WO2009049941A1 - Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion - Google Patents

Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion Download PDF

Info

Publication number
WO2009049941A1
WO2009049941A1 PCT/EP2008/060605 EP2008060605W WO2009049941A1 WO 2009049941 A1 WO2009049941 A1 WO 2009049941A1 EP 2008060605 W EP2008060605 W EP 2008060605W WO 2009049941 A1 WO2009049941 A1 WO 2009049941A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
extruder
intensive
reaction
catalysts
Prior art date
Application number
PCT/EP2008/060605
Other languages
English (en)
French (fr)
Inventor
Thomas Weihrauch
Stefan Bernhardt
Matthias Seiler
Kerstin Andres
Markus Schwarz
Silvia Herda
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to EP08787156A priority Critical patent/EP2185618A1/de
Priority to US12/682,022 priority patent/US20110065886A1/en
Publication of WO2009049941A1 publication Critical patent/WO2009049941A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws

Definitions

  • the present invention relates to a process for producing hyperbranched, dendritic polyurethanes by means of reactive extrusion.
  • Hyperbranched polymers are already known.
  • EP 1 026 185 A1 discloses a process for the preparation of dendritic or highly branched polyurethanes by reacting diisocyanates and / or polyisocyanates with compounds having at least two isocyanate-reactive groups, wherein at least one of the reactants having functional groups with respect to the other reactants of different reactivity and the Reaction conditions are chosen so that in each reaction step only certain reactive groups react with each other.
  • Preferred isocyanates include aliphatic isocyanates such as isophorone diisocyanate.
  • the compounds having at least two isocyanate-reactive groups are propylene glycol, glycerol, mercaptoethanol, ethanolamine, N-methylethanolamine, diethanolamine, ethanolpropanolamine, dipropanolamine, diisopropanolamine, 2-amino-1, 3-propanediol, 2-amino-2-methyl -1, 3-propanediol and tris (hydroxymethyl) aminomethane mentioned by name.
  • polyurethanes obtainable by the process should serve as crosslinkers for polyurethanes or as building blocks for other polyaddition or polycondensation polymers, as phase mediators, thixotropic agents, nucleating agents or as active ingredient or catalyst carriers.
  • Polyisocyanate polyaddition products comprising
  • reaction ratio being selected so that on average the addition product (A) is an isocyanate group and more than one group reactive with isocyanate groups contains
  • a preferred diisocyanate (b) is isophorone diisocyanate.
  • polyisocyanate polyaddition products obtainable by the process are proposed in particular for the production of paints, coatings, adhesives, sealants, cast elastomers and foams.
  • WO 2004/101624 discloses the preparation of dendritic or hyperbranched polyurethanes by
  • Isophorone diisocyanate to an addition product, wherein the di- or polyols and di- or polyisocyanates are chosen so that the addition product has on average an isocyanate group and more than one hydroxyl group or a hydroxyl group and more than one isocyanate group, 2) reaction of the addition product of step 1) to give a polyaddition product by intermolecular reaction of the hydroxyl groups with the isocyanate groups, it also being possible to react with a compound containing at least two hydroxyl groups, mercapto groups, amino groups or isocyanate groups, 3) optionally reacting the polyaddition product from step 2) with at least two hydroxyl groups, Mercapto, amino or isocyanate group-containing compound.
  • polyaminourethanes obtainable by the process are used as crosslinkers for polyurethane systems or as a building block for other polyaddition or
  • Polycondensation polymers as a phase mediator, as a rheology aid, as a thixotropic agent, as a nucleating reagent or as a drug or catalyst carrier proposed.
  • WO 02/068553 A2 describes a coating composition comprising 1) a carbamate resin with a hyperbranched or star-shaped polyol core, with a first chain piece based on a polycarboxylic acid or a polycarboxylic anhydride, with a second chain piece based on an epoxide and with carbamate groups at the core and / or the second chain piece and 2) a second resin having reactive groups that can react with the carbamate groups of the carbamate resin.
  • the polyol core can be prepared by reacting a first compound containing more than 2 hydroxy groups, such as. 1, 2,6-hexanetriol, with a second compound containing a carboxyl and at least two hydroxy groups.
  • a first compound containing more than 2 hydroxy groups such as. 1, 2,6-hexanetriol
  • the introduction of the carbamate groups can be achieved by reaction with aliphatic or cycloaliphatic diisocyanates. As part of a longer list here u. a. 2,2,4- and 2,4,4-trimethyl-1,6-diisocyanatohexane and isophorone diisocyanate.
  • WO 97/02304 relates to highly functionalized polyurethanes which are composed of molecules with the functional groups A (B) n , where A is an NCO group or an NCO group-reactive group, B is an NCO group or one with an NCO group.
  • A is an NCO group or an NCO group-reactive group
  • B is an NCO group or one with an NCO group.
  • Group reactive group, A is reactive with B and n is a natural number and at least equal to 2.
  • the preparation of the monomer A (B) n can be carried out, for example, starting from isophorone diisocyanate.
  • the invention relates to a process for the solvent-free, continuous production of hyperbranched, dendritic polyurethanes obtained by solvent-free reaction of
  • auxiliaries and additives may be included,
  • End product in particular by rapid cooling.
  • Dendritic polymers are also referred to in the literature as "dendritic polymers.” These dendritic polymers synthesized from multifunctional monomers fall into two distinct categories, the “dendrimers” and the “hyperbranched polymers.” Dendrimers have a very regular, radially symmetric generation structure They are monodisperse globular polymers that are synthesized in multi-step syntheses compared to hyperbranched polymers with high synthetic complexity, characterized by three distinct areas: - the polyfunctional core, which is the center of symmetry, - various well-defined radial-symmetric layers In contrast to the dendrimers, the hyperbranched polymers are polydisperse and irregular in their branching and structure In contrast to dendrimers, in hyperbranched polymers both the tritic and terminal units also have linear units. In each case an example of a dendrimer and a highly branched polymer, constructed from repeating units which each have at least three bonding possibilities, is shown in the following structures:
  • Starting materials for the polyisocanates A are suitable as aromatic di- or polyisocyanates. Particularly suitable are 1, 3 and 1, 4-phenylene diisocyanate, 1, 5-naphthylene diisocyanate, tolidine diisocyanate, 2,6-toluene diisocyanate, 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 4,4'-diphenylmethane diisocyanate, the mixtures of monomeric diphenylmethane diisocyanates (MDI) and oligomeric diphenylmethane diisocyanates (polymer-MDI), xylylene diisocyanate, tetramethylxylylene diisocyanate and triisocyanatotoluene.
  • MDI monomeric diphenylmethane diisocyanates
  • polymer-MDI oligomeric diphen
  • Suitable aliphatic di- or polyisocyanates advantageously have 3 to 16 carbon atoms, preferably 4 to 12 carbon atoms, in the linear or branched alkylene radical and suitable cycloaliphatic or (cyclo) aliphatic diisocyanates advantageously 4 to 18 carbon atoms, preferably 6 to 15 carbon atoms, in the cycloalkylene radical.
  • suitable cycloaliphatic or (cyclo) aliphatic diisocyanates advantageously 4 to 18 carbon atoms, preferably 6 to 15 carbon atoms, in the cycloalkylene radical.
  • (cyclo) aliphatic diisocyanates the skilled worker understands at the same time cyclic and aliphatic bound NCO groups, as z. B. isophorone diisocyanate is the case.
  • cycloaliphatic diisocyanates those which have only directly attached to the cycloaliphatic ring NCO groups, for. B. H 12 MDI.
