WO2009043950A1 - Dispositivo de multi inyección inductiva sobre múltiples conductores - Google Patents

Dispositivo de multi inyección inductiva sobre múltiples conductores Download PDF

Info

Publication number
WO2009043950A1
WO2009043950A1 PCT/ES2008/000610 ES2008000610W WO2009043950A1 WO 2009043950 A1 WO2009043950 A1 WO 2009043950A1 ES 2008000610 W ES2008000610 W ES 2008000610W WO 2009043950 A1 WO2009043950 A1 WO 2009043950A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductors
inductive
coupler
injection
differential
Prior art date
Application number
PCT/ES2008/000610
Other languages
English (en)
French (fr)
Other versions
WO2009043950A8 (es
Inventor
Jorge Vicente Blasco Claret
José Luis GONZÁLEZ MORENO
José María VIDAL ROS
Original Assignee
Diseño De Sistemas En Silicio, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diseño De Sistemas En Silicio, S.A. filed Critical Diseño De Sistemas En Silicio, S.A.
Priority to EP08876858.5A priority Critical patent/EP2211478B1/en
Priority to CN2008801188097A priority patent/CN101933243B/zh
Priority to US12/681,463 priority patent/US8269574B2/en
Priority to KR1020107009849A priority patent/KR101489917B1/ko
Publication of WO2009043950A1 publication Critical patent/WO2009043950A1/es
Publication of WO2009043950A8 publication Critical patent/WO2009043950A8/es
Priority to US13/007,102 priority patent/US8274341B2/en
Priority to US13/618,402 priority patent/US8618893B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • H04L25/0276Arrangements for coupling common mode signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Definitions

