degree to about 50 degree, between from about 20 degree to about 45 degree, between from about 40 degree to about 60 degree, between from about 45 degree to about 60 degree, between from about 30 degree to about 50 degree, between from about 30 degree to about 45 degree, between from about 30 degree to about 40 degree, or between from about 25 degree to about 45 degree.
- the ⁇ 2 angle is preferably between from about 5 degree to about 50 degree (e.g, about 5 degree, about 10 degree, about 15 degree, about 20 degree, about 25 degree, about 30 degree, about 35 degree, about 40 degree, about 45 degree, and about 50 degree), more preferably between from about 10 degree to about 40 degree, most preferable between from about 10 degree to about 30 degree.
- the ⁇ 2 angle is between from about 5 degree to about 45 degree, between from about 5 degree to about 40 degree, between from about 5 degree to about 30 degree, between from about 5 degree to about 25 degree, between from about 5 degree to about 20 degree, between from about 5 degree to about 15 degree, between from about 10 degree to about 20 degree, between from about 10 degree to about 25 degree, between from about 10 degree to about 30 degree, between from about 10 degree to about 40 degree, between from about 10 degree to about 45 degree, between from about 15 degree to about 40 degree, between from about 15 degree to about 30 degree, between from about 15 degree to about 25 degree, between from about 20 degree to about 45 degree, between from about 20 degree to about 40 degree, or between from about 20 degree to about 30 degree
- the ⁇ 3 angle is preferably between from about 0 degree to about 180 degree (eg., about 5 degree, about 10 degree, about 15 degree, about 20 degree, about 25 degree, about 30 degree, about 35 degree, about 40 degree, about 45 degree, about 50 degree, about 55 degree, about 60 degree, about 65 degree, about 70 degree, about 75 degree, about 80 degree, about 85 degree, about 90 degree, about 95 degree, about 100 degree, about 105 degree, about 110 degree, about 115 degree, about 120 degree, about 125 degree, about 130 degree, about 135 degree, about 140 degree, about 145 degree, about 150 degree, about 155 degree, about 160 degree, about 165 degree, about 170 degree, about 175 degree, and about 180 degree).
- the ⁇ 3 angle is between from about 45 degree to about 90 degree, between from about 45 degree to about 180 degree, between from about 60 degree to about 90 degree, between from about 45 degree to about 120 degree, between from about 60 degree to about 120 degree, between from about 90 degree to about 120 degree, between from about 90 degree to about 180 degree, or between from about 120 degree to about 180 degree.
- FIG. 7 shows the size and shape of stabilization arches for the stent component in the expanded configuration according to some embodiments of the disclosure.
- the ⁇ 4 and ⁇ 5 angles represent the offset angle from a longitudinal axis of the stabilization arches of the forth section of the stent in the expanded configuration. If the stabilization arches are directed away from the center of the stent, the ⁇ 4 angle is used. If the stabilization arches are directed toward from the center of the stent, the ⁇ 5 angle is used.
- the ⁇ 4 angle is preferably between from about 0 degree to about 60 degree (e.g., about 5 degree, about 10 degree, about 15 degree, about 20 degree, about 25 degree, about 30 degree, about 35 degree, about 40 degree, about 45 degree, about 50 degree, about 55 degree, and about 60 degree). According to some embodiments, the ⁇ 4 angle is between from about 20 degree to about 60 degree, between from about 30 degree to about 60 degree, between from about 40 degree to about 60 degree, between from about 45 degree to about 60 degree, between from about 30 degree to about 50 degree, between from about 30 degree to about 45 degree, between from about 20 degree to about 40 degree, or between from about 15 degree to about 45 degree.
- the ⁇ 5 angle is preferably between from about 0 degree to about 20 degree (e.g., about 5 degree, about 10 degree, about 15 degree, and about 20 degree). According to some embodiments, the ⁇ 5 angle is between from about 5 degree to about 20 degree, between from about 10 degree to about 20 degree, between from about 15 degree to about 20 degree, between from about 0 degree to about 15 degree, between from about 0 degree to about 10 degree, between from about 5 degree to about 15 degree, between from about 10 degree to about 15 degree, or between from about 10 degree to about 20 degree.
- FIG. 7 also shows the length of the first section of the stent component H2, the length of the combined second section and optional third section of the stent component H3, and the length of the forth section of the stent component Hl. H2 is as described above.
- the length of the combined second section and optional third section of the stent component H3 is between about 3 to about 50 mm (e.g., about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 20 mm, about 22 mm, about 24 mm, about 25 mm, about 26 mm, about 28 mm, about 30 mm, about 32 mm, about 34 mm, about 36 mm, about 38 mm, about 40 mm, about 42 mm, about 44 mm, about 45 mm, about 46 mm, about 48 mm, and about 50 mm).
- about 3 to about 50 mm e.g., about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm
- the length of the first conical section H3 may been adjusted depending on the intended application of the stent of stent-valve.
- the length of the first conical section H3 may range from about 3 to about 40 mm, about 3 to about 30 mm, about 3 to about 20 mm, about 3 to about 10 mm, about 10 to about 50 mm, about 10 to about 40 mm, about 10 to about 30 mm, about 10 to about 20 mm, about 15 to about 50 mm, about 15 to about 40 mm, about 15 to about 30 mm, about 20 to about 50 mm, about 20 to about 40 mm, about 20 to about 30 mm, about 15 to about 50 mm, about 25 to about 50 mm, about 30 to about 50 mm, about 40 to about 50 mm, about 15 to about 40 mm, about 25 to about 40 mm, or about 30 to about 40 mm.
- the third section of the stent component is not used.
- H3 would be the same as Hl, described above
- the length of the forth section and of the stent component H4 is between about 5 to about 50 mm (eg, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 20 mm, about 22 mm, about 24 mm, about 25 mm, about 26 mm, about 28 mm, about 30 mm, about 32 mm, about 34 mm, about 36 mm, about 38 mm, about 40 mm, about 42 mm, about 44 mm, about 45 mm, about 46 mm, about 48 mm, and about 50 mm).
- the length of the first conical section H4 may been adjusted depending on the intended application of the stent of stent-valve.
- the length of the first conical section H4 may range from about 5 to about 40 mm, about 5 to about 30 mm, about 5 to about 20 mm, about 5 to about 10 mm, about 10 to about 50 mm, about 10 to about 40 mm, about 10 to about 30 mm, about 10 to about 20 mm, about 15 to about 50 mm, about 15 to about 40 mm, about 15 to about 30 mm, about 20 to about 50 mm, about 20 to about 40 mm, about 20 to about 30 mm, about 15 to about 50 mm, about 25 to about 50 mm, about 30 to about 50 mm, about 40 to about 50 mm, about 15 to about 40 mm, about 25 to about 40 mm, or about 30 to about 40 mm.
- the stent components of the stent-valves may be classified into different categories of sizes, such as small, medium, and large.
- the stent components may be sized as small, medium, and large according the following table.
- FIG. 8 shows a mating coupling between the attachment elements 316 of the stent and a stent-holder of a delivery device, according to some embodiments of the present disclosure.
- the attachment elements may include a crochet-like configuration that engages, for example, a groove or other opening within the stent holder.
- Such attachment elements may be formed generally in the shape of a bent, or curved angled member (e.g., an "L" or "J” like shape).
- such attachment elements may be a hook (e.g., a "J” like shape).
- the attachment element may be provided in an angled shape, for example, that extends from the body of the stent inwardly toward a central, longitudinal axis of the stent.
- the opening in the stent holder e.g. , groove
- the opening in the stent holder may allow for a safe release of the stent upon rotation of the delivery system (e.g., a portion, all or members thereof - e.g., rotation of the stent holder).
- the end of the attachment element slides onto the surface "S" and is thereby forced, according to some embodiments, to disengage the stent holder when reaching the edge "E".
- multiple fixation elements e.g., 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, etc. or 2 to 5, 2 to 10, 2 to 20, 2 to 30, 2 to 40, etc.
- a matching/complimentary element e.g, stent holder with pins
- the design of the multiple fixation elements may allow for the fixation of the stent onto the catheter only when the stent is crimped (see e.g, FIG. 9).
- the fixation may release automatically when the stent starts to expand. That is, the shape of the stent in the unexpanded state is designed to have holes or free areas that can be used to couple the stent with a stent holder.
- the expanded configuration is absent suchs holes or free spaces and thus the stent automatically becomes uncoupled or releases from the stent holder upon expansion.
- the design of the stent component allows for self-positioning of the replacement valve under diastolic pressure. Once delivered slightly above the aortic annulus, the stent-valve migrates toward the left ventricle due to the forces caused by the diastolic pressure until it reaches a stable position given by the shape / radial force of the anchoring crown (conically shaped section 2) and the compliance of the aortic annulus (FIG. 13).
- the stent-valve may be released such that at least a portion of section 102 of the stent component is released at the native valve annulus (e.g., release position).
- the release of the stent valve in the release position preferably comprises a full release of the stent valve (i.e., the stent-valve is fully released from the delivery system). Accordingly, subsequent beating of the heart after release results in the stent-valve sliding into a final position, which preferably is the groove formed between stent component sections 102 and 104.
- the distance between the release position and the final position may comprise a predetermined range, which may include: between about 3 mm and about 20 mm, between about 7 mm to about 11 mm, between about 8 mm to about 12 mm, and between about 9 mm to about 13 mm.
- the stent-valve may be released (which according to some embodiments, is a full release from the stent-valve delivery system) such that at least a portion of section 104 of the stent component is released at the native valve annulus (e.g., release position), and subsequent beating of the heart after release results in the stent-valve sliding into a final position which preferably is the groove portion (as indicated above) between sections 104 and 102.
- a range of distances between release locations and final positions which may be in reference to either locations at the implantation site (e.g., within the lumen/heart) and/or locations on the stent component, may be between about 4 mm and 8 mm.
- a valved-sent delivery system, and method for delivering the valved-stent to an implantation site are provided in which the valved-sent is expanded at the implantation site in a stepwise manner (for example) from its distal end towards its proximal end.
- a release procedure for causing expansion of a valved-stent may involve pulling back a sheath element on a catheter delivery device.
- the sheath element constrains the valved-sent toward a section of the heart (for example, the left ventricle of the heart). According to such a procedure, there may be no interaction of the delivery system with the anatomy of the ascending aorta/aortic arch.
- the sheath constraining the valved-stent, and the tip of the delivery system may not be required to enter the aortic arch during the release procedure, which is beneficial since such entry potentially can cause a bending moment acting onto the valved- stent and result in inaccurate positioning of the valved-stent (e.g., tilting).
- a cardiac stent-valve delivery system that includes an inner assembly and an outer assembly.
- the inner assembly may include a guide wire lumen (e.g., polymeric tubing) and a stent holder for removable attachment to a stent-valve.
- the outer assembly may include a sheath.
- the inner member and the outer member may be co-axially positioned and slidable relative to one another in order to transition from a closed position to an open position, such that in the closed position the sheath encompasses the stent-valve still attached to the stent holder and thus constrains expansion of the stent-valve. In the open position, the outer sheath may not constrain expansion of the stent-valve and thus the stent-valve may detach from the stent holder and expand to a fully expanded configuration.
- the inner assembly of the delivery device may include a fluoroscopic marker fixed to the guide wire lumen distal of the stent holder.
- the diameter of the outer assembly of the delivery device varies over its longitudinal axis.
- the delivery system comprises a rigid (e.g., stainless steel) shaft in communication with a proximal end of the guide wire lumen.
- the delivery system comprises a luer connector in communication with the rigid shaft.
- FIG. 14A shows a delivery system 550 for distal-to-proximal expansion of a stent-valve (i.e., section 108 to section 102 - see Fig. 1), according to some embodiments of the present disclosure.
- the system 550 may include an inner member 552 and an outer member 554 (e.g., sheath) which are co- axially positioned and slidable one against the other.
- the inner member 552 may comprise tubing 568 (e.g., polymeric tubing) which serves as a guide wire lumen and on which at least one of (and preferably several or all) a tip 556, a fluoroscopic marker 558, and a stent-holder 560 are affixed (e.g., bonded).
- the polymeric tubing may be reinforced proximally with a rigid (e.g., stainless steel) shaft.
- a luer connector 562 affixed to a stainless steel shaft 564 to allow flushing of the guide wire lumen with saline (for example).
- the outer member 554 may comprise a distally arranged sheath which may be used to constrain the stent in a closed/contracted (e.g., substantially non-expanded) configuration. Proximally, the sheath may be fixed to a hemostasis valve 566 to allow the flushing of the annular space between the inner and outer members with saline (for example).
- the diameter of the outer member may vary over its longitudinal direction (e.g., smaller diameter proximally to decrease the bending stiffness of the delivery system).
- the deployment of the stent-valve may occur by holding the inner member at the level of the stainless steel shaft with one hand and the outer member at the level of the hemostasis valve with the other hand. Then, upon positioning of the replacement valve (e.g., under fluoroscopic control), the outer member is pulled back with the inner member being kept at its original position, until the stent is fully deployed.
- FIG. 14B shows the size and shape of delivery system according to some embodiments.
- Ds refers to the stent sleeve diameters, which are the inner and outer sleeve diameters.
- the inner diameter of the stent sleeve is preferably from between about 4 to about 14 mm (eg., about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, or 14 mm).
- the outer diameter of the stent sleeve is preferably from between about 5 to about 15 mm (e.g., about 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, or 15 mm).
- Ls refers to the stent sleeve length.
- the stent sleeve length is preferably from between about 20 mm to about 120 mm (eg, about 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, or 120 mm).
- the stent sleeve length is between from about 20 mm to about 100 mm, about 20 mm to about 80 mm, about 20 mm to about 60 mm, about 20 mm to about 40 mm, about 40 mm to about 120 mm, about 60 mm to about 120 mm, about 80 mm to about 120 mm, about 100 mm to about 120 mm, about 40 mm to about 100 mm, or about 60 mm to about 100 mm.
- Lu refers to the usable length.
- the usable length is preferably from between about 150 mm to about 500 mm (eg., about 150 mm, 175 mm, 200 mm, 225 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, or 500 mm).
- the usable length is between from about 150 mm to about 450 mm, about 150 mm to about 400 mm, about 150 mm to about 350 mm, about 150 mm to about 300 mm, about 150 mm to about 250 mm, about 200 mm to about 500 mm, about 300 mm to about 500 mm, about 350 mm to about 500 mm, about 400 mm to about 500 mm, about 200 mm to about 400 mm, or about 300 mm to about 400 mm.
- Lt refers to the total length.
- the total length is preferably from between about 200 mm to about 1000 mm (e.g, about 200 mm, 225 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, 500 mm, 550 mm, 600 mm, 650 mm, 700 mm, 750 mm, 800 mm, 850 mm, 900 mm, 950 mm, or 1000 mm).
- the total length is between from about 200 mm to about 900 mm, about 200 mm to about 800 mm, about 200 mm to about 700 mm, about 200 mm to about 600 mm, about 200 mm to about 500 mm, about 200 mm to about 400 mm, about 200 mm to about 300 mm, about 300 mm to about 1000 mm, about 400 mm to about 1000 mm, about 500 mm to about 1000 mm, about 600 mm to about 1000 mm, about 700 mm to about 1000 mm, about 800 mm to about 1000 mm, about 900 mm to about 1000 mm, or about 300 mm to about 800 mm.
- FIGS. 15A-D illustrate an exemplary embodiment of a method of implanting a stent- valve within a human heart according to some embodiments of the present disclosure (e.g., an aortic valve replacement).
- FIG. 15A shows the initial, partial release of the stent 1500, in which the radiopaque 1512 marker positioned on one of the arches of stent section 1508 (see FIG. 1), for example, is released distally from the outer sheath .