  • examples are cyclohexane diisocyanate, methylcyclohexane diisocyanate, ethylcyclohexane diisocyanate, propylcyclohexane diisocyanate, methyldiethylcyclohexane diisocyanate.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • H12MDI diisocyanatodicyclohexylmethane
  • MPDI 2-methylpentane diisocyanate
  • TMDI 2,2,4-trimethylhexamethylene diisocyanate / 2,4,4-trimethylhexamethylene diisocyanate
  • NBDI norbornane diisocyanate
  • di- and polyisocyanates, isocyanurates and uretdiones can be used.
  • oligoisocyanates or polyisocyanates which are prepared from the abovementioned diisocyanates or polyisocyanates or mixtures thereof by linking by means of urethane, allophanate, urea, biuret, uretdione, amide, isocyanurate, carbodiimide, uretonimine , Oxadiazinthon- or iminooxadiazinedione structures.
  • Particularly suitable are isocyanurates, especially from IPDI and HDI.
  • Suitable compounds B) are all polyols commonly used in PU chemistry, which have at least two alcohol groups of the
  • the monomeric diols are, for example, ethylene glycol,
  • Triethylene glycol butanediol-1, 4, pentanediol-1, 5, hexanediol-1, 6, 3-methylpentanediol
  • the monomeric triols are, for example, trimethylolpropane, dithmethylolpropane, trimethylolethane, hexanthol-1, 2,6, butantol-1, 2,4, tris ( ⁇ -)
  • Hydroxyethyl isocyanurate, pentaerythritol, mannitol or sorbitol.
  • polyols which contain further functional groups (oligomers or polymers). These are the hydroxyl-containing polyesters, polycarbonates, polycaprolactones, polyethers, polythioethers, polyesteramides, polyurethanes or polyacetals known per se. They have a number average molecular weight of 134 to 3,500 g / mol. The polyols are used alone or in mixtures.
  • zinc catalysts such as in particular, for example, zinc 2-ethylhexanolat in butyldiglycol, zinc salts of branched and unbranched fatty acids (C2 - C20), or bismuth catalysts, such as bismuth thneodecanoate in neodecanoic acid. They are used in a concentration of 0.01 to 3 wt .-%.
  • catalysts such as butyltin tris (2-ethylhexanoate) and dibutyltin dilaurate.
  • auxiliaries and additives z.
  • chain terminators As monofunctional isocyanates, chain terminators, blocking agents, chain extenders, degassing agents, stabilizers, other catalysts, flow control agents, inorganic and / or organic pigments and / or fillers, dispersants, wetting agents, defoamers, ionic liquids may be included.
  • the hyperbranched polyurethane prepared according to the invention preferably has a weight-average molecular weight Mw in the range from 1000 g / mol to 200000 g / mol, favorably in the range from 1500 g / mol to 100000 g / mol, particularly preferably in the range from 2000 g / mol to 75000 g / mol, in particular in the range of 2500 g / mol to 50,000 g / mol.
  • the determination of the molecular weight in particular the determination of the weight average molecular weight Mw and the number average molecular weight, can in known manner, for. Example, be measured by gel permeation chromatography (GPC), wherein the measurement is preferably carried out in DMF and as a reference preferred polyethylene glycols Burgath et al in Macromol Chem. Phys., 201 (2000) 782-791). In this case, a calibration curve is advantageously used, which was conveniently obtained using polystyrene standards. These quantities therefore represent apparent measured values.
  • GPC gel permeation chromatography
  • the number average molecular weight can also be determined by steam or membrane osmosis, the z. In K.F. Arndt; G. Müller; Polymer characterization; Hanser Verlag 1996 (steam pressure osmosis) and H. -G. Elias, macromolecules structure synthesis properties, Wegig & Wepf Verlag 1990 (membrane osmosis) are described in more detail.
  • the GPC has proven to be particularly useful according to the invention.
  • the polydispersity Mw / Mn of preferred hyperbranched polyurethanes is preferably in the range of 1 to 50, favorably in the range of 1, 1 to 40, in particular in the range of 1, 2 to 20, preferably to 10.
  • the principle of the process is that the reaction of the starting compounds is carried out continuously, in particular in an extruder, flow tube, intensive kneader, intensive mixer or static mixer by intensive mixing and short-term reaction with heat.
  • the reactants are briefly reacted with heat at temperatures of 25 0 C to 325 0 C, preferably from 50 to 250 0 C, most preferably from 50 to 200 0 C reacted.
  • these residence time and temperature values may also occupy other preferred ranges.
  • a continuous after-reaction is followed.
  • extruders such as single- or multi-screw extruders, in particular twin-screw extruders, planetary roller extruders or ring extruders, flow tubes, intensive kneaders, intensive mixers or static mixers are particularly suitable for the process according to the invention and are preferably used.
  • the cooling of the products may be very important for the molecular design, it may be necessary to change the extruders in the head area, or to use certain nozzle structures. Often it is necessary here to allow a particularly gentle product discharge. This can for example be driven without a top plate.
  • the starting compounds are added to the aggregates usually in separate product streams. If there are more than two product streams, these can also be bundled. Various hydroxyl-containing starting materials can be combined to form a product stream. It is also possible to additionally add catalysts and / or additives such as leveling agents or stabilizers to this product stream. It is likewise possible to combine polyisocyanates and the uretdiones of polyisocyanates with catalysts and / or additives such as leveling agents or stabilizers in a product stream. The material flows can also be divided and thus supplied to the units in different proportions at different locations. In this way, concentration gradients are set deliberately, which can bring about the completeness of the reaction. The entry point of the product streams in the order can be handled variable and time offset. As a result, the structure of the target molecules can be varied.
  • the downstream of the reaction preferably rapid cooling may be integrated in the reaction part, in the form of a multi-housing embodiment as in extruders or Conterna machines.
  • the following can also be used: tube bundles, pipe coils, cooling rolls, cooled chutes, air conveyors, metal conveyor belts and water baths, with and without a downstream granulator.
  • the preparation is first brought to a suitable temperature by further cooling by means of the corresponding aforementioned equipment. Then, the pastillation or crushing into a desired particle size by means of roll crusher, pin mill, hammer mill, shingles, strand granulator (eg., In combination with a cooling medium), other granulators or the like.
  • Example 1 Preparation of a hyperbranched, dendritic polyurethane by the process according to the invention
  • stream 1 consisted of 1, 2,6-hexanetriol.
  • Stream 2 isophorone diisocyanate (IPDI).
  • Stream 3 consisted of the catalyst DBTL. The total amount, relative to the
  • Stream 1 was fed as melt at a rate of 630 g / h in the first housing of a twin-screw extruder (DSE 25) (temperature of the stream 25 0 C).
  • DSE 25 twin-screw extruder
  • Stream 3 was introduced before entering the extruder in stream 2 via a static mixer section (0.78 g / h).
  • the extruder used consisted of 8 housings which could be heated and cooled separately. Housing 1, 2 and 3: 20 - 30 ° C, housing 4: 25-35 0 C, housing 5:
  • housing 6 and 7 150 - 165 0 C
  • housing 8 100 - 105 0 C.
  • the snails were equipped with conveying elements.
  • Screw speed was 250 rpm.
  • the reaction product was immediately cooled after exiting the extruder and discharged on a cooling belt and then ground. It had a content of free NCO groups of 12.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung hyperverzweigter, dendritischer Polyurethane mittels reaktiver Extrusion.

