WO2009041288A1 - Optical system and endoscope using same - Google Patents

Optical system and endoscope using same Download PDF

Info

Publication number
WO2009041288A1
WO2009041288A1 PCT/JP2008/066501 JP2008066501W WO2009041288A1 WO 2009041288 A1 WO2009041288 A1 WO 2009041288A1 JP 2008066501 W JP2008066501 W JP 2008066501W WO 2009041288 A1 WO2009041288 A1 WO 2009041288A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
front group
image
central axis
optical system
Prior art date
Application number
PCT/JP2008/066501
Other languages
French (fr)
Japanese (ja)
Inventor
Takayoshi Togino
Original Assignee
Olympus Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007313633A external-priority patent/JP2009139480A/en
Priority claimed from JP2008071176A external-priority patent/JP5031631B2/en
Application filed by Olympus Corp. filed Critical Olympus Corp.
Publication of WO2009041288A1 publication Critical patent/WO2009041288A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/005Photographing internal surfaces, e.g. of pipe

Definitions

  • the present invention relates to an optical system and an endoscope using the same, and more particularly to an imaging optical system or a projection optical system having a function of forming an image around a rotationally symmetric axis as an annular image on an image sensor. It is. Background art
  • the present invention has been made in view of such a situation of the prior art, and the purpose thereof is to enable a wide observation angle of view to be imaged on an image sensor with a simple configuration, and to achieve a compact and inexpensive optical.
  • a system and an endoscope using the system are provided. [0 0 0 5]
  • the optical system of the present invention that achieves the above object has a front group including at least one reflecting surface, a rear group, and an aperture disposed between the front group and the rear group, and a central axis.
  • the rear group is disposed on the image plane side of the aperture, and has a rear group transparent medium having a refractive index greater than 1.
  • the group transparent medium is disposed on the image plane side of the rear group first transmission surface disposed on the central axis in the vicinity of the opening, and after the concave surface is directed to the image plane side from the rear group first transmission surface.
  • a rear group second transmission surface disposed on the side, and at least one of the rear group first reflection surface and the rear group second reflection surface is continuous on a central axis. The light beam incident on the rear group transparent medium passes through the opening in the order of forward ray tracing, enters the rear group transparent medium through the rear group first transmission surface, and the rear group.
  • a substantially Z-shaped first optical path that goes out, and at least a portion of the first optical path between the rear group first reflecting surface and the rear group second reflecting surface is configured on one side with respect to the central axis.
  • An intermediate image is not formed in the first optical path, but is formed in an annular shape on the image plane.
  • the first reflecting surface of the rear group is a spherical surface.
  • the rear group first reflecting surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is applied only to the vicinity of the central axis of the rear group first reflecting surface. It is characterized by being.
  • the rear group first transmission surface and the rear group second reflection surface are formed of the rear group transparent medium. It is arranged on the object side of the body.
  • rear group first transmission surface and the rear group second reflection surface have the same shape and shape.
  • the rear group first reflecting surface and the rear group second transmitting surface are arranged on the image plane side of the rear group transparent medium.
  • rear group first reflecting surface and the rear group second transmitting surface have the same shape at the same position.
  • the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing.
  • the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing.
  • the light After entering the transparent medium in the front group and intersecting the central axis, the light is reflected to the opposite side of the image surface by the first reflective surface of the front group, crosses the central axis again, and then reflected by the second reflective surface of the front group.
  • An optical path is formed which is reflected to the image plane side and goes out to the image plane side from the front group transparent medium through the front group second transmission surface.
  • the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the opposite side of the image surface from the surface; and a front group second transmitting surface disposed on the image surface side from the front group first reflecting surface; and the front group transparent
  • the light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then moves toward the image plane side by the front group first reflection surface.
  • An optical path which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface is formed.
  • the present invention for achieving the above object is an endoscope using the optical system.
  • the optical system of the present invention that achieves the above object has a front group including at least one reflecting surface, a rear group, and an aperture disposed between the front group and the rear group, and a central axis.
  • the rear group is disposed on the image plane side of the aperture, and has a rear group transparent medium having a refractive index greater than 1.
  • the group transparent medium is disposed on the image plane side of the rear group first transmission surface disposed on the central axis in the vicinity of the opening, and after the concave surface is directed to the image plane side from the rear group first transmission surface.
  • a rear group second transmission surface disposed on the side, and a light beam incident on the rear group transparent medium passes through the aperture in the order of forward ray tracing, and It enters the rear group transparent medium through the first transmission surface, is reflected by the rear group first reflection surface to the side opposite to the image plane, is reflected by the rear group second reflection surface to the image plane side, and the rear group
  • a substantially Z-shaped first optical path exiting from the rear group transparent medium to the image plane side through the second transmission surface is configured, and at least the rear group first reflection surface and the rear group second of the first optical path.
  • the space between the reflection surfaces is formed only on one side with respect to the central axis, and an intermediate image is not formed in the first optical path, and an object point around the central axis is positioned near the central axis in the vicinity of the opening.
  • Crosses once and forms an image on the opposite side as a whole, forming an annular image on the image surface as a whole, and at least one of the rear group reflecting surfaces is a discontinuous rotationally symmetric surface on the central axis It is composed of
  • At least one of the rear group reflecting surfaces is formed of an extended rotation free-form surface formed by rotating a line segment having a discontinuous shape on the central axis around the central axis. It is characterized by that.
  • At least one of the reflecting surfaces of the rear group is constituted by an extended rotation free curved surface formed by rotating an arbitrary shape line segment including an odd-order term around the central axis.
  • the rear group first reflecting surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is applied only to the vicinity of the central axis of the rear group first reflecting surface. It is characterized by being.
  • the rear group first transmission surface and the rear group second reflection surface are arranged on the object side of the transparent medium.
  • rear group first transmitting surface and the rear group second reflecting surface have the same shape at the same position.
  • the rear group first reflecting surface and the rear group second transmitting surface are arranged on an image surface side of the transparent medium.
  • rear group first reflecting surface and the rear group second transmitting surface have the same shape at the same position.
  • the front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing.
  • the front group first reflecting surface After entering the transparent medium and intersecting the central axis, the front group first reflecting surface is reflected to the opposite side of the image plane, and without intersecting the central axis, the front group first An optical path is formed which is reflected by the two reflecting surfaces toward the image surface side and exits from the front group transparent medium to the image surface side through the front group second transmitting surface.
  • the front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing.
  • the front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission.
  • a front group first reflecting surface disposed on the opposite side of the image surface from the surface; and a front group second transmitting surface disposed on the image surface side from the front group first reflecting surface; and the front group transparent
  • the light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then moves toward the image plane side by the front group first reflection surface.
  • An optical path which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface is formed.
  • the maximum image height is I max and the distance from the aperture to the image plane is L.
  • the present invention for achieving the above object is an endoscope using the optical system.
  • FIG. 2 is a cross-sectional view taken along the central axis of the optical system according to Example 1 of the present invention.
  • FIG. 2 is a transverse aberration diagram for the whole optical system of Example 1.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 2.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 3.
  • FIG. 6 is a transverse aberration diagram for the whole optical system of Example 4.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 5.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 5.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 6.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 6.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 7.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 8.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 8.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 9.
  • FIG. 10 is a transverse aberration diagram for the whole optical system of Example 9.
  • FIG. 6 is a cross-sectional view taken along the central axis of the optical system according to Example 10 of the present invention.
  • FIG. 2 is a transverse aberration diagram for the whole optical system of Example 10.
  • FIG. 2 shows an example in which the optical system of the present invention is used as a photographing optical system at the tip of an endoscope.
  • FIG. 3 is a diagram showing an example in which the optical system of Example 1 of the present invention is used as a photographing optical system for a capsule endoscope.
  • FIG. 10 is a diagram showing an example in which the optical system of Example 6 of the present invention is used as a photographing optical system for a capsule endoscope.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as an imaging optical system for an automobile.
  • Figure 2 9 It is a figure which shows the example which used the optical system of this invention as the projection optical system of a projection apparatus.
  • FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as a photographing optical system for photographing an outdoor subject.
  • optical system of the present invention will be described below based on examples.
  • FIG. 3 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 1 described later.
  • FIG. 3 will be described as an imaging optical system, it can also be used as a projection optical system with the optical path reversed.
  • An optical system 1 includes a front group G, an aperture S, and a rear group G b that are rotationally symmetric with respect to a central axis 2 and include at least one reflecting surface.
  • An intermediate image is placed in the optical path.
  • An optical system 1 that forms or projects an image without forming it.
  • the parallel flat plate near the image plane 5 is the cover glass C b 2 of the image sensor.
  • the optical system 1 of Example 1 has a front group G f including at least one reflecting surface, a rear group G b, and an aperture S disposed between the front group G f and the rear group G b,
  • the rear group G b is arranged on the image plane 5 side of the aperture S, and the rear group is transparent.
  • the rear group 1 transparent medium Lb as the medium, and the rear group 1 transparent medium Lb is disposed on the central axis 2 near the opening S as the rear group first transmission surface.
  • Rear group 2 second transmission surface 2 4 as rear group second transmission surface arranged on the image plane side with respect to reflection surface 2 3, and rear group 1 first transmission surface 2 1, rear group 1 1 Reflecting surface 2 2, Rear 1st group 2nd reflecting surface 2 3 and Rear 1st group 2nd transmitting surface 2 4 are composed of spherical surfaces, and the luminous flux incident on the rear 1st group transparent medium Lb is in the order of forward ray tracing.
  • the aperture S is located in the vicinity of the first transmission surface 21 of the first group after the object side.Astigmatism is increased when the aperture S is arranged on the image side of the first group of transparent media L b after the present invention. It is generated and a flat image cannot be formed. In addition, the emission chief ray tilt angle increases and telecentricity deteriorates. In addition, interference between the effective diameters of the rear first group first transmission surface 2 1 and the rear first group second reflection surface 2 3 occurs, making it impossible to obtain a large angle of view.
  • the rear first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 are concave on the image side.
  • the optical path between the rear 1st group first reflecting surface 2 2 and the rear 1st group second reflecting surface 2 3 is composed of one side without straddling the axis of rotational symmetry and is a Z-shaped optical path. It is. -[0 0 4 4]
  • This arrangement results in a negative and positive power arrangement in the order of the optical path from the object side, enabling a so-called retrofocus configuration, and widening the angle of view.
  • this arrangement makes it possible to place the principal point of the optical system on the object side and take F-back. Furthermore, since an intermediate image is not formed in the middle of the optical path, the optical system can be reduced in size.
  • the reflecting surface between the transmitting surfaces and configuring the reflecting surface with an internal reflecting surface, it is possible to reduce the occurrence of aberration due to the curvature of field.
  • the inclination of the light ray that strikes the rear first group first reflecting surface 2 2 becomes smaller than that in the air, a good result is also obtained for a wide angle of view.
  • the rear 1st group 1st reflecting surface 2 2 is configured so that rays with a wide angle of view are reflected by total reflection, and the incident angle at which the 1st group 1st reflecting surface 2 2 near the center of the angle of view does not totally reflect. It is preferable to apply a reflective coating 4a to the center of the rear first group first reflecting surface 22 so as to reflect the light beam. This makes it possible to capture an image at the center of the angle of view. In addition, since the back of the first group 1st reflecting surface 2 2 is totally reflected, it is desirable not to perform reflection coating on this part. This prevents the central beam from being blocked from exiting the optical system.
  • the rear first group first transmission surface 21 and the rear first group second reflection surface 23 be disposed close to the object side of the rear first group transparent medium Lb. This reduces the interference of light rays on each other, and ensures a wide angle of view.
  • the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 24 be close to the image surface 5 side of the transparent medium L. This makes it possible to shorten the transparent medium L and the image plane 5. It is possible to shorten the overall length of the optical system.
  • the rear first group second reflecting surface 23 be provided with a reflective coating 4 b in the peripheral portion, and the central portion is provided with the rear first group first transmitting surface 21 or the opening S. It is desirable not to
  • the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 24 are preferably formed in the same place and in the same shape. With this configuration, it is possible to partially use total reflection on the first group first reflecting surface 2 2 later, and a wide angle of view of the optical system can be obtained.
  • the rear first group first transmitting surface 2 1 and the rear first group second reflecting surface 2 3 are preferably formed in the same place and in the same shape. This configuration improves workability.
  • the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L is arranged in the order of the optical path in the order of the optical path.
  • Front group second reflecting surface 1 3 disposed on the same side of axis 2 as front group first reflecting surface 1 2 and on the opposite side of image surface 5 from front group second reflecting surface 1 2, and image surface 5 from front group second reflecting surface 1 3
  • the front group second transmission surface 14 disposed on the side, and the light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing.
  • the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis, and the front group transparent medium L f is arranged in the order of the optical path in the front group first transparent surface.
  • the front group G f has a front group transparent medium L f whose rotational refractive index is greater than 1 around the central axis 2, and the front group transparent medium L f is transmitted through the front group first transmission in the order of the optical path.
  • Surface 1 1 front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 on the opposite side of front axis first transmission surface 1 1 and central axis 2 2 and the front group second transmission surface 1 4 disposed on the image plane 5 side from 2.
  • the light beam incident on the front group transparent medium L f is in the order of forward ray tracing in the order of the front beam first transmission surface 1 1.
  • conditional expression (1) when the lower limit is exceeded, the telecentricity deteriorates, and in particular, when taking an image using an image sensor such as a CCD, the peripheral light quantity is insufficient. If the upper limit is exceeded, the outer diameter of the optical system becomes too large and the optical system becomes large.
  • Conditional expression (2) defines the total length of the optical system with respect to the image height. If the lower limit is exceeded, the telecentricity also deteriorates and the peripheral light quantity is insufficient. If the upper limit is exceeded, the total length becomes too long, and a compact optical system cannot be constructed.
  • Conditional expression (3) regulates the ratio of the power of the two reflecting surfaces.
  • the radius of curvature of the rear first group first reflecting surface 2 2 becomes smaller, and the rear first group first Compared with the positive power of 2 reflecting surface 2 3, the negative power of rear 1st group 1st reflecting surface 2 2 becomes larger and the total length of the optical system cannot be shortened.
  • the curvature of the rear first group second reflecting surface 23 becomes smaller, the positive power of the rear first group second reflecting surface 23 becomes too large, and a large curvature of field on the object side occurs.
  • the parallel plane on the object side is for protecting the optical system. There is no need.
  • the parallel plane on the image side is for protecting the image sensor and may be omitted.
  • the coordinate system uses the point where the diaphragm surface S intersects the central axis 2 as the origin O of the decentered optical surface, and the direction perpendicular to the central axis 2 as the Y-axis direction.
  • the Y-Z plane is the inside of the paper in Figure 1.
  • the direction on the image plane 5 side in FIG. 1 is the Z-axis positive direction, and the Y-axis, the Z-axis and the axis that forms the right-handed orthogonal coordinate system are the X-axis positive direction.