  • the present invention refers to an inductive multi-injection device on multiple conductors.
  • any communication system we try to take full advantage of the characteristics of the communication medium to achieve maximum transmission capacity, reliability, coverage, etc.
  • the communications medium is formed by multiple conductors, it is possible to use said conductors to achieve one or more of these objectives.
  • the present invention shows a device specially designed to perform inductive multi-injection on multiple conductors so as to facilitate the implementation of procedures to increase the performance of communications.
  • Communications systems need a means of transmission for signals that are often made up of multiple conductors.
  • the presence of these multiple conductors can be used to improve various features of the communications system, such as the transmission capacity or noise immunity, among others.
  • One of the ways to take advantage of the multiconductor medium is to use orthogonal modes, to what is necessary to inject the signals into said medium properly, which can be done inductively or in tension.
  • the device of the invention is designed to be able to apply the procedure specified in the Spanish patent with application number 200702256 referring to a "Procedure for increasing the performance of a communications system on a medium formed by multiple conductors” by injecting the signals into the medium inductive multiconductor.
  • Module is understood as the injection of voltage or current over a selective combination of conductors, reference plane or both.
  • orthogonal multi-injection is defined as an injection of multiple orthogonal modes to each other. Injection modes are divided into common mode, differential modes and pseudo-differential modes. The common mode is that which causes current flow through the reference plane.
  • the differential modes consist of the injection by one conductor and the return taking by another, while the pseudo-differential modes consist of the injection of voltage or current between one or more conductors and the return by one or more conductors different from those used. for the injection, the number of conductors used in this case being more than two.
  • the invention consists of an inductive multi-injection device on multiple conductors that allows the application of procedures to increase the performance of a communications system on a medium formed by N conductors and a plane reference.
  • Said device is formed by the following elements and connections: E signal inputs, where E is comprised between I and N, for each of the signals to be injected between the conductors;
  • a inductive couplers, A being greater than or equal to twice the number of inputs signal (2xE), where the specific number of inductive couplers used in the device depends on the number of injection modes and the number of conductors used by each of those modes, and in which the conductor passes through the coupler gap inductive one or more times;
  • E signal injection loops each of which injects in a differential, pseudo-differential or common mode, that pass through the couplers, located around the conductors on which said loop will inject current, and the direction in which the loop crosses each inductive coupler sets the direction of the current to be injected into
  • the signal inputs that are injected in differential or pseudo-differential mode are balanced and connected to the two ends of each loop, while the signal input that is injected in common mode refers to the reference plane and is connects to one of the ends of the loop used for injection in common mode with the other end of the loop connected to the reference plane.
  • the inductive couplers used in the device are elements with high magnetic permeability such as nanocrystalline materials or ferromagnetic ceramic materials, and whose shape It allows them to be crossed by drivers and ties.
  • the number of couplers is equal to the number of conductors used by the different injections, so that all injections that apply current in a conductor will use the inductive coupler associated with that conductor.
  • each conductor will only pass through the coupler associated with it once, while the injection loops will cross said coupler as many times as necessary to maintain the proper current ratio to achieve orthogonal injections.
  • the number of couplers is equal to the number of injection modes used, so that each injection mode is associated with a single coupler.
  • each coupler is crossed by a single loop only once, while the conductors used by the injection mode associated with the coupler pass through said coupler as many times as necessary to maintain the proper current ratio to achieve orthogonal injections.
  • the device of the invention can be used in any multiconductor medium, it is specifically developed for the case in which the communication channel formed by multiple conductors is the electrical network.
  • Figure 1 Shows an example of the muitinjection device with N signals on N conductors with their different elements and connections.
  • Figure 2. Represents an embodiment of the invention in which each conductor is associated with a single inductive coupler.
  • Figure 3. Shows an embodiment of the invention in which each injection mode is associated with a single inductive coupler.
  • Figure 4. Represents an example of realization in a medium with three conductors in which only two injections are made, a differential injection and another pseudo-differential.