Description

Verfahren zur Herstellung hyperverzweigter, dendritischer Polyurethane mittels reaktiver Extrusion
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung hyperverzweigter, dendritischer Polyurethane mittels reaktiver Extrusion.
Hyperverzweigte Polymere sind bereits bekannt. C. Gao Hyperbranched polymers: from synthesis to applications Prog. Polym. Sei. 29 (2004) 183 - 275 fasst den gegenwärtigen Stand der Technik auf diesem Gebiet zusammen und beschäftigt sich insbesondere mit den verschiedenen Synthesevarianten und den unterschiedlichen Anwendungsgebieten von hyperverzweigten Polymeren. Dabei wird u. a. die Verwendung von Isophorondiisocyanat zur Herstellung von hyperverzweigten Polyurethanen diskutiert.
EP 1 026 185 A1 offenbart ein Verfahren zur Herstellung von dendritischen oder hochverzweigten Polyurethanen durch Umsetzung von Diisocyanaten und/oder Polyisocyanaten mit Verbindungen mit mindestens zwei mit Isocyanaten reaktiven Gruppen, wobei mindestens einer der Reaktionspartner funktionelle Gruppen mit gegenüber dem anderen Reaktionspartner unterschiedlicher Reaktivität aufweist und die Reaktionsbedingungen so gewählt werden, dass bei jedem Reaktionsschritt jeweils nur bestimmte reaktive Gruppen miteinander reagieren.
Bevorzugte Isocyanate umfassen u. a. aliphatische Isocyanate, wie Isophorondiisocyanat. Als Beispiele für die Verbindungen mit mindestens zwei mit Isocyanaten reaktiven Gruppen werden Propylenglykol, Glycerin, Mercaptoethanol, Ethanolamin, N-Methylethanolamin, Diethanolamin, Ethanolpropanolamin, Dipropanolamin, Diisopropanolamin, 2-Amino-1 ,3-propandiol, 2-Amino-2-methyl-1 ,3- propandiol und Tris(hydroxymethyl)-aminomethan namentlich genannt. Die durch das Verfahren erhältlichen Polyurethane sollen als Vernetzer für Polyurethane oder als Baustein für andere Polyadditions- oder Polykondensationspolymere, als Phasenvermittler, Thixotropiermittel, Nukleierungsreagenzien oder als Wirkstoff- oder Katalysatorträger dienen.
DE 100 30 869 A1 beschreibt ein Verfahren zur Herstellung von mehrfunktionellen
Polyisocyanat-Polyadditionsprodukten, umfassend
(i) Herstellen eines Additionsproduktes (A) durch Umsetzen einer a) mit Isocyanatgruppen reaktiven, mindestens trifunktionellen Komponente (a1 ) oder einer mit Isocyanatgruppen reaktiven difunktionellen Komponente
(a2) oder mit einem Gemisch aus den Komponenten (a1 ) und (a2) mit b) Di- oder Polyisocyanat, wobei das Umsetzungsverhältnis so gewählt wird, dass im Mittel das Additionsprodukt (A) eine Isocyanatgruppe und mehr als eine mit Isocyanatgruppen reaktive Gruppe enthält,
(ii) gegebenenfalls intermolekulare Additionsreaktion des Additionsprodukts (A) zu einem Polyadditionsprodukt (P), das im Mittel eine Isocyanatgruppe und mehr als zwei mit Isocyanatgruppen reaktive Gruppen enthält und (iii) Umsetzen des Additionsproduktes (A) oder des Polyadditionsproduktes (P) mit einer mindestens difunktionellen, mit Isocyanatgruppen reaktiven Komponente
(C).
Als Beispiele für die Verbindung (a) werden u. a. Glycehn, Trimethylolmethan und 1 ,2,4-Butantriol genannt. Ein bevorzugtes Diisocyanat (b) ist Isophorondiisocyanat.
Die durch das Verfahren erhältlichen Polyisocyanat-Polyadditionsprodukte werden insbesondere zur Herstellung von Lacken, Überzügen, Klebstoffen, Dichtmassen, Gießelastomeren und Schaumstoffen vorgeschlagen. WO 2004/101624 offenbart die Herstellung von dendritischen oder hyperverzweigten Polyurethanen durch
1 ) Umsetzung von Di- oder Polyolen, die mindestens ein tertiäres Stickstoffatom und mindestens zwei Hydroxylgruppen mit unterschiedlicher Reaktivität gegenüber Isocyanatgruppen aufweisen, mit Di- oder Polyisocyanaten, wie z. B.
Isophorondiisocyanat, zu einem Additionsprodukt, wobei die Di- oder Polyole und Di- oder Polyisocyanate so gewählt werden, dass das Additionsprodukt im Mittel eine Isocyanatgruppe und mehr als eine Hydroxylgruppe oder eine Hydroxylgruppe und mehr als eine Isocyanatgruppe aufweist, 2) Umsetzung des Additionsproduktes aus Schritt 1 ) zu einem Polyadditionsprodukt durch intermolekulare Umsetzung der Hydroxylgruppen mit den Isocyanatgruppen, wobei zunächst auch mit einer mindestens zwei Hydroxylgruppen, Mercaptogruppen, Aminogruppen oder Isocyanatgruppen enthaltenden Verbindung umgesetzt werden kann, 3) gegebenenfalls Umsetzung des Polyadditionsproduktes aus Schritt 2) mit einer mindestens zwei Hydroxylgruppen, Mercaptogruppen, Aminogruppen oder Isocyanatgruppen enthaltenden Verbindung.
Die durch das Verfahren erhältlichen Polyaminourethane werden als Vernetzer für Polyurethansysteme oder als Baustein für andere Polyadditions- oder
Polykondensationspolymere, als Phasenvermittler, als Rheologiehilfsmittel, als Thixotropiermittel, als Nukleierungsreagenz oder als Wirkstoff- oder Katalysatorträger vorgeschlagen.
WO 02/068553 A2 beschreibt eine Beschichtungszusammensetzung, enthaltend 1 ) ein Carbamat-Harz mit einem hyperverzweigten oder sternförmigen Polyol-Kern, mit einem ersten Kettenstück auf Basis einer Polycarbonsäure oder eines Polycarbonsäureanhydrids, mit einem zweiten Kettenstück auf Basis eines Epoxids und mit Carbamat-Gruppen am Kern und/oder dem zweiten Kettenstück und 2) ein zweites Harz, das reaktive Gruppen aufweist, die mit den Carbamatgruppen des Carbamat-Harzes reagieren können.
