WO2009050297A1 - Modular aufgebautes elektronisches kraftfahrzeugregelungssystem - Google Patents

Modular aufgebautes elektronisches kraftfahrzeugregelungssystem Download PDF

Info

Publication number
WO2009050297A1
WO2009050297A1 PCT/EP2008/064119 EP2008064119W WO2009050297A1 WO 2009050297 A1 WO2009050297 A1 WO 2009050297A1 EP 2008064119 W EP2008064119 W EP 2008064119W WO 2009050297 A1 WO2009050297 A1 WO 2009050297A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
base module
wheel speed
chassis base
brake controller
Prior art date
Application number
PCT/EP2008/064119
Other languages
English (en)
French (fr)
Inventor
Peter Lohberg
Michael Zydek
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to US12/738,712 priority Critical patent/US8989949B2/en
Priority to EP08840454.6A priority patent/EP2203335B1/de
Publication of WO2009050297A1 publication Critical patent/WO2009050297A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/06Active Suspension System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/09Complex systems; Conjoint control of two or more vehicle active control systems

Definitions

  • the invention relates to a modular electronic vehicle control system according to the preamble of claim 1.
  • a device for vehicle dynamics control which consists of a valve block and an integral with the valve block electronic control unit, wherein within the control unit electronic components are arranged at least for the brake intervention, the signals from at least one driving dynamics sensor, such as Yaw rate sensor and / or acceleration sensor process and wherein in the valve block at least elektrohyd- raulische valves are arranged, further at least one vehicle dynamics sensor in the electronic control unit or the valve block is integrated and finally this is mechanically connected in particular to the housing of the electronic control unit or from this is enclosed.
  • driving dynamics sensor such as Yaw rate sensor and / or acceleration sensor process
  • the object of the present invention is to provide a modular electronic vehicle control system that better meets today's requirements for modern motor vehicles with complex electronic control systems.
  • the motor vehicle control system comprises a chassis base module, which is used for the modularization of chassis control systems in motor vehicle technology, in particular in such systems, which react directly or indirectly to the signals of the example four wheel speed sensors of a passenger car and / or inertial sensors for measuring the rate of rotation and / or longitudinal acceleration of the vehicle.
  • the chassis base module so the signals of the wheel speed sensors are supplied, which evaluates the signals of the wheel speed sensors and passes to a spatially separated from the chassis base module arranged electronic brake controller.
  • the chassis base module and the brake controller are preferably arranged in separate control unit housings.
  • today's vehicle functions such as the electronic stability control by braking intervention (ESC or ESP), the stability control by means of electronic steering correction, occupant protection systems (eg passive, such as airbags, belt tensioners etc. or active, eg driver assistance systems such as Contiguard (R. )) or systems for situation-dependent spring / damper control be integrated.
  • ESC electronic stability control by braking intervention
  • ESP electronic steering correction
  • occupant protection systems eg passive, such as airbags, belt tensioners etc. or active, eg driver assistance systems such as Contiguard (R. )
  • Contiguard Contiguard
  • the control system according to the invention preferably further comprises a hydraulic unit in which at least the hydraulic valves for the brake control are integrated.
  • a hydraulic unit in which at least the hydraulic valves for the brake control are integrated.
  • the hydraulic unit preferably forms at least the electronic brake controller with the hydraulic unit with each other in particular firmly connected unit.
  • the hydraulic unit is arranged separately from the brake controller.
  • the control of the brakes can alternatively be done pneumatically or electrically.
  • a mixed control is also conceivable and advantageous in certain applications, for example when a combination with an electric parking brake is made on the rear axle, while at the front axle a hydraulic or pneumatic principle has priority.
  • the inertial sensor (s) is / are preferably integrated, which include, for example, a yaw rate sensor and / or one or more acceleration sensors.
  • the chassis base module is preferably developed into a security domain control unit, which contains at least one ESC module with ESC control functions.
  • a security domain control unit which contains at least one ESC module with ESC control functions.
  • the steering angle is preferably detected and the detection of the steering angle in a spatially separated from the brake system and the chassis base module area performed.
  • the wheel speed sensors are preferably active magnetic field sensors which transmit wheel speed information and in particular additional information via a current interface to a device for wheel signal processing.
  • Particularly preferred are wheel speed sensors that operate on the Hall or the AMR principle.
  • the processing for the wheel speed signals is expediently integrated into the chassis base module or the security domain control unit.
  • the Security Domain control unit also at least one suspension control function.
  • the suspension can be adapted more quickly to driving dynamics or safety-related events (for example ESP intervention when the vehicle breaks out).
  • this is equipped not only with one, but with several, in particular wheel-specific brake controllers, so that, for example, a wheel-individual, axle-individual or brake circuit-individual control of brake actuators (for example hydraulic wheel brake cylinders) can take place.
  • brake actuators for example, hydraulic or electric brake actuators are used.
  • FIG. 1 is a schematic representation of an ESC device (prior art)
  • FIG. 3 is a schematic representation of a chassis control unit with ESC function (prior art)
  • Fig. 4 is a schematic representation of a brake system with central chassis base module (CBM),
  • Fig. 5 is a schematic representation of a chassis control unit with aggidomänenkontroll- unit (SDC).
  • FIG. 1 shows schematically a known vehicle dynamics device (Electronic Stability Program ESP, "Electronic Stability Control” ESC), which functionally interacts closely with an electronically controlled brake system (ECU / HCU / BR).
  • ECU electronic brake control
  • HCU hydraulic control unit
  • ESC ESC control algorithms
  • ESC can change the wheel brake pressure via the brake controller.
  • the instantaneous ESC-specific dynamic vehicle state is permanently detected by wheel speed sensors 5, 6, inertial sensors 8 and steering motion sensors 9 and compared with internally calculated target values of a vehicle model.
  • each vehicle movement in particular a spin movement, which is not considered permissible depending on the threshold values, is returned to a stable vehicle state.
  • the four wheel speed detection systems consisting of the active wheel speed sensors 5a, 5b, 5c, 5d in conjunction with associated encoders 6a, 6b, 6c, 6d, have for chassis control systems, in particular electronically controlled braking systems of essential importance.
  • the sensors each have a dual Wired connection (2W) to the ECU.
  • the encoder angle scale
  • the encoder is an alternating sequence of permanently magnetized north / south pole areas, forming an encoder track that is closed to a circle and magnetized into the wheel bearing seals (ME).
  • ME wheel bearing seals
  • the wheel bearing seal is mechanically connected to the rotating ring of the wheel bearing and the encoder track is scanned contactless by the stationary active sensor.
