WO2009049782A1 - Verfahren zum betreiben eines systems aus mindestens einem in einem elektrischen netz angeordneten elektrischen verbraucher und einem brennstoffzellensystem - Google Patents

Verfahren zum betreiben eines systems aus mindestens einem in einem elektrischen netz angeordneten elektrischen verbraucher und einem brennstoffzellensystem Download PDF

Info

Publication number
WO2009049782A1
WO2009049782A1 PCT/EP2008/008415 EP2008008415W WO2009049782A1 WO 2009049782 A1 WO2009049782 A1 WO 2009049782A1 EP 2008008415 W EP2008008415 W EP 2008008415W WO 2009049782 A1 WO2009049782 A1 WO 2009049782A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
electrical
energy
power
Prior art date
Application number
PCT/EP2008/008415
Other languages
English (en)
French (fr)
Inventor
Markus Walter
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009049782A1 publication Critical patent/WO2009049782A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04888Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Method for operating a system comprising at least one arranged in an electrical network electrical load and a fuel cell system
  • the invention relates to a method for operating a system comprising at least one disposed in an electrical network electrical load and a fuel cell system according to the features specified in the preamble of the independent claims 1 and 2.
  • Fuel cell systems serve to supply electric drive motors and other electrical consumers. For example, if a power demand made to the drive motor, the output from the fuel cell system Leis ⁇ tung is to adapt quickly to the power requirements of the drive motor. For this purpose, a lot of the fuel cell system supplied media, such as hydrogen, air, coolant, must be increased as quickly as possible. The reaction time depends on actuators for the media supply and is in the range of several hundred milliseconds. In order to cover the power requirement as quickly as possible, are often energy storage, for example in the form of high-voltage batteries or double-layer capacitors provided.
  • energy storage for example in the form of high-voltage batteries or double-layer capacitors provided.
  • the power extraction from the fuel cell system takes place by the fuel cell system, a current drain or a change the current draw releases to ensure that the e- lekthari load corresponds to the supply situation of the fuel cell system. For this purpose, a knowledge of other electrical loads is required, so that a power balance can be done.
  • an electric power is fed into the electrical network by the fuel cell system.
  • An amount of media supplied to the fuel cell system for example, hydrogen, air, coolant, etc., is controlled according to a demanded by the fuel cell system power, wherein a voltage in the electrical network is controlled to a predetermined value.
  • the voltage is predetermined by the fuel cell system and regulated by means of a regulator.
  • a DC / DC converter via which an energy storage energy is supplied from the electrical network and / or via which the electrical network energy is supplied from the energy storage can be used.
  • a Drive system and the DC / AC converter of the drive can be used as a controller according to the invention.
  • energy is supplied directly from the energy store to the electrical network and / or energy is supplied directly to the energy store from the electrical network, wherein the fuel cell system regulates the voltage itself.
  • FIG. 1 shows an arrangement with a fuel cell system, an electric machine, a further electrical load, a DC / DC converter and an energy store, wherein a power taken from the fuel cell system is determined to regulate the voltage
  • FIG. 2 shows the arrangement from FIG. 1, wherein a power taken from the energy store and / or supplied power is determined to regulate the voltage
  • Fig. 3 shows an arrangement with a fuel cell system, an electric machine, another electrical load and an energy storage. Corresponding parts are provided in all figures with the same reference numerals.
  • FIG. 1 shows an arrangement with a fuel cell system 1, an electric machine 2, a further electrical load 3, a DC / DC converter 4 and an energy store 5, for example in a motor vehicle with hybrid drive.
  • the electric machine 2 serves to drive the motor vehicle and possibly the recuperation of energy from a braking operation.
  • a converter 7 is provided which converts an intermediate circuit voltage U z ⁇ present in the network 6 into an AC voltage or rectifies an AC voltage delivered by the electric machine 2 into the network 6.
  • the fuel cell system 1, the electrical load 3 and the DC / DC converter 4 are also connected to the electrical network 6.
  • the DC / DC converter 4 is used to convert the intermediate circuit voltage U z ⁇ from the network 6 into an example, higher DC voltage for feeding energy from the fuel cell system 1 or the electric machine 2 in the energy storage 5, which is designed for example as a high-voltage battery. Likewise, the DC / DC converter 4 can feed energy from the energy store 5 into the grid 6 in order to cover a short-term power requirement of the electrical machine 2 or of the consumer 3. Further, a vehicle control unit 8 (also referred to as VCU - vehicle control unit) is provided, via which at least the electric machine 2 and the fuel cell system 1 can be controlled and / or regulated.
  • VCU - vehicle control unit also referred to as VCU - vehicle control unit
  • Is the vehicle control unit 8 for example by pressing an accelerator pedal a request for a lektrischen of the e- machine 2 to ergandes target torque M so ii, this request is forwarded to the electric machine 2, so that the required power from the Network 6 takes. First, this power is provided by the energy storage 5.