Der Polyol-Kern kann durch Umsetzung einer ersten Verbindung, die mehr als 2 Hydroxygruppen enthält, wie z. B. 1 ,2,6-Hexantriol, mit einer zweiten Verbindung, die eine Carboxyl- und mindestens zwei Hydroxygruppen enthält, erhalten werden.
Die Einführung der Carbamat-Gruppen kann durch Umsetzung mit aliphatischen oder cycloaliphatischen Diisocyanaten erreicht werden. Im Rahmen einer längeren Aufzählung werden hierbei u. a. 2,2,4- und 2,4,4-Trimethyl-1 ,6-diisocyanatohexan und Isophorondiisocyanat genannt.
WO 97/02304 betrifft hochfunktionalisierte Polyurethane, die aus Molekülen mit den funktionellen Gruppen A(B)n aufgebaut sind, wobei A eine NCO-Gruppe oder eine mit einer NCO-Gruppe reaktive Gruppe, B eine NCO-Gruppe oder eine mit einer NCO-Gruppe reaktive Gruppe, A reaktiv mit B sowie n eine natürliche Zahl und mindestens gleich 2 ist. Die Herstellung des Monomers A(B)n kann beispielsweise ausgehend von Isophorondiisocyanat erfolgen.
In Anbetracht dieses Standes der Technik war es Aufgabe der vorliegenden Erfindung, hyperverzweigte Polyurethane, auf möglichst einfache Art und Weise großtechnisch herzustellen.
Gegenstand der Erfindung ist ein Verfahren zur lösemittelfreien, kontinuierlichen Herstellung von hyperverzweigten, dendritischen Polyurethanen erhalten durch lösemittelfreie Umsetzung von
A) mindestens einem aromatischen, aliphatischen, (cyclo)aliphatischen und/oder cycloaliphatischen Polyisocyanat mit mindestens zwei NCO-Gruppen und B) mindestens einem monomeren, oligomeren und/oder polymeren Polyol mit mindestens zwei OH-Gruppen;
C) in Gegenwart von Urethanisierungskatalysatoren in einer Konzentration von 0,01 bis 3 Gew.-% bezogen auf die Gesamtmasse;
wobei weitere Hilfs- und Zusatzstoffe enthalten sein können,
in einem Extruder, Strömungsrohr, Intensiv-Kneter, Intensiv-Mischer oder statischen Mischer durch intensive Durchmischung und kurzzeitiger Reaktion bei Wärmezufuhr bei Temperaturen > 25 0C und nachfolgender Isolierung des
Endproduktes, insbesondere durch schnelle Abkühlung.
Hochverzweigte, globularen Polymere werden in der Fachliteratur auch als „dendritische Polymere" bezeichnet. Diese aus multifunktionellen Monomeren synthetisierten dendritischen Polymere lassen sich in zwei unterschiedliche Kategorien einteilen, die „Dendrimere" sowie die „hyperverzweigten Polymere". Dendrimere besitzen einen sehr regelmäßigen, radialsymmetrischen Generationenaufbau. Sie stellen monodisperse globulare Polymere dar, die - im Vergleich zu hyperverzweigten Polymeren - in Vielschrittsynthesen mit einem hohen Syntheseaufwand hergestellt werden. Dabei ist die Struktur durch drei unterschiedliche Areale charakterisiert: - dem polyfunktionellen Kern, der das Symmetriezentrum darstellt, - verschiedenen wohldefinierten radialsymmetrischen Schichten einer Wiederholungseinheit (Generation) und - den terminalen Gruppen. Die hyperverzweigten Polymere sind im Gegensatz zu den Dendrimeren polydispers und hinsichtlich ihrer Verzweigung und Struktur unregelmäßig. Neben den dendritischen und terminalen Einheiten treten - im Gegensatz zu Dendrimeren - in hyperverzweigten Polymeren auch lineare Einheiten auf. Jeweils ein Beispiel für ein Dendrimer und ein hochverzweigtes Polymer, aufgebaut aus Wiederholungseinheiten, welche jeweils mindestens drei Bindungsmöglichkeiten aufweisen, ist in den nachfolgenden Strukturen gezeigt:
Figure imgf000007_0001
Dendrimerhyperverzweigtes Polymer
Bezüglich der unterschiedlichen Möglichkeiten zur Synthese von Dendrimeren und hyperverzweigten Polymeren sei insbesondere auf a) Frechet J. M. J., Tomalia D.A. „Dendrimers And Other Dendritic Polymers" John Wiley &Sons, Ltd., West Sussex, UK 2001 sowie b) Jikei M., Kakimoto M. „Hyperbranched Polymers: A Promising New Class Of Materials" Prog. Polym. Sei., 26 (2001 ) 1233-1285 und/oder c) Gao C, Yan D. „Hyperbranched Polymers: From Synthesis To Applications" Prog. Polym. Sei., 29 (2004) 183-275 verwiesen, die hiermit als Referenzen eingeführt werden und als Teil der Offenbarung der vorliegenden Erfindung gelten.
Ausgangstoffe für die Polyisocanate A: Als aromatische Di- oder Polyisocyanate sind prinzipiell alle bekannten Verbindungen geeignet. Besonders geeignet sind 1 ,3- und 1 ,4-Phenylendiisocyanat, 1 ,5-Naphthylendiisocyanat, Tolidindiisocyanat, 2,6-Toluylendiisocyanat, 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten (MDI) und oligomeren Diphenylmethandiisocyanaten (Polymer-MDI), Xylylendiisocyanat, Tetramethylxylylendiisocyanat und Triisocyanatotoluol.
Geeignete aliphatische Di- oder Polyisocyanate besitzen vorteilhafterweise 3 bis 16 Kohlenstoffatome, vorzugsweise 4 bis 12 Kohlenstoffatome, im linearen oder verzweigten Alkylenrest und geeignete cycloaliphatische oder (cyclo)aliphatische Diisocyanate vorteilhafterweise 4 bis 18 Kohlenstoffatome, vorzugsweise 6 bis 15 Kohlenstoffatome, im Cycloalkylenrest. Unter (cyclo)aliphatischen Diisocyanaten versteht der Fachmann hinlänglich gleichzeitig cyclisch und aliphatisch gebundene NCO-Gruppen, wie es z. B. beim Isophorondiisocyanat der Fall ist. Demgegenüber versteht man unter cycloaliphatischen Diisocyanaten solche, die nur direkt am cycloaliphatischen Ring gebundene NCO-Gruppen aufweisen, z. B. H12MDI. Beispiele sind Cyclohexandiisocyanat, Methylcyclohexandiisocyanat, Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat, Methyldiethylcyclo- hexandiisocyanat.