  • the senor is magnetically coupled to the encoder track via an air gap.
  • Active sensors are based on the Hall effect or taking advantage of the various magneto-resistive effects, in particular the anisotropic magnetoresistive effect, in which thin layers of permalloy their ohmic resistance in parallel depending on the strength and direction of a magnetic field changing these layers, known. This happens when the encoder track is moved past the sensor.
  • An electronic circuit integrated in the sensor converts these resistance changes into two different current levels, which as an output signal or part of a more complex output signal represent the succession of the North Pole and South Pole.
  • the mode of action of the active sensors with a complex output signal is described in DE 196 34 715 (P 8775) or in DE 199 11 774 (P 9352).
  • WS in addition to the wheel speed (WS), they additionally provide various additional information such as direction of rotation (DR), air gap field strength (AG), undervoltage detection (LV), see DE 101 46 949 (P 10004), and external status signals (EX) from the wheel area, the so-called “wheel Corner area” of external status transmitters 10 via connecting lines 11 an additional signal input (EXI) the wheel speed sensors 5 and can be transmitted via this to the ECU.
  • a corresponding external status signal can be eg an electronic brake pad wear mark (BPW) or an event-controlled time-invariant bit-wise signal sequence, as described in DE 101 50 760 (P 10018). From the measurement of the air gap field strength, characteristic values can be derived which make it possible to specify control thresholds, as can be seen for example from DE 10 2006 036 270 (P 11316).
  • the speed information generated by the above sensors and optionally additional information is processed internally in a decoder 7 with Signalprereaingch (SPP) and the ESC algorithms 4 made available.
  • the inertial sensors are housed in the current state of the art in a separate housing unit 8, referred to as sensor cluster or cluster, as described, for example, in DE 199 216 92 (P 9535).
  • These cluster housing units usually contain a yaw rate sensor (YR), a longitudinal acceleration sensor (Ay) and at least one lateral acceleration sensor (Ax) whose signals must first be conditioned and then transmitted to the ECU via a bus (CAN).
  • YR yaw rate sensor
  • Ay longitudinal acceleration sensor
  • Ax lateral acceleration sensor
  • the ESC control 4 furthermore requires signals of a steering movement sensor system 9, which is generally accommodated in the region of the steering wheel.
  • signals for the steering angle (SA) and its rotational speed (SR) are generated, conditioned and then transmitted via a bus (CAN) to the brake controller 1 (ECU).
  • the arrangement in Fig. 2 differs from the arrangement of FIG. 1 by the integration of the inertial sensor 25 in the brake controller 11 (ECU).
  • An additional housing for the sensor cluster unit as well as the required for this unit CAN connection can be omitted.
  • the electric The specific conditioning of the yaw rate sensor signal and the signal preprocessing (SPP) 12 of the cluster are then also part of the brake controller 11.
  • the steering angle sensor 9 is arranged separately from the brake controller 12 in the arrangement described here.
  • the signals of the four wheel speed sensors 5a to 5d are, as before, supplied to the brake controller 11 and decoded there in decoder 7.
  • a brake system which is constructed according to the principle of the arrangement in Fig. 2, has already been described in EP 131 36 35 Bl (P 9928).
  • FIG. 3 the scheme of a general chassis control unit (CSG) 13 with integrated ESC function 4 is shown.
  • the chassis control unit (CSG) 13 both the elements of Inertialsensorik, eg (YR), (Ax), (Ay) are housed, as well as the operating algorithms and the control programs (CSl ... CSn) different chassis systems
  • the chassis control unit 13 exchanges electrical signals with the chassis systems involved via bus connections 14 and line connections 15.
  • the signals of the four wheel speed sensors 5a to 5d are, as before, supplied to the ECU and decoded there (decoder 7).
  • the combination of brake controller 17 and hydraulic unit 2 functions as an intelligent actuator with lower-level control functions with respect to the brake 3 and with a combination of a wheel speed signal processing unit 7, which is the source of sensory wheel speed information the chassis controller is used.
  • An essential common characteristic feature of the above-mentioned embodiments according to Figures 1 to 3 is the direct supply of the wheel speed information to the electronic brake controller 1, 11, or 17 by wiring of the Radcarder conductedsungssysteme with the electronic brake controller and associated signal conditioning in these units. According to the example of an arrangement in FIG. 4, this traditional system concept is broken up and modularized according to the invention.
  • the additional information already mentioned, as described for example in DE 101 50 760 (P 10018), can thus be transmitted bit-serially over the sequence of additional information bits following a wheel speed pulse.
  • a special bit is available which maps the logic state of the external input of the wheel speed sensors 5 (EXI) in the decoder 7 (EX).
  • EXI wheel speed sensors 5
  • EX decoder 7
  • This information is locally variable (linear, same encoder angle division) but time-varying (different wheel speed).
  • the information could eg include a measure of the current tire pressure.
  • the signal conditioning and processing stages 20 can be optimized for the peculiarities of high-resolution spatially invariant signal acquisition with attached time-invariant additional information, perform specific filtering processes and make a continuous stream of digital wheel speed information generally available via a bus 21.
  • the Radcarder drawn 7 with the inertial sensor 25 device technology combined, so housed in a common housing.
  • the ESC control 23 remains as before in the electronic brake controller 24, to which the signals of the steering angle sensor 9 continue to be supplied.
  • FIG. 5 shows a control device arrangement in which use of the chassis base module 19 (CBS) explained in FIG. 4 serves as the basic component of a security domain control unit 39 (safe domain controller, SDC).
  • the security domain control unit 39 designates an extended chassis control unit, similar to CSG in FIG. 3, but with a predominantly security-specific target position.
  • the ESC control algorithms 28 including the corresponding hardware and software for the ESC control functions, as well as the ESC control functions, are additionally integrated in the security domain control unit 39 Hardware and software of further chassis functions 29 (CSl ... CSn), which correspond to the associated chassis devices via bus connections 37, 40 and / or line connections 38.
  • the signals of the steering angle sensor 9 are supplied to the safety domain control unit 39.
  • the ESC control signals and preferably also brake control signals, are sent to the brake controller 30 or additionally to the brake controllers 31, 32, 33 which control brake actuators 35 (BRA) via their operating electronics (BEL) 34 for actuating the brakes 36 (FIG. BR).
  • BRA brake actuators 35
  • BEL operating electronics

Abstract

Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem umfassend Raddrehzahlsensoreingänge, zumindest einen Bremsensregler (1, 11, 17, 24, 30) sowie Inertialsensoren, wobei ein Chassisbasismodul (19) vorhanden ist, dem die Signale der Raddrehzahlsensoren (5) zugeführt werden und das diese Signale auswertet und an einen räumlich vom Chassisbasismodul (19) getrennt angeordneten elektronischen Bremsenregler (24) leitet, und wobei insbesondere das Chassisbasismodul (19) und der Bremsenregler (24) in separaten Steuergerätegehäusen angeordnet sind.