  • the transmission medium is formed by multiple conductors to maximize the performance of a communication system using said transmission medium.
  • the main problem with these procedures is the injection of the signals into the multiconductor medium.
  • the device of the invention is capable of performing said inductive injection optimally to follow the desired procedure to increase the communication capabilities of a system using said multiconductor medium.
  • Figure 1 represents an exemplary embodiment in which a channel of N conductors referred to a reference plane (4) is shown where N injections are made by means of the inductive multi-injection device.
  • N injections are made by means of the inductive multi-injection device.
  • an inductive coupler (3) for each conductor and injection used. To achieve orthogonal injections, the conductors where the signals are injected, the direction of the injected current and the number of turns of the injection loop will be adequate according to the procedure for increasing the performance of the characteristics of the communication used.
  • the common mode injection has its return through the reference plane (4), while the differential and pseudo-differential modes create currents only on the conductors (2 ⁇ to 2 N ).
  • the maximum number of differential modes depends on the number of conductors, N / 2 being for an even number of conductors and (N-I) / 2 for an odd number.
  • the second is the number of the injected signal (ranging from 1 to N); and the third is the number of the conductor through which the current is distributed (which also ranges from 1 to
  • FIG. 2 Another example of embodiment can be seen in Figure 2, where the device is shown on a channel formed by five conductors (2 ⁇ to 2 5 ) referred to a reference plane (4).
  • a reference plane (4) In this case only one coupler (3) is used for each conductor, which dramatically decreases the number of inductive couplers used.
  • Each of the injection modes that need to couple signal in a given driver must use that driver's coupler. This means that several injection loops in different ways can pass over the same coupler that surrounds a conductor.
  • the conductors (2) only pass once through their inductive coupling (3), but the injection loops will pass as many times as necessary through the coupling to ensure the proportion of coupling that gives the orthogonality characteristic between the injected modes , and which will be determined by the procedure for increasing the benefits used on the device of the invention.
  • the orthogonality condition of the injections on the conductors sets the direction of the injected currents and the number of turns of the injection loop or of each conductor through the inductive couplers.
  • the electrical equivalent model of each inductive coupling corresponds to a transformer with one or more shared or non-shared windings, where the windings will be on the one hand the injection loops and on the other hand the conductors. Assuming the impedance adaptation condition, the distribution of currents of each coupling in the conductors shown in Figure 2 occurs.
  • Figure 3 shows another implementation of the inductive coupling in the device of the invention, where each injection mode is associated with a single coupler (3), through which the conductors on which the mode must couple the signal pass .
  • the figure shows an implementation on a total of three conductors, where up to three orthogonal injection modes are possible. In this case, as shown in Figure 3, the current distribution would be I c / 3 for each conductor for common mode current, I d / 2 for each conductor for differential mode current, and I p a / 3 or I p ( _ / 6 for each conductor for pseudo-differential mode currents.
  • Figure 4 shows an example of realization on a three-conductor channel (2 lf 2 2 and 2 3 ) where only the inductive couplings of the differential and pseudo-differential modes
  • the common mode in general has higher signal losses and greater radiation interference, so it is not usually used in real implementations in order to comply with international standards and regulations on radiation
  • there will be two signal inputs one that will be injected differentially (Id) and another in pseudo-differential mode (l Pd ), which will generate their corresponding currents (I p and I p ⁇ ).
  • the driver has his own coupler (3) so that the drivers (2 i7 2 2 , 2 3 ) only cross the coupler once, while the loops that connect to the signal inputs must cross the loop the number of times and in the right direction to achieve orthogonality between injections.
  • the differential loop passes through the coupler (3) of the upper conductor (2 X ) in the direct direction and the coupler (3) of the middle conductor (2 2 ) in the reverse direction, thereby generating half of the differential current (Ia / 2) in opposite directions in both conductors (2i and 2 2 ).
  • the pseudo-differential loop passes through the couplers (3) of the upper (2 superior) and intermediate (2 2 ) conductors in the direct direction, and the coupler (3) of the lower conductor (2 3 ) in the reverse direction giving two laps Thanks to this, a pseudo-differential current (I Pd ) is generated directly in the upper (2 ⁇ ) and middle (2 2 ) conductors and twice in the opposite direction (2xl pd ) in the lower conductor (2 3 ). It can be theoretically verified that the injections made in this way are orthogonal. I P di e I P d2 •

