WO2009050133A1 - Appareil de mesure de débit massique et procédé de fabrication d'un cadre raidisseur pour un appareil de mesure de débit massique - Google Patents

Appareil de mesure de débit massique et procédé de fabrication d'un cadre raidisseur pour un appareil de mesure de débit massique Download PDF

Info

Publication number
WO2009050133A1
WO2009050133A1 PCT/EP2008/063692 EP2008063692W WO2009050133A1 WO 2009050133 A1 WO2009050133 A1 WO 2009050133A1 EP 2008063692 W EP2008063692 W EP 2008063692W WO 2009050133 A1 WO2009050133 A1 WO 2009050133A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring tubes
flow meter
mass flow
measuring
stiffening frame
Prior art date
Application number
PCT/EP2008/063692
Other languages
German (de)
English (en)
Inventor
Morten Clausen
Steen Skytte Jensen
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009050133A1 publication Critical patent/WO2009050133A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material

Definitions

  • the invention relates to a mass flowmeter for flowing media, which operates on the Coriolis principle, according to the preamble of claim 1 and a method for producing a stiffening frame for such a mass flow meter according to the preamble of claim 3.
  • Such a mass flow meter for flowing media which operates on the Coriolis principle, is known for example from US 6,308,580 Bl. It is designed with two Coriolis measuring tubes, which are fluidically parallel to each other. These are one-piece, U-shaped measuring tubes, each having a straight inlet section, a straight outlet section, an inlet manifold connected to the inlet section, an outlet manifold connected to the outlet section, a first straight leg of a U connected to the inlet manifold -shaped center portion, a second connected to the outlet manifold, straight leg of the U-shaped central portion, a first, connected to the first leg manifold of the U-shaped center portion, a second, connected to the second leg manifold of the U-shaped center portion and a straight yoke portion between the first and the second manifold.
  • the inlet sections are in an inlet manifold, also called inlet splitter, and the outlet sections in an outlet distributor piece, also called outlet splitter, fixed and thus mechanically coupled to each other.
  • vibrations of the measuring tubes of the mass flow meter are transmitted only to a small extent and on the other hand affect vibrations of the piping system with a suitable design of the mass flow meter hardly the measurement result.
  • vibration detectors are mounted as receivers, between whose output signals a phase difference can be evaluated as a measuring signal in the case of a flow. This is caused by the prevailing at a flow Coriolis forces. In practice, such an arrangement often provides a non-zero phase difference even when there is no flow in the measuring tube.
  • the invention is based on the object, a mass flow meter for flowing media, which operates on the Coriolis principle, with a pair of substantially parallel to each other extending measuring tubes, wherein the measuring tubes in an initial section and in an end portion mechanically at least by a stiffening frame coupled together, and to provide a method for producing a stiffening frame for a mass flow meter, which are characterized by good measuring properties, low weight and low production costs.
  • the new mass flowmeter of the type mentioned in the characterizing part of claim 1 features.
  • claim 2 an advantageous development, described in claim 3, a manufacturing method.
  • the invention has the advantage that the mechanical coupling of the measuring tubes in their beginning and end sections by the stiffening frame with the same weight is much stiffer than was the case in the previous use of a trained as a hollow body stiffening frame.
  • the stiffness of a conventional stiffening frame can now be achieved with significantly lower weight and thus lower material costs and costs.
  • vibrations are damped by the metal foam, so that on the one hand vibrations of the measuring tubes are coupled to a lesser extent in the piping system and the other vibrations of the piping system less in the measuring tubes.
  • An improved bending and torsional stiffness of the stiffening frame ensures that practically no couplings of mechanical stresses take place in the center section which is held free-swinging between the start and end sections.
  • Mechanical stresses caused, for example, by clamping forces or changes in the pipeline into which the mass flowmeter is installed at the measuring location are to a considerable extent absorbed by the stiffening frame due to its stable design.
  • the geometry of the center section, which is essential for the measurement properties of the mass flow meter, on the other hand remains advantageously unaffected. Therefore, changes at the installation site hardly affect a zero offset.
  • the dimensions of the stiffening frame required to achieve these properties can be determined by finite element method calculations or by experimental experimentation.
  • each measuring tube has a substantially straight inlet and outlet section whose tube axes in a line lie, and have an inlet or outlet manifold for transfer from the inlet section to the first, substantially straight Leg of the U-shaped central portion or for the transmission of the second, substantially straight leg of the U-shaped central portion of the outlet portion and when the two measuring tubes are connected at their inlet portions and at their outlet portions with the stiffening frame.
  • the stiffening frame can be produced particularly cost-effectively, if initially a flat cylindrical stainless steel plate of the required thickness, a substantially cylindrical tube is bent, which is closed at its open ends with caps and then filled with metal foam. Thereafter, recesses for the passage of the measuring tubes can be mounted in the tube walls and the metal foam. After inserting the measuring tubes, inlet and outlet splitters are placed in place of the caps and welded to the ends of the stainless steel tube.