Description

Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem
Die Erfindung betrifft ein modular aufgebautes elektronisches Kraftfahrzeugregelungssystem gemäß Oberbegriff von Anspruch 1.
Aus der EP 1 313 635 Bl ist eine Vorrichtung zur Fahrdynamikregelung bekannt, welche aus einem Ventilblock und einer mit dem Ventilblock fest verbundenen elektronischen Reglereinheit besteht, wobei innerhalb der Reglereinheit elektronische Bauelemente zumindest für den Bremseneingriff angeordnet sind, die Signale von mindestens einem Fahrdynamiksensor, wie Gierratensensor und/oder Beschleunigungssensor, verarbeiten und wobei im Ventilblock zumindest elektrohyd- raulische Ventile angeordnet sind, wobei weiterhin mindestens ein Fahrdynamiksensor in der elektronischen Reglereinheit oder dem Ventilblock integriert ist und wobei schließlich dieser insbesondere mit dem Gehäuse der elektronischen Reglereinheit mechanisch verbunden ist oder von diesem umschlossen wird.
Ausgehend von dem zuvor geschilderten Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein modular aufgebautes elektronisches Kraftfahrzeugregelungssystem anzugeben, welches heutige Anforderungen an moderne Kraftfahrzeuge mit komplexen elektronischen Regelungssystemen besser erfüllt.
Diese Aufgabe wird erfindungsgemäß gelöst durch das modular aufgebaute elektronische Kraftfahrzeugregelungssystem gemäß Anspruch 1.
Das Kraftfahrzeugregelungssystem gemäß der Erfindung umfasst ein Chassisbasismodul, welches der Modularisierung von Chassis-Steuersystemen in der Kfz-Technik dient, insbesondere bei solchen Systemen, die regelungstechnisch direkt oder indirekt auf die Signale der beispielsweise vier Raddrehzahlsensoren eines Personenkraftfahrzeugs und/oder von Inertial- sensoren zur Messung der Drehrate und/oder Längsbeschleunigung des Fahrzeugs reagieren. Dem Chassisbasismodul werden also die Signale der Raddrehzahlsensoren zugeführt, wobei dieses die Signale der Raddrehzahlsensoren auswertet und an einen räumlich vom Chassisbasismodul getrennt angeordneten elektronischen Bremsenregler leitet. Dabei sind das Chassisbasismodul und der Bremsenregler bevorzugt in separaten Steuergerätegehäusen angeordnet.
In das obige System können zum Beispiel heutige Fahrzeugfunktionen wie die elektronische Stabilitätskontrolle durch Bremseneingriff (ESC oder auch ESP) , die Stabilitätskontrolle mittels elektronischer Lenkkorrektur, Insassenschutz- Systeme (z.B. passiv, wie Airbag, Gurtstraffer etc. oder aktiv, z.B. Fahrerassistenzsysteme wie Contiguard (R) ) oder Systeme zur situationsabhängigen Feder-/Dämpferregelung integriert sein.
Das erfindungsgemäße Regelungssystem umfasst im Falle eines hydraulischen Bremsenprinzips bevorzugt weiterhin eine hydraulische Einheit, in die zumindest die Hydraulikventile für die Bremsenansteuerung integriert sind. Dabei bildet bevorzugt zumindest der elektronische Bremsenregler mit der hydraulischen Einheit eine miteinander insbesondere fest verbundene Einheit. Es ist aber auch möglich, dass die hydraulische Einheit getrennt vom Bremsenregler angeordnet ist. Die Ansteuerung der Bremsen kann alternativ auch pneumatisch oder elektrisch erfolgen. Eine gemischte Ansteuerung ist ebenfalls denkbar und in bestimmten Anwendungsfällen vorteilhaft, zum Beispiel wenn an der Hinterachse eine Kombination mit einer elektrischen Parkbremse vorgenommen wird, während an der Vorderachse ein hydraulisches oder pneumatisches Prinzip Vorrang hat.
In oder an das Gehäuse des Chassisbasismoduls ist/sind vorzugsweise der oder die Inertialsensor/en integriert, welcher bzw. welche zum Beispiel einen Gierratensensor und/oder einen oder mehrere Beschleunigungssensoren umfassen.
Das Chassisbasismodul ist bevorzugt zu einer Sicherheitsdo- mänenkontrolleinheit weitergebildet, welche zumindest ein ESC-Modul mit ESC-Regelfunktionen beinhaltet. Im beschriebenen Fall der Trennung von ESC-Funktion und Bremsenfunktion ergibt sich daher in einer Weiterbildung der Erfindung, dass der Bremsenregler keine ESC-Regelfunktionen umfasst.
In dem erfindungsgemäßen Kraftfahrzeugregelungssystem wird vorzugsweise der Lenkwinkel erfasst und die Erfassung des Lenkwinkels in einem räumlich vom Bremssystem und vom Chassisbasismodul getrennten Bereich durchgeführt.
Dem erfindungsgemäßen Kraftfahrzeugregelungssystem werden Signale von Raddrehzahlsensoren zugeführt. Bei den Raddrehzahlsensoren handelt es sich vorzugsweise um aktive Magnetfeldsensoren, welche Raddrehzahlinformationen und insbesondere Zusatzinformationen über eine Stromschnittstelle an eine Einrichtung zur Radsignalverarbeitung übertragen. Besonders bevorzugt handelt es sich um Raddrehzahlsensoren, die nach dem Hall- oder dem AMR-Prinzip arbeiten.
Die Verarbeitung für die Raddrehzahlsignale (Raddrehzahlsignalverarbeitung) ist zweckmäßigerweise in das Chassisbasismodul oder die Sicherheitsdomänenkontrolleinheit integriert.
Gemäß einer weiteren bevorzugten Ausführungsform umfasst die Sicherheitsdomänenkontrolleinheit außerdem zumindest eine Fahrwerksregelungsfunktion . Durch diese Verknüpfung in einem Regler kann das Fahrwerk auf fahrdynamische oder sicherheitsrelevante Ereignisse (zum Beispiel ESP-Eingriff beim Ausbrechen des Fahrzeugs) schneller angepasst werden.
Gemäß einer weiteren bevorzugten Ausführungsform des Kraftfahrzeugregelungssystems ist dieses nicht nur wie üblich mit einem sondern mit mehreren, insbesondere radindividuellen Bremsenreglern ausgestattet, so dass beispielsweise eine radindividuelle, achsindividuelle oder bremskreisindividuelle Ansteuerung von Bremsaktuatoren (zum Beispiel hydraulische Radbremszylinder) erfolgen kann. Als Bremsaktuatoren kommen zum Beispiel hydraulische oder elektrische Bremsaktuatoren zum Einsatz .
Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung von Ausführungsbeispielen an Hand von Figuren.
Es zeigen
Fig. 1 eine schematische Darstellung einer ESC- Einrichtung (Stand der Technik),
Fig. 2 eine schematische Darstellung einer ESC-
Einrichtung mit Sensorintegration (Stand der Technik) , und