- the delivery system 1550 may then be rotated as necessary in order to orient the stent 1500 appropriately with respect to, for example, the coronary arteries (e.g., orienting the stent-valve such that the commissures do not face the coronary arteries). More specifically, prior to full release of the stent 1500, the delivery system 1550 may be rotated in order to cause the radiopaque marker 1512 to be placed between the osteum of the left and right coronary arteries.
- FIG. 15B shows a further, but still partial release of the stent 1500, in which the larger, orientation arches 1509 of stent section 1508 are released from the outer sheath 1554 and placed into contact with the aorta (for example).
- FIG. 15C illustrates an example of yet a further, still partial release but almost fully released, illustration of the stent release, in which the first conical crown of stent section 1504 is released from the outer sheath 1554 for engagement with the native valve leaflets 1580.
- FIG. 15D illustrates an example of a full release of the stent, in which the second conical crown of stent section 1502 (i.e., the proximal section of the stent; see Fig. 1) is released from the outer sheath 1554 for engagement with the annulus/inflow tract.
- the second conical crown of stent section 1502 i.e., the proximal section of the stent; see Fig. 1
- the outer sheath 1554 for engagement with the annulus/inflow tract.
- cardiac stent-valves are provided as cardiac replacement valves.
- On the left (systemic) side of the heart are: 1) the mitral valve, located between the left atrium and the left ventricle, and 2) the aortic valve, located between the left ventricle and the aorta. These two valves direct oxygenated blood coming from the lungs through the left side of the heart into the aorta for distribution to the body.
- the tricuspid valve located between the right atrium and the right ventricle
- the pulmonary valve located between the right ventricle and the pulmonary artery.
- Heart valves consist of stenosis, in which a valve does not open properly, and/or insufficiency, also called regurgitation, in which a valve does not close properly.
- insufficiency also called regurgitation
- heart valves may need to be surgically repaired or replaced due to certain types of bacterial or fungal infections in which the valve may continue to function normally, but nevertheless harbors an overgrowth of bacteria on the leaflets of the valve that may embolize and lodge downstream in a vital artery. In such cases, surgical replacement of either the mitral or aortic valve (left-sided heart valves) may be necessary.
- a method for replacing a worn or diseased valve comprising transapically implanting a replacement valve, wherein the replacement valve is a stent-valve of the present disclosure.
- the replacement valve comprises a valve component and a stent component, wherein the valve component is connect to the stent component.
- the stent component preferably comprises a longitudinal axis and preferably has four sections.
- the first section includes a substantially conical shape having a narrow end, a broad end and a predetermined first height.
- the second section includes a substantially conical shape having a narrow end, a broad end and a predetermined second height.
- the center of each of the first section and the second section are preferably arranged to align substantially with the longitudinal axis.
- the narrow ends of the first section and second section are preferably arranged to meet forming an annular groove to receive the annulus of worn or diseased cardiac valve at an implantation site of the heart.
- the first height of the first section is preferably greater than the second height of the second section.
- the placement of the stent- valve may be upstream of the annulus, whereupon when the stent-valve will be locked into position once the annular groove of the stent component receives the annulus.
- methods for implanting a replacement valve into a heart of a mammal comprising delivering a replacement valve to an implantation site of the heart of the mammal.
- the implantation site preferably comprises a release location and a final location; and the release location is spaced apart from the final location (and according to some embodiments, the spacing comprises a predetermined distance), and in some embodiments, in a blood upflow direction. Releasing the replacement valve at the release location, the replacement valve is able to slide into the final location, generally upon at least one beat of the heart subsequent to the replacement valve being released at the release location. [00127] According to some embodiments, the methods provides that when the replacement valve sliding into the final location, the replacement valve is substantially positioned to the final location.
- a method for replacing an aortic valve within a human body.
- a stent-valve may be covered with a sheath in order to maintain the stent-valve in a collapsed configuration.
- the stent-valve may then may be inserted in the collapsed configuration into the human body without contacting the ascending aorta or aortic arch.
- the stent-valve may be partially expanded by sliding the sheath towards the left ventricle of the heart. This sliding of the sheath towards the left ventricle may cause expansion of a distal end of the stent-valve while the proximal end of the stent-valve remains constrained by the sheath.
- the sheath may be further slid towards the left ventricle of the heart in order to cause full expansion of the stent-valve.
- the stent-valve may be recaptured prior to its full expansion by sliding the sheath in the opposite direction.
- a method for cardiac valve replacement includes releasing a distal end of a stent-valve from a sheath, where the distal end includes a radiopaque marker positioned thereon.
- the stent-valve is rotated, if necessary, to orient the stent-valve appropriately with respect to the coronary arteries (e.g., to prevent the commissures from facing the coronary arteries).
- Arches of the stent-valve are released from the sheath, in order to cause the arches to contact the aorta.
- a first conical crown of the stent-valve is released from the sheath, in order to cause the first conical crown to contact the native valve leaflets.
- a second crown of the stent-valve is released from the sheath, in order to cause the second crown to contact an annulus/inflow tract.
- the second crown may be the proximal section of the stent-valve such that releasing the second crown causes the stent-valve to be fully released from the sheath.
- a replacement valve for use within a human body where the replacement valve includes a valve component and a stent component.
- the stent component also may be used without a connected valve as a stent.
- the stent devices of the present disclosure may use used to mechanically widen a narrowed or totally obstructed blood vessel; typically as a result of atherosclerosis. Accordingly, the stent devices of the present disclosure may use used is angioplasty procedures.
- PCI percutaneous coronary intervention
- coronary angioplasty to treat the stenotic (narrowed) coronary arteries of the heart found in coronary heart disease
- peripheral angioplasty performed to mechanically widen the opening in blood vessels other than the coronary arteries.
- stent-valves e.g., single-stent-valves and double-stent- valves
- associated methods and systems for surgery are provided.
- stent-valves e.g., single-stent-valves and double-stent- valves
- various substitutions, alterations, and modifications may be made without departing from the spirit and scope of invention as defined by the claims.
- Other aspects, advantages, and modifications are considered to be within the scope of the following claims.
- the claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. The applicant reserves the right to pursue such inventions in later claims.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010530483A JP5603776B2 (en) | 2007-10-25 | 2008-10-27 | Stent, valved stent and method, and delivery system thereof |
CA2703665A CA2703665C (en) | 2007-10-25 | 2008-10-27 | Stents, valved-stents and methods and systems for delivery thereof |
BRPI0819217A BRPI0819217B8 (en) | 2007-10-25 | 2008-10-27 | replacement valve for use within a human body, system for replacing a valve within a human body, and heart valve release system with stent |
EP17206130.1A EP3311779B1 (en) | 2007-10-25 | 2008-10-27 | Cardiac valve |
EP08843043.4A EP2205183B1 (en) | 2007-10-25 | 2008-10-27 | A system for replacing a cardiac valve |
US12/739,117 US8647381B2 (en) | 2007-10-25 | 2008-10-27 | Stents, valved-stents, and methods and systems for delivery thereof |
EP13185563.7A EP2679198B1 (en) | 2007-10-25 | 2008-10-27 | Valved-stents and systems for delivery thereof |
US14/158,509 US20140277402A1 (en) | 2007-10-25 | 2014-01-17 | Stents, valved-stents and methods and systems for delivery thereof |
US15/241,985 US9839513B2 (en) | 2007-10-25 | 2016-08-19 | Stents, valved-stents and methods and systems for delivery thereof |
US15/809,123 US10219897B2 (en) | 2007-10-25 | 2017-11-10 | Stents, valved-stents and methods and systems for delivery thereof |
US16/287,123 US10709557B2 (en) | 2007-10-25 | 2019-02-27 | Stents, valved-stents and methods and systems for delivery thereof |
US16/901,303 US11452598B2 (en) | 2007-10-25 | 2020-06-15 | Stents, valved-stents and methods and systems for delivery thereof |
US17/953,163 US20230017818A1 (en) | 2007-10-25 | 2022-09-26 | Stents, valved-stents and methods and systems for delivery thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58707P | 2007-10-25 | 2007-10-25 | |
US61/000,587 | 2007-10-25 | ||
US6718908P | 2008-02-25 | 2008-02-25 | |
US61/067,189 | 2008-02-25 | ||
US5256008P | 2008-05-12 | 2008-05-12 | |
US61/052,560 | 2008-05-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/739,117 A-371-Of-International US8647381B2 (en) | 2007-10-25 | 2008-10-27 | Stents, valved-stents, and methods and systems for delivery thereof |
US14/158,509 Continuation US20140277402A1 (en) | 2007-10-25 | 2014-01-17 | Stents, valved-stents and methods and systems for delivery thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009053497A1 true WO2009053497A1 (en) | 2009-04-30 |
Family
ID=40083683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/064558 WO2009053497A1 (en) | 2007-10-25 | 2008-10-27 | Stents, valved-stents and methods and systems for delivery thereof |
Country Status (6)
Country | Link |
---|---|
US (7) | US8647381B2 (en) |
EP (3) | EP2679198B1 (en) |
JP (5) | JP5603776B2 (en) |
BR (1) | BRPI0819217B8 (en) |
CA (1) | CA2703665C (en) |
WO (1) | WO2009053497A1 (en) |
Cited By (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010008549A1 (en) * | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
WO2011051043A1 (en) * | 2009-11-02 | 2011-05-05 | Symetis Sa | Aortic bioprosthesis and systems for delivery thereof |
WO2011106533A1 (en) * | 2010-02-24 | 2011-09-01 | Medtronic Ventor Technologies Ltd | Mitral prosthesis |
WO2011112706A3 (en) * | 2010-03-11 | 2011-10-20 | Medtronic Inc. | Sinus-engaging fixation member |
US20110313515A1 (en) * | 2010-06-21 | 2011-12-22 | Arshad Quadri | Replacement heart valve |
WO2012032147A2 (en) | 2010-09-10 | 2012-03-15 | Symetis Sa | Catheter delivery system for stent valve |
WO2012032187A1 (en) | 2010-09-10 | 2012-03-15 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
WO2012038550A1 (en) | 2010-09-24 | 2012-03-29 | Symetis Sa | Stent valve, delivery apparatus and method therefor |
EP2444030A1 (en) * | 2010-08-31 | 2012-04-25 | Biotronik AG | Medical valve implant for implantation in an animal body and/or human body |
JP2012101061A (en) * | 2010-11-05 | 2012-05-31 | Timothy A M Chuter | Stent structure for use with valve replacement |
EP2474287A1 (en) | 2011-01-11 | 2012-07-11 | Symetis Sa | Delivery catheter for stent-valve, and sub-assembly therefor |
EP2484309A1 (en) * | 2011-02-02 | 2012-08-08 | Shlomo Gabbay | Heart valve prosthesis |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
JP2012528697A (en) * | 2009-06-05 | 2012-11-15 | メドトロニック エイティーエス メディカル インコーポレイテッド | Flexible commissure structure for attaching a bioprosthetic valve |
JP2012528670A (en) * | 2009-06-05 | 2012-11-15 | メドトロニック エイティーエス メディカル インコーポレイテッド | Heart valve with anchoring structure having a concave ground area |
US8323336B2 (en) | 2008-04-23 | 2012-12-04 | Medtronic, Inc. | Prosthetic heart valve devices and methods of valve replacement |
WO2013075215A1 (en) | 2011-11-23 | 2013-05-30 | Neovasc Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP2617390A1 (en) * | 2008-02-26 | 2013-07-24 | JenaValve Technology Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
JP2013543406A (en) * | 2010-10-05 | 2013-12-05 | エドワーズ ライフサイエンシーズ コーポレイション | Prosthetic heart valve |
CN103431931A (en) * | 2013-06-25 | 2013-12-11 | 杭州启明医疗器械有限公司 | Pulmonary artery support and pulmonary artery valve replacement device with same |
JP2013545515A (en) * | 2010-10-21 | 2013-12-26 | メドトロニック,インコーポレイテッド | Intraventricular low profile prosthetic mitral valve |
WO2014004822A1 (en) * | 2012-06-29 | 2014-01-03 | St. Jude Medical, Cardiology Division, Inc. | Commissure attachment feature for prosthetic heart valve |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
WO2014049106A1 (en) | 2012-09-27 | 2014-04-03 | Symetis Sa | Stent-valve, delivery apparatus, and stent-holder therefor |
WO2014066017A1 (en) * | 2012-10-23 | 2014-05-01 | Medtronic Inc. | Valve prosthesis |
US8747460B2 (en) | 2006-09-19 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Methods for implanting a valve prothesis |
EP2750631A1 (en) | 2011-10-19 | 2014-07-09 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
WO2014122205A1 (en) | 2013-02-06 | 2014-08-14 | Symetis Sa | Prosthetic valve, delivery apparatus and delivery method |
US8845722B2 (en) | 2009-08-03 | 2014-09-30 | Shlomo Gabbay | Heart valve prosthesis and method of implantation thereof |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2014170463A1 (en) * | 2013-04-19 | 2014-10-23 | Laboratoires Invalv | Implant, intended to be placed in a blood circulation passage, comprising a system for separating the proximal arms |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US8926692B2 (en) | 2010-04-09 | 2015-01-06 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9017399B2 (en) | 2010-07-21 | 2015-04-28 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2015063118A1 (en) | 2013-10-28 | 2015-05-07 | Symetis Sa | Stent-valve, delivery apparatus and method of use |
USD732666S1 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve, Inc. | Heart valve prosthesis |
EP2455041B1 (en) | 2007-11-05 | 2015-07-01 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
US9173737B2 (en) | 2008-04-23 | 2015-11-03 | Medtronic, Inc. | Stented heart valve devices |
US9216082B2 (en) | 2005-12-22 | 2015-12-22 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9241790B2 (en) | 2010-05-05 | 2016-01-26 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
CN105380730A (en) * | 2010-10-05 | 2016-03-09 | 爱德华兹生命科学公司 | Prosthetic heart valve |
US9333074B2 (en) | 2009-04-15 | 2016-05-10 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9364354B2 (en) | 2000-03-27 | 2016-06-14 | Neovasc Medical Ltd | Methods for treating abnormal growths in the body using a flow reducing implant |
US9375312B2 (en) | 2010-07-09 | 2016-06-28 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US9393111B2 (en) | 2014-01-15 | 2016-07-19 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
US9456896B2 (en) | 2008-09-29 | 2016-10-04 | Edwards Lifesciences Cardiaq Llc | Body cavity prosthesis |
US9480560B2 (en) | 2009-09-29 | 2016-11-01 | Edwards Lifesciences Cardiaq Llc | Method of securing an intralumenal frame assembly |
US9510947B2 (en) | 2011-10-21 | 2016-12-06 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable heart valve stent into the body of a patient |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9597183B2 (en) | 2008-10-01 | 2017-03-21 | Edwards Lifesciences Cardiaq Llc | Delivery system for vascular implant |
