WO2009049375A1 - Process for the preparation of graphene - Google Patents
Process for the preparation of graphene Download PDFInfo
- Publication number
- WO2009049375A1 WO2009049375A1 PCT/AU2008/001543 AU2008001543W WO2009049375A1 WO 2009049375 A1 WO2009049375 A1 WO 2009049375A1 AU 2008001543 W AU2008001543 W AU 2008001543W WO 2009049375 A1 WO2009049375 A1 WO 2009049375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- process according
- paper
- graphite oxide
- sheets
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
Definitions
- the present invention relates to a process for the preparation of graphene which can be used in the development of graphene paper or films, graphene-based composites and articles for nanoelectronics, nanocomposites, batteries, supercapacitors, hydrogen storage and bioapplications .
- Graphene is essentially an individual layer of graphite. Graphene can also be thought of as a carbon nanotube unrolled as shown in Figure 9.
- Graphene sheets offer many extraordinary properties and are being investigated for use in nanoelectronics, nanocomposites, batteries, supercapacitors, hydrogen storage and bioapplications .
- the main limitation for the use of graphene sheets is the current inability to mass produce them.
- a key challenge in the synthesis and processing of bulk-quantity graphene sheets is aggregation.
- Graphene sheets with high specific surface area, unless well separated from each other, tend to form irreversible agglomerates or even restack to form graphite due to van der Waals interactions. This problem has been encountered in all previous efforts aimed at large-scale production of graphene through chemical conversion or thermal expansion/reduction.
- the present invention provides a process for the preparation of graphene or a graphene dispersion which comprises reducing purified exfoliated graphite oxide in the presence of a base .
- the graphene dispersion may be an aqueous graphene dispersion.
- the process of the present invention results in the large scale preparation of the graphene or graphene dispersion which does not require presence of foreign polymermic or surfactant stablisisers which can be used in the development of graphene paper or films, graphene-based composites or articles for nanoelectronics, nanocomposites, batteries, supercapacitors, hydrogen storage and bioapplications . It has been demonstrated that the graphene paper or film displays a remarkable combination of thermal, mechanical and electrical properties, whilst preliminary cytotoxicity tests suggest biocompatibility, making this material attractive for many potential applications.
- a paper, film or composite which comprises the graphene as prepared by the process defined above.
- an article which is wholly or partly composed of the graphene prepared by the process defined above and/or the paper, film or composite defined above.
- a process for preparing a graphene paper or film which comprises filtration of the graphene dispersion prepared by the process defined above.
- the present invention relates to a process for the preparation of graphene.
- Graphene is essentially an individual layer of graphite or graphite nanoplatelets and is generally in the form of graphene sheets.
- Graphite nanoplatelets have recently attracted considerable attention as a viable and inexpensive filler substitute for carbon nanotubes in nanocomposites, given the predicted excellent in-plane mechanical, structural, thermal and electrical properties of graphite. As with carbon nanotubes, full utilisation of graphite nanoplatelets in polymer nanocomposite applications will inevitably depend on the ability to achieve complete dispersion of the nanoplatelets in the polymer matrix of choice.
- the graphene prepared by the process of the present invention may also be in the form of a graphene dispersion including an aqueous graphene dispersion which enables the use of solution phase chemistry to further functionalise the graphene sheets.
- the process of the present invention involves reducing purified exfoliated graphite oxide in the presence of a base.
- Graphite which consists of a stack of flat graphene sheets is inexpensive and available in large quantities both from natural and synthetic sources .
- Graphite oxide can be synthesised by chemical oxidation of graphite using any suitable known oxidising agents such as a combination of H 2 SO 4 , HNO 3 and KClO 4 1 ; a combination of H 2 SO 4 and KMnO 4 2 ; or a combination of KClO 4 and fuming HNO 3 3 .
- Graphite oxide is hydrophilic and therefore may also be prepared in the form of a graphite oxide dispersion.
- Exfoliated graphite oxide or graphene oxide can form well-dispersed aqueous dispersions.
- a study conducted on the surface charge (zeta potential) of as-prepared graphene oxide (GO) sheets shows that these sheets are highly negatively charged when dispersed in water (see Figure Ia) , apparently as a result of ionisation of carboxylic acid and phenolic hydroxyl groups that are known to exist on the graphene oxide sheets. This result suggests that the formation of stable graphene oxide dispersions should be attributed to electrostatic repulsion, rather than just the hydrophilicity of graphene oxide as previously presumed. Given that carboxylic acid groups are unlikely to be reduced, these groups should therefore remain in the reduced product as confirmed by FT-IR analysis (see Figure Ib) .
- the graphite oxide is exfoliated to graphene oxide by using any suitable known technique such as ultrasonication or mechanical stirring.
- any suitable known technique such as ultrasonication or mechanical stirring.
- both the purified graphite oxide and the graphene oxide may be in the form of dispersions.
- the graphene oxide or graphene oxide dispersions may then be further purified using, for example, centrifugation, to remove any unexfoliated graphite oxide which may be present in small amounts .
- the purified exfoliated graphite oxide which is now in the form of graphene oxide is then subjected to reduction in the presence of a base.
- the reduction is preferably a chemical reduction which involves adding a reducing agent to the graphene oxide.
- suitable reducing agents include inorganic reducing agents such as hydrazine or NaBH 4 and organic reducing agents such as hydroquinone , dimethylhydrazine or N, N'- diethylhydroxylamine .
- the reducing agent is hydrazine.
- the reducing agent when it is hydrazine, it may be added in an amount of 1.0 to 7.Og of 35% hydrazine per gram of graphite oxide, preferably 1.5 to 5.Og of 35% hydrazine per gram of graphite oxide, more preferably 1.5 to 2.5g of 35% hydrazine per gram of graphite oxide.
- the colloidal stability of an electrostatically stabilised dispersion is dependent on pH, the electrolyte concentration as well as the content of dispersed particles. By controlling these parameters, it has now been found graphene sheets are able to form stable colloids through electrostatic stabilisation. Graphene oxide dispersions can be directly converted to stable graphene colloids through reduction under controlled conditions. The use of polymeric or surfactant stabilisers is not required. In order to obtain maximal charge density on the resulting graphene sheets, a base is added during the reduction to increase the pH, preferably 6 or greater, more preferably 9 to 11.
- Suitable bases include water soluble inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide or water soluble organic bases such as methylamine ethanolamine , dimethylamine and trimethylamine .
- the base is a volatile base such as ammonia which can be removed after the graphene sheets are processed into solid films or composites.
- the base may be added in an amount of 7.0 to 20.Og of 28% ammonia per gram of graphite oxide, preferably 8.0 to 16.Og of 28% ammonia per gram of graphite oxide, more preferably 10.0 to 13.Og of 28% ammonia per gram of graphite oxide. It will be appreciated that the amount of base is dependent on the type of base used.
- Suitable water- immiscible liquids include oils such as water immiscible oils having densities lower than water (to float on water) and boiling temperatures higher than 100 0 C such as toluene, mineral oil, paraffin and hydrophobic ionic liquids. It will be understood that the amount of water- immiscible liquid will be dependent on the area of water surface.
- a layer of water-immiscible liquid that can substantially cover the water surface will suffice. It has been observed that if graphene oxide dispersions with concentrations less than 0.5 mg/mL are reduced by hydrazine under these conditions, the particle size of the resulting graphene sheets does not increase after the reduction is complete (see Figure 2a) . Substantially no sediment is observed even after the dispersion has been centrifuged at 4000 RPM for several hours. Atomic force microscopy (AFM) shows that the resulting graphene sheets that are cast on a silicon wafer are flat, with a thickness of ⁇ 1 nm (see Figure 2b) .
- AFM Atomic force microscopy
- the graphene or graphene dispersions prepared by the process of the invention can be used in the development of graphene papers or films, graphene-based composites and articles for engineering applications.
- the graphene may be deposited on substrates and membranes in any suitable form including sheets, films, paper and coatings. It is envisaged that biomolecules including antibodies, growth factors and enzymes could be incorporated into the graphene.
- biomolecules including antibodies, growth factors and enzymes could be incorporated into the graphene.
- the formation of composites with other conductors including conducting polymers, metal or carbon nanotubes, metal nanoparticles, bucky balls or the formation of unique catalytic structures (e.g. containing porphyrins or enzymes) is also expected to be possible.
- the formation of biologically functional composites containing specific growth promoters, drugs, antibodies or other biological entities is also envisaged.