Fig. 3 eine schematische Darstellung eines Chassis- Steuergerätes mit ESC-Funktion (Stand der Technik) ,
Fig. 4 eine schematische Darstellung einer Bremsanlage mit zentralem Chassisbasismodul (CBM) ,
Fig. 5 eine schematische Darstellung eines Chassis- Steuergerät mit einer Sicherheitsdomänenkontroll- einheit (SDC) .
In Fig. 1 ist eine an sich bekannte Fahrdynamik-Einrichtung (Elektronisches Stabilitätsprogramm ESP, "Electronic Stabi- lity Control" ESC) schematisch dargestellt, welche funktional eng gekoppelt mit einem elektronisch gesteuerten Bremssystem (ECU/HCU/BR) zusammenwirkt. Dieses besteht im wesentlichen aus der Kombination eines elektronischen Bremsenreglers (ECU) 1 mit einer hydraulischen Steuereinheit (HCU) 2, die den Betriebsdruck der Bremsen (BR) 3 beeinflussen kann. Wie auch die ABS-Funktion kann die Fahrdynamikregelung (ECU- residente ESC-Regelalgorithmen) 4 ESC den Radbremsdruck über den Bremsenregler verändern. Bei der ESC-Regelung wird permanent der augenblickliche ESC-spezifische dynamische Fahrzeugzustand durch Raddrehzahlsensoriken 5, 6, Inertialsenso- ren 8 und Lenkbewegungssensoren 9 erfasst und mit intern berechneten Sollwerten eines Fahrzeugmodells verglichen. Überschreiten die Abweichungen des augenblicklichen Fahrzeugzustandes die Toleranzschwellen der Sollwerte, wird durch separate Betätigung der vier Bremsen jede je nach Schwellenwerten nicht als zulässig bewertete Fahrzeugbewegung, insbesondere eine Schleuderbewegung, in einen stabilen Fahrzeugzustand zurückgeführt.
Die vier Raddrehzahlerfassungssysteme, bestehend aus den aktiven Raddrehzahlsensoren 5a, 5b, 5c, 5d im Zusammenwirken mit zugehörigen Encodern 6a, 6b, 6c, 6d, haben für Chassis- Steuersysteme, insbesondere elektronisch gesteuerte Bremssysteme essentielle Bedeutung. Bei einer gegenwärtig modernen Ausführungsform besitzen die Sensoren jeweils eine Zwei- drahtverbindung (2W) zur ECU. Als Encoder (Winkelmaßstab) dient eine alternierende Folge permanent magnetisierter Nord/Südpol-Areale, die eine zum Kreis geschlossene Encoderspur bildet, die in die Radlagerdichtungen einmagneti- siert ist (ME) . Zur Raddrehzahlerfassung ist die Radlagerdichtung mit dem drehenden Ring des Radlagers mechanisch verbunden und die Encoderspur wird durch den ortsfesten aktiven Sensor berührungslos abgetastet. Dazu ist der Sensor über einen Luftspalt magnetisch an die Encoderspur gekoppelt. Aktive Sensoren sind in einer Ausprägung auf Basis des Hall-Effektes oder unter Nutzung der verschiedenen magneto- resistiven Effekte, insbesondere des anisotropen magnetore- sistiven Effektes, bei dem dünne Schichten aus Permalloy ihren ohmschen Widerstand in Abhängigkeit von Stärke und Richtung eines magnetischen Feldes parallel durch diese Schichten verändern, bekannt. Dies geschieht, wenn die Encoderspur am Sensor vorbeibewegt wird. Eine in den Sensor integrierte elektronische Schaltung setzt diese Widerstandsänderungen in zwei unterschiedliche Strompegel um, die als Ausgangssignal selbst oder Teil eines komplexeren Ausgangssignals die Aufeinanderfolge von Nordpol und Südpol abbilden. Die Wirkungsweise der aktiven Sensoren mit komplexem Ausgangssignal ist in der DE 196 34 715 (P 8775) bzw. in der DE 199 11 774 (P 9352) beschrieben. In ihrer industriell verfügbaren Ausführungsform liefern sie neben der Raddrehzahl (WS) zusätzlich verschiedene Zusatzinformationen wie Drehrichtung (DR) , Luftspaltfeldstärke (AG) , Unterspannungserkennung (LV) , siehe DE 101 46 949 (P 10004), und externe Statussignale (EX), die aus dem Radbereich, dem so genannten "Rad-Corner- Bereich" von externen Statusgebern 10 über Verbindungsleitungen 11 einem zusätzlichen Signaleingang (EXI) den Raddrehzahlfühlern 5 und über diese an die ECU übermittelt werden können. Ein entsprechendes externes Statussignal kann z.B. eine elektronische Bremsbelagsverschleißmarke (BPW) sein oder eine ereignisgesteuerte zeitinvariante bitweise Signalfolge, wie in der DE 101 50 760 (P 10018) beschrieben. Aus der Messung der Luftspaltfeldstärke lassen sich Kennwerte ableiten, die eine Präzisierung von Regelschwellen ermöglichen, wie es z.B. aus der DE 10 2006 036 270 (P 11316) hervorgeht .
Die durch obige Sensoren erzeugte Drehzahlinformation und ggf. Zusatzinformation wird ECU-intern in einem Dekoder 7 mit Signalpreprozessingstufe (SPP) aufbereitet und den ESC- Algorithmen 4 verfügbar gemacht. Die Inertialsensoren sind nach dem gegenwärtigen Stand der Technik in einer, als Sen- sorcluster bzw. Cluster bezeichneten separaten Gehäuseeinheit 8 untergebracht, wie sie zum Beispiel in der DE 199 216 92 (P 9535) beschrieben ist. Üblicherweise enthalten diese Cluster-Gehäuseeinheiten einen Gierratensensor (YR) , einen Längsbeschleunigungssensor (Ay) sowie zumindest einen Quer- beschleunigungssensor (Ax) , deren Signale zunächst konditioniert und dann über einen Bus (CAN) an die ECU übertragen werden müssen.
Die ESC-Regelung 4 benötigt weiterhin Signale einer Lenkbe- wegungssensorik 9, welche in der Regel im Bereich des Lenkrads untergebracht ist. Innerhalb dieser Lenkbewegungssenso- rik 9 werden Signale für den Lenkwinkel (SA) und dessen Drehgeschwindigkeit (SR) erzeugt, konditioniert und danach über einen Bus (CAN) an den Bremsenregler 1 (ECU) übertragen .
Die Anordnung in Fig. 2 unterscheidet sich von der Anordnung gemäß Fig. 1 durch die Integration der Inertialsensorik 25 in den Bremsenregler 11 (ECU) . Ein zusätzliches Gehäuse für die Sensorclustereinheit sowie die für diese Einheit erforderliche CAN-Verbindung kann dadurch entfallen. Die Elektro- nik zur spezifischen Konditionierung des Gierratensensorsig- nals und das Signalpreprocessing (SPP) 12 des Clusters sind damit dann ebenfalls Bestandteil des Bremsenreglers 11. Die Lenkwinkelsensorik 9 ist bei der hier beschriebenen Anordnung separat vom Bremsenregler 12 angeordnet. Die Signale der vier Raddrehzahlsensoren 5a bis 5d werden, wie zuvor, dem Bremsenregler 11 zugeführt und dort in Dekoder 7 dekodiert. Ein Bremssystem, das entsprechend dem Prinzip der Anordnung in Fig. 2 aufgebaut ist, wurde bereits in der EP 131 36 35 Bl (P 9928) beschrieben.