  • the stiffening frame can be made, for example, from a seamlessly shaped and filled with metal foam tube or from a double-walled tube whose wall space is filled with metal foam.
  • Figure 1 is a schematic representation of a mass flow meter
  • Figure 2 is a sectional view for explaining the production of a stiffening frame.
  • a mass flow meter 1 according to FIG. 1 operates on the Coriolis principle.
  • a first measuring tube 2 and second measuring tube 3 are arranged substantially parallel to one another. They are usually made in one piece by bending. manufactures.
  • the course of the measuring tubes 2 and 3 is subdivided into the following sections: an initial section, which consists of a inlet section concealed in the figure by a stiffening frame 4 and therefore not visible, and an inlet bend 5, a middle section consisting of a first straight leg 6, an elbow 7, a straight yoke 8, a manifold 9 and a second straight leg 10, and an end portion consisting of an outlet manifold 11 and a substantially straight, in turn hidden in the figure by the stiffening frame 4 outlet portion.
  • a flowable medium flows according to an arrow 13 in the mass flow meter 1 and thus in the two located behind a not visible in the figure inlet splitter inlet sections of the measuring tubes 2 and 3 and corresponding to an arrow 15 from the outlet sections and behind it, also in the figure invisible casserole splitter off again.
  • Flanges 14 and 16 which are fixedly connected to the inlet splitter and the outlet splitter, serve for fastening the mass flowmeter 1 in a pipeline, not shown in the figure.
  • the two measuring tubes 2 and 3 are mirror-inverted with respect to a perpendicular to the measuring tube axis at the apex of the substantially U-shaped central portion extending plane.
  • Pairwise mirror images of each other arranged node plates 17, 18, 19 and 20 serve to improve the measurement properties by fixing the two measuring tubes 2 and 3 at the respective location of their attachment to each other.
  • Their task is to separate the natural natural vibration of the measuring tubes 2 and 3, which adjusts itself when the fluid is at rest, from the Coriolis forces based vibration with flowing fluid and to reduce the transmission of vibrations between the piping system and measuring tubes.
  • a further reduction of the influences of the piping system on the measurement properties of the mass flow meter 1 is achieved by the stiffening frame 4, with which the measuring tubes 2 and 3 are mechanically fixed in their initial section and end section.
  • the stiffening frame 4 By the stiffening frame 4, the geometry of the measuring tubes 2 and 3 kept largely constant, so that even changes in the piping system, in which the mass flowmeter 1 is installed, for example, due to temperature fluctuations, possibly lead to a low zero shift.
  • the stiffening frame 4 is formed of a relatively thin jacket sheet made of stainless steel, which is filled with a foam of metal, such as aluminum.
  • recesses 21 and 22 for receiving the measuring tubes 2 and 3 are provided in the stiffening frame 4 .
  • a pickup 24 and a pickup 25, the structure of which may correspond to that of the exciter assembly 23, serve to detect the Coriolis forces and / or based on the Coriolis forces oscillations of the measuring tubes 2 and 3, which arise due to the mass of the medium flowing through.
  • the phase shift between the measurement signals, which are generated by the two transducers 24 and 25, evaluates an evaluation device 26 for calculating a measured value for the flow.
  • the evaluation device 26 simultaneously serves to control the exciter arrangement 23.
  • the measuring tubes 2 and 3 can of course have other geometries, for example a V-shaped or ⁇ -shaped middle section, or a different number and arrangement of excitation arrangements and transducers can be selected.
  • the position of the zero point of the mass flow device 1 is determined during commissioning by calibration and stored in a memory 27 as calibration data. Based on the stored calibration data, the evaluation device determines tion 26 in response to the measurement signals the measured value, which is output on a display 28 or transmitted via a not shown in the figure fieldbus to a higher-level control station. From time to time, a recalibration makes sense, in which new calibration data for eliminating a measurement error determined and stored in the memory 27 for consideration in future measurements. Since the new mass flowmeter 1 is characterized by a particularly low zero offset, the time intervals between calibration operations can be extended so that the effort required to operate the mass flowmeter 1 is reduced due to the invention.
  • FIG. 2 is not true to scale.
  • a rectangular sheet metal is punched out and bent into a tube 41, which is comparatively thin-walled and welded to the running parallel to the tube axis abutting edges.
  • two caps 42 and 43 are placed, wherein the cap 43 has a recess 44.
  • Metal foam 45 is then injected through the recess 44 into the cavity of the tube 41 and in this way the tube 41 is filled with foam.
  • the caps 42 and 43 are removed, recesses for the two measuring tubes incorporated into the stiffening frame 40, the measuring tubes used, 40 inlet splitter or casserole splitter placed at the two ends of the stiffening frame and mechanically with the Meßrohrenden and the ends of the stiffening frame 40 connected, for example by welding.
  • a substantially cylindrical stiffening frame is shown.
  • this may alternatively be formed parallelepiped or in any other profile shape.
  • other metals for example aluminum or magnesium, when using stainless steel as the material of the casing of the stiffening frame.
  • the metal foam can be made of various materials, such as stainless steel or based on magnesium, aluminum, titanium or zinc and their alloys.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