- a single layer of graphene sheets can be deposited on a substrate by drop-casting from a dilute graphene dispersion (see Figure 2b) , which provides a facile approach to obtain single graphene sheets for device fabrication or studies on the properties of individual sheets.
- Uniform graphene papers or films can also be readily formed on a membrane filter by vacuum filtration of as-reduced dispersions. Freestanding films or graphene paper ' can be peeled off from the membrane . The samples of graphene paper were then annealed at different temperatures before being cooled down to room temperature for various measurements . The resulting films are bendable and exhibit a shiny metallic luster (Figure 4a) .
- the conductivity is found to be -6000 S/m at room temperature, which is comparable to that of chemically modified single-walled carbon nanotube paper 5 .
- the graphene dispersions are dried, they are not dispersible in water any more, making as-prepared graphene films water- resistant.
- strong graphene oxide paper can be prepared using a similar strategy 6 .
- the resulting paper could find use in many fields such as membranes, anisotropic conductors and supercapacitors .
- Preliminary measurements show that the graphene paper obtained from direct filtration of the stable graphene dispersions gives a tensile modulus up to 35 GPa, which is close to that of the graphene oxide paper. It is expected that strong, conductive, flexible, and thermally stable graphene paper should be more attractive than non-conductive, less thermally stable graphene oxide paper for practical applications.
- graphene paper Another remarkable property of graphene paper is the high thermal stability, especially when compared with graphene oxide using thermogravimetric analysis (TGA) ( Figure 6A) .
- TGA thermogravimetric analysis
- Figure 6A The mass loss below 200°C can be attributed to the evaporation of adsorbed water. A slight mass loss appears between 200 0 C and 500 0 C, presumably owing to the decomposition of some residual oxygen-containing groups.
- there is no sharp weight loss at around 200 0 C for graphene paper indicating that most oxygen-containing groups have been removed by the hydrazine reduction.
- the total weight loss ( ⁇ 10%) of graphene paper between 200 0 C and 500 0 C is much lower than that of graphene oxide paper (-30% loss) .
- the d-spacing of the resulting graphene paper is slightly greater than, but quite close to that of graphene layers in pristine natural graphite, indicating that chemically prepared graphene sheets are similar to the pristine sheets.
- the slightly increased d-spacing of chemically prepared graphene paper can be ascribed to the presence of a small amount of residual oxygen-containing functional groups or other structural defects.
- the electrical conductivity of graphene paper is found to increase with treatment temperature ( Figure 6C) .
- the electrical conductivity of thermally treated graphene oxide paper is found to be lower than that of the graphene paper of the present invention, most likely owing to the disrupted structure of heat treated graphene oxide.
- the conductivity of graphene oxide paper heat treated at 220 and 500 0 C is around 0.8 and 59 S/cm, respectively, while the graphene paper of the present invention treated at the same temperatures exhibits a conductivity of 118 and 351 S/cm, respectively.
- the conductivity of the graphene paper sample treated at 500 °C is an order of magnitude higher than that reported for compressed pristine graphite powder, again indicative of a strong inter-sheet interaction in the graphene paper. 12
- graphene paper is supposed to be formed by stacking and interlocking of individual sheets under a filtration-induced directional flow. Given that individual graphene sheets are predicted to have a tensile modulus of up to 1.01 TPa 13 and the sheets are well packed in graphene paper, it is postulated that like graphene oxide paper, graphene paper should have excellent mechanical properties. Mechanical analysis of the graphene paper reveals that the stiffness and tensile strength is comparable to or, if properly annealed, higher than those of graphene oxide paper.
- Figure 7A presents typical stress-strain curves of graphene paper annealed at various temperatures.
- the sample annealed at 220°C yields the greatest mean Young's modulus at 41.8 GPa, and the greatest mean tensile strength at 293.3 MPa. Although the values are still much lower than those of individual sheets (likely due to the weaker bonding between sheets) , they are both higher than those of graphene oxide paper and over ten times higher than the corresponding values for flexible graphite foils 6 ' 14 ' 15 . When the heat treatment is performed at temperatures above 220°C, the graphene paper becomes more brittle and the measured stiffness and strength tend to decrease with annealing temperature.
- L-929 cells are found to adhere to and proliferate on the graphene papers, such that by 48 h of culture time a sub-confluent layer of metabolically active cells can be visualized ( Figure 8) .
- the doubling time for the cells is the same on graphene papers as on commercial polystyrene tissue culture plastic, indicating normal proliferation rates on these materials.
- graphene paper provides a good substrate for the adhesion and proliferation of L-929 cells, suggesting that chemically- prepared graphene may be a biocompatible material .
- Spraying techniques such as air-brushing can also be used to produce conductive graphene coatings on various substrates.
- Figure 4b shows a transmittance spectrum of a sprayed graphene coating on a glass slide.
- the coating gives a sheet resistivity of 2.0 x 10 7 ⁇ /D at room temperature, while the transmittance in the visible wavelength range is higher than 96%.
- the conductivity of this as-sprayed coating is sufficient for antistatic applications.
- Antistatic coatings are vital to the safety of materials, machinery and individuals across many different industries.
- graphene sheets can be successfully assembled using this approach.
- Thin films of graphite oxide sheets have been previously prepared using this technique.
- an additional reduction step is needed to make the resulting graphite oxide film conducting. This reduction process is likely to be detrimental to composites containing more delicate molecular structures such as biomolecules or conjugated polymers.
- self- assembled multilayered electroactive films hold great potential in many applications such as sensors and neuroprosthetic devices. It would be reasonable to expect that the successful formation of graphene dispersions will open up the door to use this powerful electrostatic assembly technique to manipulate graphene sheets for creating many new and potentially useful nanosystems.
- aqueous graphene dispersions can be readily formed by reduction of graphene oxide without the need for either polymeric or surfactant stabilisers.
- Graphene sheets are superior to normal synthetic conducting polymers in terms of thermal and chemical stability and mechanical strength, and more competitive than carbon nanotubes in terms of production cost.
- the successful dissolution of graphene sheets in solution as well as the residual carboxylic groups on the sheets enables the use of solution-phase chemistry to further functionalise graphene sheets for new uses.
- the ease of synthesis and the exceptional solution-phase processability of graphene sheets make this conductive nanostructure attractive not only for future nanoelectronics, but also for large-scale applications in both conventional technological fields, e.g.
- the graphene can be used to prepare transparent conductive coatings to be used for example on LCD and other visual screens including flexible screen technology.
- graphene paper can be prepared by directional flow- induced assembly of graphene sheets that are well dispersed in solution. Moderate thermal annealing can enhance its mechanical stiffness and strength as well as electrical conductivity.
- the results of cell culture experiments also indicate that graphene paper may be biocompatible and therefore suitable for biomedical applications.
- the combination of the exceptional mechanical strength, thermal stability, high electrical conductivity and biocompatibility makes graphene paper a promising material for many technological applications from electrodes for flexible batteries to biomedical applications, such as inclusion in heart valves.
- Figure 1 are graphs showing surface properties of graphene oxide (GO) and chemically converted graphene (CCG) .
- GO graphene oxide
- CCG chemically converted graphene
- a Zeta potential of GO and CCG as a function of pH, in aqueous dispersions at a concentration of 0.05 mg/mL.
- b FT-IR spectra of GO and CCG.
- the absorption band at around 1700 cm "1 is attributed to carboxyl groups.
- the absorption of CCG sheets at this range is observable but not as prominent as that observed for GO, likely due to the overlapping of the strong absorption of graphene sheets in this region.
- FIGS. 1 and 2 are graphs and photographs showing colloidal and morphological characterization of CCG dispersions, a. The effect of the addition of ammonia on the dispersion state of CCG sheets, characterized by measuring the average particle sizes over a long period of time. The photographs shown in the inset were taken two days later after the reduction reaction was complete with (left) and without (right) the addition of ammonia. The concentration of the starting graphene oxide solution is 0.25 mg/mL.
- b Tapping-mode AFM image of CCG sheets with a height profile taken along the straight line. The sample was prepared by drop-casting a dilute CCG dispersion onto a silicon wafer.
- c and d The Tyndall effect and salt effect confirming the colloidal nature of the CCG dispersions.
- the salt effect experiment highlights the importance of removal of residual salts and acids from the graphene oxide dispersion.