Bevorzugt werden Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethyl-hexamethylen-diisocyanat (TMDI), Norbornandiisocyanat (NBDI). Ganz besonders bevorzugt werden IPDI, HDI, TMDI und H12MDI eingesetzt, wobei auch die Isocyanurate und Uretdione einsetzbar sind.
Ebenfalls geeignet sind 4-Methyl-cyclohexan-1 ,3-diisocyanat, 2-Butyl-2- ethylpentamethylendiisocyanat, 3(4)-lsocyanatomethyl-1 -methylcyclohexylisocyanat, 2-lsocyanatopropylcyclohexylisocyanat, 2,4'-Methylen-bis(cyclohexyl)diisocyanat, 1 ,4-Diisocyanato-4-methyl-pentan. Selbstverständlich können auch Gemische der Di- und Polyisocyanate, Isocyanurate und Uretdione eingesetzt werden.
Weiterhin werden vorzugsweise Oligo- oder Polyisocyanate verwendet, die sich aus den genannte Di- oder Polyisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazinthon- oder Iminooxadiazindion-Strukturen herstellen lassen. Besonders geeignet sind Isocyanurate, insbesondere aus IPDI und HDI.
Als Verbindungen B) eignen sich alle in der PUR-Chemie üblicherweise eingesetzten Polyole, die mindestens zwei Alkoholgruppen aufweisen, des
Molekulargewichtes von mindestens 32 g/mol. Bei den monomeren Diolen handelt es sich beispielweise um Ethylenglykol,
Triethylenglykol, Butandiol-1 ,4, Pentandiol-1 ,5, Hexandiol-1 ,6, 3-Methylpentandiol-
1 ,5, Neopentylglykol, 2,2,4 (2,4,4)-Thmethylhexandiol sowie
Hydroxypivalinsäureneopentylglykolester.
Bei den monomeren Triolen handelt es sich beispielweise um Trimethylolpropan, Dithmethylolpropan, Trimethylolethan, Hexanthol-1 ,2,6, Butanthol-1 ,2,4, Tris(ß-
Hydroxyethyl)-isocyanurat, Pentaerythrit, Mannit oder Sorbit.
Es eignen sich auch Polyole, die weitere funktionelle Gruppen enthalten (Oligomere oder Polymere). Hierbei handelt es sich um die an sich bekannten hydroxylgruppenhaltigen Polyester, Polycarbonate, Polycaprolactone, Polyether, Polythioether, Polyesteramide, Polyurethane oder Polyacetale. Sie besitzen ein zahlenmittleres Molekulargewicht von 134 bis 3 500 g/mol. Die Polyole werden allein oder in Mischungen verwendet. Bei den Katalysatoren C) handelt es sich um Urethanisierungs-Katalysatoren, wie organische Zinnverbindungen der folgenden Zusammensetzung RnSnXm (II), in welcher R = Alkylrest mit 1 bis 10 Kohlenstoffatomen und X = Carboxylatrest einer Carbonsäure mit 1 bis 20 Kohlenstoffatomen bedeutet und n=1 ,2 oder 3, m=1 , 2 oder 3 und n+m= 4 ist. Aber auch Zink-Katalysatoren, wie insbesondere beispielsweise Zink-2-ethylhexanolat in Butyldiglykol, Zinksalze von verzweigten- und unverzweigten Fettsäuren (C2 - C20), oder Bismut-Katalysatoren, wie Bismutthsneodecanoat in Neodecansäure. Sie werden in einer Konzentration von 0,01 bis 3 Gew.-% eingesetzt.
Besonders geeignet sind Katalysatoren wie Butylzinntris(2-ethylhexanoat) und Dibutylzinndilaurat.
Als Hilfs- und Zusatzstoffe können z. B. monofunktionelle Isocyanate, Kettenabbrecher, Blockierungsmittel, Kettenverlängerer, Entgasungsmittel, Stabilisatoren, weitere Katalysatoren, Verlaufsmittel, anorganische und/oder organische Pigmente und/oder Füllstoffe, Dispergiermittel, Benetzungsmittel, Entschäumer, ionische Flüssigkeiten enthalten sein.
Das erfindungsgemäß hergestellte hyperverzweigte Polyurethan hat vorzugsweise ein Gewichtsmittel des Molekulargewichts Mw im Bereich von 1000 g/mol bis 200000 g/mol, günstigerweise im Bereich von 1500 g/mol bis 100000 g/mol, besonders bevorzugt im Bereich von 2000 g/mol bis 75000 g/mol, insbesondere im Bereich von 2500 g/mol bis 50000 g/mol.
Die Ermittlung des Molekulargewichts, insbesondere die Bestimmung des Gewichtsmittels des Molekulargewichts Mw und des Zahlenmittels des Molekulargewichts, kann auf an sich bekannte Weise, z. B. mittels Gelpermationschromatographie (GPC) gemessen werden, wobei die Messung vorzugsweise in DMF erfolgt und als Referenz bevorzugt Polyethylenglykole eingesetzt werden (vgl. u. a. Burgath et. al in Macromol. Chem. Phys., 201 (2000) 782 - 791 ). Hierbei wird zweckmäßigerweise eine Kalibierkurve eingesetzt, die günstigerweise unter Verwendung von Polystyrol-Standards erhalten wurde. Diese Größen stellen daher apparente Messwerte dar.
Alternativ kann das Zahlenmittel des Molekulargewichts auch durch Dampf- oder Membranosmose bestimmt werden, die z. B. in K. F. Arndt; G. Müller; Polymercharakterisierung; Hanser Verlag 1996 (Dampdruckosmose) und H. -G. Elias, Makromoleküle Struktur Synthese Eigenschaften, Hütig & Wepf Verlag 1990 (Membranosmose) näher beschrieben werden. Die GPC hat sich erfindungsgemäß jedoch ganz besonders bewährt.
Die Polydispersität Mw/Mn bevorzugter hyperverzweigter Polyurethane liegt vorzugsweise im Bereich von 1 -50, günstigerweise im Bereich von 1 ,1 -40, insbesondere im Bereich von 1 ,2-20, bevorzugt bis 10.