US9636221B2 (en) | 2007-09-26 | 2017-05-02 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9675449B2 (en) | 2008-07-15 | 2017-06-13 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9707075B2 (en) | 2008-02-26 | 2017-07-18 | Jenavalve Technology, Inc. | Endoprosthesis for implantation in the heart of a patient |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9744059B2 (en) | 2003-11-19 | 2017-08-29 | Neovasc Medical Ltd. | Vascular implant |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
EP2437687B1 (en) | 2009-06-02 | 2017-09-20 | Medtronic Inc. | Stented prosthetic heart valves |
EP2787924B1 (en) | 2011-12-05 | 2017-09-20 | Medtronic Inc. | Transcatheter valve having reduced seam exposure |
AU2015258284B2 (en) * | 2010-09-10 | 2017-09-28 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US9820851B2 (en) | 2007-09-28 | 2017-11-21 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9839513B2 (en) | 2007-10-25 | 2017-12-12 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
US9867699B2 (en) | 2008-02-26 | 2018-01-16 | Jenavalve Technology, Inc. | Endoprosthesis for implantation in the heart of a patient |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US9877828B2 (en) | 2008-02-26 | 2018-01-30 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US9878127B2 (en) | 2012-05-16 | 2018-01-30 | Jenavalve Technology, Inc. | Catheter delivery system for heart valve prosthesis |
US9913715B2 (en) | 2013-11-06 | 2018-03-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US9949827B2 (en) | 2009-09-29 | 2018-04-24 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
WO2018080328A1 (en) * | 2016-10-19 | 2018-05-03 | Chodor Piotr | Stent of aortic valve implanted transcatheterly |
EP2886083B1 (en) | 2012-03-23 | 2018-05-16 | Sorin Group Italia S.r.l. | A collapsible valve prosthesis |
US9974669B2 (en) | 2005-11-10 | 2018-05-22 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
US9999501B2 (en) | 2012-04-18 | 2018-06-19 | Medtronic CV Luxembourg S.a.r.l. | Valve prosthesis |
US10004599B2 (en) | 2014-02-21 | 2018-06-26 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
JP2018516642A (en) * | 2015-05-01 | 2018-06-28 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Device and method for reducing pacemaker rate in heart valve replacement |
US10010414B2 (en) | 2014-06-06 | 2018-07-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
WO2018170198A1 (en) * | 2017-03-16 | 2018-09-20 | St. Jude Medical, Cardiology Division, Inc. | Retainers for transcatheter heart valve delivery systems |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10179044B2 (en) | 2014-05-19 | 2019-01-15 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
USD841813S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US10245143B2 (en) | 2011-08-05 | 2019-04-02 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10258464B2 (en) | 2012-03-22 | 2019-04-16 | Symetis Sa | Transcatheter stent-valves |
US10292817B2 (en) | 2008-06-06 | 2019-05-21 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US10376361B2 (en) | 2011-08-05 | 2019-08-13 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US10390952B2 (en) | 2015-02-05 | 2019-08-27 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US10413406B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10426605B2 (en) | 2013-10-05 | 2019-10-01 | Sino Medical Sciences Technology, Inc. | Device and method for mitral valve regurgitation treatment |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10463484B2 (en) | 2016-11-17 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US10492908B2 (en) | 2014-07-30 | 2019-12-03 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US10517722B2 (en) | 2016-03-24 | 2019-12-31 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US10561494B2 (en) | 2011-02-25 | 2020-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10583000B2 (en) | 2013-03-14 | 2020-03-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US10595993B2 (en) | 2013-12-05 | 2020-03-24 | Edwards Lifesciences Corporation | Method of making an introducer sheath with an inner liner |
US10603165B2 (en) | 2016-12-06 | 2020-03-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US10639143B2 (en) | 2016-08-26 | 2020-05-05 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US10646340B2 (en) | 2016-08-19 | 2020-05-12 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve |
EP3673871A1 (en) | 2010-09-24 | 2020-07-01 | Symetis SA | A transcatheter aortic valve implantation system |
US10709559B2 (en) | 2014-10-13 | 2020-07-14 | Boston Scientific Limited | Catheter delivery system for stent valve |
US10716662B2 (en) | 2007-08-21 | 2020-07-21 | Boston Scientific Limited | Stent-valves for valve replacement and associated methods and systems for surgery |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10813757B2 (en) | 2017-07-06 | 2020-10-27 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US10898319B2 (en) | 2017-08-17 | 2021-01-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10918473B2 (en) | 2017-07-18 | 2021-02-16 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
US10932903B2 (en) | 2017-08-15 | 2021-03-02 | Edwards Lifesciences Corporation | Skirt assembly for implantable prosthetic valve |
US10973631B2 (en) | 2016-11-17 | 2021-04-13 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US10973629B2 (en) | 2017-09-06 | 2021-04-13 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11013595B2 (en) | 2017-08-11 | 2021-05-25 | Edwards Lifesciences Corporation | Sealing element for prosthetic heart valve |
US11026781B2 (en) | 2017-05-22 | 2021-06-08 | Edwards Lifesciences Corporation | Valve anchor and installation method |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11083575B2 (en) | 2017-08-14 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
US11147667B2 (en) | 2017-09-08 | 2021-10-19 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
WO2021250120A1 (en) | 2020-06-09 | 2021-12-16 | Biotronik Ag | A prosthetic heart valve with improved sealing means |
US11207176B2 (en) | 2012-03-22 | 2021-12-28 | Boston Scientific Scimed, Inc. | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US11291545B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Implant for heart valve |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US11318011B2 (en) | 2018-04-27 | 2022-05-03 | Edwards Lifesciences Corporation | Mechanically expandable heart valve with leaflet clamps |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11399932B2 (en) | 2019-03-26 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11406493B2 (en) | 2014-09-12 | 2022-08-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US11446141B2 (en) | 2018-10-19 | 2022-09-20 | Edwards Lifesciences Corporation | Prosthetic heart valve having non-cylindrical frame |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11723783B2 (en) | 2019-01-23 | 2023-08-15 | Neovasc Medical Ltd. | Covered flow modifying apparatus |
US11730589B2 (en) | 2010-03-05 | 2023-08-22 | Edwards Lifesciences Corporation | Prosthetic heart valve having an inner frame and an outer frame |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US11793636B2 (en) | 2013-02-06 | 2023-10-24 | Symetis Sa | Prosthetic valve. delivery apparatus and delivery method |
US11857411B2 (en) | 2017-08-18 | 2024-01-02 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US11883281B2 (en) | 2017-05-31 | 2024-01-30 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11938022B2 (en) | 2020-06-26 | 2024-03-26 | Highlife Sas | Transcatheter valve prosthesis and method for implanting the same |
US11963871B2 (en) | 2020-06-18 | 2024-04-23 | Edwards Lifesciences Corporation | Crimping devices and methods |
US12004947B1 (en) | 2021-01-20 | 2024-06-11 | Edwards Lifesciences Corporation | Connecting skirt for attaching a leaflet to a frame of a prosthetic heart valve |
US12029644B2 (en) | 2019-01-17 | 2024-07-09 | Edwards Lifesciences Corporation | Frame for prosthetic heart valve |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US12115066B2 (en) | 2021-03-23 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having elongated sealing member |
US12121435B2 (en) | 2022-06-28 | 2024-10-22 | Edwards Lifesciences Corporation | Prosthetic heart valve leaflet assemblies and methods |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8091556B2 (en) | 2001-04-20 | 2012-01-10 | V-Wave Ltd. | Methods and apparatus for reducing localized circulatory system pressure |
US20050148925A1 (en) | 2001-04-20 | 2005-07-07 | Dan Rottenberg | Device and method for controlling in-vivo pressure |
US6866679B2 (en) | 2002-03-12 | 2005-03-15 | Ev3 Inc. | Everting stent and stent delivery system |
US9681948B2 (en) | 2006-01-23 | 2017-06-20 | V-Wave Ltd. | Heart anchor device |
US20090306768A1 (en) * | 2006-07-28 | 2009-12-10 | Cardiaq Valve Technologies, Inc. | Percutaneous valve prosthesis and system and method for implanting same |
AU2008260444B2 (en) * | 2007-06-04 | 2014-09-11 | St. Jude Medical, Inc. | Prosthetic heart valves |
JP5329542B2 (en) | 2007-08-23 | 2013-10-30 | ダイレクト フロウ メディカル、 インク. | Transluminally implantable heart valve with in-place forming support |
US20090105813A1 (en) * | 2007-10-17 | 2009-04-23 | Sean Chambers | Implantable valve device |
US8157853B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
WO2010128501A1 (en) | 2009-05-04 | 2010-11-11 | V-Wave Ltd. | Device and method for regulating pressure in a heart chamber |
US10076403B1 (en) | 2009-05-04 | 2018-09-18 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US20210161637A1 (en) | 2009-05-04 | 2021-06-03 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US9034034B2 (en) | 2010-12-22 | 2015-05-19 | V-Wave Ltd. | Devices for reducing left atrial pressure, and methods of making and using same |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9603708B2 (en) | 2010-05-19 | 2017-03-28 | Dfm, Llc | Low crossing profile delivery catheter for cardiovascular prosthetic implant |
EP4098227A1 (en) * | 2010-07-23 | 2022-12-07 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
US11135054B2 (en) | 2011-07-28 | 2021-10-05 | V-Wave Ltd. | Interatrial shunts having biodegradable material, and methods of making and using same |
US9629715B2 (en) | 2011-07-28 | 2017-04-25 | V-Wave Ltd. | Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9445893B2 (en) | 2011-11-21 | 2016-09-20 | Mor Research Applications Ltd. | Device for placement in the tricuspid annulus |
EP3708124B1 (en) | 2011-12-06 | 2024-05-22 | Aortic Innovations LLC | Device for endovascular aortic repair |
EP2811939B8 (en) * | 2012-02-10 | 2017-11-15 | CVDevices, LLC | Products made of biological tissues for stents and methods of manufacturing |
US20130226278A1 (en) | 2012-02-23 | 2013-08-29 | Tyco Healthcare Group Lp | Methods and apparatus for luminal stenting |
US9072624B2 (en) | 2012-02-23 | 2015-07-07 | Covidien Lp | Luminal stenting |
US9078659B2 (en) | 2012-04-23 | 2015-07-14 | Covidien Lp | Delivery system with hooks for resheathability |
US9233015B2 (en) | 2012-06-15 | 2016-01-12 | Trivascular, Inc. | Endovascular delivery system with an improved radiopaque marker scheme |
US9724222B2 (en) | 2012-07-20 | 2017-08-08 | Covidien Lp | Resheathable stent delivery system |
JP6010836B2 (en) * | 2013-01-24 | 2016-10-19 | 株式会社グッドマン | Stent and prosthetic valve with stent |
US11406497B2 (en) | 2013-03-14 | 2022-08-09 | Jc Medical, Inc. | Heart valve prosthesis |
AU2014236249B2 (en) * | 2013-03-14 | 2018-11-08 | Vactronix Scientific, Llc | Monolithic medical device, methods of making and using the same |
US11259923B2 (en) * | 2013-03-14 | 2022-03-01 | Jc Medical, Inc. | Methods and devices for delivery of a prosthetic valve |
DE102013104550B4 (en) | 2013-05-03 | 2021-07-01 | Acandis Gmbh | Medical device for insertion into a hollow organ in the body |
WO2014179763A1 (en) | 2013-05-03 | 2014-11-06 | Medtronic Inc. | Valve delivery tool |
US9375311B2 (en) * | 2013-05-03 | 2016-06-28 | Medtronic, Inc. | Prosthetic valves and associated appartuses, systems and methods |
WO2014182505A1 (en) | 2013-05-10 | 2014-11-13 | Stenomics, Inc. | Modeling and simulation system for optimizing prosthetic heart valve treatment |
CN105555204B (en) | 2013-05-21 | 2018-07-10 | V-波有限责任公司 | For delivering the equipment for the device for reducing left atrial pressure |
US9237948B2 (en) | 2013-07-11 | 2016-01-19 | Medtronic, Inc. | Delivery system with projections |
US10524904B2 (en) * | 2013-07-11 | 2020-01-07 | Medtronic, Inc. | Valve positioning device |
US8870948B1 (en) * | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US10130500B2 (en) | 2013-07-25 | 2018-11-20 | Covidien Lp | Methods and apparatus for luminal stenting |
CA2916955A1 (en) | 2013-07-26 | 2015-01-29 | Impala, Inc. | Systems and methods for sealing openings in an anatomical wall |
WO2015023579A1 (en) | 2013-08-12 | 2015-02-19 | Mitral Valve Technologies Sa | Apparatus and methods for implanting a replacement heart valve |
US10265207B2 (en) | 2013-08-27 | 2019-04-23 | Covidien Lp | Delivery of medical devices |
US9782186B2 (en) | 2013-08-27 | 2017-10-10 | Covidien Lp | Vascular intervention system |
US9092743B2 (en) * | 2013-10-23 | 2015-07-28 | Stenomics, Inc. | Machine learning system for assessing heart valves and surrounding cardiovascular tracts |
US10646333B2 (en) * | 2013-10-24 | 2020-05-12 | Medtronic, Inc. | Two-piece valve prosthesis with anchor stent and valve component |
US9750603B2 (en) | 2014-01-27 | 2017-09-05 | Medtronic Vascular Galway | Stented prosthetic heart valve with variable stiffness and methods of use |
WO2015120122A2 (en) * | 2014-02-05 | 2015-08-13 | Robert Vidlund | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US9949825B2 (en) * | 2014-02-18 | 2018-04-24 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
USD755384S1 (en) | 2014-03-05 | 2016-05-03 | Edwards Lifesciences Cardiaq Llc | Stent |
US10195025B2 (en) * | 2014-05-12 | 2019-02-05 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10213307B2 (en) * | 2014-11-05 | 2019-02-26 | Medtronic Vascular, Inc. | Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage |
CA2967241C (en) * | 2014-11-17 | 2023-01-31 | Mitrassist Medical Ltd. | Heart valve prosthesis |
JP6858337B2 (en) * | 2014-12-05 | 2021-04-14 | エヌヴィーティー アーゲー | Artificial heart valve system and delivery system for the system |
WO2016093877A1 (en) | 2014-12-09 | 2016-06-16 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
EP3229738B1 (en) | 2014-12-14 | 2023-11-22 | Trisol Medical Ltd. | Prosthetic valve and deployment system |
CN107427364B (en) * | 2014-12-19 | 2019-12-10 | 杭州启明医疗器械股份有限公司 | Minimally invasive mitral valve replacement with margins |
EP3884906A1 (en) | 2015-02-05 | 2021-09-29 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US11123204B2 (en) | 2015-02-06 | 2021-09-21 | Boston Scientific Scimed, Inc. | Anti-migration stent |
DE102015206099A1 (en) * | 2015-04-02 | 2016-10-06 | Hans-Hinrich Sievers | Heart valve prosthesis |
US10232564B2 (en) | 2015-04-29 | 2019-03-19 | Edwards Lifesciences Corporation | Laminated sealing member for prosthetic heart valve |
EP3291773A4 (en) | 2015-05-07 | 2019-05-01 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | Temporary interatrial shunts |
EP3294220B1 (en) | 2015-05-14 | 2023-12-06 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
EP3294221B1 (en) | 2015-05-14 | 2024-03-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
WO2017081516A1 (en) * | 2015-11-12 | 2017-05-18 | Valmy Holding | Mitral or tricuspid heart valve prosthesis |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10179043B2 (en) * | 2016-02-12 | 2019-01-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
US10835394B2 (en) | 2016-05-31 | 2020-11-17 | V-Wave, Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
US20170340460A1 (en) | 2016-05-31 | 2017-11-30 | V-Wave Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
US10456247B2 (en) * | 2016-11-04 | 2019-10-29 | Highlife Sas | Transcatheter valve prosthesis |
US9999502B2 (en) | 2016-11-04 | 2018-06-19 | Highlife Sas | Transcather valve prosthesis |
US10188514B2 (en) | 2016-11-04 | 2019-01-29 | Highlife Sas | Transcatheter valve prosthesis |
US10195027B2 (en) | 2016-11-04 | 2019-02-05 | Highlife Sas | Transcatheter valve prosthesis |
US11376121B2 (en) | 2016-11-04 | 2022-07-05 | Highlife Sas | Transcatheter valve prosthesis |