- Figure 3 is a UV-Vis absorption spectra showing the change of graphene oxide dispersions as
- Figure 4 are photographs and graphs demonstrating that films made of CCG sheets can be easily fabricated from CCG dispersions using various solution-phase processing techniques, a. A 10 ⁇ m-thick CCG film or paper prepared by vacuum filtration of a CCG dispersion through an alumina membrane. The film exhibits a shiny metallic luster. A CCG strip (top-right inset) cut from the film is bent to demonstrate its flexibility; b. A transmission spectrum of a CCG coating deposited on a glass slide by air-brush spraying of a CCG solution. The transmittance in the visible light range is greater than 96%; c. UV-Vis spectra of polycation/CCG films prepared by a layer-by- layer electrostatic self-assembly technique. The absorbance increases linearly with an increase in the number of assembly cycles (denoted above each curves) , indicative of the successful assembly of CCG sheets on the substrate .
- Figure 5 are photographs of a top-view SEM image of the graphene paper sample of Figure 4a showing the smooth surface and C, D) side view SEM images of a ca. 6 ⁇ m thick sample at increasing magnification.
- Figure 6 are graphs showing A) normalized remaining mass of graphene paper as a function of temperature in air and argon gas, respectively.
- Figure 7 are graphs showing A) typical stress-strain curves, B) Young's modulus, and C) tensile strength of graphene paper strips that have been heat-treated at various temperatures.
- the mechanical properties of GO paper are also presented in (B) and (C) for comparison.
- the data shown in (B) and (C) are averages of six measurements .
- Figure 8 is a fluorescence microscopy image of calcein- stained L- 929 cells growing on graphene paper.
- Figure 9 is a diagram showing that graphene is essentially an individual layer of graphite and can be regarded as a carbon nanotube unrolled.
- Synthesis Graphite oxide was synthesised from natural graphite (SP-I, Bay Carbon) by applying the Hummers method 1 with an additional dialysis step used to purify the product. As- synthesized graphite oxide was suspended in water to give a brown dispersion, which was subjected to dialysis to completely remove residual salts and acids. Ultrapure Milli-Q ® water was used in all experiments. As-purified graphite oxide suspensions were then dispersed in water to create a 0.05 wt% dispersion. Exfoliation of graphite oxide to graphene oxide was achieved by ultrasonication of the dispersion using a Brandson Digital Sonifier (S450D, 500 W, 30% amplitude) for 30 min.
- S450D Brandson Digital Sonifier
- the obtained brown dispersion was then subjected to 30 min of centrifugation at 3000 RPM to remove any unexfoliated graphite oxide (usually present in a very small amount) .
- the resulting homogeneous dispersion (5.0 mL) was mixed with 5.0 mL of water, 5.0 ⁇ L of hydrazine solution (35 wt% in water, Aldrich) and 35.0 ⁇ L of ammonia solution (28 wt% in water, Crown Scientific) in a 20 mL-glass vial. After being vigorously shaken or stirred for a few minutes, the vial was put in a water bath (-95 0 C) for 1 h. The excess hydrazine in the reaction mixture can be removed by dialysis against a dilute ammonia solution.
- UV-visible absorption and/or transmission spectra were taken using a Shimadzu UV 1601 spectrophotometer. The spectra were taken from the reaction mixture (diluted by a factor of 30) at different times.
- the dispersion/aggregation state of CCG sheets in water was monitored by measuring their average particle size using a Malvern Zetasizer Nano-ZS particle analyzer. Note that the particle size measurement on this instrument is based on the assumption that the particles are spherical, thus the instrument is unable to give the absolute sizes of graphene sheets. Nevertheless, the measurements obtained provide a means of monitoring dispersion stability.
- Attenuated total reflectance FT-IR spectra of freestanding films prepared by vacuum filtration were recorded on a Nicolet AVATAR 360 FTIR spectrometer with a Smart OMNI Sampler with a germanium crystal .
- AFM images were taken in tapping mode with the SPM Dimension 3100 from Veeco.
- Conductivity measurements of free-standing CCG films prepared by vacuum filtration were carried out on a Jandel RM3 Test Unit using a 4 -point-probe head with a pin-distance of about 1 mm.
- Graphene paper was fabricated by vacuum filtration of graphene dispersions.
- graphite oxide was synthesized from natural graphite powder (SP-I , Bay Carbon, Bay City,
- Graphene paper was made by filtration of a measured amount of the resulting colloid through an Anodisc membrane filter (47 mm in diameter, 0.2 ⁇ m pore size, Whatman), followed by air drying and peeling from the filter. Unless specifically stated, graphene paper with a thickness of around 6 ⁇ m was used for all measurements reported in this work. These samples of graphene paper were annealed at different temperatures in air ( ⁇ 220°C) or argon (>220°C) for 1 h before being cooled down to room temperature for various measurements. For comparison, graphene oxide paper was also prepared, using a similar filtration method, as reported in Reference 6.
- the samples were cut with a razor into rectangular strips of approximately 3 mm x 15 mm for mechanical testing and were gripped using a film tension clamp with a clamp compliance of about 0.2 ⁇ m N "1 . All tensile tests were conducted in controlled strain rate mode with a preload of 0.01 N and a strain ramp rate of 0.05% min "1 .
- Conductivity measurements were carried out on a Jandel RM3 Conductivity Meter using a 4 -point-probe head. SEM images were obtained using a Hitachi S-900 field-emission scanning electron microscope operated at an accelerating voltage of 4 kV.
- Biocompatibility Test Graphene paper that was thermally annealed at 100 0 C was screened for biocompatibility by monitoring the growth of L-929 (mouse fibroblast) cells.
- the graphene paper samples were placed into wells of a 96 well polystyrene cell culture plate and soaked overnight in two changes of culture media, then rinsed with water to remove soluble impurities. The samples were sterilized by rinsing with 70% ethanol, followed by air-drying and placing under UV light for 20 min. Samples were seeded with 5x103 L-929 mouse fibroblast cells per well, and cultured in DMEM :F12 media supplemented with 5 % FBS for 48 h. Finally the cells were stained with Calcein AM, which was cleaved to yield a green fluorescent product by metabolically active cells. Images were obtained using a Leica DMIL inverted fluorescence microscope equipped with a Leica DC500 camera.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/738,758 US8715610B2 (en) | 2007-10-19 | 2008-10-17 | Process for the preparation of graphene |
CN200880121723.XA CN102066245B (en) | 2007-10-19 | 2008-10-17 | Process for the preparation of graphene |
AU2008314512A AU2008314512B2 (en) | 2007-10-19 | 2008-10-17 | Process for the preparation of graphene |
JP2010529196A JP5605650B2 (en) | 2007-10-19 | 2008-10-17 | Method for producing graphene dispersion |
EP08839659.3A EP2212248B1 (en) | 2007-10-19 | 2008-10-17 | Process for the preparation of graphene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007905796A AU2007905796A0 (en) | 2007-10-19 | Process for the preparation of graphene | |
AU2007905796 | 2007-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009049375A1 true WO2009049375A1 (en) | 2009-04-23 |
Family
ID=40566933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2008/001543 WO2009049375A1 (en) | 2007-10-19 | 2008-10-17 | Process for the preparation of graphene |
Country Status (6)
Country | Link |
---|---|
US (1) | US8715610B2 (en) |
EP (1) | EP2212248B1 (en) |
JP (1) | JP5605650B2 (en) |
CN (1) | CN102066245B (en) |
AU (1) | AU2008314512B2 (en) |