Das Prinzip des Verfahrens besteht darin, dass die Umsetzung der Ausgangsverbindungen kontinuierlich insbesondere in einem Extruder, Strömungsrohr, Intensiv-Kneter, Intensiv-Mischer oder statischen Mischer durch intensive Durchmischung und kurzzeitige Reaktion bei Wärmezufuhr erfolgt. Dies bedeutet, dass die Verweilzeit der Einsatzstoffe in den oben genannten Aggregaten üblicherweise 3 Sekunden bis 15 Minuten, bevorzugt 3 Sekunden bis 5 Minuten, besonders bevorzugt 5 bis 180 Sekunden beträgt. Die Reaktanden werden dabei kurzzeitig unter Wärmezufuhr bei Temperaturen von 25 0C bis 325 0C, bevorzugt von 50 bis 250 0C, ganz besonders bevorzugt von 50 bis 200 0C zur Reaktion gebracht. Je nach Art der Einsatzstoffe und der Endprodukte können diese Werte für Verweilzeit und Temperatur jedoch auch andere bevorzugte Bereiche einnehmen. Gegebenenfalls wird eine kontinuierliche Nachreaktion nachgeschaltet. Durch anschließende schnelle Abkühlung gelingt es dann, das gewünschte Endprodukt zu erhalten. Als Aggregate sind Extruder wie Ein- oder Mehrschneckenextruder, insbesondere Zweischneckenextruder, Planetwalzenextruder oder Ringextruder, Strömungsrohre, Intensiv-Kneter, Intensiv-Mischer, oder statische Mischer für das erfindungsgemäße Verfahren besonders geeignet und werden bevorzugt verwendet.
Da die Abkühlung der Produkte für den molekularen Aufbau sehr wichtig sein kann, kann es notwendig sein, die Extruder im Kopfbereich zu verändern, oder bestimmte Düsenaufbauten zu verwenden. Häufig ist es notwendig hier einen besonders schonenden Produktaustrag zu ermöglichen. Dazu kann beispielsweise auch ohne Kopfplatte gefahren werden.
Die Ausgangsverbindungen werden den Aggregaten in der Regel in getrennten Produktströmen zudosiert. Bei mehr als zwei Produktströmen können diese auch gebündelt zugeführt werden. Verschiedene hydroxylgruppenhaltige Ausgangsstoffe können zu einem Produktstrom zusammengefasst werden. Es ist auch möglich, diesem Produktstrom zusätzlich Katalysatoren und/oder Zuschlagstoffe wie Verlaufmittel, oder Stabilisatoren zuzufügen. Ebenso können Polyisocyanate sowie das- oder die Uretdione von Polyisocyanaten, mit Katalysatoren und/oder Zuschlagstoffen wie Verlaufmittel oder Stabilisatoren in einem Produktstrom zusammengefasst werden. Die Stoffströme können auch geteilt werden und so in unterschiedlichen Anteilen an verschiedenen Stellen den Aggregaten zugeführt werden. Auf diese Weise werden gezielt Konzentrationsgradienten eingestellt, was die Vollständigkeit der Reaktion herbeiführen kann. Die Eintrittsstelle der Produktströme in der Reihenfolge kann variable und zeitlich versetzt gehandhabt werden. Dadurch kann der Aufbau der Zielmoleküle variiert werden.
Zur Vorreaktion und/oder Vervollständigung der Reaktion können mehrere Aggregate auch kombiniert werden. Die der Reaktion nachgeschaltete bevorzugt schnelle Abkühlung kann in dem Reaktionsteil integriert sein, in Form einer mehrgehäusigen Ausführungsform wie bei Extrudern oder Conterna-Maschinen. Eingesetzt werden können außerdem: Rohrbündel, Rohrschlangen, Kühlwalzen, gekühlte Rutschen, Luftförderer, Transportbänder aus Metall und Wasserbäder, mit- und ohne nachgeschaltetem Granulator.
Die Konfektionierung wird je nach Viskosität des den Intensivkneter- oder die Nachreaktionszone verlassenden Produktes zunächst durch weitere Abkühlung mittels entsprechender vorgenannter Gerätschaften auf eine geeignete Temperatur gebracht. Dann erfolgt die Pastillierung oder aber eine Zerkleinerung in eine gewünschte Partikelgröße mittels Walzenbrecher, Stiftmühle, Hammermühle, Schuppwalzen, Stranggranulator (z. B. in Kombination mit einem Kühlmedium), anderen Granulatoren oder Ähnlichem.
Nachfolgend wird der Gegenstand der Erfindung anhand eines Beispiels erläutert.
Beispiel 1 : Herstellung eines hyperverzweigten, dendritischen Polyurethanes nach dem erfindungsgemäßen Verfahren
Figure imgf000013_0001
Es wurde mit drei Stoffströmen gearbeitet: Strom 1 bestand aus 1 ,2,6-Hexantriol. Strom 2 Isophorondiisocyanates (IPDI). Strom 3 bestand aus dem Katalysator DBTL. Die Gesamtmenge, bezogen auf die
Gesamtrezeptur betrug 0,025 %.
Strom 1 wurde als Schmelze mit einer Menge von 630 g/h in des erste Gehäuse eines Zweischneckenextruders (DSE 25) eingespeist (Temperatur des Stoffstromes 25 0C).
Strom 2 wurde in das folgende Gehäuse mit einer Menge von 2510 g/h eingespeist
(Temperatur des Stoffstromes 25 0C).
Strom 3 wurde vor Eintritt in den Extruder in Strom 2 über eine Statikmischerstrecke eingebracht (0,78 g/h). Der eingesetzte Extruder bestand aus 8 Gehäusen, die separat geheizt und gekühlt werden konnten. Gehäuse 1 ,2 und 3 : 20 - 30 °C, Gehäuse 4: 25-35 0C, Gehäuse 5:
55 - 65 0C, Gehäuse 6 und 7: 150 - 165 0C, Gehäuse 8: 100 - 105 0C.
Die Schnecken waren mit Förderelementen bestückt.
Alle Temperaturen stellten Soll-Temperaturen dar. Die Regelung erfolgte über Elektroheizung bzw. Wasserkühlung. Es wurde ohne Extruder-Kopf gefahren. Die
Schneckendrehzahl betrug 250 Upm. Das Reaktionsprodukt wurde nach Austritt aus dem Extruder sofort abgekühlt und auf einem Kühlband ausgetragen und anschließend gemahlen. Es hatte einen Gehalt an freien NCO-Gruppen von 12,1 %.
Figure imgf000014_0001