  • the fuel cell system receives a request for the provision of a desired power P so ii / which, for example, according to the following formula from a function of the target torque M so n, a power P Ba tt for charging or discharging the energy storage 5 and an efficiency ⁇ D cDc of the DC / DC converter 4 yields:
  • the fuel cell system 1 regulates a quantity of media, for example hydrogen, air, coolant, which are needed to provide the target power P so n.
  • An already calculated power P so ii can be supplied to the fuel cell system 1 to increase the control speed as a pilot control signal.
  • the fuel cell system 1 is the height of the intermediate circuit voltage U z ⁇ , So ii before and calls at DC / DC converter 4, the intermediate circuit voltage U z ⁇ to regulate this value.
  • the DC / DC converter 4 reacts to this by feeding in power from the energy store 5 or by removing power from the network 6 for charging the energy store 5.
  • a load is thus always in the sense of optimizing the service life of the fuel cell system 1.
  • Potential-dependent operating modes can be independent of a load distribution. be set. In particular, the hard-to-predict power requirement of the consumer 3 need not be considered separately. Instead, an automatic current distribution takes place through the regulation of the intermediate circuit voltage U z ⁇ .
  • the setting of the load of the fuel cell system 1 is also more stable with a setpoint voltage and less critical than with a setpoint current.
  • the performance of the network 5 supported by the energy store 5 results from the sum of the maximum powers of the fuel cell system 1 and the energy store 5.
  • the output of the fuel cell system 1 is stable in the described method. This is evident in the consideration of an extreme load jump, for example, when the target power P ii so abruptly increased from zero to the maximum power of the fuel cell system 1, assuming that the maximum power of the energy storage device 5 is substantially lower than that of the fuel cell system 1.
  • the actual power output for example to the electrical machine 2, will then take place exactly with a momentum currently available from the fuel cell system 1, without an information exchange between the fuel cell system 1 and the vehicle control unit 8 being required.
  • only the maximum power available in the energy store 5 is used in each sub-step. If the required dynamics due to unscheduled behavior of the fuel cell system 1, for example in an emergency operation, not available, not the stable operation but only the behavior of the load (vehicle drive) is affected.
  • FIG. 2 shows the arrangement from FIG. 1, with an energy storage device for controlling the intermediate circuit voltage U z ⁇ . rather 5 extracted and / or supplied power P Batt is determined.
  • the power P Batt fed from the energy storage device 5 into the network 6 or from it is determined here as Pi St. Accordingly, the fuel cell system 1 changes the intermediate circuit voltage UZK to be controlled by the DC / DC converter 4.
  • FIG. 3 shows a simplified arrangement with a fuel cell system 1, an electric machine 2, a further electrical load 3 and an energy store 5, which is not connected via a DC / DC converter 4, but directly to the grid 6.
  • the energy store 5 is designed in particular as a double-layer capacitor.
  • the required power is initially provided or absorbed immediately by the energy store 5, whereupon the intermediate circuit voltage U z ⁇ immediately decreases or increases.
  • the control of the intermediate circuit voltage U z ⁇ and thus the output from the fuel cell system 1 power takes place in this case directly through the fuel cell system 1.
  • the electrical consumer 3 exemplifies any number of electrical consumers 3.
  • Each of the components fuel cell system 1, electric machine 2, consumer 3, DC / DC converter 4, energy storage 5, inverter 7, vehicle control unit 8 can be connected to a not shown bus system to be connected, for example, a CAN bus.
  • a requirement of the fuel cell system 1 for regulating the intermediate circuit voltage U z ⁇ can, in principle, be applied to each component connected to the network 6, for example the electric machine 2, the electrical load 3 or the DC / DC converter 4.
  • the energy store 5 may preferably be designed as a high-voltage battery or as a double-layer capacitor.
  • the energy store 5 may preferably be designed as a high-voltage battery or as a double-layer capacitor.
  • other types of capacitors, an electrical supply network, conventional battery, etc. as energy storage 5 are conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz (6) angeordneten elektrischen Verbraucher (3) und einem Brennstoffzellensystem (1), von welchem eine elektrische Leistung in das elektrische Netz (6) eingespeist wird, wobei eine dem Brennstoffzellensystem (1) zugeführte Menge von Medien entsprechend einer vom Brennstoffzellensystem (1) geforderten Leistung (Psoll) gesteuert wird, wobei eine Zwischenkreisspannung (Uzϰ) im elektrischen Netz (6) auf einen vorgegebenen Wert geregelt wird, wobei die Zwischenkreisspannung (Uzϰ) vom Brennstoffzellensystem (1) vorgegeben und mittels eines DC/DC-Wandlers (4), über den einem Energiespeicher (5) Energie aus dem elektrischen Netz (6) zugeführt und/oder über den dem elektrischen Netz (6) Energie aus dem Energiespeicher (5) zugeführt wird, geregelt wird oder dass dem elektrischen Netz (6) Energie direkt aus dem Energiespeicher (5) zugeführt und/oder dem Energiespeicher (5) Energie direkt aus dem elektrischen Netz (6) zugeführt wird, wobei das Brennstoffzelensystem (1) die Zwischenkreisspannung (Uzϰ) selbst regelt.