  • the amount of eccentricity from the origin ⁇ of the optical system 1 in the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the optical system 1
  • 6 mean counterclockwise rotation with respect to the positive direction of each axis
  • the positive a means clockwise rotation with respect to the positive direction of the axis.
  • rotation of ⁇ , / 3, and a on the central axis of the surface is performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined as the origin of the optical system.
  • optical action surfaces constituting the optical system of each example when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given.
  • the radius of curvature, the refractive index of the medium, and the Abbe number are given according to conventional usage. It is.
  • An aspherical surface is a rotationally symmetric aspherical surface given by the following definition.
  • An extended rotational free-form surface is a rotationally symmetric surface given by the following definition.
  • the extended rotation free-form surface becomes a free-form surface (free curve) in the Y—Z plane and a circle with a radius I R I in the X—Y plane.
  • the Z axis is the axis of the extended rotation free-form surface (rotation symmetry axis).
  • C is the conic constant
  • C 2 , C 3 , C 4 , C 5 are the 1st, 2nd, 3rd, 4th ... Aspheric coefficient.
  • the term for aspheric surfaces for which no data is described in the constituent parameters described later is zero.
  • the refractive index and Abbe number are shown for the d-line (wavelength 5 8 7.5 6 nm).
  • the unit of length is mm.
  • the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
  • FIG. 4 shows a lateral aberration diagram of the entire optical system of this example.
  • This lateral aberration diagram The angle shown in the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridinal direction) and X direction (sagittal direction) at that field angle.
  • a negative field angle means a clockwise angle when facing the Y-axis positive direction for the horizontal field angle, and a clockwise angle when facing the X-axis positive direction for the vertical field angle. same as below.
  • This embodiment is a spherical surface in which the transmission surface and the reflection surface of the first group of transparent media L b are used in common in the optical path after the refractive index that is rotationally symmetric with respect to the central axis 2 of the optical system 1 is greater than 1.
  • the front group transparent medium L f is arranged as the front group G f of the first group transparent medium L b.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
  • the front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the front group transparent medium L f is made of a resin or the like having a refractive index of rotation greater than 1 around the central axis 2, and the front group first transmission surface 1 is formed of an extended rotation free-form surface by incidence of a light beam from a distance.
  • the front group first reflecting surface 1 2 consisting of a free-form curved surface with incident light flux and an image from the front group first reflecting surface 1 2 on the same side of the front group first reflecting surface 1 2 and the central axis 2 Located on the opposite side of surface 5, faces the front group second reflecting surface 1 3 consisting of the extended rotation free-form surface and the rear group G b when the light beam reflected by the front group first reflecting surface 12 enters.
  • the light beam reflected by the front-group second reflecting surface 1 3 is incident and the front-group second transmitting surface 14 is formed of a spherical surface.
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • the rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a and after the concave surface is directed to the negative image side, the first group 1st reflection surface 2 2 and the back 1st group 1st reflection surface 2 2 opposite to the image surface 5 Is placed on the back, and the reflective coating 4 b is applied, and the concave surface is directed to the image surface side having a positive power, and then the first group second reflecting surface 2 3, and the rear first group second reflecting surface 2 3 to the image surface 5 side.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape
  • Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1.
  • the rear 2nd group cover glass Cb2 is formed of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmitting surface 3 1 and the rear 2nd group first transmitting surface 3 1. 2 transmissive surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light flux incident from the object plane 3 of the optical system 1 passes through the front group first transmission surface 1 1 of the front group transparent medium L f, crosses the central axis 2, and is opposite to the front group first transmission surface 1 1.
  • Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1 and rear 1st group 1st reflection surface 2 2 is partially reflected coating 4a, partly reflected to the opposite side of image plane 5 by total reflection, and rear 1st group second reflecting surface 2 3 is reflected to image surface 5 side by reflecting coating 4b
  • it has a substantially Z-shaped optical path that exits from the rear group 1 transparent medium Lb through the rear group 1 second transmission surface 24.
  • the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the center axis 2 of the image plane 5. It forms an image in an annular shape.
  • Rear group angle of view 26. 8 1 ° to 60. 22 °
  • FIG. 6 shows a lateral aberration diagram of the entire optical system of this example.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially shared in the optical path.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the rear group G b It consists of the first group G 1 and the second group G 2.
  • the front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the front group transparent medium L f is a rotating pair around the central axis 2.
  • the front group first transmission surface 1 1, the front group first transmission surface 1 1, and the central axis 2 are made of an extended rotation free-form surface.
  • the front group first transmission surface 1 1 It is located on the opposite side of the front group first transmission surface 1 1 from the image plane 5 side, and the front group first transmission surface 1 1 enters the front group first transmission surface 1 1 1
  • Reflecting surface 1 2 and the front group first reflecting surface 1 2 and the central axis 1 are located on the opposite side of the front group first reflecting surface 1 2 from the image surface 5 on the opposite side, and the front group first reflecting surface 1 Front group second reflecting surface 1 3 consisting of an extended rotation free-form surface with the light beam reflected by 2 and the rear group G b on central axis 2 and imaged from front group second reflecting surface 1 3
  • the rear group 1 G b 1 is composed of the rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • the rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a, with the concave surface facing the negative image surface side, 1st group 1st reflection surface 2 2 and 1st group 1st reflection surface 2 2 opposite to image surface 5 After reflecting the concave coating on the image surface side with positive power and reflecting coating 4b, the 1st group 2nd reflecting surface 2 3 and the 1st group 2nd reflecting surface 2 3 on the image surface 5 side And rear group 1 having a negative power and a second transmitting surface 2 4.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 are in the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1.
  • the rear 2nd group cover glass Cb2 is formed of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmitting surface 3 1 and the rear 2nd group first transmitting surface 3 1. 2 transmissive surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 11 and crosses the central axis 2 before the first group first transmission surface 1.
  • the front group second reflecting surface 1 3 located on the opposite side and further away from the rear group G is reflected to the image plane 5 side, and the front group is transparent through the front group second transmitting surface 14 of the emitting surface. Get out of medium L f.
  • Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, part is reflective coating 4 a, other part is total reflection, image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 and then passes through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out of the window.
  • the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image plane 5. It forms an image in an annular shape.
  • FIG. 8 shows a lateral aberration diagram of the entire optical system of this example.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1.
  • the front group transparent medium f is arranged as the front group G f of the rear group transparent medium L b.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the front group transparent medium L f is made of a resin or the like having a refractive index of rotation greater than 1 around the central axis 2, and the front group first transmission surface 1 is formed of an extended rotation free-form surface by incidence of a light beam from a distance.
  • the front group first reflecting surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from the front and the rear group G b facing the rear group G b on the central axis 2 from the front group first reflecting surface 1 2 to the image surface 5
  • a front group second transmission surface 14 made of an aspherical surface on which the light beam reflected by the front group first reflection surface 12 is incident.
  • the rear group G 1 is composed of a rear group 1 transparent medium L b having a rotationally symmetric refractive index greater than 1 around the central axis 2.
  • the rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4 a, and after the concave surface is directed to the negative image side, the first group 1st reflecting surface 2 2 and the rear 1 group 1st reflecting surface 2 2 opposite to the image surface 5 Is arranged, partly reflective coating 4b, and rear 1st group 2nd reflective surface 2 3 with positive par, and rear 1st group 2nd reflective surface 2 3 are placed on the image plane 5 side, negative Powerful rear 1 group 2nd transmission surface 2 4 Rear 1st group 1st transmitting surface 2 1 and Rear 1st group 2nd reflecting surface 2 3 have the same shape at the same position.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1.
  • the front group first reflecting surface 1 on the opposite side of 1 is reflected downward toward the rear group G b toward the rear group G b toward the image surface 5 side, passes through the front group second transmitting surface 14 of the exit surface, and passes through the front group transparent medium L. Get out of f.
  • Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, part is reflective coating 4 a, other part is total reflection, image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 and then passes through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out of the window. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
  • FIG. 10 shows transverse aberration diagrams of the whole optical system of this example.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1.
  • the front group transparent medium L f is arranged in front of the rear group transparent medium L b.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1.
  • the front group transparent medium L f is made of a resin or the like whose rotational refractive index is greater than 1 around the central axis 1, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by the incident light beam 2 from a distance. 1 and the first transmission surface 1 1 of the front group and the front axis first transmission surface 1 1 on the opposite side of the central axis 1 from the front group first transmission surface 1 1.
  • the front group first reflecting surface 1 2 consisting of an extended rotation free-form surface and the front group first reflecting surface 1 2 and the central axis 1 on the opposite side across the central axis 1 2
  • the light beam reflected by the front first group reflecting surface 12 is incident on the opposite side of the image surface 5 and is incident on the front group second reflecting surface 13 consisting of an extended rotation free curved surface and the rear group G b.
  • the front group second reflective surface 13 Located on the image plane 5 side of the front group second reflective surface 1 2 and the central axis 2 on the image plane 5 side from the front group second reflective surface 1 2, and the light beam reflected by the front group second reflective surface 13 is incident
  • the second transmission of the front group consisting of aspherical surfaces Consisting of 1 4.
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • Rear 1st group transparent medium Lb is formed on the image side with respect to rear 1st group 1st transmission surface 2 1 and rear 1st group 1st transmission surface 2 1 consisting of a spherical surface on central axis 2, and partly Reflective coating 4a, and after the concave surface is directed to the negative image side, the first group 1st reflecting surface 2 2 and the back 1 group 1st reflecting surface 2 2 opposite to the image surface 5 Placed in the reflective coating 4b and positive 1st group 2nd reflection surface 2 3 after the concave surface is directed to the image surface side with, and 1st group 2nd transmission after 1st group 2nd reflection surface 2 3 Surface 2 and 4.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1.
  • Reflected on the opposite side of the image surface 5 away from the rear group G b by the front group first reflective surface 1 2 on the opposite side of 1, and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front group second reflecting surface 1 3 located on the side away from the rear group G b and passes through the front group second transmitting surface 14 of the exit surface and passes through the front group transparent medium L f Go out from.
  • Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, partly reflective coating 4 a, partly total reflection and image surface 5 Reflected on the opposite side, reflected back to the image surface 5 side by the reflective coating 4 b on the rear 1st group second reflecting surface 2 3, then passed through the rear 1st group second transmitting surface 2 4 and then back from the 1st group transparent medium L b It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
  • FIG. 12 shows a lateral aberration diagram of the entire optical system of this example.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1.
  • a front group reflector R f is arranged in front of the rear group transparent medium L b.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f consists of a front group reflector R f that is rotationally symmetric about the central axis 2.
  • the front group reflector R f is composed of a front group first reflecting surface 12 that is convex toward the image plane 5 side.
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • the rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a and after the concave surface is directed to the negative image side, the first group 1st reflection surface 2 2 and the back 1 group 1st reflection surface 2 2 opposite to the image surface 5
  • rear group 1 having a negative power and a second transmitting surface 2 4.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 is between the front group first reflecting surface 1 1 of the front group reflector R f and between the front group reflector R f and the rear group 1 transparent medium L b.
  • the light After passing through the opening S arranged coaxially with the central axis 2, the light enters the first group of transparent media Lb.
  • it passes through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and enters the rear group 1 transparent medium Lb.
  • Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflection coating 4a, part is image by total reflection Reflected on the opposite side of surface 5, reflected back to the image surface 5 side by the reflective coating 4b at the first group 2 second reflecting surface 2 3 and then passed through the first group 2 second transmitting surface 24 and rear 1 group transparent medium L It has an approximately Z-shaped optical path that exits from b. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
  • the maximum image height is I max (mm)
  • the minimum image height is I min (mm)
  • the maximum field angle of the rear group G r is 0 max (degrees)
  • the minimum field angle of the rear group G r is e min ( Degree)
  • focal length F (I max-I min) / ( ⁇ max- ⁇ min)
  • rear group G r When the total length is L (mm), the curvature of the rear group first reflecting surface 22 is 1, and the curvature of the rear group second reflecting surface 2 3 is R2, Example 1 Example 2 Example 3 Example 4 Example 5
  • R E indicates a reflective surface
  • FIG. 14 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 6 to be described later.
  • FIG. 14 will be given as an imaging optical system, it can also be used as a projection optical system with the optical path reversed.
  • An optical system 1 is rotationally symmetric with respect to a central axis 2 and includes a front group G f including at least one reflecting surface, an aperture S, and a rear group G b. An intermediate image is placed in the optical path. An optical system 1 that forms or projects an image without forming it.
  • the optical system 1 of Example 6 includes a front group G f including at least one reflecting surface, a rear group G b, and an aperture S disposed between the front group G f and the rear group G b.
  • the rear group G b is disposed on the image plane 5 side of the aperture S and has a refractive index greater than 1.
  • the rear group 1 transparent medium Lb as the transparent medium has the rear group 1 transparent surface Lb arranged on the central axis 2 in the vicinity of the opening S as the rear group first transmission surface.
  • the transmission surface 24 is a curved surface, and the light beam incident on the rear group 1 transparent medium Lb passes through the aperture S in the order of forward ray tracing, passes through the rear group 1 first transmission surface 21, and
  • the aperture S is located in the vicinity of the first transmission surface 21 of the first group after the object side.Astigmatism is increased when the aperture S is arranged on the image side of the first group of transparent media L b after the present invention. It is generated and a flat image cannot be formed. In addition, the emission chief ray tilt angle increases and telecentricity deteriorates. In addition, interference between the effective diameters of the rear first group first transmission surface 2 1 and the rear first group second reflection surface 2 3 occurs, making it impossible to obtain a large angle of view.
  • rear first group first reflecting surface 2 2 and the rear first group second reflecting surface 23 have a concave surface facing the image side.
  • This arrangement results in a negative and positive power arrangement in order of the optical path from the object side, so-called It becomes possible to make a retro focus configuration, and a wide angle of view becomes possible.
  • this arrangement makes it possible to place the principal point of the optical system on the object side and take F-back.
  • the optical path between the rear first group first reflecting surface 22 and the rear first group second reflecting surface 23 is formed on one side without straddling the rotational symmetry axis.
  • Crossing the rotationally symmetric axis and the optical path means intermediate imaging with a sagittal section, and the optical path length becomes long, leading to an increase in the size of the optical system.
  • the diameter of the light beam can be reduced.
  • an optical system characterized in that the total length of the optical system can be shortened as in the present invention an intermediate image is formed when an intermediate image is formed. The total length becomes long, and it becomes impossible to make the optical system compact.
  • the light beam from the object passes through the aperture S on the central axis 2 and at the same time intersects the central axis 2 once and enters the opposite side of the object. Therefore, it is reflected and imaged by each reflecting surface, but if it is configured to form an image on the same side of the object and the central axis 2, it needs to intersect the central axis 2 again before it is imaged. .
  • the crossing of the light beam that has passed through the aperture S on the central axis 2 again with the central axis 2 means that an image of the aperture S is formed. If the image is re-imaged, the exit pupil will be in the vicinity of the image, making it impossible to improve telecentricity.
