WO2009052683A1 - Electronic circuit package - Google Patents
Electronic circuit package Download PDFInfo
- Publication number
- WO2009052683A1 WO2009052683A1 PCT/CN2007/070954 CN2007070954W WO2009052683A1 WO 2009052683 A1 WO2009052683 A1 WO 2009052683A1 CN 2007070954 W CN2007070954 W CN 2007070954W WO 2009052683 A1 WO2009052683 A1 WO 2009052683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- package
- ceramic substrate
- thin
- integrated
- circuit
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000000919 ceramic Substances 0.000 claims abstract description 38
- 239000010409 thin film Substances 0.000 claims abstract description 32
- 239000003989 dielectric material Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000009713 electroplating Methods 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/13—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body combined with thin-film or thick-film passive components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
Definitions
- the current invention relates to an electronic circuit package and in particular to a ceramic substrate for holding both passive and active electronic circuit components
- United States Patent 6,545,225 discloses a small form-factor electronic circuit package in which passive components, such as capacitois, resistors and inductors, are formed on a substrate of an insulating material using a thin film technique A pianarizing layer of glass is first coated onto the insulating material and then the thin film circuits arc formed on the barrier layer. The partial or full integration of passive components onto the substrate leads to the creation of a module which is very compact.
- Taiwanese patent publication TW0494560B Jn this package a patterned insulation layer is located on the upper surface of a ceramic substrate and a thin film passive device layer is locating on the patterned insulation layer. A passivation layer is formed on the thin film passive device layer and a chip is located on the passivation layer and electrically connected with the passive device through a multi-level interconnect.
- the packages disclosed in these two patents have insulating or barrier layers on the supporting substrate to achieve passive components with acceptable performance at RF operating frequencies.
- the insulating and barrier layers deteriorate the thermal spreading performance of the package and so these packages are not suitable for high power application.
- an electronic circuit package comprising a ceramic substrate, a thin-film circuit integrated with the ceramic substrate and having at least two passive circuit elements joined by an integrated electrical interconnect, and at least one active power electronic component mounted on the ceramic substrate and electrically connected with the integrated thin-film circuit.
- the thin-film circuit is integrated with the ceramic substrate by a method selected from a group comprising metal and dielectric deposition, electroplating and etching.
- the active electronic component is mounted to the ceramic substrate without any dielectric material between the active electronic component and the ceramic substrate.
- the active electronic component is mounted on the die bond pad with adhesive which could be conductive or non-conductive.
- the thin-film circuit is integrated with the ceramic substrate.
- the passive circuit elements are selected from the group consisting of a resistor, a capacitor, an inductor, a through hole, a via and a wrap-around.
- the thin-film circuit is selected from a group consisting of an LC matching network, a low-pass filter, a band-pass filter, a high-pass filter, a diplexer and a balun.
- the active electronic component comprises a semiconductor chip device or packaged IC
- the semiconductor chip device is selected from a group consisting of a RF die, a low-noise amplifier, a power amplifier and a switch.
- the electronic circuit package comprises a ceramic substrate, a thin-film circuit integrated with the ceramic substrate, thin-film circuit comprising at least two passive circuit elements connected to a bond pad and wherein there is no dielectric layer between the die bond pad and the substrate, and an active electronic component mounted to the die bond pad using a conductive or non conductive adhesive.
- FIG. 1 is a schematic overview of an electronic circuit package according to the invention
- Figure 2 is a side schematic view of the package
- Figure 3 is an enlarged size schematic view of area A of Figure 2.
- an electronic circuit package 1 comprising a ceramic supporting substrate 2, a plurality of thin-film circuits 3 deposited on the ceramic substrate 2 and a plurality of active electronic devices 4.
- the thin-film circuits 3 comprise a plurality of passive circuit elements which in combination with the active electronic devices 4 form a functioning electronic circuit.
- the passive circuit elements of the thin-film circuits 3 may include, but are not limited to, any one of resistors, capacitors, inductors, through-holes, vias and/or edge wrap-arounds. These components are formed on the ceramic by depositing thin films of metal, dielectric or photoresist materials using plasma enhanced chemical vapor deposition (PF-CVD), physical vapor deposition (PVD) such as sputtering, patterning and etching and electroplating processes.