Description

Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz angeordneten elektrischen Verbraucher und einem Brennstoffzellensystem
Die Erfindung betrifft ein Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz angeordneten elektrischen Verbraucher und einem Brennstoffzellensystem nach den im Oberbegriff der unabhängigen Patentansprüche 1 und 2 angegebenen Merkmale.
Brennstoffzellensysteme, insbesondere in Kraftfahrzeugen mit Hybridantrieb, dienen der Versorgung von elektrischen Antriebsmotoren und anderer elektrischer Verbraucher. Wird beispielsweise eine Leistungsanforderung an den Antriebsmotor gestellt, ist die vom Brennstoffzellensystem abgegebene Leis¬ tung in kürzester Zeit auf den Leistungsbedarf des Antriebsmotors anzupassen. Hierzu muss eine Menge von dem Brennstoff- zellensystem zugeführten Medien, wie z.B. Wasserstoff, Luft, Kühlmittel, möglichst schnell erhöht werden. Die Reaktionszeit hängt dabei von Aktoren für die Medienversorgung ab und liegt im Bereich mehrerer hundert Millisekunden. Um den Leistungsbedarf möglichst sofort abzudecken, sind häufig Energiespeicher, beispielsweise in der Art von Hochvoltbatterien o- der Doppelschichtkondensatoren vorgesehen. Die Leistungsentnahme aus dem Brennstoffzellensystem erfolgt, indem das Brennstoffzellensystem eine Stromentnahme oder eine Änderung der Stromentnahme freigibt, um sicherzustellen, dass die e- lektrische Belastung der Versorgungssituation des Brennstoffzellensystems entspricht. Dazu ist eine Kenntnis über weitere elektrische Verbraucher erforderlich, so dass eine Strombilanzierung erfolgen kann.
Es ist daher eine Aufgabe der Erfindung, ein verbessertes Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz angeordneten elektrischen Verbraucher und einem BrennstoffZeilensystem anzugeben, bei dem eine Strombilanzierung nicht erforderlich ist.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
Bei einem erfindungsgemäßen Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz angeordneten elektrischen Verbraucher und einem Brennstoffzellen- system wird vom BrennstoffZeilensystem eine elektrische Leistung in das elektrische Netz eingespeist. Eine dem Brennstoffzellensystem zugeführte Menge von Medien, beispielsweise Wasserstoff, Luft, Kühlmittel etc., wird entsprechend einer vom Brennstoffzellensystem geforderten Leistung gesteuert, wobei eine Spannung im elektrischen Netz auf einen vorgegebenen Wert geregelt wird. Die Spannung wird dabei vom Brennstoffzellensystem vorgegeben und mittels eines Reglers geregelt.
Als bevorzugter erfindungsgemäßer Regler kann beispielsweise ein DC/DC-Wandler, über den einem Energiespeicher Energie aus dem elektrischen Netz zugeführt und/oder über den dem elektrischen Netz Energie aus dem Energiespeicher zugeführt wird, eingesetzt werden. Alternativ hierzu könnte bei einem An- triebssystem auch der der DC/AC-Wandler des Antriebs als erfindungsgemäßer Regler genutzt werden.
In einem alternativen Verfahren wird dem elektrischen Netz Energie direkt aus dem Energiespeicher zugeführt und/oder dem Energiespeicher Energie direkt aus dem elektrischen Netz zugeführt, wobei das Brennstoffzellensystem die Spannung selbst regelt. Durch die Regelung der Spannung kann auf die erheblich aufwändigere Strombilanzierung verzichtet werden, da der Strom beim Absenken der Spannung automatisch erhöht und beim Anheben der Spannung automatisch verringert wird. Auf diese Weise kann gegenüber der Strombilanzierung ein Regelkreis eingespart werden.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 eine Anordnung mit einem Brennstoffzellensystem, einer elektrischen Maschine, einem weiteren elektrischen Verbraucher, einem DC/DC-Wandler und einem Energiespeicher, wobei zur Regelung der Spannung eine dem Brennstoffzellensystem entnommene Leistung ermittelt wird,
Fig. 2 die Anordnung aus Figur 1, wobei zur Regelung der Spannung eine dem Energiespeicher entnommene und/oder zugeführte Leistung ermittelt wird, und