WO (1) | WO2009049375A1 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101844763A (en) * | 2010-06-24 | 2010-09-29 | 上海交通大学 | Graphene preparation method based on phenolphthalein |
CN101844761A (en) * | 2010-05-28 | 2010-09-29 | 上海师范大学 | Method of adopting laser radiation for preparing reduction-oxidation graphene |
EP2256087A1 (en) * | 2009-05-26 | 2010-12-01 | Belenos Clean Power Holding AG | Stable dispersions of single and multiple graphene layers in solution |
JP2011018415A (en) * | 2009-07-10 | 2011-01-27 | Tdk Corp | Magnetic sensor |
CN101966989A (en) * | 2010-11-18 | 2011-02-09 | 东华大学 | Method for realizing photocatalytic reduction of graphene oxide by quadrangular zinc oxide |
WO2011019095A1 (en) * | 2009-08-10 | 2011-02-17 | N-Baro Tech Co., Ltd | A method of producing nano-size graphene-based material and an equipment for producing the same |
WO2011042800A1 (en) | 2009-10-07 | 2011-04-14 | Polimeri Europa S.P.A. | Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity |
WO2011055198A1 (en) | 2009-11-03 | 2011-05-12 | Polimeri Europa S.P.A. | Process for the preparation of nano-scaled graphene platelets with a high dispersibility in low-polarity polymeric matrixes and relative polymeric compositions |
JP2011111367A (en) * | 2009-11-27 | 2011-06-09 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film |
JP2011144071A (en) * | 2010-01-14 | 2011-07-28 | Sekisui Chem Co Ltd | Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film |
JP2011144060A (en) * | 2010-01-13 | 2011-07-28 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material |
CN101702345B (en) * | 2009-11-27 | 2011-08-03 | 南京邮电大学 | Preparation method for laminated graphene conductive film |
CN102145882A (en) * | 2011-02-24 | 2011-08-10 | 暨南大学 | Method for preparing water soluble graphene |
JP2011168449A (en) * | 2010-02-19 | 2011-09-01 | Fuji Electric Co Ltd | Method for manufacturing graphene film |
JP2011184264A (en) * | 2010-03-10 | 2011-09-22 | Sekisui Chem Co Ltd | Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film |
WO2011136478A2 (en) * | 2010-04-27 | 2011-11-03 | Korea Institute Of Science And Technology | Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same |
CN101654243B (en) * | 2009-08-28 | 2011-11-23 | 青岛大学 | Preparation method of functional nano-graphene |
CN102249220A (en) * | 2011-03-18 | 2011-11-23 | 太原理工大学 | Quick preparation method for graphene oxide film |
US20110286147A1 (en) * | 2008-10-24 | 2011-11-24 | Tianjin Pulan Nano Technology Co., Ltd. | Electrode material and capacitor |
WO2011147924A1 (en) | 2010-05-28 | 2011-12-01 | Basf Se | Use of expanded graphite in lithium/sulphur batteries |
CN102307024A (en) * | 2011-06-21 | 2012-01-04 | 南京航空航天大学 | Graphene-based fluid power generating device for fluctuation sensing device |
WO2012006657A1 (en) | 2010-07-14 | 2012-01-19 | Monash University | Material and applications therefor |
JP2012015481A (en) * | 2010-06-01 | 2012-01-19 | Sony Corp | Field effect transistor manufacturing method, field effect transistor and semiconductor graphene oxide manufacturing method |
JP2012031024A (en) * | 2010-08-02 | 2012-02-16 | Fuji Electric Co Ltd | Method for manufacturing graphene thin film |
CN102403050A (en) * | 2010-09-08 | 2012-04-04 | 中国科学院金属研究所 | Composite material based on nanometer, preparation method of composite material and application in flexible energy storage device |
WO2012046069A1 (en) * | 2010-10-07 | 2012-04-12 | The University Of Manchester | Graphene oxide |
CN102452650A (en) * | 2010-10-27 | 2012-05-16 | 清华大学 | Process for preparing graphene by cryochemical method |
WO2012086260A1 (en) * | 2010-12-24 | 2012-06-28 | 株式会社豊田中央研究所 | Nitrogen-containing graphene structure, and phosphor dispersion liquid |
CN102557013A (en) * | 2010-12-28 | 2012-07-11 | 国家纳米科学中心 | Preparation method for reduced graphene oxide |
JP2012136566A (en) * | 2010-12-24 | 2012-07-19 | Toyota Central R&D Labs Inc | Carbon phosphor and phosphor dispersion liquid |
WO2012116593A1 (en) * | 2011-02-28 | 2012-09-07 | 无锡第六元素高科技发展有限公司 | Chemical processing method for graphene material having high specific surface area by using strong alkali |
CN102730668A (en) * | 2011-04-07 | 2012-10-17 | 东丽纤维研究所(中国)有限公司 | Method for preparing grapheme through solvothermal technique based on aromatic alcohol |
CN102730667A (en) * | 2011-04-08 | 2012-10-17 | 安炬科技股份有限公司 | Method for preparing monolayer graphite |
JP2012240853A (en) * | 2011-05-16 | 2012-12-10 | Panasonic Corp | Method of manufacturing graphene film |
JP2013006732A (en) * | 2011-06-23 | 2013-01-10 | Toyota Central R&D Labs Inc | Nitrogen-containing graphene structure and phosphor dispersion liquid |
CN103145124A (en) * | 2013-03-27 | 2013-06-12 | 北京大学 | High-performance graphene paper and preparation method thereof |
CN103335741A (en) * | 2013-06-19 | 2013-10-02 | 暨南大学 | Graphene based optical fiber temperature sensor and manufacturing method thereof |
RU2495752C1 (en) * | 2012-04-02 | 2013-10-20 | Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) | Method of producing composite including laminar graphite- and molybdenum sulphide-based materials |
CN103367696A (en) * | 2012-03-29 | 2013-10-23 | 海洋王照明科技股份有限公司 | Anode plate, preparation method thereof and lithium ion battery |
US20130330477A1 (en) * | 2010-10-28 | 2013-12-12 | University Of Central Florida Research Foundation, Inc. | Oxidized graphite and carbon fiber |
CN103702936A (en) * | 2011-07-22 | 2014-04-02 | 株式会社半导体能源研究所 | Graphite oxide, graphene oxide or graphene, electric device using same and method of manufacturing same, and electrodialysis apparatus |
JP2015511574A (en) * | 2012-03-31 | 2015-04-20 | ▲海▼洋王照明科技股▲ふん▼有限公司 | Graphene paper manufacturing method |
US9090826B2 (en) | 2010-12-24 | 2015-07-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Light emitting body |
US9120676B2 (en) | 2012-03-06 | 2015-09-01 | Empire Technology Development Llc | Graphene production |
WO2015164916A1 (en) * | 2014-05-01 | 2015-11-05 | Rmit University | Graphene production process |
JP2016001881A (en) * | 2010-12-30 | 2016-01-07 | エプコス アクチエンゲゼルシャフトEpcos Ag | Electronic acoustic device and method of manufacturing the same |
US9309122B2 (en) | 2009-11-03 | 2016-04-12 | Centre National De La Recherche Scientifique | Preparation of graphene by mechanically thinning graphite materials |
US9321254B2 (en) | 2010-12-08 | 2016-04-26 | 3M Innovative Properties Company | Article and method of making and using the same |
US9418770B2 (en) | 2009-08-07 | 2016-08-16 | Guardian Industries Corp. | Large area deposition and doping of graphene, and products including the same |
US9593019B2 (en) | 2013-03-15 | 2017-03-14 | Guardian Industries Corp. | Methods for low-temperature graphene precipitation onto glass, and associated articles/devices |
CN106629696A (en) * | 2016-09-20 | 2017-05-10 | 天津工业大学 | Preparation of reduced graphene oxide thin film by virtue of vacuum evaporation method |
US9807917B2 (en) | 2010-12-30 | 2017-10-31 | Qualcomm Incorporated | Electronic component and method for producing the electronic component |
US10145005B2 (en) | 2015-08-19 | 2018-12-04 | Guardian Glass, LLC | Techniques for low temperature direct graphene growth on glass |
US10164135B2 (en) | 2009-08-07 | 2018-12-25 | Guardian Glass, LLC | Electronic device including graphene-based layer(s), and/or method or making the same |
US10167572B2 (en) | 2009-08-07 | 2019-01-01 | Guardian Glass, LLC | Large area deposition of graphene via hetero-epitaxial growth, and products including the same |
US10431354B2 (en) | 2013-03-15 | 2019-10-01 | Guardian Glass, LLC | Methods for direct production of graphene on dielectric substrates, and associated articles/devices |
WO2024003768A1 (en) * | 2022-06-30 | 2024-01-04 | Toraphene Ltd | Biodegradable packaging material, use and method for manufacturing thereof |