FR3058631B1 (en) * | 2016-11-14 | 2019-01-25 | Laboratoires Invalv | IMPLANT FOR TREATING A BIOLOGICAL VALVE |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
US10376396B2 (en) | 2017-01-19 | 2019-08-13 | Covidien Lp | Coupling units for medical device delivery systems |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
CA3051272C (en) | 2017-01-23 | 2023-08-22 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11291807B2 (en) | 2017-03-03 | 2022-04-05 | V-Wave Ltd. | Asymmetric shunt for redistributing atrial blood volume |
AU2018228451B2 (en) | 2017-03-03 | 2022-12-08 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP3700474B1 (en) | 2017-10-25 | 2023-08-23 | Boston Scientific Scimed, Inc. | Stent with atraumatic spacer |
WO2019089741A1 (en) | 2017-11-01 | 2019-05-09 | Boston Scientific Scimed, Inc. | Esophageal stent including a valve member |
CN109966023B (en) * | 2017-12-28 | 2024-09-27 | 上海微创心通医疗科技有限公司 | Heart valve prosthesis and stent thereof |
CN110013349B (en) | 2018-01-07 | 2023-06-23 | 苏州杰成医疗科技有限公司 | Prosthetic heart valve delivery system |
US11458287B2 (en) | 2018-01-20 | 2022-10-04 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
US10898698B1 (en) | 2020-05-04 | 2021-01-26 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
WO2019142152A1 (en) | 2018-01-20 | 2019-07-25 | V-Wave Ltd. | Devices and methods for providing passage between heart chambers |
CN111818877B (en) | 2018-01-25 | 2023-12-22 | 爱德华兹生命科学公司 | Delivery system for assisting in recapture and repositioning of replacement valves after deployment |
JP7125993B2 (en) * | 2018-03-08 | 2022-08-25 | シメティス・ソシエテ・アノニム | Implantable valve with attached polymer component |
JP6548769B1 (en) | 2018-03-26 | 2019-07-24 | 大王製紙株式会社 | Sanitary thin paper |
US11413176B2 (en) | 2018-04-12 | 2022-08-16 | Covidien Lp | Medical device delivery |
US10786377B2 (en) | 2018-04-12 | 2020-09-29 | Covidien Lp | Medical device delivery |
US11071637B2 (en) | 2018-04-12 | 2021-07-27 | Covidien Lp | Medical device delivery |
US11123209B2 (en) | 2018-04-12 | 2021-09-21 | Covidien Lp | Medical device delivery |
EP3796867A1 (en) | 2018-05-23 | 2021-03-31 | Sorin Group Italia S.r.l. | A holder for a heart valve prosthesis, a storage arrangement for a heart valve prosthesis, and a crimping kit and method |
CN112384173B (en) | 2018-05-23 | 2024-06-11 | 恪心有限责任公司 | Loading system for implantable prosthesis and related loading method |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
US11241312B2 (en) | 2018-12-10 | 2022-02-08 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
CN109498215B (en) * | 2018-12-14 | 2023-05-02 | 宁波健世科技股份有限公司 | Separated release aortic valve stent |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
US11612385B2 (en) | 2019-04-03 | 2023-03-28 | V-Wave Ltd. | Systems and methods for delivering implantable devices across an atrial septum |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
US11865282B2 (en) | 2019-05-20 | 2024-01-09 | V-Wave Ltd. | Systems and methods for creating an interatrial shunt |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
US11413174B2 (en) | 2019-06-26 | 2022-08-16 | Covidien Lp | Core assembly for medical device delivery systems |
WO2021023545A1 (en) | 2019-08-05 | 2021-02-11 | Biotronik Ag | Implant having a three-dimensional structure |
US12064343B2 (en) * | 2020-03-04 | 2024-08-20 | Medtronic, Inc. | Devices and methods for multi-alignment of implantable medical devices |
US12011349B2 (en) * | 2020-03-04 | 2024-06-18 | Medtronic, Inc. | Balloon expandable stent with lengthened commissure posts for transcatheter implantation of a cardiac valve prosthesis |
DE102020111681A1 (en) | 2020-04-29 | 2021-11-04 | Nvt Ag | Prosthetic device for implantation in the aortic valve area of a heart |
RU2749118C1 (en) * | 2020-06-05 | 2021-06-04 | федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ им. ак. Е.Н. Мешалкина" Минздрава России) | Bioprosthetic aortic valve (variants) for open non-suture and transcatheter implantation |
EP4199860A1 (en) | 2020-08-19 | 2023-06-28 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
US20220061985A1 (en) * | 2020-08-25 | 2022-03-03 | Medtronic, Inc. | Devices and methods for multi-alignment of implantable medical devices |
JP2023540220A (en) | 2020-08-25 | 2023-09-22 | シファメド・ホールディングス・エルエルシー | Adjustable interatrial flow diverter and related systems and methods |
EP4243915A4 (en) | 2020-11-12 | 2024-08-07 | Shifamed Holdings Llc | Adjustable implantable devices and associated methods |
US11234702B1 (en) | 2020-11-13 | 2022-02-01 | V-Wave Ltd. | Interatrial shunt having physiologic sensor |
US11969343B2 (en) | 2020-12-07 | 2024-04-30 | Medtronic, Inc. | Transcatheter heart valve prosthesis systems and methods for rotational alignment |
US20220175521A1 (en) * | 2020-12-07 | 2022-06-09 | Medtronic, Inc. | Transcatheter heart valve prostheses |
US12090290B2 (en) | 2021-03-09 | 2024-09-17 | Shifamed Holdings, Llc | Shape memory actuators for adjustable shunting systems, and associated systems and methods |
US12042413B2 (en) | 2021-04-07 | 2024-07-23 | Covidien Lp | Delivery of medical devices |
US12109137B2 (en) | 2021-07-30 | 2024-10-08 | Covidien Lp | Medical device delivery |
US11944558B2 (en) | 2021-08-05 | 2024-04-02 | Covidien Lp | Medical device delivery devices, systems, and methods |
US20240074853A1 (en) * | 2021-10-12 | 2024-03-07 | Laguna Tech Usa, Inc. | Prosthetic heart valve device, delivery system, interventional system and related method |
AU2023252664A1 (en) | 2022-04-14 | 2024-10-17 | V-Wave Ltd. | Interatrial shunt with expanded neck region |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US20010007956A1 (en) * | 1996-12-31 | 2001-07-12 | Brice Letac | Valve prosthesis for implantation in body channels |
US20040106976A1 (en) * | 1999-12-31 | 2004-06-03 | Bailey Steven R. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US20040210304A1 (en) * | 1999-11-17 | 2004-10-21 | Corevalve, S.A. | Prosthetic valve for transluminal delivery |
US20050113910A1 (en) | 2002-01-04 | 2005-05-26 | David Paniagua | Percutaneously implantable replacement heart valve device and method of making same |
US20050137688A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Repositionable heart valve and method |
US20060122692A1 (en) * | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
US20060149360A1 (en) * | 2003-07-08 | 2006-07-06 | Ventor Technologies Ltd. | Fluid flow prosthetic device |
WO2006083763A1 (en) * | 2005-01-31 | 2006-08-10 | Wilson-Cook Medical Inc. | Prosthesis having a sleeve valve |
US7252682B2 (en) * | 2001-07-04 | 2007-08-07 | Corevalve, S.A. | Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body |
US20070213813A1 (en) * | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
Family Cites Families (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7021A (en) * | 1850-01-15 | Substitute for the clevis | ||
US7014A (en) * | 1850-01-15 | Folding bedstead | ||
US3755823A (en) | 1971-04-23 | 1973-09-04 | Hancock Laboratories Inc | Flexible stent for heart valve |
CA1069652A (en) | 1976-01-09 | 1980-01-15 | Alain F. Carpentier | Supported bioprosthetic heart valve with compliant orifice ring |
US4470157A (en) | 1981-04-27 | 1984-09-11 | Love Jack W | Tricuspid prosthetic tissue heart valve |
FR2641692A1 (en) | 1989-01-17 | 1990-07-20 | Nippon Zeon Co | Plug for closing an opening for a medical application, and device for the closure plug making use thereof |
US5609626A (en) | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5078720A (en) * | 1990-05-02 | 1992-01-07 | American Medical Systems, Inc. | Stent placement instrument and method |
DK124690D0 (en) * | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5411552A (en) * | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
BR9206005A (en) | 1991-05-16 | 1994-08-02 | Mures Cardiovascular Research | Heart valve, process to form an artificial heart valve, flexible tissue for the formation of a heart valve, and, set to form trapezoidal pericardial membranes for the formation of a heart valve |
US6029671A (en) | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5354330A (en) | 1991-10-31 | 1994-10-11 | Ats Medical Inc. | Heart valve prosthesis |
US5540712A (en) * | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5718725A (en) | 1992-12-03 | 1998-02-17 | Heartport, Inc. | Devices and methods for intracardiac procedures |
JPH08500757A (en) * | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
US5713951A (en) * | 1993-02-22 | 1998-02-03 | Heartport, Inc. | Thoracoscopic valve prosthesis delivery device |
US5797960A (en) * | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
US5480424A (en) | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
EP0657147B1 (en) | 1993-11-04 | 1999-08-04 | C.R. Bard, Inc. | Non-migrating vascular prosthesis |
US5499995C1 (en) | 1994-05-25 | 2002-03-12 | Paul S Teirstein | Body passageway closure apparatus and method of use |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5824041A (en) * | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
AU4632196A (en) * | 1995-04-14 | 1996-10-30 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
GB9522332D0 (en) * | 1995-11-01 | 1996-01-03 | Biocompatibles Ltd | Braided stent |
US5807327A (en) * | 1995-12-08 | 1998-09-15 | Ethicon, Inc. | Catheter assembly |
US5861028A (en) * | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
US5855601A (en) * | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
NL1004827C2 (en) | 1996-12-18 | 1998-06-19 | Surgical Innovations Vof | Device for regulating blood circulation. |
GB9701479D0 (en) | 1997-01-24 | 1997-03-12 | Aortech Europ Ltd | Heart valve |
US5817126A (en) * | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5928281A (en) * | 1997-03-27 | 1999-07-27 | Baxter International Inc. | Tissue heart valves |
US5855600A (en) * | 1997-08-01 | 1999-01-05 | Inflow Dynamics Inc. | Flexible implantable stent with composite design |
US5976174A (en) | 1997-12-15 | 1999-11-02 | Ruiz; Carlos E. | Medical hole closure device and methods of use |
CA2315211A1 (en) | 1997-12-29 | 1999-07-08 | The Cleveland Clinic Foundation | System for minimally invasive insertion of a bioprosthetic heart valve |
US6530952B2 (en) | 1997-12-29 | 2003-03-11 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US6533807B2 (en) * | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US5980533A (en) * | 1998-06-09 | 1999-11-09 | Scimed Life Systems, Inc. | Stent delivery system |
US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6544278B1 (en) * | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US7713282B2 (en) | 1998-11-06 | 2010-05-11 | Atritech, Inc. | Detachable atrial appendage occlusion balloon |
US6214036B1 (en) * | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
WO2000028922A1 (en) | 1998-11-12 | 2000-05-25 | Advanced Cardiovascular Systems, Inc. | Stent having non-uniform structure |
DE19857887B4 (en) | 1998-12-15 | 2005-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring support for a heart valve prosthesis |
US7578828B2 (en) * | 1999-01-15 | 2009-08-25 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US7025773B2 (en) * | 1999-01-15 | 2006-04-11 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US6736845B2 (en) | 1999-01-26 | 2004-05-18 | Edwards Lifesciences Corporation | Holder for flexible heart valve |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
US6110201A (en) | 1999-02-18 | 2000-08-29 | Venpro | Bifurcated biological pulmonary valved conduit |
US6273910B1 (en) | 1999-03-11 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Stent with varying strut geometry |
EP1173117B1 (en) | 1999-04-28 | 2007-07-11 | St. Jude Medical, Inc. | Aortic heart valve prosthesis sizer and marker |
US6589279B1 (en) | 1999-04-28 | 2003-07-08 | St. Jude Medical, Inc. | Efficient implantation of heart valve prostheses |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
US6287339B1 (en) * | 1999-05-27 | 2001-09-11 | Sulzer Carbomedics Inc. | Sutureless heart valve prosthesis |
US6183481B1 (en) * | 1999-09-22 | 2001-02-06 | Endomed Inc. | Delivery system for self-expanding stents and grafts |
US6331189B1 (en) * | 1999-10-18 | 2001-12-18 | Medtronic, Inc. | Flexible medical stent |
US6652555B1 (en) | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US7018406B2 (en) * | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US20070043435A1 (en) * | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US6537310B1 (en) | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US6936066B2 (en) | 1999-11-19 | 2005-08-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Complaint implantable medical devices and methods of making same |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US6409759B1 (en) * | 1999-12-30 | 2002-06-25 | St. Jude Medical, Inc. | Harvested tissue heart valve with sewing rim |
BR0107897A (en) | 2000-01-27 | 2002-11-05 | 3F Therapeutics Inc | Prosthetic heart valve without stent, semi-lunar heart valve without stent, process for producing a prosthetic tubular heart valve without stent, process for making a prosthetic heart valve, and, process for producing a prosthetic valve |
JP2003521334A (en) | 2000-02-04 | 2003-07-15 | ウィルソン−クック メディカル インコーポレイテッド | Stent introducer device |
DE20003874U1 (en) | 2000-02-28 | 2000-05-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München | Device for fastening and anchoring heart valve prostheses |
DE10010074B4 (en) | 2000-02-28 | 2005-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for fastening and anchoring heart valve prostheses |
US6695865B2 (en) | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6454799B1 (en) * | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6805711B2 (en) | 2000-06-02 | 2004-10-19 | 3F Therapeutics, Inc. | Expandable medical implant and percutaneous delivery |
US6406493B1 (en) | 2000-06-02 | 2002-06-18 | Hosheng Tu | Expandable annuloplasty ring and methods of use |
US6635085B1 (en) * | 2000-08-17 | 2003-10-21 | Carbomedics Inc. | Heart valve stent with alignment posts |
US6572652B2 (en) | 2000-08-29 | 2003-06-03 | Venpro Corporation | Method and devices for decreasing elevated pulmonary venous pressure |
WO2002022054A1 (en) * | 2000-09-12 | 2002-03-21 | Gabbay S | Valvular prosthesis and method of using same |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US6461382B1 (en) | 2000-09-22 | 2002-10-08 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
US6736827B1 (en) | 2000-10-13 | 2004-05-18 | Medtronic Ave, Inc. | Low profile catheter |
US6974476B2 (en) * | 2003-05-05 | 2005-12-13 | Rex Medical, L.P. | Percutaneous aortic valve |
US20050182483A1 (en) | 2004-02-11 | 2005-08-18 | Cook Incorporated | Percutaneously placed prosthesis with thromboresistant valve portion |
WO2002067782A2 (en) | 2001-02-26 | 2002-09-06 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US6503272B2 (en) | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves |
US7556646B2 (en) * | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
US7374571B2 (en) | 2001-03-23 | 2008-05-20 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of manufacture |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
US6682558B2 (en) | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
ITTO20010465A1 (en) | 2001-05-18 | 2002-11-18 | Sorin Biomedica Cardio Spa | MODIFYING STRUCTURE ELEMENT FOR INSTALLATION DEVICES, RELATED INSTALLATION DEVICE AND CONSTRUCTION PROCEDURE. |
KR100393548B1 (en) | 2001-06-05 | 2003-08-02 | 주식회사 엠아이텍 | Stent |
US7377938B2 (en) * | 2001-07-19 | 2008-05-27 | The Cleveland Clinic Foundation | Prosthetic cardiac value and method for making same |
FR2828091B1 (en) * | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
US7288105B2 (en) | 2001-08-01 | 2007-10-30 | Ev3 Endovascular, Inc. | Tissue opening occluder |
US6656351B2 (en) | 2001-08-31 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices one way porous membrane |
US6562069B2 (en) * | 2001-09-19 | 2003-05-13 | St. Jude Medical, Inc. | Polymer leaflet designs for medical devices |
US6893460B2 (en) * | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US7371258B2 (en) | 2001-10-26 | 2008-05-13 | St. Jude Medical, Inc. | Valved prosthesis with porous substrate |