Fig. 3 eine Anordnung mit einem Brennstoffzellensystem, einer elektrischen Maschine, einem weiteren elektrischen Verbraucher und einem Energiespeicher. Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist eine Anordnung mit einem Brennstoffzellensys- tem 1, einer elektrischen Maschine 2, einem weiteren elektrischen Verbraucher 3, einem DC/DC-Wandler 4 und einem Energiespeicher 5 gezeigt, beispielsweise in einem Kraftfahrzeug mit Hybridantrieb. Die elektrische Maschine 2 dient dem Antrieb des Kraftfahrzeugs und gegebenenfalls der Rekuperation von Energie aus einem Bremsvorgang. Zur Verbindung der elektrischen Maschine 2 mit einem elektrischen Netz 6 ist ein Umrichter 7 vorgesehen, der eine im Netz 6 vorhandene Zwischen- kreisspannung U in eine Wechselspannung umwandelt bzw. eine von der elektrischen Maschine 2 abgegebene Wechselspannung ins Netz 6 gleichrichtet. Das Brennstoffzellensystem 1, der elektrische Verbraucher 3 und der DC/DC-Wandler 4 sind ebenfalls mit dem elektrischen Netz 6 verbunden. Der DC/DC- Wandler 4 dient der Wandlung der Zwischenkreisspannung U aus dem Netz 6 in eine beispielsweise höhere Gleichspannung zur Einspeisung von Energie aus dem Brennstoffzellensystem 1 oder der elektrischen Maschine 2 in den Energiespeicher 5, der beispielsweise als eine Hochvoltbatterie ausgebildet ist. Ebenso kann der DC/DC-Wandler 4 Energie aus dem Energiespeicher 5 ins Netz 6 einspeisen, um einen kurzzeitigen Leistungsbedarf der elektrischen Maschine 2 oder des Verbrauchers 3 zu decken. Weiter ist eine Fahrzeugsteuereinheit 8 (auch als VCU - vehicle control unit bezeichnet) vorgesehen, über die zumindest die elektrische Maschine 2 und das Brennstoffzellensystem 1 gesteuert und/oder geregelt werden können. Geht der Fahrzeugsteuereinheit 8, beispielsweise durch Betätigung eines Fahrpedals eine Anforderung für ein von der e- lektrischen Maschine 2 zu erbringendes Solldrehmoment Msoii zu, wird diese Anforderung an die elektrische Maschine 2 weitergeleitet, so dass diese die erforderliche Leistung aus dem Netz 6 entnimmt. Zunächst wird diese Leistung vom Energiespeicher 5 erbracht. Gleichzeitig ergeht an das Brennstoff- zellensystem eine Anforderung zur Erbringung einer Sollleistung Psoii/ die sich beispielsweise gemäß folgender Formel aus einer Funktion des Solldrehmoments Mson, einer Leistung PBatt zum Laden oder Entladen des Energiespeichers 5 und einem Wirkungsgrad ηDcDc des DC/DC-Wandlers 4 ergibt:
Figure imgf000007_0001
• Gemäß der angeforderten Sollleistung Psoii regelt das Brennstoffzellensystem 1 eine Menge von Medien, beispielsweise Wasserstoff, Luft, Kühlmittel, die zur Erbringung der Sollleistung Pson benötigt werden.
Eine bereits kalkulierte Leistung Psoii kann dem Brennstoffzellensystem 1 zur Steigerung der Regelgeschwindigkeit als Vorsteuersignal zugeführt werden. Um einerseits die geforderte Sollleistung Pson sofort zur Verfügung zu stellen, auch wenn das Brennstoffzellensystem 1 sie aufgrund endlicher Regelzeiten noch nicht selbst erbringen kann und andererseits die Abnahme der eingespeisten Sollleistung Psoii sicher zu stellen, auch wenn die elektrische Maschine 2 sie nicht mehr in der aktuellen Höhe benötigt und um drittens flexibel auf wechselnden Leistungsbedarf des elektrischen Verbrauchers 3 reagieren zu können, gibt das Brennstoffzellensystem 1 die Höhe der Zwischenkreisspannung U,Soii vor und fordert bei DC/DC-Wandler 4 an, die Zwischenkreisspannung U auf diesen Wert zu regeln. Entsprechend der tatsächlichen Entnahme von Leistung aus dem Netz 6 reagiert der DC/DC-Wandler 4 hierzu mit Einspeisung von Leistung aus dem Energiespeicher 5 oder mit Entnahme von Leistung aus dem Netz 6 zum Laden des Energiespeichers 5.
Eine Belastung erfolgt so stets im Sinne einer Optimierung der Lebensdauer des Brennstoffzellensystems 1. Potentialabhängige Betriebsmodi können unabhängig von einer Lastvertei- lung eingestellt werden. Insbesondere muss der schwer vorhersagbare Leistungsbedarf des Verbrauchers 3 nicht gesondert berücksichtigt werden. Stattdessen erfolgt durch die Regelung der Zwischenkreisspannung U eine automatische Stromverteilung. Die Einstellung der Belastung des Brennstoffzellensys- tems 1 ist zudem mit einer Sollspannung stabiler und weniger kritisch als mit einem Sollstrom.
Die Leistungsfähigkeit des vom Energiespeicher 5 gestützten Netzes 6 ergibt sich aus der Summe der Maximalleistungen des Brennstoffzellensystems 1 und des Energiespeichers 5.