Families Citing this family (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050077503A1 (en) * | 2003-07-23 | 2005-04-14 | Takuya Gotou | Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them |
BRPI1010815A2 (en) * | 2009-05-22 | 2016-04-05 | Univ Rice William M | highly oxidized graphene oxide and methods for its production |
JP2011032156A (en) * | 2009-07-06 | 2011-02-17 | Kaneka Corp | Method for manufacturing graphene or thin film graphite |
US8796361B2 (en) | 2010-11-19 | 2014-08-05 | Ppg Industries Ohio, Inc. | Adhesive compositions containing graphenic carbon particles |
US20140150970A1 (en) | 2010-11-19 | 2014-06-05 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
KR101254425B1 (en) | 2011-01-20 | 2013-04-15 | 거림테크 주식회사 | Graphene film having graphene oxide/poly vinyl alcohol composite and manufacturing method of the same |
WO2012128748A1 (en) * | 2011-03-18 | 2012-09-27 | William Marsh Rice University | Patterned graphite oxide films and methods to make and use same |
DE112012001442T5 (en) * | 2011-03-25 | 2013-12-19 | Howard University | METHOD AND DEVICES FOR CONTROLLING REACTION RATES OF CHEMICAL REACTIONS BY APPLYING A MAGNETIC FIELD |
JP2012224526A (en) * | 2011-04-21 | 2012-11-15 | Hiroshima Univ | Method for producing graphene |
KR101972609B1 (en) | 2011-06-03 | 2019-04-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method of manufacturing electrode |
CN102275906B (en) * | 2011-06-09 | 2012-12-26 | 西安工业大学 | Method for preparing graphene at normal temperature |
CN102321994A (en) * | 2011-06-13 | 2012-01-18 | 哈尔滨工业大学 | The nanometer Preparation Method made of paper that contains Graphene |
CN102320595A (en) * | 2011-06-16 | 2012-01-18 | 华南理工大学 | Dispersible ethanolamine functionalized graphene and preparation method thereof |
JP2013001882A (en) * | 2011-06-21 | 2013-01-07 | Ulvac Japan Ltd | Graphene ink and method for producing the same |
US9218916B2 (en) | 2011-06-24 | 2015-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, power storage device, and electric device |
EP2731498A4 (en) | 2011-07-14 | 2015-04-22 | Univ South Florida | Long-term implantable silicon carbide neural interface device using the electrical field effect |
CN102320597B (en) * | 2011-07-15 | 2012-11-07 | 天津大学 | Preparation method of graphene |
CN102320598A (en) * | 2011-07-26 | 2012-01-18 | 河南大学 | Preparation method of graphene |
JP5748606B2 (en) * | 2011-08-09 | 2015-07-15 | 三菱瓦斯化学株式会社 | Conductive paint |
CN105600776B (en) * | 2011-08-18 | 2018-03-30 | 株式会社半导体能源研究所 | Form the method and graphene oxide salt of graphene and graphene oxide salt |
KR101294223B1 (en) * | 2011-08-22 | 2013-08-16 | 한국과학기술원 | Fabricating method of large-area two dimensional graphene film |
WO2013031526A1 (en) * | 2011-08-26 | 2013-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US9249524B2 (en) | 2011-08-31 | 2016-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of composite oxide and manufacturing method of power storage device |
KR101303285B1 (en) * | 2011-09-08 | 2013-09-04 | 한국기계연구원 | Graphene paper which reduced graphene oxide layers and coating layers are stacked in sequence and preparation method thereof |
US9340430B2 (en) | 2011-09-09 | 2016-05-17 | Board Of Trustees Of Northern Illinois University | Crystalline graphene and method of making crystalline graphene |
US9832818B2 (en) | 2011-09-30 | 2017-11-28 | Ppg Industries Ohio, Inc. | Resistive heating coatings containing graphenic carbon particles |
KR102693192B1 (en) | 2011-09-30 | 2024-08-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Anode, lithium secondary battery, electric vehicle, hybrid vehicle, moving bodies, system, and electrical devices |
US10294375B2 (en) | 2011-09-30 | 2019-05-21 | Ppg Industries Ohio, Inc. | Electrically conductive coatings containing graphenic carbon particles |
US9574094B2 (en) | 2013-12-09 | 2017-02-21 | Ppg Industries Ohio, Inc. | Graphenic carbon particle dispersions and methods of making same |
US10240052B2 (en) | 2011-09-30 | 2019-03-26 | Ppg Industries Ohio, Inc. | Supercapacitor electrodes including graphenic carbon particles |
US9988551B2 (en) | 2011-09-30 | 2018-06-05 | Ppg Industries Ohio, Inc. | Black pigments comprising graphenic carbon particles |
US9475946B2 (en) | 2011-09-30 | 2016-10-25 | Ppg Industries Ohio, Inc. | Graphenic carbon particle co-dispersions and methods of making same |
US10763490B2 (en) | 2011-09-30 | 2020-09-01 | Ppg Industries Ohio, Inc. | Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles |
US9938416B2 (en) | 2011-09-30 | 2018-04-10 | Ppg Industries Ohio, Inc. | Absorptive pigments comprising graphenic carbon particles |
US9761903B2 (en) | 2011-09-30 | 2017-09-12 | Ppg Industries Ohio, Inc. | Lithium ion battery electrodes including graphenic carbon particles |
US8486363B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
CN103035922B (en) | 2011-10-07 | 2019-02-19 | 株式会社半导体能源研究所 | Electrical storage device |
US9487880B2 (en) | 2011-11-25 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Flexible substrate processing apparatus |
KR101297423B1 (en) * | 2011-11-30 | 2013-08-14 | 한국전기연구원 | High concentration and stable dispersion of reduced graphene oxide by cation-pi interaction and the manufacturing method thereby |
JP6016597B2 (en) | 2011-12-16 | 2016-10-26 | 株式会社半導体エネルギー研究所 | Method for producing positive electrode for lithium ion secondary battery |
US8771630B2 (en) | 2012-01-26 | 2014-07-08 | Enerage, Inc. | Method for the preparation of graphene |
JP5806618B2 (en) * | 2012-01-26 | 2015-11-10 | Dowaエレクトロニクス株式会社 | Method for reducing graphene oxide and method for producing electrode material using the method |
KR101427033B1 (en) | 2012-01-30 | 2014-08-06 | 연세대학교 산학협력단 | Three Dimensional Graphene Structure and Preparation Method of the Same |
WO2013119215A1 (en) * | 2012-02-08 | 2013-08-15 | Empire Technology Development Llc | Coating a substance with graphene |
US9484158B2 (en) | 2012-02-17 | 2016-11-01 | The Trustees Of Princeton University | Graphene-ionic liquid composites |
CN103255670A (en) * | 2012-02-20 | 2013-08-21 | 海洋王照明科技股份有限公司 | Method for preparing graphene paper through utilizing electric field guidance |
JP5719859B2 (en) | 2012-02-29 | 2015-05-20 | 株式会社半導体エネルギー研究所 | Power storage device |
WO2013152144A1 (en) * | 2012-04-05 | 2013-10-10 | The Research Foundation Of State University Of New York | Three-dimensional carbon structures |
CN103383898A (en) * | 2012-05-04 | 2013-11-06 | 海洋王照明科技股份有限公司 | Preparing method of graphene paper current collector |
US9225003B2 (en) | 2012-06-15 | 2015-12-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device |
JP5994422B2 (en) * | 2012-06-21 | 2016-09-21 | 株式会社豊田中央研究所 | Contrast agent |
JP6119128B2 (en) * | 2012-06-29 | 2017-04-26 | 株式会社ニデック | Living implanter |
CN102750998B (en) * | 2012-07-09 | 2014-11-19 | 深圳市贝特瑞纳米科技有限公司 | Transparent graphene conductive thin film and preparation method thereof |
CN102719803B (en) * | 2012-07-09 | 2014-05-07 | 深圳市贝特瑞纳米科技有限公司 | Method for preparing and transferring graphene transparent film |
CN102926272B (en) * | 2012-10-09 | 2015-02-11 | 重庆大学 | Process for preparing biomedical graphene oxide paper |
GB201218952D0 (en) | 2012-10-22 | 2012-12-05 | Cambridge Entpr Ltd | Functional inks based on layered materials and printed layered materials |
CN103794370A (en) * | 2012-10-29 | 2014-05-14 | 海洋王照明科技股份有限公司 | Graphene/ionic liquid composite material and preparation method thereof, combined electrode and preparation method thereof and electrochemical capacitor |
JP6159228B2 (en) | 2012-11-07 | 2017-07-05 | 株式会社半導体エネルギー研究所 | Method for producing positive electrode for non-aqueous secondary battery |
CN103903877B (en) * | 2012-12-26 | 2016-06-29 | 海洋王照明科技股份有限公司 | A kind of preparation method of graphene/graphene oxide composite current collector |
US9673454B2 (en) | 2013-02-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Sodium-ion secondary battery |