  • the image plane 5 is an annular plane image plane.
  • At least one of the reflecting surfaces of the rear group Gb is composed of a rotationally symmetric surface that is discontinuous on the central axis.
  • the degree of freedom to arbitrarily set the size of the image formed in an annular shape is increased, and in the case of an imaging optical system, the imaging device can be used effectively. In the case of a projection optical system, the pixels of the display element can be effectively projected.
  • At least one of the rear first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 is formed by rotating a line segment of an arbitrary shape having no symmetry plane around the central axis 2. It is important to configure it with a rotationally symmetric extended free-form surface that is formed. [0 1 4 8]
  • it is a line segment having an arbitrary shape including an odd-order term.
  • This odd-order term makes it possible to correct the distortion of the peripheral part of the screen in the peripheral optical path A and the inclination of the image plane.
  • the rear first group first reflecting surface 2 2 is configured so that light rays having a wide angle of view are reflected by total reflection, and the incident angle at which the rear first group first reflecting surface 2 2 is not totally reflected near the center of the angle of view. It is preferable to apply a reflective coating 4a to the center of the rear first group first reflecting surface 22 so as to reflect the light beam. As a result, it is possible to capture an image of the center of the angle of view. Furthermore, since the rear part of the first group 1st reflecting surface 2 2 is totally reflected, it is desirable that this part is not subjected to reflection coating. As a result, the central beam is not prevented from exiting the optical system.
  • the rear first group first transmission surface 21 and the rear first group second reflection surface 23 be disposed close to the object side of the rear first group transmission medium Lb.
  • This configuration is necessary for shortening the overall length while increasing the optical path length of the optical system, and it is possible to reduce the outer diameter of the optical system while increasing the Z-shaped folded optical path.
  • the rear 1 group first reflective surface 2 2 and the rear 1 group second transparent surface 2 4 It is preferable to dispose the light medium Lb close to the image plane 5 side.
  • this configuration is also necessary for shortening the overall length while taking a longer optical system optical path length, and reducing the outer diameter of the optical system while taking a longer Z-shaped folded optical path. Is possible.
  • the rear first group second reflecting surface 23 be provided with a reflective coating 4 b in the peripheral portion, and the central portion is provided with the rear first group first transmitting surface 21 or the opening S. It is desirable not to.
  • the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 2 4 are preferably configured in the same place and in the same shape. With this configuration, it is possible to partially use total reflection for the rear first group first reflecting surface 22, and a wide angle of view of the optical system can be obtained.
  • the rear first group first transmitting surface 2 1 and the rear first group second reflecting surface 2 3 are preferably configured in the same place and in the same shape. This configuration improves workability.
  • the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L f has the first group first transmission in the order of the optical path.
  • Surface 1 front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 across front axis 1 1 and central axis 2, and front group first reflective surface 1 2
  • the front group second reflecting surface 1 3 disposed on the same side of the central axis 2 as the front group first reflecting surface 1 2 and the opposite side of the image surface 5 from the front group first reflecting surface 1 2, and the image surface 5 from the front group second reflecting surface 1 3
  • the front group second transmission surface 14 arranged on the side, and enters the front group transparent medium L f.
  • the incident light beam enters the front group transparent medium L f through the front group first transmission surface 11 in the order of forward ray tracing, and is reflected by the front group first reflection surface 1 2 to the opposite side to the image surface 5. Therefore, an optical path reflected from the front group second reflecting surface 13 to the image surface 5 side and going out from the front group transparent medium L f to the image surface 5 side through the front group second transmitting surface 14 can be formed. preferable.
  • the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L f has the first group first transmission in the order of the optical path.
  • Surface 1 front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 across front axis 1 1 and central axis 2, and front group first reflective surface 1 2
  • the front group second reflecting surface 1 3 disposed on the opposite side of the central axis 2 from the front group first reflecting surface 1 2 and opposite to the image surface 5 and the image surface 5 from the front group second reflecting surface 1 3
  • the light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing.
  • the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L is arranged in the order of the optical path in the order of the optical path.
  • 1 1 and front group first reflecting surface 1 1 and front group first reflecting surface 1 2 disposed on the opposite side of image plane 5 on the opposite side of center axis 2 and front group first reflecting surface 1 2
  • the light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing.
  • the light enters the front group transparent medium L f, is reflected to the image surface side by the front group first reflection surface 12, passes through the front group second transmission surface 14, and then exits from the front group transparent medium L f to the image surface 5 side. It is preferable to construct an optical path that goes out to. [0 1 6 2]
  • conditional expression (1) when the lower limit is exceeded, the telecentricity deteriorates, and in particular, when using an image sensor such as C CD, the amount of peripheral light is insufficient. If the upper limit is exceeded, the outer diameter of the optical system becomes too large and the optical system becomes large.
  • Conditional expression (2) defines the total length of the optical system with respect to the image height. If the lower limit is exceeded, the telecentricity also deteriorates and the peripheral light quantity is insufficient. If the upper limit is exceeded, the total length becomes too long, and a compact optical system cannot be constructed.
  • Conditional expression (3) regulates the ratio of the power of the two reflecting surfaces. If the lower limit is exceeded, the radius of curvature of the rear first group, first reflecting surface 2 2 becomes smaller, and the rear first group first 2 Reflective surface 2 Compared with the positive power of 3 Rear 1st group 1st reflective surface 2 The negative power of 2 increases and the total length of the optical system cannot be shortened. When the upper limit is exceeded, the curvature of the rear first group second reflecting surface 23 becomes smaller, the positive power of the rear first group second reflecting surface 23 becomes too large, and a large curvature of field on the object side occurs.
  • the surfaces constituted by spherical surfaces in all the embodiments can be constituted by aspheric surfaces.
  • the parallel plane on the image side is for protecting the image sensor and may be omitted.
  • the coordinate system uses the point where the diaphragm surface S intersects the central axis 2 as the origin ⁇ of the decentered optical surface, and the direction perpendicular to the central axis 2 as the Y-axis direction.
  • the inside of the paper in Fig. 13 is the Y-Z plane.
  • the direction opposite to the image plane 5 in FIG. 13 is the Z-axis positive direction
  • the Y-axis, the Z-axis and the axis constituting the right-handed orthogonal coordinate system are the X-axis positive direction. Since the direction of the Z axis differs in each embodiment, it follows the arrow Z in the figure corresponding to each embodiment.
  • the amount of eccentricity from the origin 0 of the optical system 1 in the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the optical system X-axis, Y-axis, Z-axis
  • the tilt angles ( ⁇ , ⁇ , r)) of the coordinate system defining each plane centered on each are given.
  • 6 means counterclockwise rotation with respect to the positive direction of each axis
  • the positive of a means clockwise rotation with respect to the positive direction of the Z axis.
  • the rotation of a, ⁇ , and a on the center axis of the surface is performed by rotating the coordinate system defining each surface a counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Next, rotate the new coordinate system around the Y axis by j6 counterclockwise rotation, and then rotate it around the Z axis of another rotated new coordinate system clockwise. It is.
  • optical action surfaces constituting the optical system of each embodiment when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, and in addition, the curvature of the surface
  • the radius, the refractive index of the medium, and the Abbe number are given according to conventional methods.
  • the aspheric surface is a rotationally symmetric aspheric surface given by the following definition.
  • Z is the axis and Y is perpendicular to the axis.
  • R is the paraxial radius of curvature
  • k is the conic constant
  • a, b, c, d, ... are the 4th, 6th, 8th, and 10th order aspherical coefficients, respectively.
  • the Z axis in this definition is the axis of the rotationally symmetric aspheric surface.
  • An extended rotation free-form surface is a rotationally symmetric surface given by the following definition.
  • a curve F (Y) obtained by rotating the curve (b) in the positive direction of the X axis and turning it counterclockwise is defined as an angle ⁇ .
  • This curve F (Y) also passes through the origin on the Y-Z coordinate plane.
  • the curve F (Y) is translated in the Y positive direction by a distance R (Y negative direction if negative), and then the rotationally symmetric surface formed by rotating the translated curve around the Z axis is expanded and rotated. Let it be a free-form surface. .
  • the extended rotation free-form surface becomes a free-form surface (free curve) in the Y—Z plane and a circle with a radius I R I in the X—Y plane.
  • the Z axis is the axis of the extended rotation free-form surface (rotation symmetry axis).
  • RY is the radius of curvature of the spherical term in the Y-Z cross section
  • C 2 , C 3 , C 4 , C 5 ... are the first, second, third, fourth, etc. aspheric surfaces, respectively. It is a coefficient.
  • FIG. 15 shows a lateral aberration diagram of the entire optical system of this example.
  • the angle shown in the center indicates (horizontal angle of view, vertical angle of view), and Y direction (meridional direction) and X direction (sagittal direction) at that angle of view.
  • the lateral aberration is shown.
  • a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.
  • an extended rotation is used in which the transmission surface and the reflection surface of the rear group transparent medium L b having a refractive index larger than 1 concentrically with the central axis 2 of the optical system 1 are partially shared in the optical path.
  • This is an example in which a free-form surface is formed, and a front group reflector R f is arranged in front of the rear group transparent medium L b.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f consists of a front group reflector R f that is rotationally symmetric about the central axis 2.
  • the front group reflector R f has a front group first reflecting surface 12 that is convex on the image surface 5 side, which is an aspherical surface.
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • Rear Group 1 transparent media L b is on the central axis 2
  • the rear 1st group 1st transmission surface 2 1 and the rear 1st group 1st transmission surface 2 1 are made of aspherical surfaces with the concave surface facing the image surface side.
  • the rear 1st group 1st reflecting surface 2 2 and the rear 1st group 1st reflecting surface 2 2 made of an extended rotation free-form surface with negative power with the concave surface facing the image surface side Reflective coating 4b, rear 1st group 2nd reflective surface 2 3 consisting of aspherical surface with positive power with concave surface facing image side, and rear 1st group 2nd reflective surface 2 3 And a rear first group second transmission surface 24 consisting of an extended rotation free-form surface having a negative power with the concave surface facing the image surface side and disposed on the surface 5 side.
  • Rear 1st group 1st transmission surface 2 1 and Rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 It consists of the same shape at the same position.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 is between the front group first reflecting surface 1 2 of the front group reflector R f and between the front group reflector R f and the rear group 1 transparent medium L b. Then, after passing through the aperture S arranged coaxially with the central axis 2, it enters the rear group 1 transparent medium Lb.
  • Rear 1st group transparent medium L b enters after 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, partly reflective coating 4a, partly total reflection image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 23, after passing through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb. It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction that deviates from the center axis 2 force of the image plane 5.
  • FIG. 17 shows a lateral aberration diagram of the entire optical system of this example.
  • the refractive index that is rotationally symmetric with respect to the central axis 2 of the optical system 1 is larger than 1, and then the transmission surface and the reflection surface of the first group of transparent media Lb are partially shared in the optical path.
  • the front group transparent medium L f is arranged as the front group G f of the first group transparent medium L b after being composed of an extended rotation free-form surface.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b, and the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
  • the front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1.
  • the front group transparent medium L is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance.
  • Front group first reflecting surface 1 2 consisting of an extended rotation free-form surface with the incident light beam
  • front group first reflecting surface 12 on the same side with respect to front group first reflecting surface 1 2 and central axis 2 Image surface from front group first reflecting surface 1 2 5 facing the front group second reflecting surface 1 3 consisting of an extended rotation free-form surface and the rear group G b.
  • a front group second transparent surface 14 made of a spherical surface, into which the light beam reflected by the front group second reflective surface 13 is incident.
  • Rear group 1 G b 1 has a rotationally symmetric refractive index greater than 1 around the central axis 2 After 1 group of transparent media Lb.
  • Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side Partly reflective coating
  • the rear 1st group 2nd reflective surface 2 3 and the rear 1st group 2nd reflective surface 2 are composed of a spherical surface with a positive power facing the concave surface toward the image surface side.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and the same shape
  • Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1.
  • Rear 2nd group cover glass Cb2 consists of parallel flat plate, rear 2nd group 1st transmission surface 3 1 and rear 2nd group 1st transmission surface 3 1 formed on the image side with respect to rear 2nd group 1st transmission surface 3 1 Surface 3 and 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object plane 3 of the optical system 1 passes through the front group first transmission surface 11 of the front group transparent medium L f, crosses the central axis 2, and the front side opposite to the front group first transmission surface 1 1.
  • the light is reflected again in the rear group Gb direction by the front second group reflecting surface 1 3 and exits from the front group transparent medium L f through the front group second transmitting surface 1 4 on the exit surface.
  • the light enters the rear first group transparent medium L b through the opening S arranged coaxially with the central axis 2 between the front group transparent medium L f and the rear first group transparent medium L b.
  • the group transparent medium Lb After 1 In the group transparent medium Lb, it enters after the first group first transmission surface 2 1, and after the first group first reflection surface 2 2, a part is reflective coating 4 a and a part is totally opposite to the image surface 5 due to total reflection. Reflected to the rear side, reflected back to the image surface 5 side by the reflective coating 4b at the first group 2nd reflecting surface 23, and then passed through the rear 1st group 2nd transmitting surface 24 and outside the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out to.
  • the rear 2 group force bar glass Cb 2 passes through the rear 2 group 1st transmission surface 3 1 and the rear 2 group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image surface 5. Form a circle.
  • FIG. 19 shows a lateral aberration diagram of the entire optical system of this example.
  • an extended rotation is used in which the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially shared in the optical path.
  • a front group transparent medium L f is arranged as a front group G f of the rear group transparent medium L b, which is composed of a free-form surface.
  • the optical system 1 is composed of a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b, and the rear group G b is It consists of the first group G 1 and the second group G 2.
  • the front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1.
  • the front group transparent medium L is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance.
  • the front group first transmission surface 1 1 and the central axis 2 are placed on the opposite side of the front group.1 Transmission surface 1 1 is located on the image plane 5 side from the front group first transmission surface 1 1
  • the front group first reflective surface 1 2 made of an extended rotation free-form surface with the incident luminous flux incident, and the front group first reflective surface 1 2 on the opposite side of the front group first reflective surface 1 2 and the central axis 1 from the front group first reflective surface 1 2
  • the front group second reflecting surface 1 3 made of an extended rotation free-form surface and incident on the side opposite to the surface 5 and reflected by the front group first reflecting surface 12 and the rear group G on the central axis 2
  • the front group second transmission surface 1 4 is located on the image plane 5 side of the front group second reflection surface 1 3 and faces the b, and is made of a spherical surface by the incident light beam reflected by the front group second reflection surface 1 3. And consist of
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side 1st reflecting surface 2 2 consisting of an extended rotation free-form surface having a negative power with a concave surface facing the image surface side, and a first reflecting surface 2 2 It is located on the opposite side of the image plane 5 with respect to the reflection surface 22, is reflectively coated 4 b, and consists of a spherical surface with a positive power facing the concave surface toward the image surface side.