Die Leistungsabgabe des Brennstoffzellensystems 1 ist beim beschriebenen Verfahren stabil. Dies wird bei der Betrachtung eines extremen Lastsprungs deutlich, beispielsweise wenn die Sollleistung Psoii schlagartig von Null auf die Maximalleistung des Brennstoffzellensystems 1 erhöht wird, unter der Annahme, dass die Maximalleistung des Energiespeichers 5 wesentlich geringer als die des Brennstoffzellensystems 1 ist. Die tatsächliche Leistungsabgabe, beispielsweise an die e- lektrische Maschine 2, wird dann genau mit einer vom Brennstoffzellensystem 1 momentan verfügbaren Dynamik erfolgen, ohne dass ein Informationsaustausch zwischen dem Brennstoffzellensystem 1 und der Fahrzeugsteuereinheit 8 erforderlich ist. Bei der Leistungseinstellung wird in jedem Teilschritt jeweils nur die im Energiespeicher 5 verfügbare Maximalleistung in Anspruch genommen. Ist die erforderliche Dynamik auf Grund außerplanmäßigen Verhaltens des Brennstoffzellensystems 1, beispielsweise in einem Notlaufbetrieb, nicht verfügbar, wird nicht der stabile Betrieb sondern nur das Verhalten der Last (Fahrzeugantrieb) beeinträchtigt.
In Figur 2 ist die Anordnung aus Figur 1 gezeigt, wobei zur Regelung der Zwischenkreisspannung U eine dem Energiespei- eher 5 entnommene und/oder zugeführte Leistung PBatt ermittelt wird. Statt wie in Figur 1 die vom BrennstoffZeilensystem 1 in das Netz 6 momentan eingespeiste Leistung Pist zu ermitteln, wird hier die vom Energiespeicher 5 ins Netz 6 eingespeiste oder daraus entnommene Leistung PBatt als PiSt ermittelt. Entsprechend verändert das Brennstoffzellensystem 1 die durch den DC/DC-Wandler 4 zu regelnde Zwischenkreisspannung UZK.
In Figur 3 ist eine vereinfachte Anordnung mit einem Brennstoffzellensystem 1, einer elektrischen Maschine 2, einem weiteren elektrischen Verbraucher 3 und einem Energiespeicher 5 gezeigt, der nicht über einen DC/DC-Wandler 4, sondern direkt am Netz 6 angeschlossen ist. Der Energiespeicher 5 ist insbesondere als ein Doppelschichtkondensator ausgebildet. Bei einer Änderung der Leistungsanforderung wird die erforderliche Leistung zunächst sofort vom Energiespeicher 5 erbracht oder aufgenommen, woraufhin unmittelbar die Zwischenkreisspannung U entsprechen abfällt oder ansteigt. Die Regelung der Zwischenkreisspannung U und damit der vom Brennstoffzellensystem 1 abgegebenen Leistung erfolgt in diesem Fall direkt durch das Brennstoffzellensystem 1. Eine gemäß dem Zusammenhang Psoll = f(Msoll ) ermittelte Sollleistung Psoii kann ohne zwingendes Erfordernis dem Brennstoffzellensystem 1 als Vorsteuersignal zugeführt werden, um eine schnellere Re¬ gelung der angeforderten Leistung zu erreichen.
Der elektrische Verbraucher 3 steht exemplarisch für eine beliebige Anzahl elektrischer Verbraucher 3.
Jede der Komponenten Brennstoffzellensystem 1, elektrische Maschine 2, Verbraucher 3, DC/DC-Wandler 4, Energiespeicher 5, Umrichter 7, Fahrzeugsteuereinheit 8 kann an ein nicht gezeigtes Bussystem angeschlossen sein, beispielsweise einen CAN-Bus .
Eine Anforderung des BrennstoffZeilensystems 1 zur Regelung der Zwischenkreisspannung U kann prinzipiell an jede am Netz 6 angeschlossene Komponente, beispielsweise die elektrische Maschine 2, den elektrischen Verbraucher 3 oder den DC/DC-Wandler 4 ergehen. Besonders vorteilhaft ist jedoch eine Komponente, die dem Netz 6 sowohl Leistung entnehmen als auch zuführen kann, womit der den Energiespeicher 5 versorgende DC/DC-Wandler 4 besonders geeignet ist.
In jeder der gezeigten Ausführungsformen kann der Energiespeicher 5 bevorzugt als Hochvoltbatterie oder als Doppelschichtkondensator ausgebildet sein. Alternativ dazu sind andere Kondensatortypen, ein elektrisches Versorgungsnetz, herkömmliche Batterie usw. als Energiespeicher 5 denkbar.
Bezugszeichenliste
1 BrennstoffZeilensystem
2 Elektrische Maschine
3 Elektrischer Verbraucher
4 DC/DC-Wandler
5 Energiespeicher
6 Elektrisches Netz
7 Umrichter
8 Fahrzeugsteuereinheit
Msoll Solldrehmoment
F|DCDC Wirkungsgrad
Pßatt, Pist, Psoii Leistungen
SOC Ladungszustand
U Zwischenkreisspannung
Uzκ,soii vorgegebene Zwischenkreisspannung