In Fig. 3 ist das Schema eines allgemeinen Chassissteuergerätes (CSG) 13 mit darin integrierter ESC-Funktion 4 dargestellt. Im Chassissteuergerät (CSG) 13 sind weiterhin sowohl die Elemente der Inertialsensorik, z.B. (YR), (Ax), (Ay) untergebracht, als auch die Betriebsalgorithmen bzw. die Steuer- und Regelprogramme (CSl... CSn) unterschiedlicher Chassis-Systeme, so auch die des ESC-Systems 4. Das Chassis- Steuergerät 13 tauscht dazu elektrische Signale mit den beteiligten Chassis-Systemen über Bus-Verbindungen 14 und Leitungsverbindungen 15 aus. Insbesondere zur Realisierung der ESC-Funktion 4 existieren eine CAN-Verbindung 16 zum Bremsenregler 17 und eine CAN-Verbindung 18 zur Lenkwinkelsensorik 9. Die Signale der vier Raddrehzahlsensoren 5a bis 5d werden, wie zuvor, der ECU zugeführt und dort dekodiert (Dekoder 7) . Bei dem hier beschriebenen Ausführungsbeispiel eines Bremssystems mit Chassissteuergerät 13 fungiert der Verbund von Bremsenregler 17 und Hydraulikeinheit 2 als ein intelligenter Aktuator mit unterlagerten Regelfunktionen in Bezug auf die Bremse 3 und mit einer Kombination einer Rad- drehzahlsignalverarbeitungseinheit 7, welche als Quelle sensorischer Raddrehzahlinformationen in Bezug auf das Chassis- Steuergerät dient. Ein wesentliches gemeinsames charakteristisches Merkmal der vorstehend aufgeführten Ausführungsbeispiele gemäß den Figuren 1 bis 3 ist die unmittelbare Zuführung der Raddrehzahlinformationen zum elektronischen Bremsregler 1, 11, bzw. 17 durch Leitungsverbindungen der Raddrehzahlerfassungssysteme mit dem elektronischen Bremsenregler und zugehöriger Signalaufbereitung in diesen Geräteeinheiten. Gemäß dem Beispiel einer Anordnung in Fig. 4 wird dieses traditionelle Systemkonzept erfindungsgemäß aufgebrochen und modularisiert . Dies erfolgt genau gesagt, in dem die Raddrehzahlerfassung und zusätzlich, wenn vorhanden, deren beikodierte Zusatzinformation, über ein, von dem eigentlichen Bremsenregler 24 unabhängiges, separates Chassisbasismodul 19 (CBM) vorgenommen wird. Ein unmittelbarer Vorteil dieses Konzeptes besteht darin, dass die ortsäquidistanten (ereignisgesteuerten) zeitvarianten Raddrehzahlsignale der Encoderspur und die ihnen zeitinvariant folgenden Bits der Zusatzinformationen auf einfache Weise signalspezifisch dekodiert werden können, ohne die Notwendigkeit einer aufwändigen, technisch nie ganz informationsfehlerfreien Synchronisation mit dem zeitinvarianten Systemtakt der ECU von beispielsweise ca. 10 ms. Die bereits erwähnten Zusatzinformationen, wie zum Beispiel in der DE 101 50 760 (P 10018) beschrieben, lassen sich also bit-seriell über die einem Raddrehzahlpuls folgende Sequenz von Zusatzinformations-Bits übertragen. Hierzu ist ein spezielles Bit verfügbar, dass den logischen Status des externen Eingangs der Raddrehzahlsensoren 5 (EXI) in dem Dekoder 7 (EX) abbildet. Bei Verwendung eines Encoders mit 48 Nord/Südpolpaaren ergeben sich pro Radumdrehung 96 Bit (12 Byte) externer Zusatzinformation, die aus dem Rad-Corner über die Raddrehzahlsensoren zusätzlich übertragen werden können. Diese Information fällt ortsinvariant (lineare, gleiche Encoderwinkelteilung) aber zeitvariant (unterschiedliche Radgeschwindigkeit) an. Die Information könnte z.B. ein Maß für den augenblicklichen Reifendruck beinhalten. Nachteilhafterweise würde die Synchronisation dieser geschwindigkeitsabhängigen Bit-Folge mit dem Systemtakt des Bremsenreglers 24 eine aufwändige technische Ergänzungsmaßnahme erfordern, während die Signalaufbereitungsstufe eines Chassisbasismoduls von derartigen Notwendigkeiten unabhängig ist. Die Signalkonditionierungs- und Prozessierungsstufen 20 (SPP) können auf die Besonderheiten hochauflösender ortsinvarianter Signalerfassung mit anhängender zeitinvarianter Zusatzinformation optimiert werden, spezifische Filterprozesse durchführen und über einen Bus 21 einen kontinuierlichen Strom digitaler Raddrehzahlinformationen allgemein verfügbar machen.
Gemäß einer bevorzugten Variante des dargestellten Beispiels wird wie in Fig. 4 dargestellt, die Raddrehzahlerfassung 7 mit der Inertialsensorik 25 gerätetechnisch kombiniert, also in einem gemeinsamen Gehäuse untergebracht. Bei dieser Variante verbleibt die ESC-Regelung 23 wie bisher im elektronischen Bremsenregler 24, dem auch weiterhin die Signale der Lenkwinkelsensorik 9 zugeführt werden.
Fig. 5 zeigt eine Steuergeräteanordnung, bei der eine Nutzung des in Fig. 4 erläuterten Chassisbasisboduls 19 (CBS) als Grundbaustein einer Sicherheitsdomänenkontrolleinheit 39 (Safetydomaincontroller, SDC) dient. Die Sicherheitsdomänen- kontrolleinheit 39 bezeichnet ein erweitertes Chassis- Steuergerät, ähnlich CSG in Fig. 3, jedoch mit vorwiegend sicherheitsspezifischer Zielstellung. In der Sicherheitsdo- mänenkontrolleinheit 39 integriert sind neben den Komponenten des Chassisbasismoduls 19 (Raddrehzahlverarbeitung bzw. -erfassung 26 und Inertialsensorik 27) zusätzlich auch die ESC-Regelalgorithmen 28 einschließlich der entsprechenden Hard- und Software für die ESC-Regelfunktionen, sowie die Hard- und Software weiterer Chassisfunktionen 29 (CSl... CSn), die mit den zugehörigen Chassisgeräten über Busverbindungen 37, 40 und/oder Leitungsverbindungen 38 korrespondieren. Zur Erfüllung der ESC-Funktion werden der Si- cherheitsdomänenkontrolleinheit 39 die Signale des Lenkwinkelsensors 9 zugeführt. Über Busverbindung 40 gelangen die ESC-Steuersignale und vorzugsweise auch Bremssteuersignale an den Bremsregler 30 oder zusätzlich an die Bremsregler 31, 32, 33, die über ihre Betriebselektronik (BEL) 34 Bremsaktu- atoren 35 (BRA) kontrollieren, zur Betätigung der Bremsen 36 (BR) . Das Konzept ermöglicht vorteilhaft die parallele Nutzung unterschiedlicher Bremsaktuatoren, z.B. sowohl hydraulisch betriebene als auch elektrisch betriebene Aktuatoren auf unterschiedlichen Achsen.