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Near-Field Transmission Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Dispositivo que permite la inyección de señales sobre una multiplicidad de conductores mediante la inyección de múltiples modos ortogonales entre sí, dividiéndose los modos ortogonales en modo común, modo diferencial y modo pseudodiferencial donde el número de vueltas de cada lazo de inyección sobre cada acoplador y el número de vueltas de cada conductor en cada acoplador es tal que se consiguen inyecciones seleccionadas entre modo diferencial, pseudo-diferencial y modo común, logrando de esta manera aumentar las capacidades de comunicación.

Description

DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES OBJETO DE LA INVENCIÓN
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva, se refiere a un dispositivo de multiinyección inductiva sobre múltiples conductores .
En cualquier sistema de comunicaciones se intenta aprovechar al máximo las características del medio de comunicación para conseguir la máxima capacidad de transmisión, fiabilidad, cobertura, etc. En el caso de que el medio de comunicaciones esté formado por múltiples conductores es posible utilizar dichos conductores para alcanzar uno o varios de estos objetivos. Existen procedimientos en el estado del arte tanto para mejorar las prestaciones de la comunicación, como para incrementar la reutilización de frecuencias, entre otras aplicaciones, pero que necesitan que las señales se inyecten de forma adecuada para poder realizarse. La presente invención muestra un dispositivo especialmente diseñado para realizar multiinyección inductiva sobre múltiples conductores de forma que se facilite la implementación de procedimientos para aumentar las prestaciones de las comunicaciones . ANTECEDENTES DE LA INVENCIÓN
Los sistemas de comunicaciones necesitan un medio de transmisión para las señales que muchas veces está formado por múltiples conductores . La presencia de estos múltiples conductores puede ser aprovechada para mejorar, diversas prestaciones del sistema de comunicaciones, , tales como la capacidad de transmisión o la inmunidad al ruido, entre otras. Una de las formas de aprovechar el medio multiconductor es utilizar modos ortogonales, para lo que es necesario inyectar las señales en dicho medio de forma adecuada, lo que puede realizarse de forma inductiva o en tensión.
El dispositivo de la invención está diseñado para poder aplicar el procedimiento especificado en la patente española con número de solicitud 200702256 referente a un "Procedimiento para aumentar las prestaciones de un sistema de comunicaciones sobre un medio formado por múltiples conductores" inyectando las señales en el medio multiconductor de forma inductiva. Tal y como ocurría en esta patente, en la descripción del dispositivo de la invención se utilizan varios conceptos convencionales que a continuación se comentan. Se entiende "modo" como la inyección de tensión o corriente sobre una combinación selectiva de conductores, plano de referencia o ambos. Asimismo, se define la "multiinyección ortogonal" como una inyección de múltiples modos ortogonales entre sí. Los modos de inyección se dividen en modo común, modos diferenciales y modos pseudo-diferenciales . El modo común es aquél que provoca circulación de corrientes por el plano de referencia. Los modos diferenciales consisten en la inyección por un conductor y la toma del retorno por otro, mientras que los modos pseudo-diferenciales consisten en la inyección de tensión o corriente entre uno o más conductores y el retorno por uno o más conductores diferentes a los utilizados para la inyección, siendo el número de conductores utilizados en este caso más de dos .
En el estado del arte existen algunas patentes con procedimientos destinados a incrementar las prestaciones de un sistema de comunicaciones cuando el medio es multiconductor que dejan sin solucionar el problema de realizar la inyección en dicho medio. El dispositivo de la invención soluciona esta carencia y se centra en la forma concreta de realizar la inyección inductiva sobre dicho medio para conseguir la ortogonalidad entre las inyecciones, por lo que resuelve el problema comentado y en consecuencia no está anticipado por los documento existentes del estado del arte.
Por otro lado, en el estado del arte también hay patentes sobre acopladores inductivos, pero que no anticipan la presente invención. Una de estas patentes es el documento WO-03/063381-A1 denominado "Coupling device" , en el que se describe un método inductivo de acoplamiento para zonas donde se necesite inyectar sobre diferentes ramificaciones de la red eléctrica y donde dichas inyecciones se realizan de forma diferencial en dos conductores de cada ramificación. Puesto que con el método descrito no es posible realizar multiinyección ortogonal sobre múltiples conductores con inyecciones en modo común, diferencial y pseudo-diferencial , dicha patente de referencia no anticipa el dispositivo de invención.
DESCRIPCIÓN DE LA INVENCIÓN
Para lograr los objetivos y evitar los inconvenientes indicados en anteriores apartados, la invención consiste en un dispositivo de multiinyección inductiva sobre múltiples conductores que permite la aplicación de procedimientos para aumentar las prestaciones de un sistema de comunicaciones sobre un medio formado por N conductores y un plano de referencia. Dicho dispositivo está formado por los siguientes elementos y conexiones: E entradas de señal, donde E está comprendido entre I y N, para cada una de las señales a inyectar entre los conductores; A acopladores inductivos, siendo A mayor o igual a dos veces el número de entradas de señal (2xE) , donde el número concreto de acopladores inductivos utilizados en el dispositivo depende del número de modos de inyección y del número de conductores utilizados por cada uno de esos modos, y en los que el conductor pasa a través del hueco del acoplador inductivo una o más veces; E lazos de inyección de señal, cada uno de los cuales inyecta en un modo diferencial, pseudo- diferencial o modo común, que pasan a través de los acopladores, situados alrededor de los conductores sobre los que dicho lazo va a inyectar corriente, y el sentido en el que el lazo atraviesa cada acoplador inductivo fija el sentido de la corriente que se desea inyectar en el conductor; y el número de vueltas de cada lazo de inyección sobre cada acoplador o bien de cada conductor en cada acoplador es tal que se consiguen inyecciones en modo diferencial, pseudo-diferencial o modo común. Gracias al dispositivo es posible inyectar señales de comunicación en hasta N combinaciones de los conductores de forma que dichas señales inyectadas son ortogonales entre sí.