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz (6) angeordneten elektrischen Verbraucher (3) und einem Brennstoffzellensys- tem (1), von welchem eine elektrische Leistung in das e- lektrische Netz (6) eingespeist wird, wobei eine dem Brennstoffzellensystem (1) zugeführte Menge von Medien entsprechend einer vom Brennstoffzellensystem (1) geforderten Leistung (Psoii) gesteuert wird, wobei eine Zwi- schenkreisspannung (U) im elektrischen Netz (6) auf einen vorgegebenen Wert (U,Soii) geregelt wird, dadurch gekennzeichnet, dass die Zwischenkreisspannung (U) vom Brennstoffzellensystem (1) vorgegeben und mittels eines Reglers geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Regler ein DC/DC-Wandler (4), über den einem Energiespeicher (5) Energie aus dem elektrischen Netz (6) zugeführt und/oder über den dem elektrischen Netz (6) Energie aus dem Energiespeicher (5) zugeführt wird, eingesetzt wird.
3. Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz (6) angeordneten elektrischen Verbraucher (3) und einem Brennstoffzellensys- tem (1), von welchem eine elektrische Leistung in das e- lektrische Netz (6) eingespeist wird, wobei eine dem BrennstoffZeilensystem (1) zugeführte Menge von Medien entsprechend einer vom Brennstoffzellensystem (1) geforderten Leistung (Psoii) geregelt wird, wobei eine Zwi- schenkreisspannung (U) im elektrischen Netz (6) auf einen vorgegebenen Wert (U,Soii) geregelt wird, dadurch gekennzeichnet, dass dem elektrischen Netz (6) Energie direkt aus einem Energiespeicher (5) zugeführt und/oder dem Energiespeicher (5) Energie direkt aus dem elektrischen Netz (6) zugeführt wird, wobei das Brennstoffzellensystem (1) die Zwischenkreisspannung (U) selbst regelt.
PCT/EP2008/008415 2007-10-12 2008-10-06 Verfahren zum betreiben eines systems aus mindestens einem in einem elektrischen netz angeordneten elektrischen verbraucher und einem brennstoffzellensystem WO2009049782A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007049081A DE102007049081A1 (de) 2007-10-12 2007-10-12 Verfahren zum Betreiben eines Systems aus mindestens einem in einem elektrischen Netz angeordneten elektrischen Verbraucher und einem Brennstoffzellensystem
DE102007049081.1 2007-10-12