- PF-CVD plasma enhanced chemical vapor deposition
- PVD physical vapor deposition
- the electroplating process is used to control the metal thickness of components whose performance is sensitive to metal thickness, for example, Q-factor of inductors a.nd insertion loss of transmission line.
- the thin film passive circuit elements are joined to form thin-film electronic circuits by interconnects also integrated with the ceramic substrate 2.
- the passive components may be of any arbitrary shape, taking account of the voltage, current, frequency characteristics of the electrical signal and the shape and size of the active electronic components they will carry, and are arranged to form passive circuit elements such as LC matching networks, low- pass filters, band-pass filers, high-pass filters, diplexers and the like.
- Die Bond pads 6 are also formed on the substrate for mounting the active components 4.
- the die bond pads are formed by electroplating or one of the thin-film techniques described above directly onto the substrate without an intervening dielectric layer between the pad 6 and ceramic substrate 2.
- the active electronic components 4 of the package may include, bat are not limited to, semiconductor devices and dies such as transistors, low noise amplifiers (LNAs), power amplifiers, switches and the like.
- the package includes at least one power active device, such as a power amplifier, together with other active devices, for example LNAs and switches.
- the active devices can be bare dies or packaged integrated circuits (ICs).
- Each active component is mounted to the ceramic substrate 2 in an area over or directly adjacent to the metal layer 3 formed on the ceramic substrate 2.
- the active components are attached to the die bond pads 6 via conductive adhesive or via non-conductive adhesive and bonding wires 5. There is no intervening insulating material such as oxide between the active component 4 and the substrate 2.
- the active components 4 are mounted as closely as possible to the associated passive elements and circuit 3 integrated with this ceramic.
- a circuit package of the current invention is particularly useful in radio frequency (RF) front end modules.
- a typical RF front end comprises everything from the antenna to the intermediate frequency (IF) stage of an RF receiver, and may include a low noise amplifier (LNA), one or more mixer stages, a phase lock loop (PLL), automatic gain control (ACJC) and filters, ft includes both active and passive analog components operating at high frequency.
- the active components can be mounted on a ceramic support substrate and interconnected with thin-film passive components integrated with the ceramic substrate.
- Such a construction provides a simpler assembly procedure and lower assembly capabilities, for example minimum separation between dies, minimum separation between die and discrete integrated passive devices, without affecting the performance of the module, for example, minimum bond wire length.
- Integrating thin- film passive components with the ceramic substrate improves routing flexibility and reduces the package form-factor. Because active components can be mounted directly above their associated passive components, bond wire lengths are shorter which reduces parasitics and losses especially operating at high frequency.
- the various passive components are connected by integrated on-ceramic interconnects with well-matched impedance instead of bonded-wires resulting in better impedance control and thus reduced losses. Because the die bond pads of active components such as power dies are formed directly on the ceramic substrate 2 without any intervening dielectric layer the package has better thermal spread effect than prior art assembly methods which typically have an insulating layer, for example, silicon oxide, BCB, between the die and ceramic/glass/silicon substrate. Testing by the inventors reveals that surface temperature can be reduced by up to 15% by removing the insulating layer.
- an insulating layer for example, silicon oxide, BCB
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
An electronic circuit package(1) has a thin-film circuit(3) integrated with the ceramic substrate(2). The thin-film circuit(3) includes at least two passive circuit elements joined by an integrated electrical interconnect. At least one active electronic component(4) is mounted on the ceramic substrate(2) without any dielectric material between the active electronic component(4) and the ceramic substrate, and is electrically connected with the integrated thin-film circuit(3).