US7201771B2 (en) | 2001-12-27 | 2007-04-10 | Arbor Surgical Technologies, Inc. | Bioprosthetic heart valve |
US7033390B2 (en) | 2002-01-02 | 2006-04-25 | Medtronic, Inc. | Prosthetic heart valve system |
WO2003063729A2 (en) | 2002-01-28 | 2003-08-07 | Orbus Medical Technologies Inc. | Flared ostial endoprosthesis and delivery system |
US6830586B2 (en) | 2002-02-28 | 2004-12-14 | 3F Therapeutics, Inc. | Stentless atrioventricular heart valve fabricated from a singular flat membrane |
WO2003092554A1 (en) | 2002-05-03 | 2003-11-13 | The General Hospital Corporation | Involuted endovascular valve and method of construction |
US7141064B2 (en) | 2002-05-08 | 2006-11-28 | Edwards Lifesciences Corporation | Compressed tissue for heart valve leaflets |
EP1507492A1 (en) * | 2002-05-10 | 2005-02-23 | Cordis Corporation | Method of making a medical device having a thin wall tubular membrane over a structural frame |
US7264632B2 (en) | 2002-06-07 | 2007-09-04 | Medtronic Vascular, Inc. | Controlled deployment delivery system |
US7041132B2 (en) * | 2002-08-16 | 2006-05-09 | 3F Therapeutics, Inc, | Percutaneously delivered heart valve and delivery means thereof |
US7273492B2 (en) * | 2002-08-27 | 2007-09-25 | Advanced Cardiovascular Systems Inc. | Stent for treating vulnerable plaque |
US20040092858A1 (en) | 2002-08-28 | 2004-05-13 | Heart Leaflet Technologies, Inc. | Leaflet valve |
US6875231B2 (en) * | 2002-09-11 | 2005-04-05 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve |
US7137184B2 (en) | 2002-09-20 | 2006-11-21 | Edwards Lifesciences Corporation | Continuous heart valve support frame and method of manufacture |
US6830585B1 (en) | 2003-01-14 | 2004-12-14 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve and methods of implantation |
US20040254594A1 (en) | 2003-01-24 | 2004-12-16 | Arthur Alfaro | Cardiac defect occlusion device |
WO2004080352A1 (en) | 2003-03-12 | 2004-09-23 | Cook Incorporated | Prosthetic valve that permits retrograde flow |
US7399315B2 (en) * | 2003-03-18 | 2008-07-15 | Edwards Lifescience Corporation | Minimally-invasive heart valve with cusp positioners |
US8221492B2 (en) | 2003-04-24 | 2012-07-17 | Cook Medical Technologies | Artificial valve prosthesis with improved flow dynamics |
USRE44050E1 (en) | 2003-06-27 | 2013-03-05 | University Of South Florida | Vascular prosthesis |
US7678123B2 (en) | 2003-07-14 | 2010-03-16 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
DE602004014283D1 (en) | 2003-07-31 | 2008-07-17 | Wilson Cook Medical Inc | System for the introduction of several medical devices |
US20060259137A1 (en) | 2003-10-06 | 2006-11-16 | Jason Artof | Minimally invasive valve replacement system |
US20050075728A1 (en) | 2003-10-06 | 2005-04-07 | Nguyen Tuoc Tan | Minimally invasive valve replacement system |
US7416530B2 (en) | 2003-11-04 | 2008-08-26 | L & P 100 Limited | Medical devices |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US8128681B2 (en) * | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7261732B2 (en) * | 2003-12-22 | 2007-08-28 | Henri Justino | Stent mounted valve |
US7381219B2 (en) * | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
DE10394350B4 (en) | 2003-12-23 | 2018-05-17 | Cormove | To be implanted in a lumen to be implanted parts set and prosthesis the same |
US7780725B2 (en) * | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US20050137696A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical | Apparatus and methods for protecting against embolization during endovascular heart valve replacement |
US7329279B2 (en) * | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8182528B2 (en) * | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US8828078B2 (en) * | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7445631B2 (en) * | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20050149181A1 (en) * | 2004-01-07 | 2005-07-07 | Medtronic, Inc. | Bileaflet prosthetic valve and method of manufacture |
US7320705B2 (en) * | 2004-01-23 | 2008-01-22 | James Quintessenza | Bicuspid pulmonary heart valve and method for making same |
US7470285B2 (en) * | 2004-02-05 | 2008-12-30 | Children's Medical Center Corp. | Transcatheter delivery of a replacement heart valve |
US20070073387A1 (en) * | 2004-02-27 | 2007-03-29 | Forster David C | Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same |
EP1737349A1 (en) | 2004-03-03 | 2007-01-03 | NMT Medical, Inc. | Delivery/recovery system for septal occluder |
US7410499B2 (en) | 2004-04-13 | 2008-08-12 | 3F Therapeutics, Inc. | Valve holder |
AU2005234793B2 (en) | 2004-04-23 | 2012-01-19 | 3F Therapeutics, Inc. | Implantable prosthetic valve |
US7285130B2 (en) * | 2004-04-27 | 2007-10-23 | Boston Scientific Scimed, Inc. | Stent delivery system |
CA2563426C (en) * | 2004-05-05 | 2013-12-24 | Direct Flow Medical, Inc. | Unstented heart valve with formed in place support structure |
US7842069B2 (en) | 2004-05-07 | 2010-11-30 | Nmt Medical, Inc. | Inflatable occluder |
US7276078B2 (en) | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
US7393358B2 (en) * | 2004-08-17 | 2008-07-01 | Boston Scientific Scimed, Inc. | Stent delivery system |
FR2874812B1 (en) | 2004-09-07 | 2007-06-15 | Perouse Soc Par Actions Simpli | INTERCHANGEABLE PROTHETIC VALVE |
FR2874813B1 (en) | 2004-09-07 | 2007-06-22 | Perouse Soc Par Actions Simpli | VALVULAR PROSTHESIS |
EP1807023A1 (en) | 2004-09-10 | 2007-07-18 | Cook Incorporated | Prosthetic valve with pores |
US20070179600A1 (en) | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
AU2005309512A1 (en) | 2004-11-24 | 2006-06-01 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
WO2006060546A2 (en) | 2004-12-01 | 2006-06-08 | Cook Incorporated | Valve with leak path |
US20060135985A1 (en) | 2004-12-21 | 2006-06-22 | Cox Daniel L | Vulnerable plaque modification methods and apparatuses |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
EP1838247A4 (en) | 2005-01-21 | 2009-06-10 | Innovia Llc | Stent-valve and deployment catheter for use therewith |
ITTO20050074A1 (en) * | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | CARDIAC VALVE PROSTHESIS |
EP1856327B1 (en) | 2005-02-11 | 2011-09-21 | International Paper Company | Paper substrates useful in wallboard tape applications |
US7331991B2 (en) * | 2005-02-25 | 2008-02-19 | California Institute Of Technology | Implantable small percutaneous valve and methods of delivery |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US8062359B2 (en) * | 2005-04-06 | 2011-11-22 | Edwards Lifesciences Corporation | Highly flexible heart valve connecting band |
US7513909B2 (en) | 2005-04-08 | 2009-04-07 | Arbor Surgical Technologies, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US7914569B2 (en) * | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
CN101180010B (en) | 2005-05-24 | 2010-12-01 | 爱德华兹生命科学公司 | Rapid deployment prosthetic heart valve |
US7955372B2 (en) | 2005-06-01 | 2011-06-07 | Board Of Trustees Of The Leland Stanford Junior University | Endoluminal delivery system |
US7500989B2 (en) | 2005-06-03 | 2009-03-10 | Edwards Lifesciences Corp. | Devices and methods for percutaneous repair of the mitral valve via the coronary sinus |
US7455689B2 (en) | 2005-08-25 | 2008-11-25 | Edwards Lifesciences Corporation | Four-leaflet stented mitral heart valve |
US20070061002A1 (en) | 2005-09-01 | 2007-03-15 | Cook Incorporated | Attachment of material to an implantable frame by cross-linking |
WO2007054015A1 (en) * | 2005-11-09 | 2007-05-18 | Ning Wen | An artificial heart valve stent and weaving method thereof |
EP3167847B1 (en) * | 2005-11-10 | 2020-10-14 | Edwards Lifesciences CardiAQ LLC | Heart valve prosthesis |
US20070142907A1 (en) * | 2005-12-16 | 2007-06-21 | Micardia Corporation | Adjustable prosthetic valve implant |
EP1968491B1 (en) | 2005-12-22 | 2010-07-07 | Symetis SA | Stent-valves for valve replacement and associated methods and systems for surgery |
WO2007071436A2 (en) | 2005-12-22 | 2007-06-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
EP1991168B1 (en) * | 2006-02-16 | 2016-01-27 | Transcatheter Technologies GmbH | Minimally invasive heart valve replacement |
US7780724B2 (en) | 2006-02-24 | 2010-08-24 | California Institute Of Technology | Monolithic in situ forming valve system |
US20080275550A1 (en) | 2006-02-24 | 2008-11-06 | Arash Kheradvar | Implantable small percutaneous valve and methods of delivery |
US7625403B2 (en) * | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US7591848B2 (en) * | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US20070239269A1 (en) | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US8066760B2 (en) | 2006-04-18 | 2011-11-29 | Medtronic Vascular, Inc. | Stent with movable crown |
US8052750B2 (en) | 2006-09-19 | 2011-11-08 | Medtronic Ventor Technologies Ltd | Valve prosthesis fixation techniques using sandwiching |
US7534261B2 (en) | 2006-10-02 | 2009-05-19 | Edwards Lifesciences Corporation | Sutureless heart valve attachment |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
WO2008091493A1 (en) | 2007-01-08 | 2008-07-31 | California Institute Of Technology | In-situ formation of a valve |
WO2008089365A2 (en) | 2007-01-19 | 2008-07-24 | The Cleveland Clinic Foundation | Method for implanting a cardiovascular valve |
WO2008103283A2 (en) | 2007-02-16 | 2008-08-28 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
US20080208327A1 (en) | 2007-02-27 | 2008-08-28 | Rowe Stanton J | Method and apparatus for replacing a prosthetic valve |
DE202007005491U1 (en) | 2007-04-13 | 2007-06-14 | Jenavalve Technology Gmbh | Medical device for treating aortic valve insufficiency of patient, has self-expandable endoprosthesis for positioning and fixing heart valve implant in arota of patient, and retaining segment with brackets for receiving implant |
US7896915B2 (en) * | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
AU2008260444B2 (en) * | 2007-06-04 | 2014-09-11 | St. Jude Medical, Inc. | Prosthetic heart valves |
EP2192875B1 (en) | 2007-08-24 | 2012-05-02 | St. Jude Medical, Inc. | Prosthetic aortic heart valves |
EP2033593B1 (en) | 2007-09-07 | 2012-10-31 | Sorin Biomedica Cardio S.R.L. | "Microprocessor controlled delivery system for cardiac valve prosthesis" |
AU2008305600B2 (en) | 2007-09-26 | 2013-07-04 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9532868B2 (en) | 2007-09-28 | 2017-01-03 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
WO2009045331A1 (en) | 2007-09-28 | 2009-04-09 | St. Jude Medical, Inc. | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
WO2009045334A1 (en) | 2007-09-28 | 2009-04-09 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
EP2679198B1 (en) | 2007-10-25 | 2021-03-24 | Symetis SA | Valved-stents and systems for delivery thereof |
ES2380555T3 (en) | 2007-11-05 | 2012-05-16 | St. Jude Medical, Inc. | Foldable / expandable prosthetic heart valves with non-expandable stent brackets and recovery features |
BRPI0906759A2 (en) | 2008-01-16 | 2015-07-07 | St Jude Medical | Apparatus for providing a foldable and re-expandable prosthetic heart valve to an implant site in a patient and method for operating the same. |
EP3449875A1 (en) * | 2008-01-24 | 2019-03-06 | Medtronic, Inc. | Stents for prosthetic heart valves |
US20090276040A1 (en) * | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US8323335B2 (en) * | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
WO2010006627A1 (en) * | 2008-07-17 | 2010-01-21 | Nvt Ag | Cardiac valve prosthesis system |
EP3753534A1 (en) * | 2008-09-29 | 2020-12-23 | Edwards Lifesciences CardiAQ LLC | Heart valve |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
BRPI0919911A2 (en) | 2008-10-29 | 2016-02-16 | Symetis Sa | Methods and Systems for Stent Valve Manufacturing and Assembly |
EP2358297B1 (en) | 2008-11-21 | 2019-09-11 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis |
CA2750478C (en) | 2009-01-23 | 2015-04-07 | Endoluminal Sciences Pty Ltd. | Endovascular devices and associated systems and methods |
BRPI1008902A2 (en) | 2009-02-27 | 2016-03-15 | St Jude Medical | prosthetic heart valve. |
JP2012523894A (en) * | 2009-04-15 | 2012-10-11 | カルディアック バルブ テクノロジーズ,インコーポレーテッド | Vascular implant and its placement system |
CN102695475B (en) | 2009-11-02 | 2015-11-25 | 西美蒂斯股份公司 | Aorta bioprosthesis and the system of sending for it |
CN102665612B (en) | 2009-11-05 | 2015-04-08 | 宾夕法尼亚大学理事会 | Valve prosthesis |
JP5931880B2 (en) * | 2010-09-10 | 2016-06-08 | シメティス・ソシエテ・アノニムSymetis Sa | Valve replacement device, system including valve replacement device and delivery device thereof, and method for manufacturing valve replacement device |
DE202011111128U1 (en) | 2010-10-05 | 2020-05-27 | Edwards Lifesciences Corporation | Prosthetic heart valve |
WO2012054776A1 (en) * | 2010-10-21 | 2012-04-26 | Medtronic Inc | Mitral bioprosthesis with low ventricular profile |
US20120116496A1 (en) * | 2010-11-05 | 2012-05-10 | Chuter Timothy A | Stent structures for use with valve replacements |
US8795357B2 (en) * | 2011-07-15 | 2014-08-05 | Edwards Lifesciences Corporation | Perivalvular sealing for transcatheter heart valve |
CA2847687C (en) | 2011-09-09 | 2017-10-17 | Endoluminal Sciences Pty Ltd. | Means for controlled sealing of endovascular devices |
EP4049626A1 (en) * | 2011-12-09 | 2022-08-31 | Edwards Lifesciences Corporation | Prosthetic heart valve having improved commissure supports |
WO2013134214A1 (en) | 2012-03-05 | 2013-09-12 | The Trustees Of The University Of Pennsylvania | Superabsorbent coated stents for vascular reduction and for anchoring valve replacements |
US11207176B2 (en) * | 2012-03-22 | 2021-12-28 | Boston Scientific Scimed, Inc. | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
US20130274873A1 (en) * | 2012-03-22 | 2013-10-17 | Symetis Sa | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US20140128964A1 (en) | 2012-11-08 | 2014-05-08 | Symetis Sa | Stent Seals and Methods for Sealing an Expandable Stent |
US8628571B1 (en) | 2012-11-13 | 2014-01-14 | Mitraltech Ltd. | Percutaneously-deliverable mechanical valve |
WO2014143126A1 (en) * | 2013-03-12 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for paravalvular leak protection |
US20140350668A1 (en) * | 2013-03-13 | 2014-11-27 | Symetis Sa | Prosthesis Seals and Methods for Sealing an Expandable Prosthesis |
CA2975361A1 (en) * | 2015-02-02 | 2016-08-11 | Symetis Sa | Stent seals and method of production |
CN115462933A (en) * | 2021-06-11 | 2022-12-13 | 爱德华兹生命科学公司 | Prosthetic heart valve |
-
2008
- 2008-10-27 EP EP13185563.7A patent/EP2679198B1/en active Active
- 2008-10-27 EP EP17206130.1A patent/EP3311779B1/en active Active
- 2008-10-27 EP EP08843043.4A patent/EP2205183B1/en not_active Not-in-force
- 2008-10-27 US US12/739,117 patent/US8647381B2/en active Active
- 2008-10-27 BR BRPI0819217A patent/BRPI0819217B8/en not_active IP Right Cessation
- 2008-10-27 JP JP2010530483A patent/JP5603776B2/en not_active Expired - Fee Related
- 2008-10-27 WO PCT/EP2008/064558 patent/WO2009053497A1/en active Application Filing
- 2008-10-27 CA CA2703665A patent/CA2703665C/en not_active Expired - Fee Related
-
2013
- 2013-09-27 JP JP2013201291A patent/JP5657076B2/en not_active Expired - Fee Related
-
2014
- 2014-01-17 US US14/158,509 patent/US20140277402A1/en not_active Abandoned
- 2014-10-07 JP JP2014206124A patent/JP5905948B2/en active Active
-
2016
- 2016-02-04 JP JP2016019601A patent/JP6242924B2/en not_active Expired - Fee Related
- 2016-08-19 US US15/241,985 patent/US9839513B2/en active Active
-
2017
- 2017-11-08 JP JP2017215774A patent/JP6517906B2/en active Active
- 2017-11-10 US US15/809,123 patent/US10219897B2/en active Active
-
2019
- 2019-02-27 US US16/287,123 patent/US10709557B2/en active Active
-
2020
- 2020-06-15 US US16/901,303 patent/US11452598B2/en active Active
-
2022
- 2022-09-26 US US17/953,163 patent/US20230017818A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5571174A (en) | 1991-01-24 | 1996-11-05 | Autogenics | Method of assembling a tissue heart valve |
US5653749A (en) | 1991-01-24 | 1997-08-05 | Autogenics | Prefabricated, sterile and disposable kits for the rapid assembly of a tissue heart valve |