Publications (1)

Publication Number Publication Date
WO2009049782A1 true WO2009049782A1 (de) 2009-04-23

Family

ID=39530975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/008415 WO2009049782A1 (de) 2007-10-12 2008-10-06 Verfahren zum betreiben eines systems aus mindestens einem in einem elektrischen netz angeordneten elektrischen verbraucher und einem brennstoffzellensystem

Country Status (2)

Country Link
DE (1) DE102007049081A1 (de)
WO (1) WO2009049782A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8626373B2 (en) 2009-07-09 2014-01-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of same
CN111770851A (zh) * 2018-02-28 2020-10-13 西门子交通有限公司 用于调节牵引电池的电池电流的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009013966A1 (de) 2009-03-19 2010-09-23 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
DE102009023339A1 (de) 2009-05-29 2011-02-03 Daimler Ag Steuerungsvorrichtung für ein Energieversorgungssystem eines Fahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048335A1 (en) * 2003-08-26 2005-03-03 Fields Robert E. Apparatus and method for regulating hybrid fuel cell power system output
US20050106432A1 (en) * 2003-11-19 2005-05-19 Converse David G. Electric storage augmentation of fuel cell system transient response
DE102004038330A1 (de) * 2004-08-06 2006-02-23 Daimlerchrysler Ag Verfahren zum Betreiben eines Systems aus wenigstens einem elektrischen Verbraucher und einer Brennstoffzelle
WO2006111428A1 (de) * 2005-04-21 2006-10-26 SIEMENS AKTIENGESELLSCHAFT öSTERREICH Verfahren zum betreiben eines wechselrichters mit vorgeschaltetem hochsetzer
JP2007265840A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048335A1 (en) * 2003-08-26 2005-03-03 Fields Robert E. Apparatus and method for regulating hybrid fuel cell power system output
US20050106432A1 (en) * 2003-11-19 2005-05-19 Converse David G. Electric storage augmentation of fuel cell system transient response
DE102004038330A1 (de) * 2004-08-06 2006-02-23 Daimlerchrysler Ag Verfahren zum Betreiben eines Systems aus wenigstens einem elektrischen Verbraucher und einer Brennstoffzelle
WO2006111428A1 (de) * 2005-04-21 2006-10-26 SIEMENS AKTIENGESELLSCHAFT öSTERREICH Verfahren zum betreiben eines wechselrichters mit vorgeschaltetem hochsetzer
JP2007265840A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8626373B2 (en) 2009-07-09 2014-01-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of same
CN111770851A (zh) * 2018-02-28 2020-10-13 西门子交通有限公司 用于调节牵引电池的电池电流的方法
CN111770851B (zh) * 2018-02-28 2023-05-12 西门子交通有限公司 用于调节牵引电池的电池电流的方法