US11430979B2 (en) | 2013-03-15 | 2022-08-30 | Ppg Industries Ohio, Inc. | Lithium ion battery anodes including graphenic carbon particles |
US9490472B2 (en) | 2013-03-28 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
CN103233296B (en) * | 2013-05-17 | 2015-09-30 | 山西大学 | A kind of preparation method of N doping Flexible graphene fiber |
CN103337381A (en) * | 2013-07-05 | 2013-10-02 | 电子科技大学 | Method for fabricating flexible electrode |
KR20150027870A (en) * | 2013-08-29 | 2015-03-13 | 연세대학교 산학협력단 | Method for synthesizing graphene-based nanocomposite and graphene-based nanocomposite synthesized using the method |
CN103466610B (en) * | 2013-09-25 | 2015-05-20 | 中国科学院理化技术研究所 | Graphene chemical modification method |
CN103570012B (en) * | 2013-10-29 | 2016-04-27 | 安徽百特新材料科技有限公司 | A kind of preparation method of Graphene |
US10163583B2 (en) | 2013-11-05 | 2018-12-25 | The Regents Of The University Of California | Graphene oxide and carbon nanotube ink and methods for producing the same |
US10727465B2 (en) | 2013-11-15 | 2020-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Nonaqueous secondary battery |
KR102407914B1 (en) | 2013-11-28 | 2022-06-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Power storage unit and electronic device including the same |
JP2016013958A (en) | 2013-12-02 | 2016-01-28 | 株式会社半導体エネルギー研究所 | Element and manufacturing method of film |
KR102306495B1 (en) | 2013-12-04 | 2021-09-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Power storage unit and electronic device |
WO2015089272A2 (en) * | 2013-12-12 | 2015-06-18 | Rensselaer Polytechnic Institute | Porous graphene network electrodes and an all-carbon lithium ion battery containing the same |
US20150166348A1 (en) | 2013-12-18 | 2015-06-18 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, graphene-including layer, electrode, and power storage device |
DE102014007137A1 (en) * | 2014-05-16 | 2015-11-19 | Dräger Safety AG & Co. KGaA | Electrode for an electronic gas sensor, production method for an electrode and use of an electrode |
JP6699994B2 (en) | 2014-05-23 | 2020-05-27 | 株式会社半導体エネルギー研究所 | Secondary battery |
JP6745587B2 (en) | 2014-05-29 | 2020-08-26 | 株式会社半導体エネルギー研究所 | Electrode manufacturing method |
CN104118872B (en) * | 2014-08-04 | 2017-03-22 | 长沙赛维能源科技有限公司 | Method and device for purifying oxidized graphene/graphene solution |
CN104183824B (en) * | 2014-09-09 | 2015-10-21 | 南京中储新能源有限公司 | Graphene/quinones composite material, preparation method and secondary aluminium cell |
KR102708552B1 (en) | 2014-09-19 | 2024-09-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Secondary battery |
US20190103599A1 (en) * | 2014-11-17 | 2019-04-04 | Nanocarbon Pty Ltd. | Graphene electrode |
WO2016088753A1 (en) * | 2014-12-02 | 2016-06-09 | 大日本印刷株式会社 | Flake graphite, graphite material, and flake graphite dispersion |
JP6437825B2 (en) * | 2015-01-06 | 2018-12-12 | 国立大学法人広島大学 | Method for producing graphene / silica composite and graphene / silica composite produced by the method |
WO2016151628A1 (en) * | 2015-03-24 | 2016-09-29 | Kyushu University, National University Corporation | Anion exchange membrane and method for manufacturing same |
US10541390B2 (en) | 2015-05-18 | 2020-01-21 | Semiconductor Energy Laboratory Co., Ltd. | Power storage unit and electronic device |
WO2016191564A1 (en) | 2015-05-26 | 2016-12-01 | The Regents Of The University Of California | Dispersions of holey graphene materials and applications thereof |
JP6756331B2 (en) * | 2015-05-27 | 2020-09-16 | 日本ゼオン株式会社 | Carbon film and its manufacturing method, and fibrous carbon nanostructure dispersion liquid and its manufacturing method |
JP2016222526A (en) | 2015-05-29 | 2016-12-28 | 株式会社半導体エネルギー研究所 | Film formation method and element |
CN105140045A (en) * | 2015-08-20 | 2015-12-09 | 西安岳达植物科技有限公司 | Graphene polypyrrole based electrode material for pseudocapacitive supercapacitor |
US10377928B2 (en) | 2015-12-10 | 2019-08-13 | Ppg Industries Ohio, Inc. | Structural adhesive compositions |
US10351661B2 (en) | 2015-12-10 | 2019-07-16 | Ppg Industries Ohio, Inc. | Method for producing an aminimide |
CN105883790A (en) * | 2016-05-26 | 2016-08-24 | 同济大学 | Low-temperature-stripping modified graphene and preparation method thereof |
US11069890B2 (en) * | 2016-05-31 | 2021-07-20 | Rutgers, The State University Of New Jersey | Hollow particles formed from 2-dimensional materials |
JP6809985B2 (en) * | 2016-06-22 | 2021-01-06 | 三ツ星ベルト株式会社 | Friction transmission belt |
JP6795466B2 (en) * | 2016-07-19 | 2020-12-02 | 三ツ星ベルト株式会社 | Transmission belt and its manufacturing method |
US11827520B2 (en) * | 2016-09-19 | 2023-11-28 | University Of Houston System | Orientation of materials via application of a magnetic field and use of magnetically-oriented devices and device component |
CN107064277B (en) * | 2017-06-23 | 2018-03-20 | 湖北民族学院 | A kind of preparation method and application of electrochemical sensor |
KR20200075353A (en) * | 2018-12-18 | 2020-06-26 | 대주전자재료 주식회사 | Reduced grafhene oxides, and manufacturing method of the same |
WO2020236727A1 (en) | 2019-05-20 | 2020-11-26 | Nanograf Corporation | Anode active material including low-defect turbostratic carbon |
DE112019007339T5 (en) * | 2019-09-06 | 2022-01-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Gas diffusion layer of a proton exchange membrane fuel cell and manufacturing method thereof |
JPWO2021130815A1 (en) * | 2019-12-23 | 2021-07-01 | ||
CH717232A1 (en) | 2020-03-16 | 2021-09-30 | Shcheblanov Aleksandr | Generator for generating rig-shaped and spatial eddies in a liquid. |
KR20220035674A (en) | 2020-09-14 | 2022-03-22 | 삼성전자주식회사 | Wiring structrues, methods of forming the same, and semiconductor devices including the same |
CN113135563A (en) * | 2021-05-25 | 2021-07-20 | 北京航空航天大学 | Graphene paper capable of continuously regulating and controlling water wettability and application thereof |
CN113311045B (en) * | 2021-07-16 | 2022-09-20 | 福建师范大学 | Preparation method of graphene nano-roll cured clenbuterol hydrochloride sensor |
CN114027320B (en) * | 2021-12-27 | 2023-06-02 | 上海金铎禹辰水环境工程有限公司 | Graphene antibacterial material and preparation method and application thereof |
CN116004093B (en) * | 2022-12-26 | 2023-10-03 | 中国科学院福建物质结构研究所 | Anticorrosive coating and preparation method thereof |
CN116375009B (en) * | 2022-12-26 | 2024-06-11 | 中国科学院福建物质结构研究所 | Preparation method of modified graphene |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2798878A (en) * | 1954-07-19 | 1957-07-09 | Nat Lead Co | Preparation of graphitic acid |
US20080258359A1 (en) * | 2007-04-17 | 2008-10-23 | Aruna Zhamu | Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites |
US20080279756A1 (en) * | 2007-05-08 | 2008-11-13 | Aruna Zhamu | Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2690982B2 (en) * | 1988-12-06 | 1997-12-17 | 日本化成株式会社 | Thermally expandable graphite and method for producing the same |
JP2000044219A (en) * | 1998-07-30 | 2000-02-15 | Sumikin Chemical Co Ltd | Production of thermally expandable graphite |
DE60005613T2 (en) * | 1999-07-29 | 2004-08-12 | Mitsubishi Gas Chemical Co., Inc. | Process for the preparation of dimethylcyanamide |
JP4798411B2 (en) * | 2000-08-09 | 2011-10-19 | 三菱瓦斯化学株式会社 | Method for synthesizing thin-film particles having a carbon skeleton |
US7666382B2 (en) * | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
JP4591666B2 (en) * | 2003-07-23 | 2010-12-01 | 三菱瓦斯化学株式会社 | Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof |
JP2006015291A (en) * | 2004-07-05 | 2006-01-19 | Hitachi Powdered Metals Co Ltd | Graphite based hydrogen occlusion material and its production method |
WO2008048295A2 (en) * | 2005-11-18 | 2008-04-24 | Northwestern University | Stable dispersions of polymer-coated graphitic nanoplatelets |
US20080048152A1 (en) * | 2006-08-25 | 2008-02-28 | Jang Bor Z | Process for producing nano-scaled platelets and nanocompsites |