En este dispositivo las entradas de señal que se inyectan en modo diferencial o pseudo-diferencial son balanceadas y se conectan a los dos extremos de cada lazo, mientras que la entrada de señal que se inyecta en modo común está referida al plano de referencia y se conecta a uno de los extremos del lazo utilizado para la inyección en modo común estando el otro extremo del lazo conectado al plano de referencia.
Los acopladores inductivos utilizados en el dispositivo son elementos con alta permeabilidad magnética tales como materiales nanocristalinos o materiales cerámicos ferromagnéticos, y cuya forma permite que sean atravesados por los conductores y por los lazos.
En una implementación del dispositivo de la invención el número de acopladores es igual al número de conductores utilizados por las diferentes inyecciones, de forma que todas las inyecciones que apliquen corriente en un conductor utilizarán el acoplador inductivo asociado a ese conductor.
En este caso, cada conductor sólo atravesará el acoplador asociado a él una vez, mientras que los lazos de inyección atravesarán dicho acoplador tantas veces como sean necesarias para mantener la relación de corrientes adecuada para conseguir inyecciones ortogonales . En otra implementación alternativa del dispositivo, el número de acopladores es igual al número de modos de inyección utilizados, de forma que cada modo de inyección tiene asociado un único acoplador.
En este caso cada acoplador es atravesado por un solo lazo una única vez, mientras que los conductores utilizados por el modo de inyección asociado al acoplador atraviesan dicho acoplador tantas veces como sea necesario para mantener la relación de corrientes adecuada para conseguir inyecciones ortogonales . Finalmente, aunque el dispositivo de la invención puede utilizarse en cualquier medio multiconductor, está específicamente desarrollado para el caso en el que el canal de comunicaciones formado por múltiples conductores sea la red eléctrica. A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan unas figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Muestra un ejemplo del dispositivo de muítiinyección con N señales sobre N conductores con sus distintos elementos y conexiones.
Figura 2.- Representa una realización de la invención en la que cada conductor está asociado a un único acoplador inductivo. Figura 3.- Muestra una realización de la invención en la que cada modo de inyección está asociado a un único acoplador inductivo.
Figura 4.- Representa un ejemplo de realización en un medio con tres conductores en los que únicamente se realizan dos inyecciones, una inyección diferencial y otra pseudo-diferencial .
DESCRIPCIÓN DE VARIOS EJEMPLOS DE REALIZACIÓN DE LA
INVENCIÓN
Seguidamente se realiza la descripción de varios ejemplos de realización de la invención, haciendo referencia a la numeración adoptada en las figuras .
Teóricamente es posible utilizar la propiedad de que el medio de transmisión esté formado por múltiples conductores para conseguir maximizar las prestaciones de un sistema de comunicaciones que utilice dicho medio de transmisión. De hecho es posible conseguir un procedimiento que distribuya las corrientes en un medio muíticonductor de manera que se inyecten de forma ortogonal las señales en dicho medio, con lo que se consigue una menor interferencia entre inyecciones, una mayor cobertura, etc. El problema principal de estos procedimientos es la inyección de las señales en el medio muíticonductor . El dispositivo de la invención es capaz de realizar dicha inyección inductiva de forma óptima para seguir el procedimiento deseado para aumentar las capacidades de comunicación de un sistema que utilice dicho medio multiconductor .
La figura 1 representa un ejemplo de realización en el que se muestra un canal de N conductores referidos a un plano de referencia (4) donde se realizan N inyecciones mediante el dispositivo de multiinyección inductiva. En este ejemplo hay un número par de N conductores (2i a 2N) , y N señales de entrada (Ix a IN) que se dividen en una señal que se inyectará en modo común (I1) , múltiples señales que se inyectarán en modo diferencial (I2 a Ix) y múltiples señales que se inyectarán en modo pseudo-diferencial (lx+i a IN) . Asimismo, en este ejemplo de realización hay un acoplador inductivo (3) para cada conductor e inyección utilizada. Para conseguir inyecciones ortogonales los conductores donde se inyectan las señales, el sentido de la corriente inyectada y el número de vueltas del lazo de inyección serán las adecuadas según el procedimiento de aumento de prestaciones de las características de la comunicación utilizado .
Como se puede observar en la figura anterior, la inyección en modo común tiene su retorno a través del plano de referencia (4) , mientras que los modos diferenciales y pseudo-diferenciales crean corrientes únicamente sobre los conductores (2χ a 2N) .
El número de modos diferenciales máximo depende del número de conductores, siendo N/2 para un número de conductores par y (N-I) /2 para un número impar.