Claims

Patentansprüche
1. Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem umfassend Raddrehzahlsensoreingänge, zumindest einen Bremsensregler (1, 11, 17, 24, 30) sowie Inertialsensoren, dadurch gekennzeichnet, dass ein Chassisbasismodul (19) vorhanden ist, dem die Signale der Raddrehzahlsensoren (5) zugeführt werden und das diese Signale auswertet und an einen räumlich vom Chassisbasismodul (19) getrennt angeordneten elektronischen Bremsenregler (24) leitet, wobei insbesondere das Chassisbasismodul (19) und der Bremsenregler (24) in separaten Steuergerätegehäusen angeordnet sind.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass eine hydraulische Einheit (2) vorgesehen ist, in die zumindest die Hydraulikventile für die Bremsenansteuerung integriert sind, und wobei bevorzugt der elektronische Bremsenregler (24) und die hydraulischen Einheit eine miteinander insbesondere fest verbundene Einheit bildet.
3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in oder an das Gehäuse des Chassisbasismoduls (19) der oder die Inertialsensoren (25) integriert sind.
4. System nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Chassisbasismodul (19) zu einer Sicherheitsdomänenkontrolleinheit (39) weitergebildet ist, welche zumindest ein ESC-Modul (28) mit ESC- Regelfunktionen beinhaltet.
5. System nach Anspruch 4, dadurch gekennzeichnet, dass der Bremsenregler (30) keine ESC-Regelfunktionen umfasst.
6. System nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Lenkwinkel erfasst wird und die Erfassung des Lenkwinkels in einem räumlich vom Bremssystem und vom Chassisbasismodul (19) getrennten Bereich (9) erfolgt.
7. System nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Raddrehzahlsensoren (5) aktive Magnetfeldsensoren sind, welche Raddrehzahlinformationen und insbesondere Zusatzinformationen über eine Stromschnittstelle an eine Radsignalverarbeitung (7, 26) übertragen .
8. System nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Raddrehzahlsignalverarbeitung (26) in das Chassisbasismodul (19) oder die Si- cherheitsdomänenkontrolleinheit (39) integriert ist.
9. System nach mindestens einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Sicherheitsdomänenkon- trolleinheit (39) mindestens eine Fahrwerksregelungs- funktion (29) umfasst.
10. System nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere Bremsenregler (30, 31, 32, 33) vorgesehen sind, insbesondere zur radindivi- uellen, achsindividuellen oder bremskreisindividuellen Ansteuerung von Bremsaktuatoren, wie zum Beispiel hydraulische oder elektrische Bremsaktuatoren (35) .
PCT/EP2008/064119 2007-10-20 2008-10-20 Modular aufgebautes elektronisches kraftfahrzeugregelungssystem WO2009050297A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/738,712 US8989949B2 (en) 2007-10-20 2008-10-20 Electronic motor vehicle control system of modular design
EP08840454.6A EP2203335B1 (de) 2007-10-20 2008-10-20 Modular aufgebautes elektronisches kraftfahrzeugregelungssystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007050208.9 2007-10-20
DE102007050208 2007-10-20
DE102008046957A DE102008046957A1 (de) 2007-10-20 2008-09-12 Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem
DE102008046957.2 2008-09-12