US20010007956A1 (en) * | 1996-12-31 | 2001-07-12 | Brice Letac | Valve prosthesis for implantation in body channels |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US20040210304A1 (en) * | 1999-11-17 | 2004-10-21 | Corevalve, S.A. | Prosthetic valve for transluminal delivery |
US20040106976A1 (en) * | 1999-12-31 | 2004-06-03 | Bailey Steven R. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US7252682B2 (en) * | 2001-07-04 | 2007-08-07 | Corevalve, S.A. | Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body |
US20050113910A1 (en) | 2002-01-04 | 2005-05-26 | David Paniagua | Percutaneously implantable replacement heart valve device and method of making same |
US20060149360A1 (en) * | 2003-07-08 | 2006-07-06 | Ventor Technologies Ltd. | Fluid flow prosthetic device |
US20050137688A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Repositionable heart valve and method |
US20060122692A1 (en) * | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
WO2006083763A1 (en) * | 2005-01-31 | 2006-08-10 | Wilson-Cook Medical Inc. | Prosthesis having a sleeve valve |
US20070213813A1 (en) * | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
Cited By (502)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11497503B2 (en) | 2000-03-27 | 2022-11-15 | Neovasc Medical Ltd. | Methods for treating abnormal growths in the body using a flow reducing implant |
US9364354B2 (en) | 2000-03-27 | 2016-06-14 | Neovasc Medical Ltd | Methods for treating abnormal growths in the body using a flow reducing implant |
US10542994B2 (en) | 2000-03-27 | 2020-01-28 | Neovasc Medical Ltd. | Methods for treating abnormal growths in the body using a flow reducing implant |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US11564818B2 (en) | 2003-11-19 | 2023-01-31 | Neovase Medical Ltd. | Vascular implant |
US9744059B2 (en) | 2003-11-19 | 2017-08-29 | Neovasc Medical Ltd. | Vascular implant |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
USD732666S1 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve, Inc. | Heart valve prosthesis |
USD812226S1 (en) | 2005-05-13 | 2018-03-06 | Medtronic Corevalve Llc | Heart valve prosthesis |
US9974669B2 (en) | 2005-11-10 | 2018-05-22 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US10456277B2 (en) | 2005-11-10 | 2019-10-29 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US9216082B2 (en) | 2005-12-22 | 2015-12-22 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US10265167B2 (en) | 2005-12-22 | 2019-04-23 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9839515B2 (en) | 2005-12-22 | 2017-12-12 | Symetis, SA | Stent-valves for valve replacement and associated methods and systems for surgery |
US10299922B2 (en) | 2005-12-22 | 2019-05-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US10314701B2 (en) | 2005-12-22 | 2019-06-11 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9387071B2 (en) | 2006-09-19 | 2016-07-12 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US9913714B2 (en) | 2006-09-19 | 2018-03-13 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8771346B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthetic fixation techniques using sandwiching |
US11304801B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US9642704B2 (en) | 2006-09-19 | 2017-05-09 | Medtronic Ventor Technologies Ltd. | Catheter for implanting a valve prosthesis |
US11304802B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US12076237B2 (en) | 2006-09-19 | 2024-09-03 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8747460B2 (en) | 2006-09-19 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Methods for implanting a valve prothesis |
US8771345B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US10004601B2 (en) | 2006-09-19 | 2018-06-26 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US9138312B2 (en) | 2006-09-19 | 2015-09-22 | Medtronic Ventor Technologies Ltd. | Valve prostheses |
US10543077B2 (en) | 2006-09-19 | 2020-01-28 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US11896482B2 (en) | 2007-02-12 | 2024-02-13 | Boston Scientific Medical Device Limited | Stent-valves for valve replacement and associated methods and systems for surgery |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US10716662B2 (en) | 2007-08-21 | 2020-07-21 | Boston Scientific Limited | Stent-valves for valve replacement and associated methods and systems for surgery |
US11007053B2 (en) | 2007-09-26 | 2021-05-18 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US11903823B2 (en) | 2007-09-26 | 2024-02-20 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9693859B2 (en) | 2007-09-26 | 2017-07-04 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9636221B2 (en) | 2007-09-26 | 2017-05-02 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US10292813B2 (en) | 2007-09-26 | 2019-05-21 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US10426604B2 (en) | 2007-09-28 | 2019-10-01 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11660187B2 (en) | 2007-09-28 | 2023-05-30 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11382740B2 (en) | 2007-09-28 | 2022-07-12 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11534294B2 (en) | 2007-09-28 | 2022-12-27 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9820851B2 (en) | 2007-09-28 | 2017-11-21 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US10219897B2 (en) | 2007-10-25 | 2019-03-05 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
US11452598B2 (en) | 2007-10-25 | 2022-09-27 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
US10709557B2 (en) | 2007-10-25 | 2020-07-14 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
US9839513B2 (en) | 2007-10-25 | 2017-12-12 | Symetis Sa | Stents, valved-stents and methods and systems for delivery thereof |
EP2455041B1 (en) | 2007-11-05 | 2015-07-01 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
EP2455041B2 (en) † | 2007-11-05 | 2019-08-14 | St. Jude Medical, LLC | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
US10413406B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10413404B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US10413405B2 (en) | 2007-12-14 | 2019-09-17 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US9867699B2 (en) | 2008-02-26 | 2018-01-16 | Jenavalve Technology, Inc. | Endoprosthesis for implantation in the heart of a patient |
EP2617390A1 (en) * | 2008-02-26 | 2013-07-24 | JenaValve Technology Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US9877828B2 (en) | 2008-02-26 | 2018-01-30 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US10575947B2 (en) | 2008-02-26 | 2020-03-03 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US9707075B2 (en) | 2008-02-26 | 2017-07-18 | Jenavalve Technology, Inc. | Endoprosthesis for implantation in the heart of a patient |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8323336B2 (en) | 2008-04-23 | 2012-12-04 | Medtronic, Inc. | Prosthetic heart valve devices and methods of valve replacement |
EP2282700B1 (en) | 2008-04-23 | 2016-11-02 | Medtronic, Inc. | Stented heart valve devices |
US9173737B2 (en) | 2008-04-23 | 2015-11-03 | Medtronic, Inc. | Stented heart valve devices |
EP3967274B1 (en) | 2008-04-23 | 2022-08-24 | Medtronic, Inc. | Stented heart valve devices |
US10548723B2 (en) | 2008-04-23 | 2020-02-04 | Medtronic, Inc. | Prosthetic heart valve devices and methods of valve replacement |
US9827090B2 (en) | 2008-04-23 | 2017-11-28 | Medtronic, Inc. | Prosthetic heart valve devices and methods of valve replacement |
US11648111B2 (en) | 2008-06-06 | 2023-05-16 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
EP3501455A1 (en) * | 2008-06-06 | 2019-06-26 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10426611B2 (en) | 2008-06-06 | 2019-10-01 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US11696826B2 (en) | 2008-06-06 | 2023-07-11 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US11744701B2 (en) | 2008-06-06 | 2023-09-05 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10492905B2 (en) | 2008-06-06 | 2019-12-03 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10413407B2 (en) | 2008-06-06 | 2019-09-17 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US11213388B2 (en) | 2008-06-06 | 2022-01-04 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US10292817B2 (en) | 2008-06-06 | 2019-05-21 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
WO2010008549A1 (en) * | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
US10314694B2 (en) | 2008-07-15 | 2019-06-11 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US12090047B2 (en) | 2008-07-15 | 2024-09-17 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US12036112B2 (en) | 2008-07-15 | 2024-07-16 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9681949B2 (en) | 2008-07-15 | 2017-06-20 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US10010410B2 (en) | 2008-07-15 | 2018-07-03 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9675449B2 (en) | 2008-07-15 | 2017-06-13 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
EP2299938B1 (en) | 2008-07-15 | 2021-03-03 | St. Jude Medical, LLC | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US9226820B2 (en) | 2008-07-15 | 2016-01-05 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
US11504228B2 (en) | 2008-07-15 | 2022-11-22 | St. Jude Medical, Llc | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US10646334B2 (en) | 2008-09-29 | 2020-05-12 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US10149756B2 (en) | 2008-09-29 | 2018-12-11 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US11589983B2 (en) | 2008-09-29 | 2023-02-28 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US9456896B2 (en) | 2008-09-29 | 2016-10-04 | Edwards Lifesciences Cardiaq Llc | Body cavity prosthesis |
US11819404B2 (en) | 2008-09-29 | 2023-11-21 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US9597183B2 (en) | 2008-10-01 | 2017-03-21 | Edwards Lifesciences Cardiaq Llc | Delivery system for vascular implant |
US10441412B2 (en) | 2009-04-15 | 2019-10-15 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US11376119B2 (en) | 2009-04-15 | 2022-07-05 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9333073B2 (en) | 2009-04-15 | 2016-05-10 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery method |
EP2419050B1 (en) | 2009-04-15 | 2017-06-28 | Edwards Lifesciences CardiAQ LLC | Vascular implant and delivery system |
US9339379B2 (en) | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9333074B2 (en) | 2009-04-15 | 2016-05-10 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9339378B2 (en) | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9585747B2 (en) | 2009-04-15 | 2017-03-07 | Edwards Lifesciences Cardiaq Llc | Vascular implant |
EP2419050B2 (en) † | 2009-04-15 | 2023-10-18 | Edwards Lifesciences CardiAQ LLC | Vascular implant and delivery system |
US9339380B2 (en) | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant |
EP2437687B1 (en) | 2009-06-02 | 2017-09-20 | Medtronic Inc. | Stented prosthetic heart valves |
EP3760164B1 (en) | 2009-06-05 | 2021-11-17 | Medtronic ATS Medical Inc. | Heart valve with anchoring structure having concave landing zone |
JP2012528670A (en) * | 2009-06-05 | 2012-11-15 | メドトロニック エイティーエス メディカル インコーポレイテッド | Heart valve with anchoring structure having a concave ground area |
JP2012528697A (en) * | 2009-06-05 | 2012-11-15 | メドトロニック エイティーエス メディカル インコーポレイテッド | Flexible commissure structure for attaching a bioprosthetic valve |
US8845722B2 (en) | 2009-08-03 | 2014-09-30 | Shlomo Gabbay | Heart valve prosthesis and method of implantation thereof |
US9730790B2 (en) | 2009-09-29 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Replacement valve and method |
US9480560B2 (en) | 2009-09-29 | 2016-11-01 | Edwards Lifesciences Cardiaq Llc | Method of securing an intralumenal frame assembly |
US10166097B2 (en) | 2009-09-29 | 2019-01-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10524901B2 (en) | 2009-09-29 | 2020-01-07 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US9949827B2 (en) | 2009-09-29 | 2018-04-24 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
CN107260367A (en) * | 2009-11-02 | 2017-10-20 | 西美蒂斯股份公司 | Sustainer bioprosthesis and the system for its delivering |
WO2011051043A1 (en) * | 2009-11-02 | 2011-05-05 | Symetis Sa | Aortic bioprosthesis and systems for delivery thereof |
CN102695475A (en) * | 2009-11-02 | 2012-09-26 | 西美蒂斯股份公司 | Aortic bioprosthesis and systems for delivery thereof |
AU2015221440B2 (en) * | 2009-11-02 | 2017-10-26 | Symetis Sa | A replacement valve |
AU2010311811B2 (en) * | 2009-11-02 | 2015-09-17 | Symetis Sa | Aortic bioprosthesis and systems for delivery thereof |
CN105167886A (en) * | 2009-11-02 | 2015-12-23 | 西美蒂斯股份公司 | Aortic bioprosthesis and systems for delivery thereof |
US10376359B2 (en) | 2009-11-02 | 2019-08-13 | Symetis Sa | Aortic bioprosthesis and systems for delivery thereof |
EP3269332A1 (en) * | 2009-11-02 | 2018-01-17 | Symetis SA | Aortic bioprosthesis |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US10660751B2 (en) | 2009-12-08 | 2020-05-26 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US10548726B2 (en) | 2009-12-08 | 2020-02-04 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10610359B2 (en) | 2009-12-08 | 2020-04-07 | Cardiovalve Ltd. | Folding ring prosthetic heart valve |
US11351026B2 (en) | 2009-12-08 | 2022-06-07 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US11141268B2 (en) | 2009-12-08 | 2021-10-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper and lower skirts |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
CN102985032A (en) * | 2010-02-24 | 2013-03-20 | 美敦力文拓技术有限公司 | Mitral prosthesis |
WO2011106533A1 (en) * | 2010-02-24 | 2011-09-01 | Medtronic Ventor Technologies Ltd | Mitral prosthesis |
US10433956B2 (en) | 2010-02-24 | 2019-10-08 | Medtronic Ventor Technologies Ltd. | Mitral prosthesis and methods for implantation |
US9072603B2 (en) | 2010-02-24 | 2015-07-07 | Medtronic Ventor Technologies, Ltd. | Mitral prosthesis and methods for implantation |
CN103068341A (en) * | 2010-02-24 | 2013-04-24 | 美敦力文拓技术有限公司 | Mitral prosthesis |
US11730589B2 (en) | 2010-03-05 | 2023-08-22 | Edwards Lifesciences Corporation | Prosthetic heart valve having an inner frame and an outer frame |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
WO2011112706A3 (en) * | 2010-03-11 | 2011-10-20 | Medtronic Inc. | Sinus-engaging fixation member |
US10716665B2 (en) | 2010-04-01 | 2020-07-21 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11833041B2 (en) | 2010-04-01 | 2023-12-05 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11554010B2 (en) | 2010-04-01 | 2023-01-17 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US9925044B2 (en) | 2010-04-01 | 2018-03-27 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US8926692B2 (en) | 2010-04-09 | 2015-01-06 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods |
US9770329B2 (en) | 2010-05-05 | 2017-09-26 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US9241790B2 (en) | 2010-05-05 | 2016-01-26 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US9248014B2 (en) | 2010-05-05 | 2016-02-02 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11419720B2 (en) | 2010-05-05 | 2022-08-23 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11432924B2 (en) | 2010-05-05 | 2022-09-06 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US10449042B2 (en) | 2010-05-05 | 2019-10-22 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US20110313515A1 (en) * | 2010-06-21 | 2011-12-22 | Arshad Quadri | Replacement heart valve |
US10639146B2 (en) | 2010-06-21 | 2020-05-05 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US11452597B2 (en) | 2010-06-21 | 2022-09-27 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US10485660B2 (en) | 2010-06-21 | 2019-11-26 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US11311377B2 (en) | 2010-07-09 | 2022-04-26 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11446140B2 (en) | 2010-07-09 | 2022-09-20 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11259922B2 (en) | 2010-07-09 | 2022-03-01 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11259921B2 (en) | 2010-07-09 | 2022-03-01 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US9375312B2 (en) | 2010-07-09 | 2016-06-28 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11883283B2 (en) | 2010-07-09 | 2024-01-30 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US9931206B2 (en) | 2010-07-09 | 2018-04-03 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11969163B2 (en) | 2010-07-21 | 2024-04-30 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US10925595B2 (en) | 2010-07-21 | 2021-02-23 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11426155B2 (en) | 2010-07-21 | 2022-08-30 | Cardiovalve Ltd. | Helical anchor implantation |