Para mejorar la comprensión de la figura 1, las corrientes dibujadas sobre los distintos conductores tienen tres subíndices. El primero indica si es corriente de modo común (c) , diferencial (d) o pseudo-diferencial
(pd) ; el segundo es el número de la señal inyectada (que va de 1 a N) ; y el tercero es el número del conductor por el que se distribuye la corriente (que también va de 1 a
N en este ejemplo) .
Otro ejemplo de realización puede observarse en la figura 2, donde se muestra el dispositivo sobre un canal formado por cinco conductores (2χ a 25) referidos a un plano de referencia (4) . En este caso sólo se utiliza un acoplador (3) por cada conductor, con lo que se disminuye de forma drástica el número de acopladores inductivos utilizados. Cada uno de los modos de inyección que necesiten acoplar señal en un conductor determinado deberán utilizar el acoplador de ese conductor. Esto hace que sobre un mismo acoplador que envuelve a un conductor puedan pasar varios lazos de inyección de modos distintos. Los conductores (2) sólo pasan una vez a través de su acoplo inductivo (3), pero los lazos de inyección pasarán tantas veces como sean necesarias a través del acoplo para garantizar la proporción de acoplamiento que da la característica de ortogonalidad entre los modos inyectados, y que estará determinada por el procedimiento de aumento de las prestaciones utilizado sobre el dispositivo de la invención.
En esta figura 2 se han dibujado las entradas que serán acopladas en modo común (lc) , en modo diferencial (Idi Y Id2) Y en modo pseudo-diferencial (lpai y lPd2) • Estas entradas producen corrientes que serán acopladas en modo común (I0) , en modo diferencial (Iai e I¿12) y en modo pseudo-diferencial (IPdi e Ipcβ) • Los lazos que llevan las señales entre los diferentes acopladores deben ser tales que se consiga la ortogonalidad de señales, según el procedimiento utilizado sobre el dispositivo. En este caso, el lazo del segundo acoplamiento pseudo-diferencial tiene que dar cuatro vueltas al acoplador (3) situado en el conductor inferior (25) para obtener el valor adecuado de corriente sobre dicho conductor. La condición de ortogonalidad de las inyecciones sobre los conductores fija el sentido de las corrientes inyectadas y el número de vueltas del lazo de inyección o de cada conductor a través de los acopladores inductivos. El modelo equivalente eléctrico de cada acoplamiento inductivo se corresponde con un transformador con uno o más devanados compartidos o no, donde los devanados serán por un lado los lazos de inyección y por otro lado los conductores. Suponiendo la condición de adaptación de impedancias se producen el reparto de corrientes de cada acoplamiento en los conductores que se ve en la figura 2.
Por otro lado, la figura 3 muestra otra implementación del acoplamiento inductivo en el dispositivo de la invención, donde cada modo de inyección tiene asociado un único acoplador (3) , a través del cual pasan los conductores sobre los que el modo debe acoplar la señal. En este caso hay tres conductores (2χ, 22 y 23) sobre los que se van a inyectar una señal en modo común
(I0) , una modo diferencial (ld) y otra en modo pseudo- diferencial (lPd) • Estas señales de entrada producirán corrientes correspondientes (Ic, Id e IPd) que se acoplarán de forma inductiva a los conductores.
En este ejemplo de realización son los conductores los que atraviesan los acopladores inductivos (3) con el número de vueltas y en el sentido adecuado para garantizar la propiedad de ortogonalidad en las señales entre los diferentes conductores (2) . Los lazos de inyección, en cambio, únicamente pasarán a través de su acoplo inductivo una vez. La figura muestra una implementación sobre un total de tres conductores, donde son posibles hasta tres modos de inyección ortogonales. En este caso, tal y como se muestra en la figura 3, la distribución de corrientes sería Ic/3 por cada conductor para la corriente de modo común, Id/2 por cada conductor para la corriente de modo diferencial, e Ipa/3 o Ip(_/6 por cada conductor para las corrientes de modo pseudodiferencial . Finalmente la figura 4 muestra un ejemplo de realización sobre un canal de tres conductores (2lf 22 y 23) donde únicamente se han implementado los acoplamientos inductivos de los modos diferencial y pseudo-diferencial . El modo común en general presenta mayores pérdidas de señal y mayores interferencias por radiación, por lo que no suele utilizarse en implementaciones reales con objeto de cumplir con los estándares y las distintas regulaciones internacionales sobre radiación. En este caso habrá dos entradas de señal, una que será inyectada de modo diferencial (Id) y otra en modo pseudo-diferencial (lPd) , que generarán sus correspondientes corrientes (Ip e Ip¿) . Cada conductor tiene su propio acoplador (3) de forma que los conductores (2i7 22, 23) únicamente atraviesan el acoplador una vez, mientras que los lazos que conectan con las entradas de señal deben atravesar el lazo el número de veces y en el sentido adecuado para conseguir ortogonalidad entre las inyecciones. Concretamente, el lazo diferencial atraviesa el acoplador (3) del conductor superior (2X) en sentido directo y el acoplador (3) del conductor medio (22) en sentido inverso, con lo que genera la mitad de la corriente diferencial (Ia/2) en sentidos opuestos en ambos conductores (2i y 22) . El lazo pseudo-diferencial , en cambio, atraviesa los acopladores (3) de los conductores superior (2χ) e intermedio (22) en sentido directo, y el acoplador (3) del conductor inferior (23) en sentido inverso dando dos vueltas. Gracias a ello se genera una corriente pseudo-diferencial (IPd) en sentido directo en los conductores superior (2χ) y medio (22) y el doble en sentido contrario (2xlpd) en el conductor inferior (23) . Se puede comprobar teóricamente que las inyecciones de esta forma realizadas son ortogonales. IPdi e IPd2 •