  • Rear 1st group 2nd reflective surface 2 3 Rear surface 1st group 2nd transmissive surface 2 4 which is arranged on the image surface 5 side from the 2nd reflective surface 2 3 and which consists of an extended rotation free-form surface having negative power with the concave surface facing the image surface side, Have.
  • Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and the same shape
  • Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
  • the rear 2nd group G b 2 is composed of the rear 2nd group cover glass Cb 2 whose refractive index rotationally symmetric about the central axis 2 is larger than 1.
  • Rear 2nd group cover glass Cb2 consists of parallel flat plate, rear 2nd group 1st transmission surface 3 1 and rear 2nd group 1st transmission surface 3 1 formed on the image side with respect to rear 2nd group 1st transmission surface 3 1 Surface 3 2.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f through the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1.
  • Front group first reflective surface 1 opposite to 1 is reflected from the rear group G b away from the rear group G b by the opposite side to the image surface 5 and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front second reflecting surface 1 3 located on the side farther from the rear group Gb, and is transparent through the front second transmitting surface 14 of the exit surface. Get out of medium L f.
  • Rear 1st group transparent medium L b enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflective coating 4a, other part is total reflection, image surface 5 Reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 after passing through the 1st group 2nd transmitting surface 2 4 after the 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out.
  • the rear group 2 cover glass Cb 2 passes through the rear group 2 first transmitting surface 3 1 and the rear group 2 second transmitting surface 3 2, and is circled at a predetermined radial position away from the central axis 2 of the image surface 5. Form an image in a ring.
  • Entrance pupil diameter ⁇ 1.00 mm Image size ⁇ 4.60mn! ⁇ ⁇ 7.20mm
  • FIG. 21 shows a lateral aberration diagram of the entire optical system of this example.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentrically symmetric with respect to the central axis 2 of the optical system 1 are aligned in the optical path.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1.
  • the front group transparent medium L f is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance.
  • the front group first transmission surface 1 1 is disposed on the opposite side of the image plane 5 from the front group first transmission surface 1 1
  • the front group first reflective surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from the front and the rear group G b on the central axis 2 on the central axis 2 from the front group first reflective surface 1 2 and the image plane 5
  • a front group second transmission surface 14 formed of a spherical surface, on which the light beam reflected by the front group first reflection surface 12 2 is incident.
  • the rear group G 1 is composed of a rear group 1 transparent medium L b having a rotationally symmetric refractive index greater than 1 around the central axis 2.
  • Rear 1st group transparent medium Lb consists of a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the 1st rear group 1st 1 Reflective surface 2 1 formed on the image side, partially coated with reflection 4a, and made up of an extended rotation free-form surface with negative power with the concave surface facing the image surface.
  • Rear group 1 first transmission surface 2 1 and rear group 1 second reflection surface 2 3 have the same shape at the same position.
  • Rear group 1 first reflection surface 2 2 and rear group 1 second transmission surface 2 4 It consists of the same shape at the same position.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f through the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1.
  • Front group first reflective surface 1 opposite to 1 Reflected downward toward the rear group G b toward the rear group G b toward the image surface 5 side, and through the front group second transmission surface 14 of the projection surface, the front group transparent medium L f Go out from.
  • Rear 1st group transparent medium L b enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflective coating 4a, other part is total reflection, image surface 5 Reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 after passing through the 1st group 2nd transmitting surface 2 4 after the 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
  • FIG. 10 A sectional view taken along the central axis 2 of the optical system 1 of Example 10 is shown in FIG. Also, the lateral aberration diagram of the entire optical system of this example is shown in FIG.
  • the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially used in the optical path.
  • the optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
  • the front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1.
  • the front group transparent medium L f is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 1, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by the incident light beam 2 from a distance.
  • the front group first transmitting surface 1 1 is disposed on the opposite side of the image surface 5 from the front group first transmitting surface 1
  • Front group first reflective surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from 1 and front group first reflective surface 1 2 and front group first reflective surface 1 on the opposite side across central axis 1 2 is located on the opposite side of the image plane 5 from the front surface, and the light beam reflected by the front group first reflective surface 1 2 is incident on the front group second reflective surface 1 3 consisting of an extended rotation free-form surface and the rear group G b.
  • the light beam reflected on the second reflecting surface 13 of the front group is incident on the second reflecting surface 1 2 and the central axis 2 on the image plane 5 side from the second reflecting surface 1 3 of the front group.
  • the rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1.
  • Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side With a negative power with a concave surface facing the image surface side and a rear first group first reflective surface 2 2 and a rear first group first reflective surface 2 2
  • the rear 1st group 2nd reflective surface 2 3 and the rear 1st group 2nd reflective that are arranged on the opposite side of the image surface 5 and have a positive power with the concave surface facing the image surface 4b It is arranged on the image surface 5 side from the surface 23 and has a rear first group second transmission surface 24 having negative power with the concave surface facing the image surface side.
  • the optical system 1 forms the optical path A.
  • the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1.
  • Front group first reflective surface 1 opposite to 1 is reflected from the rear group G b away from the rear group G b by the opposite side to the image surface 5 and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front group second reflecting surface 1 3 located on the side away from the rear group Gb, and passes through the front group second transmitting surface 1 4 of the projecting surface and passes through the front group transparent medium L. Get out of f.
  • Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2 partly reflective coating 4a, partly due to total reflection image surface 5 Reflected on the side opposite to the back, and the back 1st group 2nd reflecting surface 2 3 Reflective coating 4 b Reflected toward the image plane 5 by b, and passes through rear group 1 second transmission surface 24 and rear group 1 transparent medium L. It has a substantially Z-shaped optical path exiting from b. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
  • the maximum image height is I max (mm)
  • the minimum image height is I min (mm)
  • the maximum field angle of the rear group G r is ⁇ max (degrees)
  • the minimum field angle of the rear group G r is ⁇ min (degrees)
  • Example 6 10 The configuration parameters of Example 6 10 will be described below.
  • “RE” indicates a reflective surface.
  • the surface distance to the image surface is the distance from the reference surface (aperture surface).
  • the surface distance to the 10th surface is the distance from the reference surface (diaphragm surface).
  • the distance from the image plane is the distance from the reference plane (aperture plane) 3 9]
  • the distance from the image plane is the distance from the reference plane (aperture plane).
  • FIG. 24 shows an arrangement example of the image and the image sensor of the present embodiment.
  • Figure 24 (a) shows an example using an image sensor with a screen ratio of 16: 9.
  • Fig. 24 (b) shows the case where an image sensor 50 with a screen ratio of 4: 3 is used and the image in the vertical direction is not used.
  • FIG. 24 (c) is an example in which an image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A 1 in the optical path A. In this way, with the arrangement, the entire image A 1 of the optical path A can be captured.
  • FIG. 25 is a diagram for illustrating an example in which the photographing optical system 10 1 according to the present invention is used as a photographing optical system at the distal end of the endoscope.
  • FIG. 25 (a) shows a rigid endoscope 110. This is an example in which an imaging optical system according to the present invention is attached to the tip 110 of a and an image is taken and observed.
  • Figure 25 (b) shows the schematic configuration of the tip.
  • a flare stop 10 7 composed of a ring or the like is arranged to prevent the flare light from entering.
  • Fig. 25 (c) shows an image captured on the display device 1 1 4 by attaching the panoramic imaging optical system 1 0 1 according to the present invention to the tip of the flexible electronic endoscope 1 1 3 in the same manner. This is an example in which image processing is performed to correct distortion and display.
  • FIG. 26 and FIG. 27 are examples in which the imaging optical system 10 1 according to the present invention is attached to the capsule endoscope 120 and images of 360 ° omnidirectional images are taken and observed.
  • a flare stop 1 0 7 is formed in a casing or the like having an opening 10 6 extending in the circumferential direction around the first transmission surface 1 1 of the front group G f in the optical path A of the photographing optical system 10 1 according to the present invention. This prevents flare light from entering.
  • the photographing optical system 10 1 for the endoscope As shown in FIG. 25, FIG. 26, and FIG. 27, by using the photographing optical system 10 1 for the endoscope, the image behind the photographing optical system 1 0 1 can be imaged and observed. Various parts can be imaged and observed from different angles.
  • FIG. 28 (a) shows a photographed optical system 1 0 1 according to the present invention attached to the front of an automobile 1 30 as a photographing optical system, and photographed through each photographing optical system 1 0 1 on a display device in a car.
  • FIG. 28 (b) shows an example in which the processed image is subjected to image processing to correct distortion and displayed simultaneously.
  • a plurality of photographic optical systems 1 0 1 according to the present invention are attached as the photographic optical system on the top of the image sensor, and the image captured through each of the photographic optical systems 1 0 1 is applied to a display device in a vehicle to correct distortion by performing image processing.
  • FIG. 5 is a diagram showing an example in which images are displayed simultaneously. In this case, as shown in FIG. 24 (a), it is preferable to match the size of the image sensor 50 to the left and right positions of the image A 1 on the optical path A because the left and right images can be captured widely. [0 2 4 8]
  • FIG. 29 shows a projection optical system 1 0 2 using a projection optical system 1 0 2 according to the present invention as a projection optical system, displaying a panoramic image on a display element arranged on the image plane 5, and projecting optical system 1
  • a 360 ° omnidirectional image is projected and displayed on screen 14 1 arranged in 360 ° omnidirectional through 0-2.
  • FIG. 30 shows a projection device using the photographing optical system 1 0 1 according to the present invention indoors, with the photographing device 15 1 using the photographing optical system 1 0 1 according to the present invention attached outside the building 15 50.
  • 1 5 1 is arranged and connected so that the image captured by the imaging device 1 51 is sent to the projection device 1 4 0 via the electric wire 1 5 2.
  • an outdoor 360 ° omnidirectional subject P is photographed by the photographing device 1 5 1 through the photographing optical system 1 0 1, and the video signal is projected through the electric wire 15 2.
  • optical system of the present invention it is possible to obtain a compact optical system with good resolving power with good aberration correction that can observe a wide angle of view or project an image with a wide angle of view with a simple configuration. it can.

Abstract

An optical system comprises a front group (Gf) including at least one reflecting surface, a back group (Gb), and an opening (S) disposed between the front group (Gf) and the back group (Gb). At least one surface of a back group first reflecting surface (22) and a back group second reflecting surface (23) is formed by a continuous curved surface on a central axis. Light flux which enters a back group transparent medium (Lb) forms an approximately Z-shaped first optical path (A) by, in the order of forward ray tracing, passing through an opening (S), entering the back group transparent medium (Lb) via a back group first transmitting surface (21), being reflected to the side opposite to an image surface (5) by the back group first reflecting surface (22), being reflected to the image surface (5) side by the back group second reflecting surface (23), and going out from the back group transparent medium (Lb) to the image surface (5) side via a back group second transparent surface (24). The first optical path (A) at least between the back group first reflecting surface (22) and the back group second reflecting surface (23) is formed on only one side with respect to the central axis (2), and an image is formed in an annular shape on the image surface (5) without formation of an intermediate image in the first optical path (A).

Description

明細書  Specification
光学系及びそれを用いた内視鏡 技術分野  Optical system and endoscope using the same
[ 0 0 0 1 ]  [0 0 0 1]
本発明は光学系及びそれを用いた内視鏡に関し、 特に、 回転対称軸周 りの映像を撮像素子に円環状の.映像として結像する機能を有する結像 光学系又は投影光学系に関するものである。 背景技術  The present invention relates to an optical system and an endoscope using the same, and more particularly to an imaging optical system or a projection optical system having a function of forming an image around a rotationally symmetric axis as an annular image on an image sensor. It is. Background art
[ 0 0 0 2 ]  [0 0 0 2]
従来、 2面の球面又は放物面鏡を組み合わせた光学系があつた。  Conventionally, there have been optical systems that combine two spherical surfaces or parabolic mirrors.
〔特許文献 1〕  [Patent Document 1]
特許第 3 3 8 2 6 8 3号公報  Japanese Patent No. 3 3 8 2 6 8 3
〔特許文献 2〕  [Patent Document 2]
特許第 3 2 1 2 7 8 4号公報  Japanese Patent No. 3 2 1 2 7 8 4
〔特許文献 3〕  [Patent Document 3]
特公昭 6 2— 5 2 8 4 2号公報 発明の開示  Japanese Patent Publication No. 6 2-5 5 8 4 2 Disclosure of Invention
[ 0 0 0 3 ]  [0 0 0 3]
しかしながら、 どの特許文献に記載された光学系も、 小型な構成で、 且つ、 高画角の映像を得ることはできなかった。  However, none of the optical systems described in any of the patent documents can obtain a high-angle image with a small configuration.
[ 0 0 0 4 ]  [0 0 0 4]
本発明は、 従来技術のこのような状況に鑑みてなされたものであり、 その目的は、 簡単な構成で広い観察画角を撮像素子上に撮像することが 可能であり、 小型で安価な光学系及びそれを用いた内視鏡を提供するこ とである。 [ 0 0 0 5 ] The present invention has been made in view of such a situation of the prior art, and the purpose thereof is to enable a wide observation angle of view to be imaged on an image sensor with a simple configuration, and to achieve a compact and inexpensive optical. A system and an endoscope using the system are provided. [0 0 0 5]
上記目的を達成する本発明の光学系は、 少なくとも 1つの反射面を含 む前群と、 後群と、 前記前群と前記後群の間に配置された開口とを有し 、 中心軸を含む断面内で、 前記中心軸の周りで回転対称な光学系におい て、 前記後群は、 前記開口の像面側に配置され、 屈折率が 1より大きい 後群透明媒体を有し、 前記後群透明媒体は、 前記開口近傍の前記中心軸 上に配置された後群第 1透過面と、 前記後群第 1透過面より像面側に配 置され、 像面側に凹面を向けた後群第 1反射面と、 前記後群第 1反射面 より像面と反対側に配置され、 像面側に凹面を向けた後群第 2反射面と 、 前記後群第 2反射面より像面側に配置された後群第 2透過面と、 を有 し、 前記後群第 1反射面と前記後群第 2反射面のうち少なく とも 1面は 、 中心軸上で連続な曲面で構成されており、 前記後群透明媒体に入射す る光束は、 順光線追跡の順に、 前記開口を通り、 前記後群第 1透過面を 経て前記後群透明媒体内に入り、 前記後群第 1反射面で像面と反対側に 反射され、 前記後群第 2反射面で像面側に反射され、 前記後群第 2透過 面を経て前記後群透明媒体から像面側に外へ出る略 Z字状の第 1光路 を構成し、 前記第 1光路の少なく とも前記後群第 1反射面と前記後群第 2反射面の間は、 前記中心軸に対して片側のみで構成され、 前記第 1光 路中に中間像が結像されることなく、 像面に円環状に結像されることを 特徴とする。  The optical system of the present invention that achieves the above object has a front group including at least one reflecting surface, a rear group, and an aperture disposed between the front group and the rear group, and a central axis. In the optical system that is rotationally symmetric about the central axis in a cross section including the rear group, the rear group is disposed on the image plane side of the aperture, and has a rear group transparent medium having a refractive index greater than 1. The group transparent medium is disposed on the image plane side of the rear group first transmission surface disposed on the central axis in the vicinity of the opening, and after the concave surface is directed to the image plane side from the rear group first transmission surface. A first group reflecting surface, a rear group second reflecting surface disposed on the opposite side of the image surface from the rear group first reflecting surface, and having a concave surface directed to the image surface side, and an image surface from the second group second reflecting surface. A rear group second transmission surface disposed on the side, and at least one of the rear group first reflection surface and the rear group second reflection surface is continuous on a central axis. The light beam incident on the rear group transparent medium passes through the opening in the order of forward ray tracing, enters the rear group transparent medium through the rear group first transmission surface, and the rear group. Reflected on the side opposite to the image plane by the first group reflecting surface, reflected by the second group second reflecting surface toward the image plane side, passed through the second group transmitting surface on the rear group, and exposed to the image plane side from the rear group transparent medium. A substantially Z-shaped first optical path that goes out, and at least a portion of the first optical path between the rear group first reflecting surface and the rear group second reflecting surface is configured on one side with respect to the central axis. An intermediate image is not formed in the first optical path, but is formed in an annular shape on the image plane.