US10512456B2 (en) | 2010-07-21 | 2019-12-24 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10531872B2 (en) | 2010-07-21 | 2020-01-14 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US9017399B2 (en) | 2010-07-21 | 2015-04-28 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
EP2444030A1 (en) * | 2010-08-31 | 2012-04-25 | Biotronik AG | Medical valve implant for implantation in an animal body and/or human body |
US9345572B2 (en) | 2010-08-31 | 2016-05-24 | Biotronik Ag | Medical valve implant for implantation in an animal body and/or human body |
US10390947B2 (en) | 2010-08-31 | 2019-08-27 | Biotronik Ag | Medical valve implant for implantation in an animal body and/or human body |
JP2013540467A (en) * | 2010-09-10 | 2013-11-07 | シメティス・ソシエテ・アノニム | Valve replacement device, delivery device for valve replacement device, and method of manufacturing valve replacement device |
EP2613737B1 (en) * | 2010-09-10 | 2017-10-25 | Symetis SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
EP4257084A2 (en) | 2010-09-10 | 2023-10-11 | Boston Scientific Limited | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US20140018915A1 (en) * | 2010-09-10 | 2014-01-16 | Symetis Sa | Valve Replacement Devices, Delivery Device for a Valve Replacement Device and Method of Production of a Valve Replacement Device |
CN103108611A (en) * | 2010-09-10 | 2013-05-15 | 西美蒂斯股份公司 | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US11779461B2 (en) | 2010-09-10 | 2023-10-10 | Symetis Sa | Catheter delivery system for stent valve |
US10201418B2 (en) * | 2010-09-10 | 2019-02-12 | Symetis, SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US20160317298A1 (en) * | 2010-09-10 | 2016-11-03 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
WO2012032187A1 (en) | 2010-09-10 | 2012-03-15 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
WO2012032147A2 (en) | 2010-09-10 | 2012-03-15 | Symetis Sa | Catheter delivery system for stent valve |
CN106073946A (en) * | 2010-09-10 | 2016-11-09 | 西美蒂斯股份公司 | Valve replacement device, for the delivery apparatus of valve replacement device and the production method of valve replacement device |
EP4205705A1 (en) | 2010-09-10 | 2023-07-05 | Boston Scientific Limited | Catheter delivery system for stent valve |
US9333075B2 (en) | 2010-09-10 | 2016-05-10 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
EP4119107A2 (en) | 2010-09-10 | 2023-01-18 | Boston Scientific Limited | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
JP2018064955A (en) * | 2010-09-10 | 2018-04-26 | シメティス・ソシエテ・アノニムSymetis Sa | Valve replacement devices, delivery device for valve replacement device, and method of producing valve replacement device |
CN106073946B (en) * | 2010-09-10 | 2022-01-04 | 西美蒂斯股份公司 | Valve replacement device, delivery device for a valve replacement device and method of producing a valve replacement device |
US10869760B2 (en) | 2010-09-10 | 2020-12-22 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
WO2012032147A3 (en) * | 2010-09-10 | 2012-06-21 | Symetis Sa | Catheter delivery system for stent valve |
JP2016172012A (en) * | 2010-09-10 | 2016-09-29 | シメティス・ソシエテ・アノニムSymetis Sa | Valve replacement device, delivery device for the same, and manufacturing method of the same |
US20210068949A1 (en) * | 2010-09-10 | 2021-03-11 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
EP4119107A3 (en) * | 2010-09-10 | 2023-02-15 | Boston Scientific Limited | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US9675485B2 (en) | 2010-09-10 | 2017-06-13 | Symetis Sa | Catheter delivery system for stent valve |
AU2015258284B2 (en) * | 2010-09-10 | 2017-09-28 | Symetis Sa | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
EP3342377A1 (en) | 2010-09-10 | 2018-07-04 | Symetis SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
US10881510B2 (en) | 2010-09-23 | 2021-01-05 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
US10610362B2 (en) | 2010-09-23 | 2020-04-07 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
EP4309633A2 (en) | 2010-09-24 | 2024-01-24 | Boston Scientific Medical Device Limited | A transcatheter aortic valve implantation system |
JP2013540495A (en) * | 2010-09-24 | 2013-11-07 | シメティス・ソシエテ・アノニム | Stent valve, delivery device, and delivery method |
WO2012038550A1 (en) | 2010-09-24 | 2012-03-29 | Symetis Sa | Stent valve, delivery apparatus and method therefor |
US11253362B2 (en) | 2010-09-24 | 2022-02-22 | Boston Scientific Limited | Stent valve, delivery apparatus and method therefor |
EP3111889A1 (en) | 2010-09-24 | 2017-01-04 | Symetis SA | A transcatheter aortic valve implantation system |
EP3673871A1 (en) | 2010-09-24 | 2020-07-01 | Symetis SA | A transcatheter aortic valve implantation system |
CN103118630A (en) * | 2010-09-24 | 2013-05-22 | 西美蒂斯股份公司 | Stent valve, delivery apparatus and method therefor |
US9414915B2 (en) | 2010-09-24 | 2016-08-16 | Symetis Sa | Stent valve, delivery apparatus and method therefor |
EP4039229A1 (en) * | 2010-10-05 | 2022-08-10 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10849741B2 (en) | 2010-10-05 | 2020-12-01 | Edwards Lifesciences Corporation | Prosthetic heart valve |
CN105380730B (en) * | 2010-10-05 | 2018-08-17 | 爱德华兹生命科学公司 | Heart valve prosthesis |
US10856976B2 (en) | 2010-10-05 | 2020-12-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10433959B2 (en) | 2010-10-05 | 2019-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11123184B2 (en) | 2010-10-05 | 2021-09-21 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10433958B2 (en) | 2010-10-05 | 2019-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10849742B2 (en) | 2010-10-05 | 2020-12-01 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10849743B2 (en) | 2010-10-05 | 2020-12-01 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10842622B2 (en) | 2010-10-05 | 2020-11-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10828155B2 (en) | 2010-10-05 | 2020-11-10 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9393110B2 (en) | 2010-10-05 | 2016-07-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10729543B2 (en) | 2010-10-05 | 2020-08-04 | Edwards Lifesciences Corporation | Prosthetic heart valve |
CN105380730A (en) * | 2010-10-05 | 2016-03-09 | 爱德华兹生命科学公司 | Prosthetic heart valve |
EP2624785A4 (en) * | 2010-10-05 | 2015-12-02 | Edwards Lifesciences Corp | Prosthetic heart valve |
AU2011312034B2 (en) * | 2010-10-05 | 2015-10-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10478292B2 (en) | 2010-10-05 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP4151181A1 (en) * | 2010-10-05 | 2023-03-22 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP3669829A1 (en) * | 2010-10-05 | 2020-06-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11628062B2 (en) | 2010-10-05 | 2023-04-18 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP4233795A1 (en) * | 2010-10-05 | 2023-08-30 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11759320B2 (en) | 2010-10-05 | 2023-09-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11793632B2 (en) | 2010-10-05 | 2023-10-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10537423B2 (en) | 2010-10-05 | 2020-01-21 | Edwards Lifesciences Corporation | Prosthetic heart valve |
JP2013543406A (en) * | 2010-10-05 | 2013-12-05 | エドワーズ ライフサイエンシーズ コーポレイション | Prosthetic heart valve |
EP3590472A1 (en) * | 2010-10-05 | 2020-01-08 | Edwards Lifesciences Corporation | Prosthetic heart valve |
JP2013545515A (en) * | 2010-10-21 | 2013-12-26 | メドトロニック,インコーポレイテッド | Intraventricular low profile prosthetic mitral valve |
JP2012101061A (en) * | 2010-11-05 | 2012-05-31 | Timothy A M Chuter | Stent structure for use with valve replacement |
US20140200649A1 (en) * | 2011-01-11 | 2014-07-17 | Symetis Sa | Systems, Methods and Devices for Retrograde Pericardial Release of a Prosthetic Heart Valve |
WO2012095455A2 (en) | 2011-01-11 | 2012-07-19 | Symetis Sa | Systems, methods and devices for retrograde pericardial release of a prosthetic heart valve |
EP4410247A2 (en) | 2011-01-11 | 2024-08-07 | Boston Scientific Medical Device Ltd. | System for retrograde pericardial release of a prosthetic heart valve |
EP2474287A1 (en) | 2011-01-11 | 2012-07-11 | Symetis Sa | Delivery catheter for stent-valve, and sub-assembly therefor |
EP3583918A1 (en) | 2011-01-11 | 2019-12-25 | Symetis SA | System for retrograde pericardial release of a prosthetic heart valve |
EP2484309A1 (en) * | 2011-02-02 | 2012-08-08 | Shlomo Gabbay | Heart valve prosthesis |
EP2484309B1 (en) | 2011-02-02 | 2019-04-10 | Shlomo Gabbay | Heart valve prosthesis |
US11903825B2 (en) | 2011-02-23 | 2024-02-20 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10779938B2 (en) | 2011-02-23 | 2020-09-22 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10561494B2 (en) | 2011-02-25 | 2020-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4285870A3 (en) * | 2011-02-25 | 2024-01-24 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4035625A1 (en) * | 2011-02-25 | 2022-08-03 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US11801132B2 (en) | 2011-02-25 | 2023-10-31 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP4035624A1 (en) * | 2011-02-25 | 2022-08-03 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US11399934B2 (en) | 2011-02-25 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP4223256A3 (en) * | 2011-02-25 | 2023-11-01 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4046606A1 (en) * | 2011-02-25 | 2022-08-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11129713B2 (en) | 2011-02-25 | 2021-09-28 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4074287A1 (en) * | 2011-02-25 | 2022-10-19 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US11737871B2 (en) | 2011-02-25 | 2023-08-29 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11737868B2 (en) | 2011-02-25 | 2023-08-29 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4223255A1 (en) * | 2011-02-25 | 2023-08-09 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP4279036A3 (en) * | 2011-02-25 | 2024-01-17 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US9713529B2 (en) | 2011-04-28 | 2017-07-25 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
EP3332743A1 (en) | 2011-05-05 | 2018-06-13 | Symetis SA | Method and apparatus for compressing/loading stent-valves |
EP3583926A1 (en) | 2011-05-05 | 2019-12-25 | Symetis SA | Method and apparatus for compressing/loading stent-valves |
WO2012150290A1 (en) | 2011-05-05 | 2012-11-08 | Symetis Sa | Method and apparatus for compressing/loading stent-valves |
EP3075354A2 (en) | 2011-05-05 | 2016-10-05 | Symetis SA | Method and apparatus for compressing/loading stent-valves |
US11771544B2 (en) | 2011-05-05 | 2023-10-03 | Symetis Sa | Method and apparatus for compressing/loading stent-valves |
US11344410B2 (en) | 2011-08-05 | 2022-05-31 | Cardiovalve Ltd. | Implant for heart valve |
US11291545B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Implant for heart valve |
US10702385B2 (en) | 2011-08-05 | 2020-07-07 | Cardiovalve Ltd. | Implant for heart valve |
US10695173B2 (en) | 2011-08-05 | 2020-06-30 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11864995B2 (en) | 2011-08-05 | 2024-01-09 | Cardiovalve Ltd. | Implant for heart valve |
US10245143B2 (en) | 2011-08-05 | 2019-04-02 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10226341B2 (en) | 2011-08-05 | 2019-03-12 | Cardiovalve Ltd. | Implant for heart valve |
US11951005B2 (en) | 2011-08-05 | 2024-04-09 | Cardiovalve Ltd. | Implant for heart valve |
US11291546B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9387078B2 (en) | 2011-08-05 | 2016-07-12 | Mitraltech Ltd. | Percutaneous mitral valve replacement and sealing |
US10376361B2 (en) | 2011-08-05 | 2019-08-13 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11517436B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Implant for heart valve |
US11517429B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Apparatus for use at a heart valve |
US11291547B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11690712B2 (en) | 2011-08-05 | 2023-07-04 | Cardiovalve Ltd. | Clip-secured implant for heart valve |
US11369469B2 (en) | 2011-08-05 | 2022-06-28 | Cardiovalve Ltd. | Method for use at a heart valve |
EP2750631A1 (en) | 2011-10-19 | 2014-07-09 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9510947B2 (en) | 2011-10-21 | 2016-12-06 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable heart valve stent into the body of a patient |
CN104302247A (en) * | 2011-11-23 | 2015-01-21 | 内奥瓦斯克迪亚拉公司 | Sequentially deployed transcatheter mitral valve prosthesis |
WO2013075215A1 (en) | 2011-11-23 | 2013-05-30 | Neovasc Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP2782523A1 (en) * | 2011-11-23 | 2014-10-01 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP2782523A4 (en) * | 2011-11-23 | 2015-04-15 | Neovasc Tiara Inc | Sequentially deployed transcatheter mitral valve prosthesis |
US12053369B2 (en) | 2011-11-23 | 2024-08-06 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10537422B2 (en) | 2011-11-23 | 2020-01-21 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP3400907A1 (en) * | 2011-11-23 | 2018-11-14 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
AU2017232067B2 (en) * | 2011-11-23 | 2019-01-03 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US11413139B2 (en) | 2011-11-23 | 2022-08-16 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
AU2022202174B2 (en) * | 2011-11-23 | 2024-03-21 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US11284995B2 (en) | 2011-12-05 | 2022-03-29 | Medtronic, Inc. | Transcatheter valve having reduced seam exposure |
EP2787924B1 (en) | 2011-12-05 | 2017-09-20 | Medtronic Inc. | Transcatheter valve having reduced seam exposure |
US11497602B2 (en) | 2012-02-14 | 2022-11-15 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US10363133B2 (en) | 2012-02-14 | 2019-07-30 | Neovac Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US11957573B2 (en) | 2012-03-22 | 2024-04-16 | Boston Scientific Medical Device Limited | Relating to transcatheter stent-valves |
US11207176B2 (en) | 2012-03-22 | 2021-12-28 | Boston Scientific Scimed, Inc. | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
US10898321B2 (en) | 2012-03-22 | 2021-01-26 | Symetis Sa | Transcatheter stent-valves |
US10258464B2 (en) | 2012-03-22 | 2019-04-16 | Symetis Sa | Transcatheter stent-valves |
EP2886083B1 (en) | 2012-03-23 | 2018-05-16 | Sorin Group Italia S.r.l. | A collapsible valve prosthesis |
EP2886083B2 (en) † | 2012-03-23 | 2024-06-19 | Corcym S.r.l. | A collapsible valve prosthesis |
US9999501B2 (en) | 2012-04-18 | 2018-06-19 | Medtronic CV Luxembourg S.a.r.l. | Valve prosthesis |
US9878127B2 (en) | 2012-05-16 | 2018-01-30 | Jenavalve Technology, Inc. | Catheter delivery system for heart valve prosthesis |
US10016275B2 (en) | 2012-05-30 | 2018-07-10 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10940001B2 (en) | 2012-05-30 | 2021-03-09 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US11617650B2 (en) | 2012-05-30 | 2023-04-04 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US11389294B2 (en) | 2012-05-30 | 2022-07-19 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10314705B2 (en) | 2012-05-30 | 2019-06-11 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
WO2014004822A1 (en) * | 2012-06-29 | 2014-01-03 | St. Jude Medical, Cardiology Division, Inc. | Commissure attachment feature for prosthetic heart valve |
US9895218B2 (en) | 2012-06-29 | 2018-02-20 | St. Jude Medical, Cardiology Division, Inc. | Commissure attachment feature for prosthetic heart valve |
US9615920B2 (en) | 2012-06-29 | 2017-04-11 | St. Jude Medical, Cardiology Divisions, Inc. | Commissure attachment feature for prosthetic heart valve |
EP2866742B1 (en) | 2012-06-29 | 2019-01-23 | St. Jude Medical, Cardiology Division, Inc. | Commissure attachment feature for prosthetic heart valve |