Claims

REIVINDICACIONES
1. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, previsto para permitir la aplicación de procedimientos para aumentar las prestaciones de un sistema de comunicaciones sobre un medio formado por N conductores y un plano de referencia, se caracteriza porque comprende:
- E entradas de señal, donde E está comprendido entre I y N, para cada una de las señales a inyectar en los conductores;
- A acopladores inductivos, siendo A mayor o igual al doble del número de entradas de señal (2χE) , donde el número de acopladores utilizados en el dispositivo depende del número de modos de inyección y del número de conductores utilizados por cada uno de los modos de inyección, y en los que el conductor pasa a través del hueco del acoplador inductivo al menos una vez;
- E lazos de inyección de señal, cada uno de los cuales inyecta un modo seleccionado entre diferencial, pseudo-diferencial y modo común, que pasan a través de los acopladores situados alrededor de los conductores sobre los que dicho lazo va a inyectar corriente, y el sentido en el que el lazo atraviesa cada acoplador inductivo fija el sentido de la corriente que se desea inyectar en el conductor;
- selectivamente el número de vueltas de cada lazo de inyección sobre cada acoplador y el número de vueltas de cada conductor en cada acoplador es tal que consiguen inyecciones seleccionadas entre modo diferencial, pseudo-diferencial y modo común; para inyectar señales de comunicación en hasta N combinaciones de los conductores y obtener señales inyectadas que sean ortogonales entre sí .
2. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 1, caracterizado porque las entradas de señal que se inyectan en un modo seleccionado entre diferencial y pseudo-diferencial son balanceadas y se conectan a los dos extremos de cada lazo, mientras que la entrada de señal que se inyecta en modo común está referida al plano de referencia y se conecta a uno de los extremos del lazo utilizado para la inyección en modo común estando el otro extremo del lazo conectado a dicho plano de referencia.
3. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 1, caracterizado porque los acopladores inductivos son elementos con alta permeabilidad magnética seleccionados entre materiales nanocristalinos y materiales cerámicos ferromagnéticos, y cuya forma permite que sean atravesados por los conductores y por los lazos.
4. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 3, caracterizado porque el número de acopladores es igual al número de conductores utilizados por las diferentes inyecciones, para que todas las inyecciones que apliquen corriente en un conductor utilicen el acoplador inductivo asociado a ese conductor.
5. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 4, caracterizado porque cada conductor sólo atraviesa el acoplador asociado a él una única vez, mientras que los lazos de inyección atraviesan dicho acoplador tantas veces como sean necesarias para mantener la relación de corrientes adecuada para conseguir inyecciones ortogonales .
6. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES/ según reivindicación 3, caracterizado porque el número de acopladores es igual al número de modos de inyección utilizados, para que cada modo de inyección tenga asociado un único acoplador.
7. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 6, caracterizado porque cada acoplador es atravesado por un solo lazo una única vez, mientras que los conductores utilizados por el modo de inyección asociado al acoplador atraviesan dicho acoplador tantas veces como sea necesario para mantener la relación de corrientes adecuada para conseguir inyecciones ortogonales.
8. DISPOSITIVO DE MULTIINYECCIÓN INDUCTIVA SOBRE MÚLTIPLES CONDUCTORES, según reivindicación 1, caracterizado porque el canal de comunicaciones formado por múltiples conductores es la red eléctrica.
PCT/ES2008/000610 2007-10-02 2008-09-26 Dispositivo de multi inyección inductiva sobre múltiples conductores WO2009043950A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08876858.5A EP2211478B1 (en) 2007-10-02 2008-09-26 Device enabling multiple inductive injections through multiple conductors
CN2008801188097A CN101933243B (zh) 2007-10-02 2008-09-26 用于在多个导体上的电感多级注入的装置
US12/681,463 US8269574B2 (en) 2007-10-02 2008-09-26 Device for inductive multi-injection on multiple conductors
KR1020107009849A KR101489917B1 (ko) 2007-10-02 2008-09-26 다도체를 통한 다중 유도성 인가 가능 장치
US13/007,102 US8274341B2 (en) 2007-10-02 2011-01-14 Device for inductive multi-injection on multiple conductors
US13/618,402 US8618893B2 (en) 2007-10-02 2012-09-14 Transmission medium with inductive current transmission on multiple conductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702566 2007-10-02
ES200702566A ES2328996B1 (es) 2007-10-02 2007-10-02 Dispositivo de multiinyeccion inductiva sobre multiples conductores.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/681,463 A-371-Of-International US8269574B2 (en) 2007-10-02 2008-09-26 Device for inductive multi-injection on multiple conductors
US13/007,102 Continuation US8274341B2 (en) 2007-10-02 2011-01-14 Device for inductive multi-injection on multiple conductors

Publications (2)

Publication Number Publication Date
WO2009043950A1 true WO2009043950A1 (es) 2009-04-09
WO2009043950A8 WO2009043950A8 (es) 2010-07-29

Family

ID=40525843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000610 WO2009043950A1 (es) 2007-10-02 2008-09-26 Dispositivo de multi inyección inductiva sobre múltiples conductores

Country Status (7)

Country Link
US (3) US8269574B2 (es)
EP (1) EP2211478B1 (es)
KR (1) KR101489917B1 (es)
CN (1) CN101933243B (es)
ES (1) ES2328996B1 (es)
TW (1) TWI445337B (es)
WO (1) WO2009043950A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2328996B1 (es) * 2007-10-02 2010-08-30 Diseño De Sistemas En Silicio, S.A. Dispositivo de multiinyeccion inductiva sobre multiples conductores.
KR101717931B1 (ko) 2010-10-01 2017-03-21 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 갖는 표시 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063381A1 (de) 2002-01-24 2003-07-31 Ascom Powerline Communications Ag Koppelvorrichtung
CA2532061A1 (en) * 2003-07-11 2005-01-27 Iad Gesellschaft Fuer Informatik, Automatisierung Und Datenverarbeitung Mbh Inductive coupling circuit and telecommunication method by sheathed cables of an electric current distribution network