Publications (1)

Publication Number Publication Date
WO2009050297A1 true WO2009050297A1 (de) 2009-04-23

Family

ID=40459122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064119 WO2009050297A1 (de) 2007-10-20 2008-10-20 Modular aufgebautes elektronisches kraftfahrzeugregelungssystem

Country Status (4)

Country Link
US (1) US8989949B2 (de)
EP (1) EP2203335B1 (de)
DE (1) DE102008046957A1 (de)
WO (1) WO2009050297A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509922B1 (de) 2016-09-08 2021-11-10 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Elektrisches system für ein fahrzeug

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046957A1 (de) * 2007-10-20 2009-04-23 Continental Teves Ag & Co. Ohg Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem
DE102009016638A1 (de) * 2008-04-24 2009-10-29 Continental Teves Ag & Co. Ohg Mehrkreisige elektrohydraulische Kraftfahrzeugbremsanlage und Betriebsverfahren dazu
KR20120060509A (ko) * 2010-12-02 2012-06-12 현대자동차주식회사 Imu 통합 에어백 제어 유닛
WO2012153416A1 (ja) * 2011-05-12 2012-11-15 トヨタ自動車株式会社 車両
US20150166059A1 (en) * 2013-12-18 2015-06-18 Automotive Research & Testing Center Autonomous vehicle driving support system and autonomous driving method performed by the same
US9651572B2 (en) * 2014-03-19 2017-05-16 Infineon Technologies Ag Speed sensor device, speed sensor method, electronic control unit and control method
US10266168B2 (en) * 2015-08-06 2019-04-23 Ford Global Technologies, Llc System and method for predictive road sensing to minimize transient electrical load issues
US10384672B1 (en) 2016-05-11 2019-08-20 Apple Inc. Vehicle stability control system
DE102016224836A1 (de) * 2016-12-13 2018-06-14 Robert Bosch Gmbh Verfahren zur Überwachung eines Bremssystems mit elektromechanischer Bremsvorrichtung
US10940851B2 (en) 2018-12-12 2021-03-09 Waymo Llc Determining wheel slippage on self driving vehicle
CN111775955B (zh) * 2020-07-20 2021-05-28 三一重机有限公司 工程机械的安全保护系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014561A1 (de) * 1990-05-04 1991-11-07 Teves Gmbh Alfred Regelsystem fuer kraftfahrzeuge
EP0999117A2 (de) 1995-07-18 2000-05-10 DaimlerChrysler AG Fahrzeug mit Brems- und Lenksystem
DE10056549A1 (de) * 2000-11-15 2002-06-06 Bosch Gmbh Robert Mehrfachnutzung von Sensorsignalen durch mehrere Fahrzeugsysteme
US20040010383A1 (en) * 2000-09-25 2004-01-15 Jianbo Lu Passive wheel lift identification for an automotive vehicle using operating input torque to wheel
EP1313635B1 (de) 2000-08-22 2005-04-06 Continental Teves AG & Co. oHG Vorrichtung zur fahrdynamikregelung und verfahren zur orientierung von fahrdynamiksensoren
US20050278107A1 (en) * 2004-06-15 2005-12-15 Delphi Technologies, Inc. Brake control system
EP1695886A1 (de) * 2005-02-28 2006-08-30 Delphi Technologies, Inc. Bremssystem mit einer fehlertoleranten Kommunikationsknoten-Architektur