Description
Electronic Circuit Package
Background to the invention
1 Field of the Invention
The current invention relates to an electronic circuit package and in particular to a ceramic substrate for holding both passive and active electronic circuit components
2 Background Information Modern electronic devices are characterised by small size and large functionalit\
Consumers desire products with more and more functions, but without compromising on si/e and weight Such dev ices are also characterised by wireless interconnectivity for communicating, sharing or downloading information In response, electronic designers are continually striving to make smaller moie efficient electronic circuit packages However, v arious design considerations such as track/interconnect routing, parasitica losses and heating affect the size and form-factor of electronic packages., particularly in radio frequency applications Another aspect that affects size and form-factor is the number of passive circuit component in modern electronic circuitry Modern electronic circuits contain a large number of semiconductor integrated circuit (1C) devices, however it is estimated there between 60-70% of components in modern electronic circuits aie discrete passise components Although modern techniques such as Low Temperature Co- tired Ceramic (Ϊ.TCC) and thin-film are used to reduce the size of passive components separation between active and passive devices is still go\erned by assembly capabilities and many active devices are not closely placed to associated passive components in order to optimise module layout Form-factor is also governed by assembly capabilities and minimum separation between 1C dies
United States Patent 6,545,225 discloses a small form-factor electronic circuit package in which passive components, such as capacitois, resistors and inductors, are formed on a substrate of an insulating material using a thin film technique A pianarizing layer of glass is first coated onto the insulating material and then the thin film circuits arc formed
on the barrier layer. The partial or full integration of passive components onto the substrate leads to the creation of a module which is very compact.
Another small form-factor electronic circuit, package is disclosed in Taiwanese patent publication TW0494560B Jn this package a patterned insulation layer is located on the upper surface of a ceramic substrate and a thin film passive device layer is locating on the patterned insulation layer. A passivation layer is formed on the thin film passive device layer and a chip is located on the passivation layer and electrically connected with the passive device through a multi-level interconnect.
The packages disclosed in these two patents have insulating or barrier layers on the supporting substrate to achieve passive components with acceptable performance at RF operating frequencies. However, the insulating and barrier layers deteriorate the thermal spreading performance of the package and so these packages are not suitable for high power application.
Thus there exists a need for an improved electronic circuit package that overcomes or ameliorates at least some of the disadvantages with the prior art or at least provides the public with a useful alternative.
Summary of the Invention
Accordingly there is disclosed herein an electronic circuit package comprising a ceramic substrate, a thin-film circuit integrated with the ceramic substrate and having at least two passive circuit elements joined by an integrated electrical interconnect, and at least one active power electronic component mounted on the ceramic substrate and electrically connected with the integrated thin-film circuit.
Preferably, the thin-film circuit is integrated with the ceramic substrate by a method selected from a group comprising metal and dielectric deposition, electroplating and etching.
Preferably, the active electronic component is mounted to the ceramic substrate without any dielectric material between the active electronic component and the ceramic substrate.
Preferably, the active electronic component is mounted on the die bond pad with adhesive which could be conductive or non-conductive.
Preferably, the thin-film circuit is integrated with the ceramic substrate.
Preferably, the passive circuit elements are selected from the group consisting of a resistor, a capacitor, an inductor, a through hole, a via and a wrap-around.
Preferably, the thin-film circuit is selected from a group consisting of an LC matching network, a low-pass filter, a band-pass filter, a high-pass filter, a diplexer and a balun.
Preferably, the active electronic component comprises a semiconductor chip device or packaged IC
Preferably, the semiconductor chip device is selected from a group consisting of a RF die, a low-noise amplifier, a power amplifier and a switch.
Preferably, the electronic circuit package comprises a ceramic substrate, a thin-film circuit integrated with the ceramic substrate, thin-film circuit comprising at least two passive circuit elements connected to a bond pad and wherein there is no dielectric layer between the die bond pad and the substrate, and an active electronic component mounted to the die bond pad using a conductive or non conductive adhesive.
Brief Description of the Drawings
Figure 1 is a schematic overview of an electronic circuit package according to the invention,
Figure 2 is a side schematic view of the package, and
Figure 3 is an enlarged size schematic view of area A of Figure 2.
Detailed Description of the Exemplary Embodiments
Referring to the drawings, in an exemplified embodiment of the invention there is an electronic circuit package 1 comprising a ceramic supporting substrate 2, a plurality of thin-film circuits 3 deposited on the ceramic substrate 2 and a plurality of active electronic devices 4. The thin-film circuits 3 comprise a plurality of passive circuit elements which in combination with the active electronic devices 4 form a functioning electronic circuit.