US10188536B2 (en) | 2012-09-27 | 2019-01-29 | Symetis Sa | Stent-valve, delivery apparatus, and stent-holder therefor |
WO2014049106A1 (en) | 2012-09-27 | 2014-04-03 | Symetis Sa | Stent-valve, delivery apparatus, and stent-holder therefor |
US9872766B2 (en) | 2012-10-23 | 2018-01-23 | Medtronic, Inc. | Valve prosthesis |
US9226823B2 (en) | 2012-10-23 | 2016-01-05 | Medtronic, Inc. | Valve prosthesis |
WO2014066017A1 (en) * | 2012-10-23 | 2014-05-01 | Medtronic Inc. | Valve prosthesis |
US10383727B2 (en) | 2012-10-23 | 2019-08-20 | Medtronic, Inc. | Delivery system for a valve prosthesis |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US10835377B2 (en) | 2013-01-24 | 2020-11-17 | Cardiovalve Ltd. | Rolled prosthetic valve support |
US10631982B2 (en) | 2013-01-24 | 2020-04-28 | Cardiovale Ltd. | Prosthetic valve and upstream support therefor |
US11793636B2 (en) | 2013-02-06 | 2023-10-24 | Symetis Sa | Prosthetic valve. delivery apparatus and delivery method |
EP3231395A1 (en) | 2013-02-06 | 2017-10-18 | Symetis SA | Prosthetic valve and delivery apparatus |
WO2014122205A1 (en) | 2013-02-06 | 2014-08-14 | Symetis Sa | Prosthetic valve, delivery apparatus and delivery method |
US10285811B2 (en) | 2013-02-06 | 2019-05-14 | Symetis, SA | Prosthetic valve, delivery apparatus and delivery method |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US11324591B2 (en) | 2013-03-14 | 2022-05-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US11951001B2 (en) | 2013-03-14 | 2024-04-09 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grapsing intralumenal tissue and methods of delivery |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US10716664B2 (en) | 2013-03-14 | 2020-07-21 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US10583000B2 (en) | 2013-03-14 | 2020-03-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US10383728B2 (en) | 2013-04-04 | 2019-08-20 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US11389291B2 (en) | 2013-04-04 | 2022-07-19 | Neovase Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
WO2014170463A1 (en) * | 2013-04-19 | 2014-10-23 | Laboratoires Invalv | Implant, intended to be placed in a blood circulation passage, comprising a system for separating the proximal arms |
FR3004638A1 (en) * | 2013-04-19 | 2014-10-24 | Invalv Lab | IMPLANT, IN PARTICULAR TO BE PLACED IN A CARDIAC AURICULO-VENTRICULAR VALVE, COMPRISING A PROXIMAL ARM SPLITTING SYSTEM |
US10058418B2 (en) | 2013-04-19 | 2018-08-28 | Laboratoires Invalv | Implant, intended to be placed in a blood circulation passage, comprising a system for separating the proximal arms |
CN103431931A (en) * | 2013-06-25 | 2013-12-11 | 杭州启明医疗器械有限公司 | Pulmonary artery support and pulmonary artery valve replacement device with same |
US10433954B2 (en) | 2013-08-30 | 2019-10-08 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10426605B2 (en) | 2013-10-05 | 2019-10-01 | Sino Medical Sciences Technology, Inc. | Device and method for mitral valve regurgitation treatment |
WO2015063118A1 (en) | 2013-10-28 | 2015-05-07 | Symetis Sa | Stent-valve, delivery apparatus and method of use |
EP3398562A1 (en) | 2013-10-28 | 2018-11-07 | Symetis SA | Stent-valve, delivery apparatus and method of use |
US10531953B2 (en) | 2013-10-28 | 2020-01-14 | Symetis Sa | Stent-valve, delivery apparatus and method of use |
US10849740B2 (en) | 2013-11-06 | 2020-12-01 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US9913715B2 (en) | 2013-11-06 | 2018-03-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US11446143B2 (en) | 2013-11-06 | 2022-09-20 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US10595993B2 (en) | 2013-12-05 | 2020-03-24 | Edwards Lifesciences Corporation | Method of making an introducer sheath with an inner liner |
US9393111B2 (en) | 2014-01-15 | 2016-07-19 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
US11633279B2 (en) | 2014-02-21 | 2023-04-25 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US10004599B2 (en) | 2014-02-21 | 2018-06-26 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US10952849B2 (en) | 2014-02-21 | 2021-03-23 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US10179044B2 (en) | 2014-05-19 | 2019-01-15 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US12083011B2 (en) | 2014-05-19 | 2024-09-10 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US11045313B2 (en) | 2014-05-19 | 2021-06-29 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US10687939B2 (en) | 2014-06-06 | 2020-06-23 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
US11684471B2 (en) | 2014-06-06 | 2023-06-27 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a native mitral or tricuspid valve |
US10010414B2 (en) | 2014-06-06 | 2018-07-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
US10492908B2 (en) | 2014-07-30 | 2019-12-03 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US11701225B2 (en) | 2014-07-30 | 2023-07-18 | Cardiovalve Ltd. | Delivery of a prosthetic valve |
US11872130B2 (en) | 2014-07-30 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic heart valve implant |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US11951000B2 (en) | 2014-09-12 | 2024-04-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US11406493B2 (en) | 2014-09-12 | 2022-08-09 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US10709559B2 (en) | 2014-10-13 | 2020-07-14 | Boston Scientific Limited | Catheter delivery system for stent valve |
EP4088691A1 (en) | 2014-10-13 | 2022-11-16 | Boston Scientific Limited | Catheter delivery system for stent valve |
US10524903B2 (en) | 2015-02-05 | 2020-01-07 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10682227B2 (en) | 2015-02-05 | 2020-06-16 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US10463487B2 (en) | 2015-02-05 | 2019-11-05 | Cardiovalve Ltd. | Prosthetic valve delivery system with independently-movable capsule portions |
US11672658B2 (en) | 2015-02-05 | 2023-06-13 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10449047B2 (en) | 2015-02-05 | 2019-10-22 | Cardiovalve Ltd. | Prosthetic heart valve with compressible frames |
US10918481B2 (en) | 2015-02-05 | 2021-02-16 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10426610B2 (en) | 2015-02-05 | 2019-10-01 | Cardiovalve Ltd. | Prosthetic valve with radially-deflectable tissue anchors |
US10507105B2 (en) | 2015-02-05 | 2019-12-17 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10849748B2 (en) | 2015-02-05 | 2020-12-01 | Cardiovalve Ltd. | Prosthetic valve delivery system with independently-movable capsule portions |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10667908B2 (en) | 2015-02-05 | 2020-06-02 | Cardiovalve Ltd. | Prosthetic valve with S-shaped tissue anchors |
US10357360B2 (en) | 2015-02-05 | 2019-07-23 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10888422B2 (en) | 2015-02-05 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US10864078B2 (en) | 2015-02-05 | 2020-12-15 | Cardiovalve Ltd. | Prosthetic valve with separably-deployable valve body and tissue anchors |
US11793638B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US11793635B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10463488B2 (en) | 2015-02-05 | 2019-11-05 | Cardiovalve Ltd. | Prosthetic valve with separably-deployable valve body and tissue anchors |
US10695177B2 (en) | 2015-02-05 | 2020-06-30 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10973636B2 (en) | 2015-02-05 | 2021-04-13 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10390952B2 (en) | 2015-02-05 | 2019-08-27 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
US10758344B2 (en) | 2015-02-05 | 2020-09-01 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10736742B2 (en) | 2015-02-05 | 2020-08-11 | Cardiovalve Ltd. | Prosthetic valve with atrial arms |
US10722360B2 (en) | 2015-02-05 | 2020-07-28 | Cardiovalve Ltd. | Prosthetic valve with radially-deflectable tissue anchors |
US11534298B2 (en) | 2015-02-05 | 2022-12-27 | Cardiovalve Ltd. | Prosthetic valve with s-shaped tissue anchors |
US11850147B2 (en) | 2015-04-21 | 2023-12-26 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US11389292B2 (en) | 2015-04-30 | 2022-07-19 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
JP2018516642A (en) * | 2015-05-01 | 2018-06-28 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Device and method for reducing pacemaker rate in heart valve replacement |
US11083576B2 (en) | 2015-06-22 | 2021-08-10 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US11844690B2 (en) | 2015-06-23 | 2023-12-19 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10842620B2 (en) | 2015-06-23 | 2020-11-24 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US11278405B2 (en) | 2015-08-26 | 2022-03-22 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement valve |
US10758345B2 (en) | 2015-08-26 | 2020-09-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US12004949B2 (en) | 2015-08-26 | 2024-06-11 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US12023245B2 (en) | 2015-08-26 | 2024-07-02 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement valve |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US11253364B2 (en) | 2015-08-28 | 2022-02-22 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11298117B2 (en) | 2016-02-16 | 2022-04-12 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US11116629B2 (en) | 2016-03-24 | 2021-09-14 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US12053376B2 (en) | 2016-03-24 | 2024-08-06 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
US10517722B2 (en) | 2016-03-24 | 2019-12-31 | Edwards Lifesciences Corporation | Delivery system for prosthetic heart valve |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US11224507B2 (en) | 2016-07-21 | 2022-01-18 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US10646340B2 (en) | 2016-08-19 | 2020-05-12 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve |
US11931258B2 (en) | 2016-08-19 | 2024-03-19 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve and methods of use |
US10639143B2 (en) | 2016-08-26 | 2020-05-05 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US11504229B2 (en) | 2016-08-26 | 2022-11-22 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
WO2018080328A1 (en) * | 2016-10-19 | 2018-05-03 | Chodor Piotr | Stent of aortic valve implanted transcatheterly |
US11185407B2 (en) | 2016-10-19 | 2021-11-30 | Piotr Chodór | Stent of aortic valve implanted transcatheterly |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US11510778B2 (en) | 2016-11-02 | 2022-11-29 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10973631B2 (en) | 2016-11-17 | 2021-04-13 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US12023242B2 (en) | 2016-11-17 | 2024-07-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11484406B2 (en) | 2016-11-17 | 2022-11-01 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US10463484B2 (en) | 2016-11-17 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US11344408B2 (en) | 2016-12-06 | 2022-05-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US12083012B2 (en) | 2016-12-06 | 2024-09-10 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US10603165B2 (en) | 2016-12-06 | 2020-03-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
WO2018170198A1 (en) * | 2017-03-16 | 2018-09-20 | St. Jude Medical, Cardiology Division, Inc. | Retainers for transcatheter heart valve delivery systems |
US10660752B2 (en) | 2017-03-16 | 2020-05-26 | St. Jude Medical, Cardiology Division, Inc. | Retainers for transcatheter heart valve delivery systems |
US11026781B2 (en) | 2017-05-22 | 2021-06-08 | Edwards Lifesciences Corporation | Valve anchor and installation method |
US11883281B2 (en) | 2017-05-31 | 2024-01-30 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US12064341B2 (en) | 2017-05-31 | 2024-08-20 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11123186B2 (en) | 2017-07-06 | 2021-09-21 | Edwards Lifesciences Corporation | Steerable delivery system and components |
US10813757B2 (en) | 2017-07-06 | 2020-10-27 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US11883287B2 (en) | 2017-07-06 | 2024-01-30 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US10918473B2 (en) | 2017-07-18 | 2021-02-16 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
US11547544B2 (en) | 2017-07-18 | 2023-01-10 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
USD841812S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US11571298B2 (en) | 2017-08-03 | 2023-02-07 | Cardiovalve Ltd. | Prosthetic valve with appendages |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
USD841813S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
US11013595B2 (en) | 2017-08-11 | 2021-05-25 | Edwards Lifesciences Corporation | Sealing element for prosthetic heart valve |
US11083575B2 (en) | 2017-08-14 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US12023241B2 (en) | 2017-08-14 | 2024-07-02 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US10932903B2 (en) | 2017-08-15 | 2021-03-02 | Edwards Lifesciences Corporation | Skirt assembly for implantable prosthetic valve |
US12053370B2 (en) | 2017-08-17 | 2024-08-06 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10898319B2 (en) | 2017-08-17 | 2021-01-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11969338B2 (en) | 2017-08-18 | 2024-04-30 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US11857411B2 (en) | 2017-08-18 | 2024-01-02 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11850148B2 (en) | 2017-08-21 | 2023-12-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10973629B2 (en) | 2017-09-06 | 2021-04-13 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11147667B2 (en) | 2017-09-08 | 2021-10-19 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11872131B2 (en) | 2017-12-13 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11872124B2 (en) | 2018-01-10 | 2024-01-16 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
US11318011B2 (en) | 2018-04-27 | 2022-05-03 | Edwards Lifesciences Corporation | Mechanically expandable heart valve with leaflet clamps |
US11969341B2 (en) | 2018-05-23 | 2024-04-30 | Corcym S.R.L. | Cardiac valve prosthesis |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11446141B2 (en) | 2018-10-19 | 2022-09-20 | Edwards Lifesciences Corporation | Prosthetic heart valve having non-cylindrical frame |
US12029644B2 (en) | 2019-01-17 | 2024-07-09 | Edwards Lifesciences Corporation | Frame for prosthetic heart valve |
US11723783B2 (en) | 2019-01-23 | 2023-08-15 | Neovasc Medical Ltd. | Covered flow modifying apparatus |
US11399932B2 (en) | 2019-03-26 | 2022-08-02 | Edwards Lifesciences Corporation | Prosthetic heart valve |
WO2021250120A1 (en) | 2020-06-09 | 2021-12-16 | Biotronik Ag | A prosthetic heart valve with improved sealing means |
US11963871B2 (en) | 2020-06-18 | 2024-04-23 | Edwards Lifesciences Corporation | Crimping devices and methods |
US11938022B2 (en) | 2020-06-26 | 2024-03-26 | Highlife Sas | Transcatheter valve prosthesis and method for implanting the same |
US12004947B1 (en) | 2021-01-20 | 2024-06-11 | Edwards Lifesciences Corporation | Connecting skirt for attaching a leaflet to a frame of a prosthetic heart valve |
US12115066B2 (en) | 2021-03-23 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having elongated sealing member |
US12121435B2 (en) | 2022-06-28 | 2024-10-22 | Edwards Lifesciences Corporation | Prosthetic heart valve leaflet assemblies and methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11452598B2 (en) | Stents, valved-stents and methods and systems for delivery thereof | |
US20230113881A1 (en) | Aortic bioprosthesis and systems for delivery thereof | |
US20220370199A1 (en) | Systems, methods and devices for retrograde pericardial release of a prosthetic heart valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08843043 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008843043 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12739117 Country of ref document: US Ref document number: 2703665 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010530483 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0819217 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100426 |