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266781A (en) * 1991-08-15 1993-11-30 Datacard Corporation Modular card processing system
DE4227083C2 (de) 1992-08-17 2002-06-27 Knorr Bremse Systeme Elektronisches Bremssystem, insbesondere für Straßenfahrzeuge
DE4228893B4 (de) 1992-08-29 2004-04-08 Robert Bosch Gmbh System zur Beeinflussung der Fahrdynamik eines Kraftfahrzeugs
DE4305155C2 (de) 1993-02-19 2002-05-23 Bosch Gmbh Robert Vorrichtung zur Regelung der Fahrdynamik
DE19634715A1 (de) 1996-08-28 1998-03-05 Teves Gmbh Alfred Anordnung zur Erfassung des Drehverhaltens eines Rades
DE19853036A1 (de) 1997-11-22 1999-06-02 Continental Teves Ag & Co Ohg Elektromechanisches Bremssystem
JP2001523618A (ja) 1997-11-22 2001-11-27 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 電気機械式ブレーキ装置
DE19755431A1 (de) 1997-12-13 1999-06-17 Wabco Gmbh Fahrzeugbremsanlage
JP2002507751A (ja) 1998-03-20 2002-03-12 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 運動検出用センサ装置
WO2000032022A1 (de) 1998-11-24 2000-06-02 Continental Teves Ag & Co. Ohg Anordnung zum schutz von elektronischen funktionseinheiten und/oder funktionsgruppen
DE19921692B4 (de) 1998-11-24 2008-12-11 Continental Teves Ag & Co. Ohg Anordnung zum Schutz von elektronischen Funktionseinheiten und/oder Funktionsgruppen
DE19941481B4 (de) 1999-09-01 2009-07-09 Robert Bosch Gmbh Elektrisch gesteuertes, dezentrales Steuersystem in einem Fahrzeug
DE10146949A1 (de) 2000-11-22 2002-06-06 Continental Teves Ag & Co Ohg Aktiver Magnetsensor für elektronische Bremssysteme
WO2002042133A1 (de) 2000-11-22 2002-05-30 Continental Teves Ag & Co. Ohg Aktiver magnetsensor für elektronische bremssysteme
DE10150760A1 (de) 2000-12-06 2002-08-14 Continental Teves Ag & Co Ohg Anordnung zur Übertragung von Reifendruckinformation
DE10203207B4 (de) 2002-01-21 2015-03-26 Volkswagen Ag Elektromechanische Bremsanlage
US6914523B2 (en) * 2002-04-30 2005-07-05 Trw Inc. Method and apparatus for sensing tire pressure
DE60332124D1 (de) * 2002-08-06 2010-05-27 Advics Co Ltd Bewegungssteuervorrichtung für fahrzeug
US20040149500A1 (en) * 2003-02-05 2004-08-05 Chernoff Adrian B. Pre-engineered frame portion and method of use therefor
US7010409B2 (en) * 2003-02-26 2006-03-07 Ford Global Technologies, Llc Reference signal generator for an integrated sensing system
DE10336611A1 (de) 2003-08-08 2005-03-03 Wabco Gmbh & Co.Ohg Druckmittelbetriebene Bremsanlage für ein Fahrzeug
DE102004056105A1 (de) 2004-11-19 2006-05-24 Continental Teves Ag & Co. Ohg Elektronisch geregeltes Bremssystem
US7069134B2 (en) * 2004-11-23 2006-06-27 Robert Bosch Gmbh Vehicle control system and method of operating the same
DE102005000988A1 (de) 2005-01-05 2006-07-27 Haldex Brake Products Ltd., Redditch Zentrales, elektronisches Regelungsnetzwerk für Fahrzeugdynamik- und Niveauregelungssysteme in Schwerfahrzeugen
DE102006008958A1 (de) 2005-03-10 2006-09-28 Continental Teves Ag & Co. Ohg Elektronisches Kraftfahrzeugbremsensteuergerät
DE102006036270A1 (de) 2005-11-18 2007-06-06 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung des Encoder-Abbildungsfehlers im magnetischen Luftspalt eines Raddrehzahlerfassungssystems
EP2258569A3 (de) * 2006-04-03 2010-12-22 BluWav Systems, LLC Fahrzeugantriebseinheit in Form einer nachrüstbaren Achse mit Elektromotoren und Verbindungskupplung
US20080147277A1 (en) * 2006-12-18 2008-06-19 Ford Global Technologies, Llc Active safety system
DE102008046957A1 (de) * 2007-10-20 2009-04-23 Continental Teves Ag & Co. Ohg Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014561A1 (de) * 1990-05-04 1991-11-07 Teves Gmbh Alfred Regelsystem fuer kraftfahrzeuge
EP0999117A2 (de) 1995-07-18 2000-05-10 DaimlerChrysler AG Fahrzeug mit Brems- und Lenksystem
EP1313635B1 (de) 2000-08-22 2005-04-06 Continental Teves AG & Co. oHG Vorrichtung zur fahrdynamikregelung und verfahren zur orientierung von fahrdynamiksensoren
US20040010383A1 (en) * 2000-09-25 2004-01-15 Jianbo Lu Passive wheel lift identification for an automotive vehicle using operating input torque to wheel
DE10056549A1 (de) * 2000-11-15 2002-06-06 Bosch Gmbh Robert Mehrfachnutzung von Sensorsignalen durch mehrere Fahrzeugsysteme
US20050278107A1 (en) * 2004-06-15 2005-12-15 Delphi Technologies, Inc. Brake control system
EP1695886A1 (de) * 2005-02-28 2006-08-30 Delphi Technologies, Inc. Bremssystem mit einer fehlertoleranten Kommunikationsknoten-Architektur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509922B1 (de) 2016-09-08 2021-11-10 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Elektrisches system für ein fahrzeug
US11780415B2 (en) 2016-09-08 2023-10-10 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Electric system for a vehicle

Also Published As

Publication number Publication date
US20100299018A1 (en) 2010-11-25
EP2203335A1 (de) 2010-07-07
US8989949B2 (en) 2015-03-24
DE102008046957A1 (de) 2009-04-23
EP2203335B1 (de) 2017-01-11

Similar Documents

Publication Publication Date Title
EP2203335B1 (de) Modular aufgebautes elektronisches kraftfahrzeugregelungssystem
EP3148854B1 (de) Elektronisch geregeltes, elektro-pneumatisches bremssystem
DE60116424T2 (de) Vorrichtung zum Erkennen des Drehzustandes eines Rades
DE10357373B4 (de) Elektronisches Bremssystem für ein Fahrzeug
EP3256861B1 (de) Sensorgehäuse für eine radsensorvorrichtung, radsensorvorrichtung und deren anbindungskomponente
DE4339570B4 (de) Elektronisches Bremssystem
EP2398684B1 (de) Elektro-pneumatisches druckregelmodul mit pneumatisch kreisgetrennten druckregelkanälen
WO2002036400A1 (de) In einen hauptzylinder integrierter signalgeber mit hall-sensor
DE102005005995A1 (de) Verfahren und Vorrichtung zum Überwachen von Signalverarbeitungseinheiten für Sensoren
EP2707261B1 (de) Sensoranordnung zur übertragung einer bremsbetätigungsinformation
EP3338001B1 (de) Verfahren zur zustandsüberwachung einer betriebsbremse
DE102017204157A1 (de) Bremsregelsystem einer elektrohydraulischen Bremsanlage
EP2152554B1 (de) Modulator
DE102009046234A1 (de) Elektrisches Bremssystem, insbesondere elektromechanisches Bremssystem, Verfahren zum Betreiben eines elektrischen Bremssystems
EP0949130B2 (de) Steuereinrichtung für eine Fahrzeug-Bremsanlage
DE19957632B4 (de) Radbremsenanordnung und Verfahren zur Steuerung des Radbremsmomentes
DE102010060350A1 (de) Vorrichtung zur Fahrzeugfahrgestellregelung mit integriertem Ausfallsicherungsregler
DE10140615C1 (de) Verfahren und Vorrichtung zur Erkennung eines abgelösten Reifens
DE10150305B4 (de) Vorrichtung zum Messen des Lenkstangenweges einer Kraftfahrzeuglenkung
DE102006053617A1 (de) System zur Aktorsteuerung, insbesondere Bremssystem
DE102010038516A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Pedalstellung eines Pedals eines Fahrzeugs
EP4157684A1 (de) Sensoranordnung für ein fahrzeug und mehrkreisiges bremssystem
DE102019108620B4 (de) Verfahren und Steuereinheit zum Steuern einer Lenkbremsfunktion für ein Fahrzeug und Bremssystem für ein Fahrzeug
WO2021089334A1 (de) Sensoranordnung für ein fahrzeug und mehrkreisiges bremssystem
WO2021148333A1 (de) Elektrik/elektronik-architektur für ein kraftfahrzeug mit einer elektronischen recheneinrichtung und mit einem schnittstellensteuergerät, sowie verfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08840454

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008840454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008840454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12738712

Country of ref document: US