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566373A (en) * 1958-01-10 1971-02-23 Bell Telephone Labor Inc Magnetic core memory circuits
US4328564A (en) * 1979-11-26 1982-05-04 Pitney Bowes Inc. Thermally secure postage meter system
US5412689A (en) * 1992-12-23 1995-05-02 International Business Machines Corporation Modal propagation of information through a defined transmission medium
US5587943A (en) * 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US7154382B2 (en) * 1999-12-30 2006-12-26 Ambient Corporation Arrangement of inductive couplers for data communication
US6906947B2 (en) * 2002-02-22 2005-06-14 Hewlett-Packard Development Company, L.P. In-plane toroidal memory cell with vertically stepped conductors
ES2197020B1 (es) * 2002-06-12 2005-03-01 Diseño De Sistemas En Silicio, S.A. Procedimiento y dispositivo de compensacion de campo magnetico de baja frecuencia en una unidad de acoplamiento de señal inductiva.
CN1536590A (zh) * 2003-04-04 2004-10-13 矽统科技股份有限公司 具有嵌埋于基底中的屏蔽图案的高品质因子电感器件
US7120048B2 (en) * 2004-06-21 2006-10-10 Honeywell International Inc. Nonvolatile memory vertical ring bit and write-read structure
US7116575B1 (en) * 2005-03-23 2006-10-03 Honeywell International Inc. Architectures for CPP ring shaped (RS) devices
JP2006279214A (ja) * 2005-03-28 2006-10-12 Mitsubishi Electric Corp 信号注入・抽出装置
ES2328996B1 (es) * 2007-10-02 2010-08-30 Diseño De Sistemas En Silicio, S.A. Dispositivo de multiinyeccion inductiva sobre multiples conductores.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063381A1 (de) 2002-01-24 2003-07-31 Ascom Powerline Communications Ag Koppelvorrichtung
CA2532061A1 (en) * 2003-07-11 2005-01-27 Iad Gesellschaft Fuer Informatik, Automatisierung Und Datenverarbeitung Mbh Inductive coupling circuit and telecommunication method by sheathed cables of an electric current distribution network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANG T.S. ET AL: "Common-mode current propagation in power line communication networks using multi-conductor transmission line theory", IEEE INTERNATIONAL SYMPOSIUM ON POWER LINE COMMUNICATIONS AND ITS APPLICATIONS, 2007, ISPLC'07, 26 March 2007 (2007-03-26) - 28 March 2007 (2007-03-28), SINGAPORE, pages 517 - 522, XP031176388 *
See also references of EP2211478A4

Also Published As

Publication number Publication date
US20130009489A1 (en) 2013-01-10
US20110109399A1 (en) 2011-05-12
EP2211478A4 (en) 2014-08-06
US8618893B2 (en) 2013-12-31
US8269574B2 (en) 2012-09-18
KR20100096072A (ko) 2010-09-01
EP2211478B1 (en) 2017-09-20
KR101489917B1 (ko) 2015-02-11
CN101933243A (zh) 2010-12-29
US20100289595A1 (en) 2010-11-18
TWI445337B (zh) 2014-07-11
EP2211478A1 (en) 2010-07-28
WO2009043950A8 (es) 2010-07-29
ES2328996A1 (es) 2009-11-19
ES2328996B1 (es) 2010-08-30
US8274341B2 (en) 2012-09-25
TW200935782A (en) 2009-08-16
CN101933243B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
ES2393890B1 (es) Nodo de comunicación en varios medios de transmisión.
ES2274887T3 (es) Aparato y metodo que permite la comunicacion de una señal de datos por medio de un cable de transmision de energia.
US11049649B2 (en) Magnetic transformer having increased bandwidth for high speed data communications
ES2328996B1 (es) Dispositivo de multiinyeccion inductiva sobre multiples conductores.
ES2334190A1 (es) Procedimiento para aumentar las prestaciones de un sistema de comunicaciones sobre un medio formado por multiples conductores.
ES2410129T3 (es) Estructura de línea de alimentación para la alimentación con energía eléctrica de los componentes eléctricos de un vehículo a motor.
ES2321792B1 (es) Dispositivo de multiinyeccion de tension sobre multiples conductores.
JP6030991B2 (ja) 逆相二重ループアンテナ
CN204906390U (zh) 多节点宽带直流电力线载波通信阻抗匹配电路
TW200816234A (en) Symmetrical data cable for communications and data engineering
ES2313833B1 (es) Sistema de comunicaciones agnostico frente al medio de transmision.
ES2728049T3 (es) Divisor de potencia CATV multipuerto con ancho de banda incrementada
ES2714601T3 (es) Sistema y circuito de acoplamiento para comunicaciones de línea de transporte de energía
KR20190091127A (ko) 대전력 가변 고주파 전력 분배기
JP2005235429A (ja) 通信線路ケーブル
JP2012257094A (ja) 高周波伝送路および高周波回路装置
JP2017085471A (ja) 電力線通信システム及び電力線通信の通信方法
Singh Magnetic proximity control of spin currents and giant spin accumulation in graphene
WO2012068812A1 (zh) 以太网设备的连接器的连接方法及以太网设备
JP2016001751A (ja) トランス
CN1571309A (zh) 一种光无线通讯环形网
CN103929218A (zh) 一种电力信号耦合系统
ES2237278A1 (es) Procedimiento para la transmision multipunto adaptada de señales digitales de alta velocidad en circuitos impresos y readaptacion a los equipos de medida.
JP2013223068A (ja) ネットワークシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118809.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107009849

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008876858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1541/KOLNP/2010

Country of ref document: IN

Ref document number: 2008876858

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12681463

Country of ref document: US