The passive circuit elements of the thin-film circuits 3 may include, but are not limited to, any one of resistors, capacitors, inductors, through-holes, vias and/or edge wrap-arounds. These components are formed on the ceramic by depositing thin films of metal, dielectric or photoresist materials using plasma enhanced chemical vapor deposition (PF-CVD), physical vapor deposition (PVD) such as sputtering, patterning and etching and electroplating processes. The formation of thin film circuit using some of the aforementioned methods has been practiced for over 30 years and is well within the capability of those skilled in the art. The electroplating process is used to control the metal thickness of components whose performance is sensitive to metal thickness, for example, Q-factor of inductors a.nd insertion loss of transmission line. The thin film passive circuit elements are joined to form thin-film electronic circuits by interconnects also integrated with the ceramic substrate 2. The passive components may be of any arbitrary shape, taking account of the voltage, current, frequency characteristics of the electrical signal and the shape and size of the active electronic components they will carry, and are arranged to form passive circuit elements such as LC matching networks, low- pass filters, band-pass filers, high-pass filters, diplexers and the like.
Die Bond pads 6 are also formed on the substrate for mounting the active components 4. The die bond pads are formed by electroplating or one of the thin-film techniques
described above directly onto the substrate without an intervening dielectric layer between the pad 6 and ceramic substrate 2.
The active electronic components 4 of the package may include, bat are not limited to, semiconductor devices and dies such as transistors, low noise amplifiers (LNAs), power amplifiers, switches and the like. In the preferred embodiment the package includes at least one power active device, such as a power amplifier, together with other active devices, for example LNAs and switches. The active devices can be bare dies or packaged integrated circuits (ICs). Each active component is mounted to the ceramic substrate 2 in an area over or directly adjacent to the metal layer 3 formed on the ceramic substrate 2. The active components are attached to the die bond pads 6 via conductive adhesive or via non-conductive adhesive and bonding wires 5. There is no intervening insulating material such as oxide between the active component 4 and the substrate 2. The active components 4 are mounted as closely as possible to the associated passive elements and circuit 3 integrated with this ceramic.
A circuit package of the current invention is particularly useful in radio frequency (RF) front end modules. A typical RF front end comprises everything from the antenna to the intermediate frequency (IF) stage of an RF receiver, and may include a low noise amplifier (LNA), one or more mixer stages, a phase lock loop (PLL), automatic gain control (ACJC) and filters, ft includes both active and passive analog components operating at high frequency. The active components can be mounted on a ceramic support substrate and interconnected with thin-film passive components integrated with the ceramic substrate. Such a construction provides a simpler assembly procedure and lower assembly capabilities, for example minimum separation between dies, minimum separation between die and discrete integrated passive devices, without affecting the performance of the module, for example, minimum bond wire length. Integrating thin- film passive components with the ceramic substrate improves routing flexibility and reduces the package form-factor. Because active components can be mounted directly above their associated passive components, bond wire lengths are shorter which reduces parasitics and losses especially operating at high frequency. The various passive components are connected by integrated on-ceramic interconnects with well-matched
impedance instead of bonded-wires resulting in better impedance control and thus reduced losses. Because the die bond pads of active components such as power dies are formed directly on the ceramic substrate 2 without any intervening dielectric layer the package has better thermal spread effect than prior art assembly methods which typically have an insulating layer, for example, silicon oxide, BCB, between the die and ceramic/glass/silicon substrate. Testing by the inventors reveals that surface temperature can be reduced by up to 15% by removing the insulating layer.
It should be appreciated that modifications and/or alterations obvious to those skilled in the art are not considered as beyond the scope of the present invention.
Claims
1. An electronic circuit package comprising. a ceramic substrate, a thin-film circuit integrated with the ceramic substrate and having at least two passive circuit elements joined by art integrated electrical interconnect and at least one active power electronic component mounted on the ceramic substrate and electrically connected with the integrated thin-film circuit.
2. The package of claim 1 wherein the thin-film circuit is integrated with the ceramic substrate by a method selected from a group comprising metal and dielectric deposition, electroplating and etching.
3. The package of claim 1 wherein the active electronic component is mounted to the ceramic substrate without any dielectric material between the active electronic component and the ceramic substrate.
4. The package of claim 3 wherein active electronic component is mounted on the die bond pad with adhesive which could be conductive or non-conductive.
5. The package of claim 1 wherein the thin-film circuit is integrated with the ceramic substrate.
6. The package of claim 1 wherein the passive circuit elements are selected from the group consisting of a resistor, a capacitor, an inductor, a through hole, a via and a wrap- around.