Also Published As

Publication number Publication date
DE102007049081A1 (de) 2008-07-24

Similar Documents

Publication Publication Date Title
DE102016214662B4 (de) Verfahren zum Steuern eines Brennstoffzellensystems und Brennstoffzellenautomobil
DE102011084777B4 (de) Fahrzeugstromversorgungssystem
DE102015119565B4 (de) Verfahren zum Steuern eines externen elektrischen Leistungsversorgungssystems eines Fahrzeugs mit montierter Brennstoffzelle und externes elektrisches Leistungsversorgungssystem
EP1868837B1 (de) Antriebssystem und verfahren zum betrieb eines antriebssystems für ein elektrisch betriebenes fahrzeug
DE10200120B4 (de) Verfahren zur Regelung eines lastabhängigen Stromgeneratorsystems in einem Elektrofahrzeug
EP1272418B1 (de) Notstromversorgungseinrichtung für aufzugsanlagen
DE102015118114B4 (de) Brennstoffzellensystem, Brennstoffzellenfahrzeug und Verfahren zum Steuern eines Brennstoffzellensystems
EP1325542B1 (de) Verfahren zur regelung der generatorspannung in einem kraftfahrzeug
DE102012208199A1 (de) Brennstoffzellen-Fahrzeug
DE112008002650B4 (de) Brennstoffzellenausgabesteuervorrichtung
DE60316534T2 (de) Stromquelle für einen elektrischen Motor
EP2758268B1 (de) Steuervorrichtung für einen gleichspannungswandler eines elektrischen antriebssystems und verfahren zum betreiben eines gleichspannungswandlers
DE112009002696B4 (de) Brennstoffzellensystem
DE112006000801T5 (de) Leistungsversorgungssystem, das mit einer Vielzahl von Leistungsversorgungseinrichtungen ausgestattet ist, und Fahrzeug, das mit einem solchen Leistungsversorgungssystem ausgestattet ist
DE102006056374A1 (de) Spannungsversorgungssystem eines Hybridbrennstoffzellenbusses und Steuerungsverfahren dafür
DE102011008247B4 (de) Steueralgorithmus für Niederspannungsschaltung in Hybrid- und herkömmlichen Fahrzeugen
DE112008002812B4 (de) Ausgangsleistungssteuerungsverfahren für eine Brennstoffzelle
EP1974979B1 (de) Flurförderzeug mit Hybridantrieb
DE112007002040T5 (de) Brennstoffzellensystem und mobile Karosserie
DE102017102918A1 (de) Leistungszufuhrverfahren und Leistungszufuhrsystem
DE102018100722A1 (de) Batteriesystem-steuerungsvorrichtung und batteriesystem
WO2017085051A1 (de) Mehrspeichersystem und verfahren zum betrieb eines mehrspeichersystems
WO2009049782A1 (de) Verfahren zum betreiben eines systems aus mindestens einem in einem elektrischen netz angeordneten elektrischen verbraucher und einem brennstoffzellensystem
DE102012022646A1 (de) Stromversorgungssystem und Antriebssystem für ein elektrisch betriebenes Fahrzeug sowie Verfahren zum Betreiben eines elektrisch betriebenen Fahrzeugs
DE102012203219A1 (de) Verfahren für den Betrieb eines Antriebssystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08802791

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08802791

Country of ref document: EP

Kind code of ref document: A1