Claims

Patentansprüche:
1. Verfahren zur losem ittelfreien, kontinuierlichen Herstellung von hyperverzweigten, dendritischen Polyurethanen erhalten durch losem ittelfreie Umsetzung von
A) mindestens einem aromatischen, aliphatischen, (cyclo)aliphatischen und/oder cycloaliphatischen Polyisocyanat mit mindestens zwei NCO-
Gruppen und B) mindestens einem monomeren, oligomeren und/oder polymeren Polyol mit mindestens zwei OH-Gruppen; C) in Gegenwart von Urethanisierungskatalysatoren in einer Konzentration von
0,01 bis 3 Gew.-% bezogen auf die Gesamtmasse;
wobei weitere Hilfs- und Zusatzstoffe enthalten sein können,
in einem Extruder, Strömungsrohr, Intensiv-Kneter, Intensiv-Mischer oder statischen Mischer durch intensive Durchmischung und kurzzeitiger Reaktion bei Wärmezufuhr bei Temperaturen > 25 0C und nachfolgender Isolierung des Endproduktes, insbesondere durch schnelle Abkühlung.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Verweilzeit der Einsatzstoffe 3 Sekunden bis 15 Minuten beträgt.
3. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Reaktion im Ein, Zwei- oder Mehrschneckenextruder, Ringextruder oder Planetwalzenextruder erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Reaktion in einem Zweischneckenextruder erfolgt.
5. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass die Reaktion in einem Mehrwellenextruder, wie einem Ringextruder, oder einem Planetwalzenextruder, erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Reaktion in einem Strömungsrohr, Intensiv- Mischer oder Intensiv-Kneter erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Reaktion in einem statischen Mischer erfolgt.
8. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Reaktion in einem Extruder, Intensiv-Kneter, Intensiv-Mischer oder statischen Mischer mit mehreren gleichen oder verschiedenen Gehäusen, die unabhängig voneinander thermisch gesteuert werden können, erfolgt.
9. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Temperatur im Extruder, Intensiv-Kneter, Intensiv-Mischer oder statischen Mischer > 25 bis 325 0C beträgt.
10. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Extruder oder Intensiv-Kneter durch geeignete Bestückung der Mischkammern und Zusammenstellung der Schneckengeometrie einerseits zu einer intensiven raschen Durchmischung und schnellen Reaktion bei gleichzeitigem intensiven Wärmeaustausch führen, und andererseits eine gleichmäßige Durchströmung in Längsrichtung mit möglichst einheitlicher
Verweilzeit bewirken. Außerdem muss das Extruderende so beschaffen sein, dass eine schnelle Abkühlung des austretenden Produktes möglich ist.
11. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Einsatzstoffe und/oder
Katalysatoren und/oder Zuschlagstoffe gemeinsam oder in getrennten Produktströmen, in flüssiger oder fester Form, dem Extruder, Strömungsrohr, Intensiv-Kneter, Intensiv Mischer oder statischen Mischer zugeführt werden.
12. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Zuschlagstoffe gemeinsam mit den Einsatzstoffen zu einem Produktstrom zusammengefasst werden.
13. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Komponente A) Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicylcohexylmethan (H12MDI) 2-Methylpentandiisocyanat
(MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4- Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI), Toluidendiisocyanat (TDI), Methylendiphenyldiisocyanat (MDI) und/oder Tetramethylxylylendiisocyanat (TMXDI) eingesetzt wird.
14. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass IPDI, HDI und/oder H12MDI als Komponente A) eingesetzt wird.
15. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Komponente A) 4-Methyl-cyclohexan-1 ,3-diisocyanat, 2-Butyl-2- ethylpentamethylendiisocyanat, 3(4)-lsocyanatomethyl-1 - methylcyclohexylisocyanat, 2-lsocyanatopropylcyclohexylisocyanat, 2,4'- Methylen-bis(cyclohexyl)diisocyanat, 1 ,4-Diisocyanato-4-methyl-pentan eingesetzt werden.
16. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Komponente A) ausgewählt ist aus einem aromatischen, aliphatischen, cycloaliphatischen oder (cyclo)aliphatischen Di- oder Polyisocyanat allein oder in Mischungen und/oder Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazinthon- oder Iminooxadiazindion-Strukturen aufweisenden Oligo- und/oder Polyisocyanat.
17. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Isocyanurate, Biurete und/oder Allophanate als Komponente A) eingesetzt werden.
18. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Komponente A) Isocyanurate, insbesondere aus IPDI und HDI eingesetzt werden.
19. Hyperverzweigtes, dendritisches Polyurethan nach mindestens einem der Vorherigen Ansprüche, dadurch gekennzeichnet, dass als Polyole B) Ethylenglykol, Triethylenglykol, Butandiol-1 ,4, Pentandiol- 1 ,5, Hexandiol-1 ,6,3-Methylpentandiol-1 ,5, Neopentylglykol, 2,2,4 (2,4,4)-
Trimethylhexandiol, Hydroxypivalinsäureneopentylglykolester, Trimethylolpropan, Dithmethylolpropan, Trimethylolethan, Hexantriol-1 ,2,6, Butantriol-1 ,2,4 Tris(ß-Hydroxyethyl)-isocyanurat, Pentaerythrit, Mannit, Sorbit, hydroxylgruppenhaltige Polyester, Polycarbonate, Polycaprolactone, Polyether, Polythioether, Polyesteramide, Polyurethane und/oder Polyacetale, allein oder in
Mischungen, eingesetzt werden.
20. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Katalysatoren C) organische Zinnverbindungen der Zusammensetzung
RnSnXm in welcher R = Alkylrst mit 1 bis 10 Kohlenstoffatomen und X = Carboxylatrest einer Carbonsäure mit 1 bis 20 Kohlenstoffatomen bedeutet und n = 1 ,2 oder 3, m = 1 , 2 oder 3 und n + m = 4 ist,
eingesetzt werden.
21. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Zink-Katalysatoren, wie insbesondere Zink-2-ethylhexanolat in
Butyldiglykol, Zinksalze von verzweigten- und unverzweigten Fettsäuren (C2 - C20), oder Bismut-Katalysatoren, wie insbesondere Bismutthsneodecanoat in Neodecansäure, eingesetzt werden.
22. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Katalysatoren C) Butylzinntris(2-ethylhexanoat) und/oder
Dibutylzinndilaurat eingesetzt werden.
23. Verfahren nach mindestens einem der vorherigen Ansprüche mit einem
Gewichtsmittel des Molekulargewichts im Bereich von 1000 bis 200000 g/mol.
PCT/EP2008/060605 2007-10-12 2008-08-13 Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion WO2009049941A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08787156A EP2185618A1 (de) 2007-10-12 2008-08-13 Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion
US12/682,022 US20110065886A1 (en) 2007-10-12 2008-08-13 Process for preparing hyperbranched, dendritic polyurethanes by means of reactive extrusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007049328.4 2007-10-12
DE102007049328A DE102007049328A1 (de) 2007-10-12 2007-10-12 Verfahren zur Herstellung hyperverzweigter, dendritischer Polyurethane mittels reaktiver Extrusion

Publications (1)

Publication Number Publication Date
WO2009049941A1 true WO2009049941A1 (de) 2009-04-23

Family

ID=39885089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060605 WO2009049941A1 (de) 2007-10-12 2008-08-13 Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion

Country Status (5)