La présente invention concerne un appareil de mesure de débit massique pour des milieux en circulation, qui fonctionne selon le principe de Coriolis et qui présente une paire de tubes de mesure (2, 3) sensiblement parallèles l'un à l'autre. Les tubes de mesure (2, 3) sont connectés mécaniquement l'un à l'autre dans une partie de début (5) et dans une partie de fin (11) au moins par un cadre raidisseur (4, 40) qui est au moins partiellement rempli d'une mousse métallique (45) afin d'améliorer sa rigidité. Le cadre raidisseur (4, 40) présente des évidements (21, 22) qui permettent le passage de la partie de début et de la partie de fin, peut être fabriqué de façon particulièrement peu coûteuse et se caractérise par une grande rigidité et un faible poids.
PCT/EP2008/063692 2007-10-11 2008-10-11 Appareil de mesure de débit massique et procédé de fabrication d'un cadre raidisseur pour un appareil de mesure de débit massique WO2009050133A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007048881.7 2007-10-11
DE102007048881A DE102007048881A1 (de) 2007-10-11 2007-10-11 Massendurchflussmessgerät sowie Verfahren zur Herstellung eines Versteifungsrahmens für ein Massendurchflussmessgerät

Publications (1)

Publication Number Publication Date
WO2009050133A1 true WO2009050133A1 (fr) 2009-04-23

Family

ID=40404943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063692 WO2009050133A1 (fr) 2007-10-11 2008-10-11 Appareil de mesure de débit massique et procédé de fabrication d'un cadre raidisseur pour un appareil de mesure de débit massique

Country Status (2)

Country Link
DE (1) DE102007048881A1 (fr)
WO (1) WO2009050133A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657659A1 (fr) 2012-04-26 2013-10-30 ROTA YOKOGAWA GmbH & Co. KG Débitmètre massique Coriolis avec stabilité supérieure du point zéro
DE102015003365A1 (de) 2015-03-16 2016-09-22 Rota Yokogawa Gmbh & Co Kg Coriolis-Massendurchflussmessgerät
CN106687776A (zh) * 2014-09-25 2017-05-17 高准公司 流量计壳体及相关方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006429A1 (de) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft, 80333 Coriolis-Massendurchflussmessgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflussmessgeräts
DE102014117586A1 (de) 2014-12-01 2016-06-02 Endress+Hauser Flowtec Ag Messaufnehmer vom Vibrationstyp
CN111795729B (zh) * 2019-04-08 2023-03-17 高准有限公司 流量计的壳体和包括该壳体的流量计
DE202023000816U1 (de) 2023-04-04 2023-05-11 VAF - Fluid-Technik GmbH Einrichtung zur Durchflussmessung eines in einem Rohr strömenden Fluids mit einem Differenzdrucksensor und Verwendung eines Staukörpers in einem von einem Fluid durchströmten Rohr

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090697A2 (fr) * 1995-09-04 2001-04-11 Alfred Ebbinghaus Elément, en particulier élément de support pour treillis
US6308580B1 (en) * 1999-03-19 2001-10-30 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension
DE10114486A1 (de) * 2001-03-24 2002-09-26 Schauff Hans Durch Metallschaum verstärkte Fahrradkomponenten
DE10158627A1 (de) * 2001-11-29 2003-06-26 Fraunhofer Ges Forschung Trägerstrukturen zur Aufnahme von Kräften und Verformungsenergie
US20070151369A1 (en) * 2005-12-08 2007-07-05 Endress + Hauser Flowtec Ag Measurement transducer of vibration-type