[ 0 0 0 6 ]  [0 0 0 6]
また、 前記後群の第 1反射面は球面であることを特徴とする。  In addition, the first reflecting surface of the rear group is a spherical surface.
[ 0 0 0 7 ]  [0 0 0 7]
また、 前記後群第 1反射面は、 全反射作用と、 反射コーティ ングによ り反射するように構成され、 前記反射コーティ ングは前記後群第 1反射 面の中心軸近傍のみに施されていることを特徴とする。  The rear group first reflecting surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is applied only to the vicinity of the central axis of the rear group first reflecting surface. It is characterized by being.
[ 0 0 0 8 ]  [0 0 0 8]
また、 前記後群第 1透過面と前記後群第 2反射面は、 前記後群透明媒 体の物体側に配置されていることを特徴とする。 Further, the rear group first transmission surface and the rear group second reflection surface are formed of the rear group transparent medium. It is arranged on the object side of the body.
[ 0 0 0 9 ]  [0 0 0 9]
また、 前記後群第 1透過面と前記後群第 2反射面は、 同一位置同 形 状からなることを特徴とする。  Further, the rear group first transmission surface and the rear group second reflection surface have the same shape and shape.
[ 0 0 1 0 ]  [0 0 1 0]
また、 前記後群第 1反射面と前記後群第 2透過面は、 前記後群透明媒 体の像面側に配置されていることを特徴とする。  Further, the rear group first reflecting surface and the rear group second transmitting surface are arranged on the image plane side of the rear group transparent medium.
[ 0 0 1 1 ]  [0 0 1 1]
また、 前記後群第 1反射面と前記後群第 2透過面は、 同一位置同一形 状からなることを特徴とする。  Further, the rear group first reflecting surface and the rear group second transmitting surface have the same shape at the same position.
[ 0 0 1 2 ]  [0 0 1 2]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面と反対側に配置された前群第 2反射面と、 前記前群第 2 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面と反対側に反射され、 中心軸と交差することなく、 前記前群第 2反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明 媒体から像面側に外へ出る光路を構成することを特徴とする。  Further, the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing. After entering the transparent medium and intersecting the central axis, it is reflected to the opposite side of the image surface by the front group first reflecting surface, and to the image surface side by the front group second reflecting surface without intersecting the central axis. An optical path which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface is formed.
[ 0 0 1 3 ]  [0 0 1 3]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面と反対側に配置された前群第 2反射面と、 前記前群第 2 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面と反対側に反射され、 再度中心軸と交差した後、 前記前群第 2 反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒 体から像面側に外へ出る光路を構成することを特徴とする。 Further, the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing. After entering the transparent medium in the front group and intersecting the central axis, the light is reflected to the opposite side of the image surface by the first reflective surface of the front group, crosses the central axis again, and then reflected by the second reflective surface of the front group. An optical path is formed which is reflected to the image plane side and goes out to the image plane side from the front group transparent medium through the front group second transmission surface.
[ 0 0 1 4 ]  [0 0 1 4]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面と反対側に配置された前群第 1反射面と、 前記前 群第 1反射面より像面側に配置された前群第 2透過面と、 を有し、 前記 前群透明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過 面を経て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明 媒体から像面側に外へ出る光路を構成することを特徴とする。  Further, the front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1, the front group transparent medium comprising a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the opposite side of the image surface from the surface; and a front group second transmitting surface disposed on the image surface side from the front group first reflecting surface; and the front group transparent The light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then moves toward the image plane side by the front group first reflection surface. An optical path which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface is formed.
[ 0 0 1 5 ]  [0 0 1 5]
また、 最大像高を I max、 前記後群の外径を Dとするとき、 When the maximum image height is I max and the outer diameter of the rear group is D,
0. 5 <D/ ( 2 X 1 max) < 1 0 · · · ( 1 ) なる条件を満足することを特徴とする。  0.5 <D / (2 X 1 max) <1 0 · · · · (1) The condition is satisfied.
[ 0 0 1 6 ]  [0 0 1 6]
また、 最大像高を I max、 前記開口から前記像面までの距離を Lとす るとき、  When the maximum image height is I max and the distance from the aperture to the image plane is L,
0. 5 < L / ( 2 X 1 max) < 1 0 · · · ( 2 ) なる条件を満足することを特徴とする。  0.5 <L / (2 X 1 max) <1 0 ··· (2) The condition is satisfied.
[ 0 0 1 7 ]  [0 0 1 7]
また、 後群第 1反射面の曲率を R 1、 後群第 2反射面の曲率を R 2 と するとき、  In addition, when the curvature of the first reflecting surface of the rear group is R 1 and the curvature of the second reflecting surface of the rear group is R 2,
0. 2 <R 1 /R 2 < 5 - - · ( 3 ) なる条件を満足することを特徴とする。  0.2 <R 1 / R 2 <5--· (3) The following condition is satisfied.
[ 0 0 1 8 ] さらに、 上記目的を達成する本発明は、 前記光学系を用いた内視鏡で あることを特徴とする。 [0 0 1 8] Furthermore, the present invention for achieving the above object is an endoscope using the optical system.
[ 0 0 1 9 ]  [0 0 1 9]
上記目的を達成する本発明の光学系は、 少なくとも 1つの反射面を含 む前群と、 後群と、 前記前群と前記後群の間に配置された開口とを有し 、 中心軸を含む断面内で、 前記中心軸の周りで回転対称な光学系におい て、 前記後群は、 前記開口の像面側に配置され、 屈折率が 1より大きい 後群透明媒体を有し、 前記後群透明媒体は、 前記開口近傍の前記中心軸 上に配置された後群第 1透過面と、 前記後群第 1透過面より像面側に配 置され、 像面側に凹面を向けた後群第 1反射面と、 前記後群第 1反射面 より像面と反対側に配置され、 像面側に凹面を向けた後群第 2反射面と 、 前記後群第 2反射面より像面側に配置された後群第 2透過面と、 を有 し、 前記後群透明媒体に入射する光束は、 順光線追跡の順に、 前記開口 を通り、 前記後群第 1透過面を経て前記後群透明媒体内に入り、 前記後 群第 1反射面で像面と反対側に反射され、 前記後群第 2反射面で像面側 に反射され、 前記後群第 2透過面を経て前記後群透明媒体から像面側に 外へ出る略 Z字状の第 1光路を構成し、 前記第 1光路の少なくとも前記 後群第 1反射面と前記後群第 2反射面の間は、 前記中心軸に対して片側 のみで構成され、 前記第 1光路中に中間像が結像されることなく、 前記 中心軸周りの物点を前記開口近傍で前記中心軸と 1 回交差して反対側 に結像し、 全体として像面に円環状に結像され、 前記後群の反射面のう ち少なく とも 1面は、 中心軸上で不連続な回転対称な面で構成されてい ることを特徴とする。  The optical system of the present invention that achieves the above object has a front group including at least one reflecting surface, a rear group, and an aperture disposed between the front group and the rear group, and a central axis. In the optical system that is rotationally symmetric about the central axis in a cross section including the rear group, the rear group is disposed on the image plane side of the aperture, and has a rear group transparent medium having a refractive index greater than 1. The group transparent medium is disposed on the image plane side of the rear group first transmission surface disposed on the central axis in the vicinity of the opening, and after the concave surface is directed to the image plane side from the rear group first transmission surface. A first group reflecting surface, a rear group second reflecting surface disposed on the opposite side of the image surface from the rear group first reflecting surface, and having a concave surface directed to the image surface side, and an image surface from the second group second reflecting surface. A rear group second transmission surface disposed on the side, and a light beam incident on the rear group transparent medium passes through the aperture in the order of forward ray tracing, and It enters the rear group transparent medium through the first transmission surface, is reflected by the rear group first reflection surface to the side opposite to the image plane, is reflected by the rear group second reflection surface to the image plane side, and the rear group A substantially Z-shaped first optical path exiting from the rear group transparent medium to the image plane side through the second transmission surface is configured, and at least the rear group first reflection surface and the rear group second of the first optical path. The space between the reflection surfaces is formed only on one side with respect to the central axis, and an intermediate image is not formed in the first optical path, and an object point around the central axis is positioned near the central axis in the vicinity of the opening. Crosses once and forms an image on the opposite side as a whole, forming an annular image on the image surface as a whole, and at least one of the rear group reflecting surfaces is a discontinuous rotationally symmetric surface on the central axis It is composed of
[ 0 0 2 0 ]  [0 0 2 0]
また、 前記後群の反射面のうち少なく とも 1面は、 中心軸上で不連続 な任意形状の線分を中心軸の周りで回転させて形成される拡張回転自 由曲面で構成されていることを特徴とする。  In addition, at least one of the rear group reflecting surfaces is formed of an extended rotation free-form surface formed by rotating a line segment having a discontinuous shape on the central axis around the central axis. It is characterized by that.
[ 0 0 2 1 ] また、 前記後群の反射面のうち少なく とも 1面は、 奇数次項を含む任 意形状の線分を中心軸の周りで回転させて形状される拡張回転自由曲 面で構成されていることを特徴とする。 [0 0 2 1] Further, at least one of the reflecting surfaces of the rear group is constituted by an extended rotation free curved surface formed by rotating an arbitrary shape line segment including an odd-order term around the central axis. Features.
[ 0 0 2 2 ]  [0 0 2 2]
また、 前記後群第 1反射面は、 全反射作用と、 反射コーティ ングによ り反射するように構成され、 前記反射コーティ ングは前記後群第 1反射 面の中心軸近傍のみに施されていることを特徴とする。  The rear group first reflecting surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is applied only to the vicinity of the central axis of the rear group first reflecting surface. It is characterized by being.
[ 0 0 2 3 ]  [0 0 2 3]
また、 前記後群第 1透過面と前記後群第 2反射面は、 前記透明媒体の 物体側に配置されていることを特徵とする。  In addition, the rear group first transmission surface and the rear group second reflection surface are arranged on the object side of the transparent medium.
[ 0 0 2 4 ]  [0 0 2 4]
また、 前記後群第 1透過面と前記後群第 2反射面は、 同一位置同一形 状からなることを特徴とする。  Further, the rear group first transmitting surface and the rear group second reflecting surface have the same shape at the same position.
[ 0 0 2 5 ]  [0 0 2 5]
また、 前記後群第 1反射面と前記後群第 2透過面は、 前記透明媒体の 像面側に配置されていることを特徴とする。  Further, the rear group first reflecting surface and the rear group second transmitting surface are arranged on an image surface side of the transparent medium.
[ 0 0 2 6 ]  [0 0 2 6]
また、 前記後群第 1反射面と前記後群第 2透過面は、 同一位置同一形 状からなることを特徴とする。  Further, the rear group first reflecting surface and the rear group second transmitting surface have the same shape at the same position.
[ 0 0 2 7 ]  [0 0 2 7]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面と反対側に配置された前群第 2反射面と、 前記前群第 2 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面と反対側に反射され、 中心軸と交差することなく、 前記前群第 2反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明 媒体から像面側に外へ出る光路を構成することを特徴とする。 The front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing. After entering the transparent medium and intersecting the central axis, the front group first reflecting surface is reflected to the opposite side of the image plane, and without intersecting the central axis, the front group first An optical path is formed which is reflected by the two reflecting surfaces toward the image surface side and exits from the front group transparent medium to the image surface side through the front group second transmitting surface.
[ 0 0 2 8 ]  [0 0 2 8]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面と反対側に配置された前群第 2反射面と、 前記前群第 2 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面と反対側に反射され、 再度中心軸と交差した後、 前記前群第 2 反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒 体から像面側に外へ出る光路を構成することを特徴とする。  The front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the image surface side from the surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed on the image plane side, and a light beam incident on the front group transmission medium passes through the front group first transmission surface in the order of forward ray tracing. After entering the transparent medium, intersecting the central axis, reflected by the front first reflecting surface on the opposite side of the image plane, intersecting the central axis again, and then reflected by the front second reflecting surface on the image side. An optical path is formed which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface.
[ 0 0 2 9 ]  [0 0 2 9]
また、 前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい 前群透明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前 群第 1透過面より像面と反対側に配置された前群第 1反射面と、 前記前 群第 1反射面より像面側に配置された前群第 2透過面と、 を有し、 前記 前群透明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過 面を経て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明 媒体から像面側に外へ出る光路を構成することを特徴とする。  The front group includes a front group transparent medium having a rotationally symmetric refractive index greater than 1 around a central axis, the front group transparent medium including a front group first transmission surface, and the front group first transmission. A front group first reflecting surface disposed on the opposite side of the image surface from the surface; and a front group second transmitting surface disposed on the image surface side from the front group first reflecting surface; and the front group transparent The light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then moves toward the image plane side by the front group first reflection surface. An optical path which is reflected and goes out from the front group transparent medium to the image plane side through the front group second transmission surface is formed.
[ 0 0 3 0 ]  [0 0 3 0]
また、 最大像高を I max、 後群の外径を Dとするとき、  When the maximum image height is I max and the outer diameter of the rear group is D,
0 . 5 < D / ( 2 X 1 max) < 1 0 · · · ( 1 ) なる条件を満足することを特徴とする。  0.5 <D / (2 X 1 max) <1 0 ··· (1) is satisfied.
[ 0 0 3 1 ]  [0 0 3 1]
また、 最大像高を I max、 前記開口から前記像面までの距離を Lとす るとき、 The maximum image height is I max and the distance from the aperture to the image plane is L. When
0. 5 < L / ( 2 X 1 max) < 1 0 · · · ( 2 ) なる条件を満足することを特徴とする。  0.5 <L / (2 X 1 max) <1 0 ··· (2) The condition is satisfied.