Country Link
US (1) US20110065886A1 (de)
EP (1) EP2185618A1 (de)
CN (1) CN101407570A (de)
DE (1) DE102007049328A1 (de)
WO (1) WO2009049941A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445024B2 (en) 2005-10-25 2013-05-21 Evonik Degussa Gmbh Preparations containing hyperbranched polymers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112080A1 (de) 2011-09-03 2013-03-07 Entex Rust & Mitschke Gmbh Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt
CN102964558B (zh) * 2012-11-22 2015-04-08 中钞油墨有限公司 雕刻凹版油墨用超支化聚合物树脂的合成及其制备工艺
CN102942664A (zh) * 2012-11-28 2013-02-27 安徽大学 一种端羟基超支化聚氨酯的制备方法
CN103865262B (zh) * 2014-03-27 2016-03-23 济南大学 超支化聚合物在防水卷材中的应用
CN105440259B (zh) * 2015-12-16 2018-03-30 陕西科技大学 以异氰脲酸酯为核的超支化水性聚氨酯及其制备方法
CN105778029B (zh) * 2016-03-16 2019-01-04 陕西科技大学 一种超支化聚(异氰脲酸酯-酯)型水性聚氨酯的制备方法
CN115612435B (zh) * 2022-10-20 2023-09-12 唯万科技有限公司 一种密封用耐高温聚氨酯胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011975A1 (en) * 2000-08-03 2002-02-14 Ranier Limited Precision polyurethane manufacture
WO2004101624A2 (de) * 2003-05-16 2004-11-25 Basf Aktiengesellschaft Verfahren zur herstellung von dendrimeren oder hyperverzweigten polyurethanen
DE102006004077A1 (de) * 2006-01-28 2007-08-02 Degussa Gmbh Verfahren zur Herstellung von hoch reaktiven uretdiongruppenhaltigen Polyurethanverbindungen
WO2007128629A1 (de) * 2006-05-09 2007-11-15 Evonik Degussa Gmbh Hyperverzweigte polyurethane, verfahren zu ihrer herstellung sowie ihre verwendung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827248A (ja) * 1994-07-15 1996-01-30 Nippon Polyurethane Ind Co Ltd 改質熱可塑性ポリウレタンからなる成形物の製造方法
DE19524045A1 (de) 1995-07-01 1997-01-02 Basf Ag Hochfunktionalisierte Polyurethane
DE19904444A1 (de) 1999-02-04 2000-08-10 Basf Ag Dendrimere und hochverzweigte Polyurethane
DE10030869A1 (de) 2000-06-23 2002-01-03 Basf Ag Mehrfunktionelle Polyisocyanat-Polyadditionsprodukte
US6462144B1 (en) 2000-12-22 2002-10-08 Basf Corporation Carbamate-functional resins and their use in high solids coating compositions
DE102004057430A1 (de) * 2004-11-27 2006-06-01 Degussa Ag Polymere Nano-Kompositwerkstoffe durch kontrollierte Keimbildung von dendritischen Polymeren
WO2007048672A1 (de) * 2005-10-25 2007-05-03 Evonik Degussa Gmbh Präparate umfassend hyperverzweigte polymere

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011975A1 (en) * 2000-08-03 2002-02-14 Ranier Limited Precision polyurethane manufacture
WO2004101624A2 (de) * 2003-05-16 2004-11-25 Basf Aktiengesellschaft Verfahren zur herstellung von dendrimeren oder hyperverzweigten polyurethanen
DE102006004077A1 (de) * 2006-01-28 2007-08-02 Degussa Gmbh Verfahren zur Herstellung von hoch reaktiven uretdiongruppenhaltigen Polyurethanverbindungen
WO2007128629A1 (de) * 2006-05-09 2007-11-15 Evonik Degussa Gmbh Hyperverzweigte polyurethane, verfahren zu ihrer herstellung sowie ihre verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHONFELD S: "ZWEIWELLENAXTRUDER - WIRTSCHAFTLICH BEIM RAKTIVEN AUFBEREITEN", KUNSTSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 84, no. 10, 1 October 1994 (1994-10-01), pages 1308 - 1310,1312, XP000468207, ISSN: 0023-5563 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445024B2 (en) 2005-10-25 2013-05-21 Evonik Degussa Gmbh Preparations containing hyperbranched polymers

Also Published As

Publication number Publication date
US20110065886A1 (en) 2011-03-17
CN101407570A (zh) 2009-04-15
EP2185618A1 (de) 2010-05-19
DE102007049328A1 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2009049941A1 (de) Verfahren zur herstellung hyperverzweigter, dendritischer polyurethane mittels reaktiver extrusion
EP0669353B1 (de) Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
WO2006040226A1 (de) Hydroxylterminierte uretdiongruppenhaltige polyurethanverbindungen
DE102005039933A1 (de) Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethanen
EP2016111A1 (de) Hyperverzweigte polyurethane, verfahren zu ihrer herstellung sowie ihre verwendung
WO2006100144A1 (de) Niedrigviskose uretdiongruppenhaltige polyadditionsverbindungen, verfahren zur herstellung und verwendung
JPH08337630A (ja) 熱可塑性ポリウレタンエラストマー類
DE10115224C1 (de) Lichtstabile thermoplastische Polyurethane, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0747408B1 (de) Verfahren zur kontinuierlichen Herstellung von Polyurethanharnstoff-Elastomeren
CN107840937A (zh) 挤出法无溶剂水性聚氨酯分散体及其制备方法和应用
WO2021122280A1 (de) Thermoplastisches polyurethan mit hohem biegemodul
WO2020152616A1 (de) Polyureaformkörper und -beschichtungen mit verbesserten mechanischen eigenschaften
EP1336629A2 (de) Verfahren zur Herstellung von Urethan(meth)acrylaten
EP1887020B1 (de) Polyurethanharze und Verfahren zu ihrer Herstellung
US20230134448A1 (en) Thermoplastic polyurethane having high flexural stress
DE10354865B4 (de) Verfahren zur lösemittelfreien und kontinuierlichen Herstellung von polymermodifizierten Harzen aus Polyestern und Polyacrylaten
WO2022037819A1 (de) Thermoplastische formmasse mit guten thermischen und mechanischen eigenschaften
DE4219964A1 (de) Verfahren zur Herstellung von stabilen wäßrigen Polyurethan-Dispersionen aus Oligourethanbisbiureten und deren Verwendung zur Herstellung von vernetzten Flächengebilden
WO2021122297A1 (de) Thermoplastisches aliphatisches polyurethanprepolymer mit niedriger schmelzenthalpie
WO2021122301A1 (de) Thermoplastisches aliphatisches polyurethanpolymer mit niedriger kristallisationsenthalpie
WO2021122302A1 (de) Thermoplastisches aliphatisches polyurethanprepolymer mit niedriger kristallisationsenthalpie
WO2021122310A1 (de) Thermoplastisches polyurethan mit hohem hartsegmentanteil
WO2022128170A1 (de) Thermoplastische formmasse mit guten mechanischen eigenschaften
WO2022128171A1 (de) Thermoplastische formmasse mit guten mechanischen eigenschaften
WO2022128172A1 (de) Thermoplastische formmasse mit guten mechanischen eigenschaften

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008787156

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12682022

Country of ref document: US