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212613B (en) * 1987-11-19 1991-07-03 Schlumberger Ind Ltd Improvements in single vibrating tube transducers
DK0564682T3 (da) * 1992-04-09 1995-03-06 Flowtec Ag Svingningslegemeindretning til et apparat til måling af massestrømningshastighed
WO2001013074A1 (fr) * 1999-08-17 2001-02-22 Fmc Corporation Systeme d'equilibrage dynamique pour debitmetres massiques a effet de coriolis
US6533065B2 (en) 2000-12-19 2003-03-18 Daniel Industries, Inc. Noise silencer and method for use with an ultrasonic meter
DE10127716A1 (de) 2001-06-07 2002-12-12 Goldschmidt Ag Th Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen
DE10205070A1 (de) 2002-02-07 2003-08-21 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von Metallschaum-Verbundkörpern, Metallschaum-Verbundkörper und Metallschaumlaminat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090697A2 (fr) * 1995-09-04 2001-04-11 Alfred Ebbinghaus Elément, en particulier élément de support pour treillis
US6308580B1 (en) * 1999-03-19 2001-10-30 Micro Motion, Inc. Coriolis flowmeter having a reduced flag dimension
DE10114486A1 (de) * 2001-03-24 2002-09-26 Schauff Hans Durch Metallschaum verstärkte Fahrradkomponenten
DE10158627A1 (de) * 2001-11-29 2003-06-26 Fraunhofer Ges Forschung Trägerstrukturen zur Aufnahme von Kräften und Verformungsenergie
US20070151369A1 (en) * 2005-12-08 2007-07-05 Endress + Hauser Flowtec Ag Measurement transducer of vibration-type

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657659A1 (fr) 2012-04-26 2013-10-30 ROTA YOKOGAWA GmbH & Co. KG Débitmètre massique Coriolis avec stabilité supérieure du point zéro
US8931354B2 (en) 2012-04-26 2015-01-13 Rota Yokogawa Gmbh & Co. Kg Coriolis mass flow meter with high zero stability
CN106687776A (zh) * 2014-09-25 2017-05-17 高准公司 流量计壳体及相关方法
JP2017529539A (ja) * 2014-09-25 2017-10-05 マイクロ モーション インコーポレイテッド 流量計のハウジング及び関連する方法
CN106687776B (zh) * 2014-09-25 2021-06-29 高准公司 流量计壳体及相关方法
DE102015003365A1 (de) 2015-03-16 2016-09-22 Rota Yokogawa Gmbh & Co Kg Coriolis-Massendurchflussmessgerät

Also Published As

Publication number Publication date
DE102007048881A1 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2009050133A1 (fr) Appareil de mesure de débit massique et procédé de fabrication d'un cadre raidisseur pour un appareil de mesure de débit massique
WO2008059015A1 (fr) Dispositif de mesure de débit massique
EP2485020B1 (fr) Débitmètre massique Coriolis
EP3241000B1 (fr) Débitmètre à effet coriolis avec quatre conduits de mesure arqués
EP1798532B1 (fr) Débitmètre massique de Coriolis
DE69625402T2 (de) Ultraschall-Durchflussmessanordnung mit Temperatur- und Druckkompensation
DE102016112002B4 (de) Verfahren zum Bestimmen eines physikalischen Parameters eines kompressiblen Mediums mit einem Messaufnehmer vom Vibrationstyp und Messaufnehmer zur Durchführung eines solchen Verfahrens
EP3008427B1 (fr) Procédé de détermination d'un débit compensé et/ou d'une vitesse d'écoulement compensée et débitmètre à ultrasons
EP2048480B1 (fr) Capteur de mesure du type de vibration
WO2018001635A1 (fr) Procédé de fonctionnement d'un capteur de mesure du type à vibration
DE19710806C2 (de) Massendurchflußmeßgerät
EP4302066A1 (fr) Dispositif de mesure modulaire pour la détermination de la densité d'un milieu de mesure
EP1651931B1 (fr) Debitmetre massique
DE102017005207A1 (de) Verfahren zur Bestimmung des Drucks eines Fluids
DE102009002942A1 (de) Verfahren zum Bestimmen einer Messrohr-Rohrwanddicke eines Coriolis-Durchflussmessgerätes
EP1914526B1 (fr) Capteur de mesure du type de vibration
DE102018001778A1 (de) Massendurchfluss- und Dichtemesser nach dem Coriolis-Prinzip mit geringer Druckabhängigkeit und Verfahren zur Herstellung
DE102004031274B4 (de) Verfahren zur Kalibrierung von Ultraschall-Clamp-on-Durchflussmessgeräten
DE102007058132A1 (de) Messsystem, insbesondere zur Durchflussmessung eines in einer Rohrleitung strömenden Messmediums
EP3714253B1 (fr) Procédé de calcul de la densité d'un fluide passé dans au moins un tube de mesure apte à osciller compris dans un densimètre
DE4226391A1 (de) Verfahren zur Erkennung und Korrektur einer Nullpunktdrift bei einem Coriolis-Massenstrommesser
DE102010006863A1 (de) Coriolis-Massendurchflussmessgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflussmessgeräts
DE102018005197B3 (de) Coriolis-Massendurchfluss- und Dichtemessgerät mit verringerter Druckabhängigkeit
DE102015203183A1 (de) Coriolis-Massendurchflussmessgerät
DE102021117707A1 (de) Meßsystem zum Messen eines Strömungsparameters eines in einer Rohrleitung strömenden fluiden Meßstoffs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08839545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08839545

Country of ref document: EP

Kind code of ref document: A1