[ 0 0 3 2 ] >  [0 0 3 2]>
また、 第 1反射面の曲率を R l、 第 2反射面の曲率を R 2 とするとき  When the curvature of the first reflecting surface is R l and the curvature of the second reflecting surface is R 2
0. 2 <R 1 /R 2 < 5 * · · ( 3 ) なる条件を満足することを特徴とする。 0.2 <R 1 / R 2 <5 * · · (3) The condition is satisfied.
[ 0 0 3 3 ]  [0 0 3 3]
また、 第 1反射面の曲率を R l、 第 2反射面の曲率を R 2 とするとき  When the curvature of the first reflecting surface is R l and the curvature of the second reflecting surface is R 2
0. 5 <R 1 R 2 < 2 · * · ( 3 ) ' なる条件を満足することを特徴とする。 0.5 <R 1 R 2 <2 · * · (3) 'is satisfied.
[ 0 0 3 4 ]  [0 0 3 4]
さらに、 上記目的を達成する本発明は、 前記光学系を用いた内視鏡で あることを特徴とする。  Furthermore, the present invention for achieving the above object is an endoscope using the optical system.
[ 0 0 3 5 ]  [0 0 3 5]
以上の本発明の光学系においては、 簡単な構成で広い画角を観察又は 広い画角に映像を投影することが可能な小型で.収差が良好に補正され た解像力の良い光学系を得ることができる。 図面の簡単な説明  In the optical system of the present invention described above, a compact optical system with a high resolution and a well-corrected aberration that is capable of observing a wide angle of view or projecting an image with a wide angle of view with a simple configuration. Can do. Brief Description of Drawings
[ 0 0 3 6 ]  [0 0 3 6]
[図 1 ]  [Figure 1 ]
本発明の光学系の実施例 1の座標系を説明するための図である。  It is a figure for demonstrating the coordinate system of Example 1 of the optical system of this invention.
[図 2 ]  [Figure 2 ]
拡張回転自由曲面の原理を示す図である。  It is a figure which shows the principle of an extended rotation free-form surface.
[図 3 ] 本発明の実施例 1の光学系の中心軸に沿ってとつた断面図である。 [Figure 3] FIG. 2 is a cross-sectional view taken along the central axis of the optical system according to Example 1 of the present invention.
[図 4 ]  [Figure 4]
実施例 1の光学系全体の横収差図を示す図である。 2 is a transverse aberration diagram for the whole optical system of Example 1. FIG.
[図 5 ]  [Figure 5]
本発明の実施例 2の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 2 of this invention.
[図 6 ]  [Figure 6]
実施例 2の光学系全体の横収差図を示す図である。 6 is a transverse aberration diagram for the whole optical system of Example 2. FIG.
[図 7 ]  [Fig. 7]
本発明の実施例 3の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 3 of this invention.
[図 8 ]  [Figure 8]
実施例 3の光学系全体の横収差図を示す図である。 6 is a transverse aberration diagram for the whole optical system of Example 3. FIG.
[図 9 ]  [Figure 9]
本発明の実施例 4の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 4 of this invention.
[図 1 0 ]  [Figure 1 0]
実施例 4の光学系全体の横収差図を示す図である。 6 is a transverse aberration diagram for the whole optical system of Example 4. FIG.
[図 1 1 ]  [Figure 1 1]
本発明の実施例 5の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 5 of this invention.
[図 1 2 ]  [Fig. 1 2]
実施例 5の光学系全体の横収差図を示す図である。 10 is a transverse aberration diagram for the whole optical system of Example 5. FIG.
[図 1 3 ]  [Fig. 1 3]
本発明の実施例 6の光学系の座標系を説明するための図である。 It is a figure for demonstrating the coordinate system of the optical system of Example 6 of this invention.
[図 1 4 ]  [Figure 1 4]
本発明の実施例 6の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 6 of this invention.
[図 1 5 ]  [Figure 15]
実施例 6の光学系全体の横収差図を示す図である。 10 is a transverse aberration diagram for the whole optical system of Example 6. FIG.
[図 1 6 ]  [Figure 1 6]
本発明の実施例 7の光学系の中心軸に沿ってとつた断面図である。 It is sectional drawing taken along the central axis of the optical system of Example 7 of this invention.
[図 1 7 ] 実施例 7の光学系全体の横収差図を示す図である。 [Figure 1 7] 10 is a transverse aberration diagram for the whole optical system of Example 7. FIG.
[図 1 8 ]  [Figure 1 8]
本発明の実施例 8の光学系の中心軸に沿ってとつた断面図である。  It is sectional drawing taken along the central axis of the optical system of Example 8 of this invention.
[図 1 9 ]  [Figure 1 9]
実施例 8の光学系全体の横収差図を示す図である。  10 is a transverse aberration diagram for the whole optical system of Example 8. FIG.
[図 2 0 ]  [Figure 2 0]
本発明の実施例 9の光学系の中心軸に沿ってとつた断面図である。  It is sectional drawing taken along the central axis of the optical system of Example 9 of this invention.
[図 2 1 ]  [Figure 2 1]
実施例 9の光学系全体の横収差図を示す図である。  10 is a transverse aberration diagram for the whole optical system of Example 9. FIG.
[図 2 2 ]  [Figure 2 2]
本発明の実施例 1 0の光学系の中心軸に沿ってとつた断面図である。  FIG. 6 is a cross-sectional view taken along the central axis of the optical system according to Example 10 of the present invention.
[図 2 3 ]  [Figure 2 3]
実施例 1 0の光学系全体の横収差図を示す図である。  2 is a transverse aberration diagram for the whole optical system of Example 10. FIG.
[図 2 4 ]  [Figure 2 4]
本発明の光学系の画像と撮像素子の配置例を示す図である。  It is a figure which shows the example of arrangement | positioning of the image of the optical system of this invention, and an image pick-up element.
[図 2 5 ]  [Figure 2 5]
本発明の光学系を内視鏡先端の撮影光学系として用いた例を示すで ある。  2 shows an example in which the optical system of the present invention is used as a photographing optical system at the tip of an endoscope.
[図 2 6 ]  [Figure 2 6]
本発明の実施例 1 の光学系をカプセル内視鏡の撮影光学系として用 いた例を示す図である。  FIG. 3 is a diagram showing an example in which the optical system of Example 1 of the present invention is used as a photographing optical system for a capsule endoscope.
[図 2 7 ]  [Figure 2 7]
本発明の実施例 6の光学系をカプセル内視鏡の撮影光学系として用 いた例を示す図である。  FIG. 10 is a diagram showing an example in which the optical system of Example 6 of the present invention is used as a photographing optical system for a capsule endoscope.
[図 2 8 ]  [Figure 2 8]
本発明の光学系を自動車の撮影光学系として用いた例を示す図であ る。  FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as an imaging optical system for an automobile.
[図 2 9 ] 本発明の光学系を投影装置の投影光学系として用いた例を示す図で ある。 [Figure 2 9] It is a figure which shows the example which used the optical system of this invention as the projection optical system of a projection apparatus.
[図 3 0 ]  [Figure 3 0]
本発明の光学系を屋外の被写体を撮影する撮影光学系として用いた 例を示す図である。  FIG. 3 is a diagram showing an example in which the optical system of the present invention is used as a photographing optical system for photographing an outdoor subject.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[ 0 0 3 7 ]  [0 0 3 7]
以下、 実施例に基づいて本発明の光学系について説明する。  The optical system of the present invention will be described below based on examples.
[ 0 0 3 8 ]  [0 0 3 8]
図 3は、 後述する実施例 1 の光学系 1 の中心軸 (回転対称軸) 2に沿 つてとつた断面図である。 なお、 以下の説明は、 結像光学系として説明 するが、 光路を逆にとつて投影光学系として用いることもできる。  FIG. 3 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 1 described later. Although the following description will be described as an imaging optical system, it can also be used as a projection optical system with the optical path reversed.
[ 0 0 3 9 ]  [0 0 3 9]
本発明に係る光学系 1 は、 中心軸 2に対して回転対称で、 少なく とも 1つの反射面を含む前群 G と、 開口 Sと、 後群 G bとからなり、 中間 像を光路中に形成することなく像を形成又は投影する光学系 1である。 像面 5近傍の平行平板は撮像素子のカバーガラス C b 2等である。  An optical system 1 according to the present invention includes a front group G, an aperture S, and a rear group G b that are rotationally symmetric with respect to a central axis 2 and include at least one reflecting surface. An intermediate image is placed in the optical path. An optical system 1 that forms or projects an image without forming it. The parallel flat plate near the image plane 5 is the cover glass C b 2 of the image sensor.
[ 0 0 4 0 ]  [0 0 4 0]
実施例 1 の光学系 1は、 少なくとも 1つの反射面を含む前群 G f と、 後群 G bと、 前群 G f と後群 G bの間に配置された開口 Sとを有し、 中 心軸 2を含む断面内で、 中心軸 2の周りで回転対称な光学系 1 において 、 後群 G bは、 開口 Sの像面 5側に配置され、 屈折率が 1より大きい後 群透明媒体としての後 1群透明媒体 L bを有し、 後 1群透明媒体 L bは 、 開口 S近傍の中心軸 2上に配置された後群第 1透過面としての後 1群 第 1透過面 2 1 と、 後 1群第 1透過面 2 1より像面側に配置され、 像面 側に凹面を向けた後群第 1反射面としての後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2より像面と反対側に配置され、 像面側に凹面を向け た後群第 2反射面としての後 1群第 2反射面 2 3 と、 後 1群第 2反射面 2 3 よ り像面側に配置された後群第 2透過面としての後 1群第 2透過 面 2 4 と、 を有し、 後 1群第 1透過面 2 1 、 後 1群第 1反射面 2 2、 後 1群第 2反射面 2 3及び後 1群第 2透過面 2 4は、 球面からなり、 後 1 群透明媒体 L bに入射する光束は、 順光線追跡の順に、 開口 Sを通り、 後 1群第 1透過面 2 1 を経て後 1群透明媒体 L b内に入り、 後 1群第 1 反射面 2 2で像面 5 と反対側に反射され、 後 1群第 2反射面 2 3で像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L bから 像面 5側に外へ出る略 Z字状の第 1光路 Aを構成し、 第 1光路 Aの少な く とも後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の間は、 中心軸 2 に対して片側のみで構成され、 第 1光路 A中に中間像が結像されること なく、 像面 5 に円環状に結像される。 The optical system 1 of Example 1 has a front group G f including at least one reflecting surface, a rear group G b, and an aperture S disposed between the front group G f and the rear group G b, In the optical system 1 that is rotationally symmetric around the central axis 2 in the cross section including the central axis 2, the rear group G b is arranged on the image plane 5 side of the aperture S, and the rear group is transparent. The rear group 1 transparent medium Lb as the medium, and the rear group 1 transparent medium Lb is disposed on the central axis 2 near the opening S as the rear group first transmission surface. 2 1 and rear 1st group 1st transmission surface 2 1 rear surface 1st reflection surface 2 2 as rear group 1st reflection surface which is arranged on the image plane side from 1 and has a concave surface facing the image surface side Rear 1st group 2nd reflective surface 2 3 and rear 1st group 2nd reflective surface are arranged on the opposite side of the image surface from 1st group 1st reflective surface 2 2 and the concave surface is directed to the image surface side. Rear group 2 second transmission surface 2 4 as rear group second transmission surface arranged on the image plane side with respect to reflection surface 2 3, and rear group 1 first transmission surface 2 1, rear group 1 1 Reflecting surface 2 2, Rear 1st group 2nd reflecting surface 2 3 and Rear 1st group 2nd transmitting surface 2 4 are composed of spherical surfaces, and the luminous flux incident on the rear 1st group transparent medium Lb is in the order of forward ray tracing. Passes through the aperture S, passes through the rear group 1 first transmission surface 2 1 and enters the rear group 1 transparent medium L b, and is reflected to the opposite side of the image plane 5 by the rear group 1 first reflection surface 2 2, and the rear group 1 First Z-shaped first optical path reflected from the second reflecting surface 2 3 to the image surface 5 side, and then exits from the rear group 1 transparent medium L b to the image surface 5 side through the rear group 1 second transmission surface 24 A, and at least the rear of the first optical path A between the first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 It consists only of one side of the shaft 2, without the intermediate image is formed in the first optical path A, and is imaged on the image plane 5 circularly annular.
[ 0 0 4 1 ]  [0 0 4 1]
中心軸 2上の物体側から光路順で、 開口 S及びその近傍に配置された 後 1群第 1透過面 2 1、 後 1群第 1反射面 2 2、 後 1群第 2反射面 2 3 、 後 1群第 2透過面 2 4の順に配置され、 後 1群第 1反射面 2 2 と後 1 群第 2反射面 2 3 は共に像側に凹面を向け配置されていることが重要 である。  Arranged in the order of the optical path from the object side on the central axis 2 in the aperture S and its vicinity Rear 1st group 1st transmissive surface 2 1 Rear 1st group 1st reflective surface 2 2 Rear 1st group 2nd reflective surface 2 3 It is important that the rear group 1 second transmission surface 2 4 is arranged in this order, and that the rear group 1 first reflection surface 2 2 and the rear group 1 second reflection surface 2 3 are both arranged with the concave surface facing the image side. is there.
[ 0 0 4 2 ]  [0 0 4 2]
開口 Sは物体側の後 1群第 1透過面 2 1近傍にあることが重要で、 開 口 Sを本発明の後 1群透明媒体 L bの像側に配置すると、 非点収差が大 きく発生しフラッ トな像を形成することが出来なくなる。 また、 射出主 光線傾角が大きくなつてしまい、 テレセン性が悪くなる。 さらに、 後 1 群第 1透過面 2 1 と後 1群第 2反射面 2 3の有効径の干渉が起き、 画角 を大きく取ることが出来なくなってしまう。  It is important that the aperture S is located in the vicinity of the first transmission surface 21 of the first group after the object side.Astigmatism is increased when the aperture S is arranged on the image side of the first group of transparent media L b after the present invention. It is generated and a flat image cannot be formed. In addition, the emission chief ray tilt angle increases and telecentricity deteriorates. In addition, interference between the effective diameters of the rear first group first transmission surface 2 1 and the rear first group second reflection surface 2 3 occurs, making it impossible to obtain a large angle of view.
[ 0 0 4 3 ]  [0 0 4 3]
次に、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3 は像側に凹面を 向け、 さらに後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の間の光路 は回転対称軸を跨ぐことなく片側で構成され、 Z字光路になっているこ とが重要である。 - [ 0 0 4 4 ] Next, the rear first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 are concave on the image side. In addition, it is important that the optical path between the rear 1st group first reflecting surface 2 2 and the rear 1st group second reflecting surface 2 3 is composed of one side without straddling the axis of rotational symmetry and is a Z-shaped optical path. It is. -[0 0 4 4]
この配置により物体側から光路順に負、 正のパワー配置になり、 所謂 レトロフォーカス構成にすることが可能となり、 広画角化が可能となる This arrangement results in a negative and positive power arrangement in the order of the optical path from the object side, enabling a so-called retrofocus configuration, and widening the angle of view.