-
2008
- 2008-10-17 US US12/738,758 patent/US8715610B2/en not_active Expired - Fee Related
- 2008-10-17 WO PCT/AU2008/001543 patent/WO2009049375A1/en active Application Filing
- 2008-10-17 JP JP2010529196A patent/JP5605650B2/en not_active Expired - Fee Related
- 2008-10-17 CN CN200880121723.XA patent/CN102066245B/en not_active Expired - Fee Related
- 2008-10-17 AU AU2008314512A patent/AU2008314512B2/en not_active Ceased
- 2008-10-17 EP EP08839659.3A patent/EP2212248B1/en not_active Not-in-force
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2798878A (en) * | 1954-07-19 | 1957-07-09 | Nat Lead Co | Preparation of graphitic acid |
US20080258359A1 (en) * | 2007-04-17 | 2008-10-23 | Aruna Zhamu | Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites |
US20080279756A1 (en) * | 2007-05-08 | 2008-11-13 | Aruna Zhamu | Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets |
Non-Patent Citations (3)
Title |
---|
See also references of EP2212248A4 |
STANKOVICH ET AL., CARBON, vol. 45, 2007, pages 1558 - 1565 |
STANKOVICH, SASHA ET AL.: ""Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide"", CARBON, vol. 45, no. 7, 2007, pages 1558 - 1565, XP002612447 * |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110286147A1 (en) * | 2008-10-24 | 2011-11-24 | Tianjin Pulan Nano Technology Co., Ltd. | Electrode material and capacitor |
EP3865454A3 (en) * | 2009-05-26 | 2021-11-24 | Belenos Clean Power Holding AG | Stable dispersions of single and multiple graphene layers in solution |
EP2256087A1 (en) * | 2009-05-26 | 2010-12-01 | Belenos Clean Power Holding AG | Stable dispersions of single and multiple graphene layers in solution |
JP2010275186A (en) * | 2009-05-26 | 2010-12-09 | Belenos Clean Power Holding Ag | Stable dispersion of single and multiple graphene layers in solution |
CN101935036A (en) * | 2009-05-26 | 2011-01-05 | 巴莱诺斯清洁能源控股公司 | Individual layer and the stabilising dispersions of multi-layer graphene layer in solution |
US9045346B2 (en) | 2009-05-26 | 2015-06-02 | Belenos Clean Power Holdings AG | Stable dispersions of single and multiple graphene layers in solution |
US9548494B2 (en) | 2009-05-26 | 2017-01-17 | Belenos Clean Power Holding Ag | Stable dispersions of single and multiple graphene layers in solution |
JP2011018415A (en) * | 2009-07-10 | 2011-01-27 | Tdk Corp | Magnetic sensor |
US9418770B2 (en) | 2009-08-07 | 2016-08-16 | Guardian Industries Corp. | Large area deposition and doping of graphene, and products including the same |
US10164135B2 (en) | 2009-08-07 | 2018-12-25 | Guardian Glass, LLC | Electronic device including graphene-based layer(s), and/or method or making the same |
US10167572B2 (en) | 2009-08-07 | 2019-01-01 | Guardian Glass, LLC | Large area deposition of graphene via hetero-epitaxial growth, and products including the same |
EP2495216A4 (en) * | 2009-08-10 | 2013-10-23 | Idt Internat Co Ltd | Method and apparatus for producing a nanoscale material having a graphene structure |
EP2495216A2 (en) * | 2009-08-10 | 2012-09-05 | N-Baro Tech Co., Ltd. | Method and apparatus for producing a nanoscale material having a graphene structure |
WO2011019095A1 (en) * | 2009-08-10 | 2011-02-17 | N-Baro Tech Co., Ltd | A method of producing nano-size graphene-based material and an equipment for producing the same |
US8968695B2 (en) | 2009-08-10 | 2015-03-03 | Idt International Co., Ltd. | Method of producing nano-size graphene-based material and an equipment for producing the same |
CN101654243B (en) * | 2009-08-28 | 2011-11-23 | 青岛大学 | Preparation method of functional nano-graphene |
WO2011042800A1 (en) | 2009-10-07 | 2011-04-14 | Polimeri Europa S.P.A. | Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity |
WO2011055198A1 (en) | 2009-11-03 | 2011-05-12 | Polimeri Europa S.P.A. | Process for the preparation of nano-scaled graphene platelets with a high dispersibility in low-polarity polymeric matrixes and relative polymeric compositions |
US9309122B2 (en) | 2009-11-03 | 2016-04-12 | Centre National De La Recherche Scientifique | Preparation of graphene by mechanically thinning graphite materials |
JP2011111367A (en) * | 2009-11-27 | 2011-06-09 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film |
CN101702345B (en) * | 2009-11-27 | 2011-08-03 | 南京邮电大学 | Preparation method for laminated graphene conductive film |
JP2011144060A (en) * | 2010-01-13 | 2011-07-28 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material |
JP2011144071A (en) * | 2010-01-14 | 2011-07-28 | Sekisui Chem Co Ltd | Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film |
JP2011168449A (en) * | 2010-02-19 | 2011-09-01 | Fuji Electric Co Ltd | Method for manufacturing graphene film |
JP2011184264A (en) * | 2010-03-10 | 2011-09-22 | Sekisui Chem Co Ltd | Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film |
KR101154482B1 (en) | 2010-04-27 | 2012-06-13 | 한국과학기술연구원 | Fabrication method of transparent antistatic films using graphene and the transparent antistatic films using the same |
WO2011136478A3 (en) * | 2010-04-27 | 2012-03-01 | Korea Institute Of Science And Technology | Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same |
WO2011136478A2 (en) * | 2010-04-27 | 2011-11-03 | Korea Institute Of Science And Technology | Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same |
CN101844761B (en) * | 2010-05-28 | 2012-08-15 | 上海师范大学 | Method of adopting laser radiation for preparing reduction-oxidation graphene |
WO2011147924A1 (en) | 2010-05-28 | 2011-12-01 | Basf Se | Use of expanded graphite in lithium/sulphur batteries |
CN101844761A (en) * | 2010-05-28 | 2010-09-29 | 上海师范大学 | Method of adopting laser radiation for preparing reduction-oxidation graphene |
US9577243B2 (en) | 2010-05-28 | 2017-02-21 | Sion Power Corporation | Use of expanded graphite in lithium/sulphur batteries |
JP2012015481A (en) * | 2010-06-01 | 2012-01-19 | Sony Corp | Field effect transistor manufacturing method, field effect transistor and semiconductor graphene oxide manufacturing method |
CN101844763A (en) * | 2010-06-24 | 2010-09-29 | 上海交通大学 | Graphene preparation method based on phenolphthalein |
CN103097288B (en) * | 2010-07-14 | 2016-06-15 | 莫纳什大学 | material and application thereof |
WO2012006657A1 (en) | 2010-07-14 | 2012-01-19 | Monash University | Material and applications therefor |
CN103097288A (en) * | 2010-07-14 | 2013-05-08 | 莫纳什大学 | Material and applications therefor |
US9751763B2 (en) | 2010-07-14 | 2017-09-05 | Monash University | Material and applications therefor |
JP2012031024A (en) * | 2010-08-02 | 2012-02-16 | Fuji Electric Co Ltd | Method for manufacturing graphene thin film |
CN102403050A (en) * | 2010-09-08 | 2012-04-04 | 中国科学院金属研究所 | Composite material based on nanometer, preparation method of composite material and application in flexible energy storage device |
CN103153854A (en) * | 2010-10-07 | 2013-06-12 | 曼彻斯特大学 | Graphene oxide |
WO2012046069A1 (en) * | 2010-10-07 | 2012-04-12 | The University Of Manchester | Graphene oxide |
CN102452650A (en) * | 2010-10-27 | 2012-05-16 | 清华大学 | Process for preparing graphene by cryochemical method |
US9114999B2 (en) * | 2010-10-28 | 2015-08-25 | University Of Central Florida Research Foundation, Inc. | Oxidized graphite and carbon fiber |
US20130330477A1 (en) * | 2010-10-28 | 2013-12-12 | University Of Central Florida Research Foundation, Inc. | Oxidized graphite and carbon fiber |
CN101966989B (en) * | 2010-11-18 | 2012-11-07 | 东华大学 | Method for realizing photocatalytic reduction of graphene oxide by quadrangular zinc oxide |
CN101966989A (en) * | 2010-11-18 | 2011-02-09 | 东华大学 | Method for realizing photocatalytic reduction of graphene oxide by quadrangular zinc oxide |
US9321254B2 (en) | 2010-12-08 | 2016-04-26 | 3M Innovative Properties Company | Article and method of making and using the same |