7. The package of claim I wherein the thin-film circuit is selected from a group consisting of an LC matching network, a low-pass filter, a band-pass filter, a high-pass filter, a dipiexer and a balun.
8. The package of claim 1 wherein the active electronic component comprises a semiconductor chip device or packaged IC.
9 The package of claim 8 wherein the semiconductor chip device is selected from a group consisting of a RF die, a low-noise amplifier, a power amplifier and a switch.
10. An electronic circuit package comprising. a ceramic substrate, a thin-film circuit integrated with the ceramic substrate, thin-film circuit comprising at least two passive circuit elements connected to a bond pad and wherein there is no dielectric layer between the bond pad and the substrate, and an active electronic component mounted to the bond pad using a conductive or non conductive adhesive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2007/070954 WO2009052683A1 (en) | 2007-10-25 | 2007-10-25 | Electronic circuit package |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2007/070954 WO2009052683A1 (en) | 2007-10-25 | 2007-10-25 | Electronic circuit package |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009052683A1 true WO2009052683A1 (en) | 2009-04-30 |
Family
ID=40579047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/070954 WO2009052683A1 (en) | 2007-10-25 | 2007-10-25 | Electronic circuit package |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009052683A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8475955B2 (en) | 2005-03-25 | 2013-07-02 | Front Edge Technology, Inc. | Thin film battery with electrical connector connecting battery cells |
US8679674B2 (en) | 2005-03-25 | 2014-03-25 | Front Edge Technology, Inc. | Battery with protective packaging |
US8753724B2 (en) | 2012-09-26 | 2014-06-17 | Front Edge Technology Inc. | Plasma deposition on a partially formed battery through a mesh screen |
US8865340B2 (en) | 2011-10-20 | 2014-10-21 | Front Edge Technology Inc. | Thin film battery packaging formed by localized heating |
US8864954B2 (en) | 2011-12-23 | 2014-10-21 | Front Edge Technology Inc. | Sputtering lithium-containing material with multiple targets |
US9077000B2 (en) | 2012-03-29 | 2015-07-07 | Front Edge Technology, Inc. | Thin film battery and localized heat treatment |
US9257695B2 (en) | 2012-03-29 | 2016-02-09 | Front Edge Technology, Inc. | Localized heat treatment of battery component films |
US9356320B2 (en) | 2012-10-15 | 2016-05-31 | Front Edge Technology Inc. | Lithium battery having low leakage anode |
US9887429B2 (en) | 2011-12-21 | 2018-02-06 | Front Edge Technology Inc. | Laminated lithium battery |
US9905895B2 (en) | 2012-09-25 | 2018-02-27 | Front Edge Technology, Inc. | Pulsed mode apparatus with mismatched battery |
US10008739B2 (en) | 2015-02-23 | 2018-06-26 | Front Edge Technology, Inc. | Solid-state lithium battery with electrolyte |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5752182A (en) * | 1994-05-09 | 1998-05-12 | Matsushita Electric Industrial Co., Ltd. | Hybrid IC |
CN1531139A (en) * | 2003-03-14 | 2004-09-22 | Lg | Active intelligent antenna system and producing method thereof |
US20060097344A1 (en) * | 2001-09-21 | 2006-05-11 | Casper Michael D | Integrated thin film capacitor/inductor/interconnect system and method |
US20060133011A1 (en) * | 2004-12-21 | 2006-06-22 | Cox G S | Capacitive devices, organic dielectric laminates, and printed wiring boards incorporating such devices, and methods of making thereof |
WO2006126756A1 (en) * | 2005-05-26 | 2006-11-30 | Telephus Inc. | Integrated passive device chip and method of manufacturing the same |
-
2007
- 2007-10-25 WO PCT/CN2007/070954 patent/WO2009052683A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5752182A (en) * | 1994-05-09 | 1998-05-12 | Matsushita Electric Industrial Co., Ltd. | Hybrid IC |
US20060097344A1 (en) * | 2001-09-21 | 2006-05-11 | Casper Michael D | Integrated thin film capacitor/inductor/interconnect system and method |
CN1531139A (en) * | 2003-03-14 | 2004-09-22 | Lg | Active intelligent antenna system and producing method thereof |