。 また、 この配置により光学系の主点を物体側に配置することが可能と なり、 Fバックを取ることが可能となる。 さらに、 光路途中で中間像を 形成しない為に、 光学系を小型にすることが可能である。 . In addition, this arrangement makes it possible to place the principal point of the optical system on the object side and take F-back. Furthermore, since an intermediate image is not formed in the middle of the optical path, the optical system can be reduced in size.
[ 0 0 4 5 ]  [0 0 4 5]
さらに、 透過面の間に反射面を配置することにより、 反射面を内部反 射面で構成することにより、 像面湾曲なので収差の発生を少なくするこ とが可能となる。 また、 後 1群第 1反射面 2 2 に当る光線の傾きが空気 中より小さくなりなるので、 広画角にも良い結果をもたらす。  Furthermore, by arranging the reflecting surface between the transmitting surfaces, and configuring the reflecting surface with an internal reflecting surface, it is possible to reduce the occurrence of aberration due to the curvature of field. In addition, since the inclination of the light ray that strikes the rear first group first reflecting surface 2 2 becomes smaller than that in the air, a good result is also obtained for a wide angle of view.
[ 0 0 4 6 ]  [0 0 4 6]
さらに、 後 1群第 1反射面 2 2は画角の広い光線は全反射により反射 するように構成し、 画角中心付近の後 1群第 1反射面 2 2で全反射しな い入射角の光線を反射させるように、 後 1群第 1反射面 2 2の中心部に 反射コ一ティ ング 4 aすることが好ましい。 これにより画角中心部の映 像も撮像することが可能となる。 さらに後 1群第 1反射面 2 2周辺部は 全反射するために、 この部分は反射コーティ ングを行わないことが望ま しい。 これにより中心部分の光線が光学系から射出するのを妨げること がなくなる。  In addition, the rear 1st group 1st reflecting surface 2 2 is configured so that rays with a wide angle of view are reflected by total reflection, and the incident angle at which the 1st group 1st reflecting surface 2 2 near the center of the angle of view does not totally reflect. It is preferable to apply a reflective coating 4a to the center of the rear first group first reflecting surface 22 so as to reflect the light beam. This makes it possible to capture an image at the center of the angle of view. In addition, since the back of the first group 1st reflecting surface 2 2 is totally reflected, it is desirable not to perform reflection coating on this part. This prevents the central beam from being blocked from exiting the optical system.
[ 0 0 4 7 ]  [0 0 4 7]
さらに、 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は後 1群透明 媒体 L bの物体側に近接して配置することが好ましい。 これにより相互 の面での光線の干渉が減り、 広い画角を確保することが可能となる。  Further, it is preferable that the rear first group first transmission surface 21 and the rear first group second reflection surface 23 be disposed close to the object side of the rear first group transparent medium Lb. This reduces the interference of light rays on each other, and ensures a wide angle of view.
[ 0 0 4 8 ] さらに、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は透明媒体 L の像面 5側に近接して配置することが好ましい。 これにより透明媒体 L と像面 5 を短くすることが可能となり。 光学系全長を短ぐすることが可 能となる。 [0 0 4 8] Further, it is preferable that the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 24 be close to the image surface 5 side of the transparent medium L. This makes it possible to shorten the transparent medium L and the image plane 5. It is possible to shorten the overall length of the optical system.
[ 0 0 4 9 ]  [0 0 4 9]
さらに、 後 1群第 2反射面 2 3は周辺部に反射コーティ ング 4 bを行 う ことが望ましく、 中心部分は後 1群第 1透過面 2 1 又は開口 S を配置 する関係から、 反射コーティ ングしないことが望ましい。  Further, it is desirable that the rear first group second reflecting surface 23 be provided with a reflective coating 4 b in the peripheral portion, and the central portion is provided with the rear first group first transmitting surface 21 or the opening S. It is desirable not to
[ 0 0 5 0 ]  [0 0 5 0]
さらに好ましくは、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4を 同一場所、 同一形状で構成することが好ましい。 この構成により、 後 1 群第 1 反射面 2 2 に部分的に全反射を使う ことが可能となり光学系の 画角を広く取れる。  More preferably, the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 24 are preferably formed in the same place and in the same shape. With this configuration, it is possible to partially use total reflection on the first group first reflecting surface 2 2 later, and a wide angle of view of the optical system can be obtained.
[ 0 0 5 1 ]  [0 0 5 1]
さらに好ましくは、 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3 を 同一場所、 同一形状で構成することが望ましい。 この構成により、 加工 性がよくなる。  More preferably, the rear first group first transmitting surface 2 1 and the rear first group second reflecting surface 2 3 are preferably formed in the same place and in the same shape. This configuration improves workability.
[ 0 0 5 2 ]  [0 0 5 2]
また、 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1 より大き い前群透明媒体 L f を有し、 前群透明媒体 L は、 光路順に、 前群第 1 透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2 を挟んで反対側で像面 5 側に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と中心軸 2 に対して同じ側で前群第 1 反射面 1 2 よ り像面 5 と反対側に配置され た前群第 2反射面 1 3 と、 前群第 2反射面 1 3より像面 5側に配置され た前群第 2透過面 1 4 と、 を有し、 前群透明媒体 L f に入射する光束は 、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に 入り、 前群第 1反射面 1 2で像面 5 と反対側に反射され、 前群第 2反射 面 1 3で像面 5側に反射され、 前群第 2透過面 1 4を経て前群透明媒体 L f から像面 5側に外へ出る光路を構成することが好ましい。 Further, the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L is arranged in the order of the optical path in the order of the optical path. 1 1 and the front group first reflecting surface 1 2 and the front group first reflecting surface 1 2 centered on the image plane 5 side opposite to the front group first transmitting surface 1 1 and the central axis 2 Front group second reflecting surface 1 3 disposed on the same side of axis 2 as front group first reflecting surface 1 2 and on the opposite side of image surface 5 from front group second reflecting surface 1 2, and image surface 5 from front group second reflecting surface 1 3 And the front group second transmission surface 14 disposed on the side, and the light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing. Entered into the medium L f, reflected by the front group first reflective surface 1 2 to the opposite side of the image surface 5, reflected by the front group second reflective surface 1 3 to the image surface 5 side, and front group second transmission surface 1 4 through the front transparent media It is preferable to configure an optical path that exits from L f to the image plane 5 side.
[ 0 0 5 3 ]  [0 0 5 3]
また、 前群 G f は、 中心軸の周りで回転対称な屈折率が 1 より大きい 前群透明媒体 L f を有し、 前群透明媒体 L f は、 光路順に、 前群第 1透 過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2 を挟んで反対側で像面 5側 に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と中心軸 2 に 対して反対側で前群第 1 反射面 1 2 よ り像面 5 と反対側に配置された 前群第 2反射面 1 3 と、 前群第 2反射面 1 3より像面 5側に配置された 前群第 2透過面 1 4 と、 を有し、 前群透明媒体 L f に入射する光束は、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に入 り、 前群第 1反射面 1 2で像面 5 と反対側に反射され、 前群第 2反射面 1 3で像面 5側に反射され、 前群第 2透過面 1 4 を経て前群透明媒体 L f から像面 5側に外へ出る光路を構成することが好ましい。  Further, the front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis, and the front group transparent medium L f is arranged in the order of the optical path in the front group first transparent surface. 1 1 and front group first reflecting surface 1 1 and front group first reflecting surface 1 2 placed on the image plane 5 side on the opposite side across 1 and center axis 2 and front group first reflecting surface 1 2 and center The front group second reflecting surface 1 3 disposed on the opposite side of the axis 2 from the front group first reflecting surface 1 2 and opposite to the image surface 5 from the front group first reflecting surface 1 2, and the front group second reflecting surface 1 3 from the image surface 5 The light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing. Enters the medium L f, reflected by the front group first reflective surface 1 2 to the opposite side of the image surface 5, reflected by the front group second reflective surface 1 3 to the image surface 5 side, and front group second transmission surface Configure the optical path going out from the front group transparent medium L f to the image plane 5 side via 1 4 Door is preferable.
[ 0 0 5 4 ]  [0 0 5 4]
また、 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1 より大き い前群透明媒体 L f を有し、 前群透明媒体 L f は、 光路順に、 前群第 1 透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2 を挟んで反対側で像面 5 と反対側に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2より 像面 5側に配置された前群第 2透過面 1 4 と、 を有し、 前群透明媒体 L f に入射する光束は、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前 群透明媒体 L f 内に入り、 前群第 1反射面 1 2で像面側に反射され、 前 群第 2透過面 1 4 を経て前群透明媒体 L f から像面 5側に外へ出る光 路を構成することが好ましい。  The front group G f has a front group transparent medium L f whose rotational refractive index is greater than 1 around the central axis 2, and the front group transparent medium L f is transmitted through the front group first transmission in the order of the optical path. Surface 1 1, front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 on the opposite side of front axis first transmission surface 1 1 and central axis 2 2 and the front group second transmission surface 1 4 disposed on the image plane 5 side from 2. The light beam incident on the front group transparent medium L f is in the order of forward ray tracing in the order of the front beam first transmission surface 1 1. After passing through the front group transparent medium L f, reflected to the image plane side by the front group first reflecting surface 12, and then passed from the front group second transparent surface 14 to the image group 5 side from the front group transparent medium L f. It is preferable to construct an optical path that goes out.
[ 0 0 5 5 ]  [0 0 5 5]
また、 最大像高を I max、 前記透明媒体の外径を Dとするとき、  When the maximum image height is I max and the outer diameter of the transparent medium is D,
0 . 5 < D Z ( 2 X I max) < 1 0 · · · ( 1 ) なる条件を満足することが望ましい。  It is desirable to satisfy the following condition: 0.5 <D Z (2 X I max) <1 0 (1)
[ 0 0 5 6 ] 条件式 ( 1 ) は、 下限を超えるとテレセン性が悪くなり特に C C D等 の撮像素子を利用して撮像する場合に周辺光量不足を起こす。 上限を超 えると光学系の外径が大きくなりすぎ光学系が大型になって-しまう。 [0 0 5 6] In conditional expression (1), when the lower limit is exceeded, the telecentricity deteriorates, and in particular, when taking an image using an image sensor such as a CCD, the peripheral light quantity is insufficient. If the upper limit is exceeded, the outer diameter of the optical system becomes too large and the optical system becomes large.
[ 0 0 5 7 ]  [0 0 5 7]
また、 最大像高を I niax、 前記開口から前記像面までの距離を Lとす るとき、  When the maximum image height is I niax and the distance from the aperture to the image plane is L,
0. 5 < L / ( 2 X 1 max) < 1 0 · · · ( 2 ) なる条件を満足することが望ましい。  It is desirable to satisfy the following condition: 0.5 <L / (2 X 1 max) <1 0 · · · (2)
[ 0 0 5 8 ]  [0 0 5 8]
条件式 ( 2 ) は、 像高に対する光学系全長を規定するものであり、 下 限を超えるとやはりテレセン性が悪くなり周辺光量不足を起こす。 上限 を超えると全長が長くなりすぎ、 小型の光学系を構成することはできな い。  Conditional expression (2) defines the total length of the optical system with respect to the image height. If the lower limit is exceeded, the telecentricity also deteriorates and the peripheral light quantity is insufficient. If the upper limit is exceeded, the total length becomes too long, and a compact optical system cannot be constructed.
[ 0 0 5 9 ]  [0 0 5 9]
また、 後 1群第 1反射面 2 2の曲率を 1、 後 1群第 2反射面 2 3の 曲率を R 2 とするとき、  Also, when the curvature of the rear first group first reflective surface 2 2 is 1, and the curvature of the rear first group second reflective surface 2 3 is R 2,
0. 2 <R 1 /R 2 < 5 * · · ( 3 ) なる条件を満足することが望ましい。  0.2 <R 1 / R 2 <5 * · (3) It is desirable to satisfy the following condition.
[ 0 0 6 0 ]  [0 0 6 0]
条件式 ( 3 ) は、 二つの反射面のパワーの比を規定しているものであ り、 下限を超えると、 後 1群第 1反射面 2 2の曲率半径が小さくなり、 後 1群第 2反射面 2 3の正のパワーに比べて、 後 1群第 1反射面 2 2の 負のパワーが大きくなり光学系の全長を短くすることが出来ない。 上限 を超えると、 後 1群第 2反射面 2 3の曲率が小さくなり後 1群第 2反射 面 2 3の正のパワーが大きくなりすぎ、 物体側に凸の像面湾曲が大きく 発生する。  Conditional expression (3) regulates the ratio of the power of the two reflecting surfaces. When the lower limit is exceeded, the radius of curvature of the rear first group first reflecting surface 2 2 becomes smaller, and the rear first group first Compared with the positive power of 2 reflecting surface 2 3, the negative power of rear 1st group 1st reflecting surface 2 2 becomes larger and the total length of the optical system cannot be shortened. When the upper limit is exceeded, the curvature of the rear first group second reflecting surface 23 becomes smaller, the positive power of the rear first group second reflecting surface 23 becomes too large, and a large curvature of field on the object side occurs.
[ 0 0 6 1 ]  [0 0 6 1]
なお、 すべての実施例は球面で構成されているが、 通常の非球面で構 成することも可能である。 また物体側の平行平面は、 光学系保護用のも のであり。 無くてもよい。 像側の平行平面は撮像素子保護用のものであ り、 無くても良い。 Note that all the examples are composed of spherical surfaces, but are composed of ordinary aspherical surfaces. It is also possible to make it. The parallel plane on the object side is for protecting the optical system. There is no need. The parallel plane on the image side is for protecting the image sensor and may be omitted.
[ 0 0 6 2 ]  [0 0 6 2]
以下に、 本発明の光学系の実施例 1〜 4を説明する。 これら光学系の 構成パラメ一夕は後記する。  Examples 1 to 4 of the optical system of the present invention will be described below. The configuration parameters of these optical systems will be described later.
[ 0 0 6 3 ]  [0 0 6 3]
座標系は、 順光線追跡において、 例えば図 1 に示すように、 絞り面 S が中心軸 2と交差する点を偏心光学面の原点 Oとし、 中心軸 2に直交す る方向を Y軸方向とし、 図 1の紙面内を Y— Z平面とする。 そして、 図 1の像面 5側の方向を Z軸正方向とし、 Y軸、 Z軸と右手直交座標系を 構成する軸を X軸正方向とする。  In forward ray tracing, for example, as shown in Fig. 1, the coordinate system uses the point where the diaphragm surface S intersects the central axis 2 as the origin O of the decentered optical surface, and the direction perpendicular to the central axis 2 as the Y-axis direction. The Y-Z plane is the inside of the paper in Figure 1. The direction on the image plane 5 side in FIG. 1 is the Z-axis positive direction, and the Y-axis, the Z-axis and the axis that forms the right-handed orthogonal coordinate system are the X-axis positive direction.