CN103282305B (en) * | 2010-12-24 | 2015-12-09 | 株式会社丰田中央研究所 | Nitrogenous graphene structure and phosphor dispersion liquid |
US9090826B2 (en) | 2010-12-24 | 2015-07-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Light emitting body |
JP2012136566A (en) * | 2010-12-24 | 2012-07-19 | Toyota Central R&D Labs Inc | Carbon phosphor and phosphor dispersion liquid |
CN103282305A (en) * | 2010-12-24 | 2013-09-04 | 株式会社丰田中央研究所 | Nitrogen-containing graphene structure, and phosphor dispersion liquid |
US8999529B2 (en) | 2010-12-24 | 2015-04-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Nitrogen-containing graphene structure and phosphor dispersion |
WO2012086260A1 (en) * | 2010-12-24 | 2012-06-28 | 株式会社豊田中央研究所 | Nitrogen-containing graphene structure, and phosphor dispersion liquid |
CN102557013A (en) * | 2010-12-28 | 2012-07-11 | 国家纳米科学中心 | Preparation method for reduced graphene oxide |
US9590163B2 (en) | 2010-12-30 | 2017-03-07 | Epcos Ag | Electronic component and method for producing the electronic component |
US9807917B2 (en) | 2010-12-30 | 2017-10-31 | Qualcomm Incorporated | Electronic component and method for producing the electronic component |
JP2016001881A (en) * | 2010-12-30 | 2016-01-07 | エプコス アクチエンゲゼルシャフトEpcos Ag | Electronic acoustic device and method of manufacturing the same |
CN102145882A (en) * | 2011-02-24 | 2011-08-10 | 暨南大学 | Method for preparing water soluble graphene |
WO2012116593A1 (en) * | 2011-02-28 | 2012-09-07 | 无锡第六元素高科技发展有限公司 | Chemical processing method for graphene material having high specific surface area by using strong alkali |
CN102249220A (en) * | 2011-03-18 | 2011-11-23 | 太原理工大学 | Quick preparation method for graphene oxide film |
CN102730668A (en) * | 2011-04-07 | 2012-10-17 | 东丽纤维研究所(中国)有限公司 | Method for preparing grapheme through solvothermal technique based on aromatic alcohol |
CN102730667A (en) * | 2011-04-08 | 2012-10-17 | 安炬科技股份有限公司 | Method for preparing monolayer graphite |
JP2012240853A (en) * | 2011-05-16 | 2012-12-10 | Panasonic Corp | Method of manufacturing graphene film |
CN102307024B (en) * | 2011-06-21 | 2014-04-02 | 南京航空航天大学 | Graphene-based fluid power generating device for fluctuation sensing device |
CN102307024A (en) * | 2011-06-21 | 2012-01-04 | 南京航空航天大学 | Graphene-based fluid power generating device for fluctuation sensing device |
JP2013006732A (en) * | 2011-06-23 | 2013-01-10 | Toyota Central R&D Labs Inc | Nitrogen-containing graphene structure and phosphor dispersion liquid |
CN103702936A (en) * | 2011-07-22 | 2014-04-02 | 株式会社半导体能源研究所 | Graphite oxide, graphene oxide or graphene, electric device using same and method of manufacturing same, and electrodialysis apparatus |
US9573813B2 (en) | 2011-07-22 | 2017-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus |
US9120676B2 (en) | 2012-03-06 | 2015-09-01 | Empire Technology Development Llc | Graphene production |
US9695048B2 (en) | 2012-03-06 | 2017-07-04 | Empire Technology Development Llc | Graphene production |
CN103367696A (en) * | 2012-03-29 | 2013-10-23 | 海洋王照明科技股份有限公司 | Anode plate, preparation method thereof and lithium ion battery |
JP2015511574A (en) * | 2012-03-31 | 2015-04-20 | ▲海▼洋王照明科技股▲ふん▼有限公司 | Graphene paper manufacturing method |
RU2495752C1 (en) * | 2012-04-02 | 2013-10-20 | Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) | Method of producing composite including laminar graphite- and molybdenum sulphide-based materials |
US9593019B2 (en) | 2013-03-15 | 2017-03-14 | Guardian Industries Corp. | Methods for low-temperature graphene precipitation onto glass, and associated articles/devices |
US10431354B2 (en) | 2013-03-15 | 2019-10-01 | Guardian Glass, LLC | Methods for direct production of graphene on dielectric substrates, and associated articles/devices |
CN103145124A (en) * | 2013-03-27 | 2013-06-12 | 北京大学 | High-performance graphene paper and preparation method thereof |
CN103145124B (en) * | 2013-03-27 | 2015-01-14 | 北京大学 | High-performance graphene paper and preparation method thereof |
CN103335741A (en) * | 2013-06-19 | 2013-10-02 | 暨南大学 | Graphene based optical fiber temperature sensor and manufacturing method thereof |
US10899624B2 (en) | 2014-05-01 | 2021-01-26 | Rmit University | Graphene production process |
WO2015164916A1 (en) * | 2014-05-01 | 2015-11-05 | Rmit University | Graphene production process |
US10145005B2 (en) | 2015-08-19 | 2018-12-04 | Guardian Glass, LLC | Techniques for low temperature direct graphene growth on glass |
CN106629696A (en) * | 2016-09-20 | 2017-05-10 | 天津工业大学 | Preparation of reduced graphene oxide thin film by virtue of vacuum evaporation method |
WO2024003768A1 (en) * | 2022-06-30 | 2024-01-04 | Toraphene Ltd | Biodegradable packaging material, use and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
US20100303706A1 (en) | 2010-12-02 |
EP2212248A1 (en) | 2010-08-04 |
CN102066245B (en) | 2014-07-16 |
AU2008314512B2 (en) | 2014-07-24 |
EP2212248A4 (en) | 2015-07-08 |
EP2212248B1 (en) | 2017-05-24 |
JP2011500488A (en) | 2011-01-06 |
AU2008314512A1 (en) | 2009-04-23 |
US8715610B2 (en) | 2014-05-06 |
CN102066245A (en) | 2011-05-18 |
JP5605650B2 (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2212248B1 (en) | Process for the preparation of graphene | |
Chen et al. | Mechanically strong, electrically conductive, and biocompatible graphene paper | |
Pan et al. | Green fabrication of chitosan films reinforced with parallel aligned graphene oxide | |
Kang et al. | Nylon 610 and carbon nanotube composite by in situ interfacial polymerization | |
Li et al. | Processable aqueous dispersions of graphene nanosheets | |
Sattler | Handbook of nanophysics: functional nanomaterials | |
Meng et al. | Polymer composites of boron nitride nanotubes and nanosheets | |
Inagaki et al. | Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne | |
Zhang et al. | Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly | |
Roy et al. | Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach | |
Zhou et al. | Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water | |
Wan et al. | Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength | |
Cui et al. | Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer | |
Paszkiewicz et al. | Graphene-based nanomaterials and their polymer nanocomposites | |
Rani et al. | Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly | |
US10807048B2 (en) | Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors | |
Notley et al. | Bacterial interaction with graphene particles and surfaces | |
KR20130021051A (en) | Fabricating method of large-area two dimensional graphene film | |
Lu et al. | Stable Aqueous Suspension and Self‐Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes | |
Gurunathan et al. | An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni | |
Bai et al. | Preparation of stable aqueous dispersion of edge-oxidized graphene and its transparent conductive films | |
Wang et al. | Synthesis, photoluminescence and bio-targeting applications of blue graphene quantum dots | |
Yamanaka et al. | Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds | |
Ghosh et al. | Chemically reduced graphene oxide (CRGO) from waste batteries and morphological assessment of CRGO/methyl cellulose transdermal film | |
Zhao et al. | Rapid production of silver nanofibers using a self-reducing solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880121723.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08839659 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010529196 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008314512 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2008839659 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008839659 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008314512 Country of ref document: AU Date of ref document: 20081017 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12738758 Country of ref document: US |