US20060133011A1 (en) * | 2004-12-21 | 2006-06-22 | Cox G S | Capacitive devices, organic dielectric laminates, and printed wiring boards incorporating such devices, and methods of making thereof |
WO2006126756A1 (en) * | 2005-05-26 | 2006-11-30 | Telephus Inc. | Integrated passive device chip and method of manufacturing the same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8475955B2 (en) | 2005-03-25 | 2013-07-02 | Front Edge Technology, Inc. | Thin film battery with electrical connector connecting battery cells |
US8679674B2 (en) | 2005-03-25 | 2014-03-25 | Front Edge Technology, Inc. | Battery with protective packaging |
US8865340B2 (en) | 2011-10-20 | 2014-10-21 | Front Edge Technology Inc. | Thin film battery packaging formed by localized heating |
US9887429B2 (en) | 2011-12-21 | 2018-02-06 | Front Edge Technology Inc. | Laminated lithium battery |
US8864954B2 (en) | 2011-12-23 | 2014-10-21 | Front Edge Technology Inc. | Sputtering lithium-containing material with multiple targets |
US9077000B2 (en) | 2012-03-29 | 2015-07-07 | Front Edge Technology, Inc. | Thin film battery and localized heat treatment |
US9257695B2 (en) | 2012-03-29 | 2016-02-09 | Front Edge Technology, Inc. | Localized heat treatment of battery component films |
US9905895B2 (en) | 2012-09-25 | 2018-02-27 | Front Edge Technology, Inc. | Pulsed mode apparatus with mismatched battery |
US8753724B2 (en) | 2012-09-26 | 2014-06-17 | Front Edge Technology Inc. | Plasma deposition on a partially formed battery through a mesh screen |
US9356320B2 (en) | 2012-10-15 | 2016-05-31 | Front Edge Technology Inc. | Lithium battery having low leakage anode |
US10008739B2 (en) | 2015-02-23 | 2018-06-26 | Front Edge Technology, Inc. | Solid-state lithium battery with electrolyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090115051A1 (en) | Electronic Circuit Package | |
WO2009052683A1 (en) | Electronic circuit package | |
US8299572B2 (en) | Semiconductor die with backside passive device integration | |
US7746174B2 (en) | Systems and methods for power amplifier with integrated passive device | |
US6962866B2 (en) | System-on-a-chip with multi-layered metallized through-hole interconnection | |
US8847365B2 (en) | Inductors and methods for integrated circuits | |
KR100569590B1 (en) | Radio frequency semiconductor device and method of manufacturing the same | |
US7790503B2 (en) | Semiconductor device and method of forming integrated passive device module | |
KR101721703B1 (en) | Semiconductor device and method of forming rf fem with lc filter and ipd filter over substrate | |
TWI540786B (en) | Semiconductor device and method of forming directional rf coupler with ipd for additional rf signal processing | |
EP1662570A2 (en) | Electronic device with a capacitor and an inductor and method of manufacturing the same | |
US7112502B2 (en) | Method to fabricate passive components using conductive polymer | |
KR20100125281A (en) | Balun transformer with improved harmonic supression | |
JP2006287196A (en) | High-quality q factor planer inductor and ipd application | |
US7935607B2 (en) | Integrated passive device with a high resistivity substrate and method for forming the same | |
US20090189269A1 (en) | Electronic Circuit Package | |
US10453774B1 (en) | Thermally enhanced substrate | |
JP5709352B2 (en) | MMIC with backside multilayer signal routing | |
JP2008135753A (en) | Multichip electronic circuit module, and method for manufacturing the same | |
KR100240647B1 (en) | Method of manufacturing a capacitor of semiconductor device | |
KR100577527B1 (en) | Radio frequency integrated circuits and method of manufacturing the same | |
KR100849428B1 (en) | Symmetric Inductor with branching-typed structure and the manufacturing method | |
Mi et al. | Integrated passives on LTCC for achieving chip-sized-modules | |
Pieters et al. | Integration of passive components in thin film multilayer MCM-D technology for wireless front-end applications | |
WO2009100614A1 (en) | Electronic circuit package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07817145 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07817145 Country of ref document: EP Kind code of ref document: A1 |