[ 0 0 6 4 ]  [0 0 6 4]
偏心面については、 その面が定義される座標系の上記光学系 1の原点 〇からの偏心量 (X軸方向、 Y軸方向、 Z軸方向をそれぞれ X , Y , Z ) と、 光学系 1の原点〇に定義される座標系の X軸、 Y軸、 Z軸それぞ れを中心とする各面を定義する座標系の傾き角 (それぞれ α , β , r ( ° ) ) とが与えられている。 その場合、 αと |6の正はそれぞれの軸の正 方向に対して反時計回りを、 ァの正は Ζ軸の正方向に対して時計回りを 意味する。 なお、 面の中心軸の α , /3 , ァの回転のさせ方は、 各面を定 義する座標系を光学系の原点に定義される座標系のまず X軸の回りで 反時計回りに α回転させ、 次に、 その回転した新たな座標系の Υ軸の回 りで反時計回りに /3回転させ、 次いで、 その回転した別の新たな座標系 の Ζ軸の回りで時計回りにァ回転させるものである。  For the eccentric surface, the amount of eccentricity from the origin 〇 of the optical system 1 in the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the optical system 1 The coordinate system tilt angles (α, β, r (°)) that define each surface around the X, Y, and Z axes of the coordinate system defined at the origin of ing. In that case, the positive α and | 6 mean counterclockwise rotation with respect to the positive direction of each axis, and the positive a means clockwise rotation with respect to the positive direction of the axis. It should be noted that the rotation of α, / 3, and a on the central axis of the surface is performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined as the origin of the optical system. Rotate α, then rotate counterclockwise / 3 around the axis of the new rotated coordinate system, and then clockwise around the axis of another rotated new coordinate system Rotate.
[ 0 0 6 5 ]  [0 0 6 5]
また、 各実施例の光学系を構成する光学作用面の中、 特定の面とそれ に続く面が共軸光学系を構成する場合には面間隔が与えられており、 そ の他、 面の曲率半径、 媒質の屈折率、 アッベ数が慣用法に従って与えら れている。 In addition, among the optical action surfaces constituting the optical system of each example, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given. The radius of curvature, the refractive index of the medium, and the Abbe number are given according to conventional usage. It is.
[ 0 0 6 6 ]  [0 0 6 6]
また、 後記の構成パラメ一夕中にデータの記載されていない非球面に 関する項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7 . 5 6 n m) に対するものを表記してある。 長さの単位は mmである。 各面の偏心は、 上記のように、 基準面からの偏心量で表わす。  In addition, the term for aspheric surfaces for which no data is described in the constituent parameters described later is zero. Refractive index and Abbe number are shown for d-line (wavelength 5 8 7.5 6 nm). The unit of length is mm. The eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
[ 0 0 6 7 ]  [0 0 6 7]
なお、 非球面は、 以下の定義式で与えられる回転対称非球面である。  An aspherical surface is a rotationally symmetric aspherical surface given by the following definition.
Z = (Y2 ZR) Z [ 1 + ί 1 - ( 1 + k ) Y2 /R2 } 1 /2] Z = (Y 2 ZR) Z [1 + ί 1-(1 + k) Y 2 / R 2 } 1/2 ]
+ a Y4 + b Y6 + c Y8 + d Y10+ - · · + a Y 4 + b Y 6 + c Y 8 + d Y 10 +-
. . . ( a ) ただし、 Zを軸とし、 Yを軸と垂直な方向にとる。 ここで、 Rは近軸曲 率半径、 kは円錐定数、 a、 b、 c、 d、 …はそれぞれ 4次、 6次、 8 次、 1 0次の非球面係数である。 この定義式の Z軸が回転対称非球面の 軸となる。  (a) where Z is the axis and Y is perpendicular to the axis. Where R is the paraxial radius of curvature, k is the conic constant, a, b, c, d, ... are the 4th, 6th, 8th, and 10th order aspherical coefficients, respectively. The Z axis of this definition is the axis of the rotationally symmetric aspheric surface.
[ 0 0 6 8 ]  [0 0 6 8]
また、 拡張回転自由曲面は、 以下の定義で与えられる回転対称面であ る。  An extended rotational free-form surface is a rotationally symmetric surface given by the following definition.
[ 0 0 6 9 ]  [0 0 6 9]
まず、 図 2に示すように、 Y— Z座標面上で原点を通る下記の曲線 ( b ) が定められる。  First, as shown in Fig. 2, the following curve (b) passing through the origin on the Y-Z coordinate plane is determined.
[ 0 0 7 0 ]  [0 0 7 0]
Z = (Y2 ZR Y.) / [ 1 + { 1 - (C , + 1 ) Y2 /R Y2 } 1 /2] + C 2 Y + C 3 Y2 + C4 Y3 + C 5 Y4 + C 6 Y5 + C 7 Y6 Z = (Y 2 ZR Y.) / [1 + {1-(C, + 1) Y 2 / RY 2 } 1/2 ] + C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ · · · · + C21Y2°+ · · · · + Cn+1 Y" + · · · · + · · · · + C 21 Y 2 ° + · · · · + C n + 1 Y "+ · · · ·
• · · (b )  • · · (b)
[ 0 0 7 1 ]  [0 0 7 1]
次いで、 この曲線 ( b) を X軸正方向を向いて左回りを正として角度 Θ ) 回転した曲線 F ( Y ) が定められる。 この曲線 F ( Y ) も Y— Z座標面上で原点を通る。 Next, turn this curve (b) in the positive direction of the X-axis and turn counterclockwise positive. Θ) A rotated curve F (Y) is defined. This curve F (Y) also passes through the origin on the Y-Z coordinate plane.
[ 0 0 7 2 ]  [0 0 7 2]
その曲線 F ( Y ) を Y正方向に距離 R (負のときは Y負方向) だけ平 行移動し、 その後に Z軸の周りでその平行移動した曲線を回転させてで きる回転対称面を拡張回転自由曲面とする。  Move the curve F (Y) in the Y positive direction by a distance R (Y negative direction if negative), and then rotate the parallel symmetry curve around the Z axis. An extended rotation free-form surface.
[ 0 0 7 3 ]  [0 0 7 3]
その結果、 拡張回転自由曲面は Y— Z面内で自由曲面 (自由曲線) に なり、 X— Y面内で半径 I R I の円になる。  As a result, the extended rotation free-form surface becomes a free-form surface (free curve) in the Y—Z plane and a circle with a radius I R I in the X—Y plane.
[ 0 0 7 4 ]  [0 0 7 4]
この定義から Z軸が拡張回転自由曲面の軸 (回転対称軸) となる。  From this definition, the Z axis is the axis of the extended rotation free-form surface (rotation symmetry axis).
[ 0 0 7 5 ]  [0 0 7 5]
ここで、 R Yは Y— Z断面での球面項の曲率半径、 C , は円錐定数、 C 2 、 C 3 、 C 4 、 C 5 …はそれぞれ 1次、 2次、 3次、 4次…の非球面 係数である。 Where RY is the radius of curvature of the spherical term in the Y-Z section, C is the conic constant, C 2 , C 3 , C 4 , C 5 ... are the 1st, 2nd, 3rd, 4th ... Aspheric coefficient.
[ 0 0 7 6 ]  [0 0 7 6]
なお、 Z軸を中心軸に持つ円錐面は拡張回転自由曲面の 1つとして与 えられ、 R Y =∞, C , , C 2 , C 3 , C 4 , C J , .·· =〇 とし、 Θ = (円 錐面の傾き角) 、 R = ( X— Z面内での底面の半径) として与えられる Note that the conical surface with the Z axis as the central axis is given as one of the extended rotation free-form surfaces, and RY = ∞, C,, C 2 , C 3, C 4 , CJ,. = (Conical angle of cone), R = (bottom radius in the X—Z plane)
[ 0 0 7 7 ] [0 0 7 7]
また、 後記の構成パラメ一夕中にデータの記載されていない非球面に 関する項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7 . 5 6 n m ) に対するものを表記してある。 長さの単位は m mである。 各面の偏心は、 上記のように、 基準面からの偏心量で表わす。  In addition, the term for aspheric surfaces for which no data is described in the constituent parameters described later is zero. The refractive index and Abbe number are shown for the d-line (wavelength 5 8 7.5 6 nm). The unit of length is mm. The eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
[ 0 0 7 8 ]  [0 0 7 8]
実施例 1 の光学系 1 の中心軸 2に沿ってとつた断面図を図 3に示す。 また、 この実施例の光学系全体の横収差図を図 4に示す。 この横収差図 において、 中央に示された角度は、 (水平方向画角、 垂直方向の画角) を示し、 その画角における Y方向 (メリジォナル方向) と X方向 (サジ タル方向) の横収差を示す。 なお、 マイナスの画角は、 水平方向画角に ついては、 Y軸正方向を向いて右回りの角度、 垂直方向画角については 、 X軸正方向を向いて右回りの角度を意味する。 以下、 同じ。 A sectional view taken along the central axis 2 of the optical system 1 of Example 1 is shown in FIG. Further, FIG. 4 shows a lateral aberration diagram of the entire optical system of this example. This lateral aberration diagram The angle shown in the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridinal direction) and X direction (sagittal direction) at that field angle. Note that a negative field angle means a clockwise angle when facing the Y-axis positive direction for the horizontal field angle, and a clockwise angle when facing the X-axis positive direction for the vertical field angle. same as below.
[ 0 0 7 9 ]  [0 0 7 9]
本実施例は、 光学系 1 の中心軸 2に同心に回転対称な屈折率が 1より 大きい後 1群透明媒体 L bの透過面及び反射面を、 光路内で一部共通に 使用する球面で構成し、 該後 1群透明媒体 L bの前群 G f として前群透 明媒体 L f を配置した例である。  This embodiment is a spherical surface in which the transmission surface and the reflection surface of the first group of transparent media L b are used in common in the optical path after the refractive index that is rotationally symmetric with respect to the central axis 2 of the optical system 1 is greater than 1. In this example, the front group transparent medium L f is arranged as the front group G f of the first group transparent medium L b.
[ 0 0 8 0 ]  [0 0 8 0]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 後 1群 G b 1 と後 2群 G b 2からなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b. The rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
[ 0 0 8 1 ]  [0 0 8 1]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 2の周りで回転対 称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束が入射し拡 張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過面 1 1 と 中心軸 2 を挟んで反対側で前群第 1透過面 1 1より像面 5側に配置さ れていて、 前群第 1透過面 1 1から入射した光束が入射し拡張回転自由 曲面からなる前群第 1反射面 1 2と、 前群第 1反射面 1 2と中心軸 2に 対して同じ側で前群第 1反射面 1 2より像面 5と反対側に配置され、 前 群第 1反射面 1 2で反射された光束が入射し拡張回転自由曲面からな る前群第 2反射面 1 3 と、 後群 G bに面していて、 前群第 2反射面 1 3 で反射された光束が入射し球面からなる前群第 2透過面 1 4とからな る。  The front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1. The front group transparent medium L f is made of a resin or the like having a refractive index of rotation greater than 1 around the central axis 2, and the front group first transmission surface 1 is formed of an extended rotation free-form surface by incidence of a light beam from a distance. 1 and the front group first transmission surface 1 1 and the central axis 2 are arranged on the opposite side of the front group first transmission surface 1 1 from the image plane 5 side, and from the front group first transmission surface 1 1 The front group first reflecting surface 1 2 consisting of a free-form curved surface with incident light flux and an image from the front group first reflecting surface 1 2 on the same side of the front group first reflecting surface 1 2 and the central axis 2 Located on the opposite side of surface 5, faces the front group second reflecting surface 1 3 consisting of the extended rotation free-form surface and the rear group G b when the light beam reflected by the front group first reflecting surface 12 enters. Thus, the light beam reflected by the front-group second reflecting surface 1 3 is incident and the front-group second transmitting surface 14 is formed of a spherical surface.
[ 0 0 8 2 ] 後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で球 面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像 側に形成され、 一部を反射コーティ ング 4 a し、 負のパワーをもつ像面 側に凹面を向けた後 1群第 1反射面 2 2と、 後 1群第 1反射面 2 2に対 して像面 5と反対側に配置され、 反射コーティ ング 4 bし、 正のパワー をもつ像面側に凹面を向けた後 1群第 2反射面 2 3 と、 後 1群第 2反射 面 2 3より像面 5側に配置され、 負のパワーをもつ後 1群第 2透過面 2 4とを有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一 位置同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4 は、 同一位置同一形状からなる。 [0 0 8 2] The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. The rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a and after the concave surface is directed to the negative image side, the first group 1st reflection surface 2 2 and the back 1st group 1st reflection surface 2 2 opposite to the image surface 5 Is placed on the back, and the reflective coating 4 b is applied, and the concave surface is directed to the image surface side having a positive power, and then the first group second reflecting surface 2 3, and the rear first group second reflecting surface 2 3 to the image surface 5 side. And rear group 1 having a negative power and a second transmitting surface 2 4. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 0 8 3 ]  [0 0 8 3]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 2群カバーガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対 して像側に形成される後 2群第 2透過面 3 2 とを有する。  The rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1. The rear 2nd group cover glass Cb2 is formed of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmitting surface 3 1 and the rear 2nd group first transmitting surface 3 1. 2 transmissive surface 3 2.
[ 0 0 8 4 ]  [0 0 8 4]
光学系 1は、 光路 Aを形成する。 光学系 1の物体面 3から入射する光 束は、 前群透明媒体 L f の前群第 1透過面 1 1 を経て、 中心軸 2を横切 つて前群第 1透過面 1 1 と反対側の前群第 1反射面 1 2で後群 G bか ら離れるように上方へ反射されて、 前群第 1反射面 1 2 と中心軸 2に対 して同じ側で後群 G bからより離れた側に位置している前群第 2反射 面 1 3で後群 G b方向へ再度反射され、 射出面の前群第 2透過面 1 4を 経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. The light flux incident from the object plane 3 of the optical system 1 passes through the front group first transmission surface 1 1 of the front group transparent medium L f, crosses the central axis 2, and is opposite to the front group first transmission surface 1 1. Is reflected upward from the front group first reflective surface 1 2 away from the rear group G b, and from the rear group G b on the same side as the front group first reflective surface 1 2 and the central axis 2. Reflected again in the rear group G b direction by the front group second reflecting surface 1 3 located on the far side, and exits from the front group transparent medium L f via the front group second transmitting surface 14 of the exit surface .
[ 0 0 8 5 ]  [0 0 8 5]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に同 軸に配置された開口 Sとを経て後 1群透明媒体 L b内に入る。 後 1群透 明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コーティ ング 4 a、 一部が全反射により像面 5 と反対 側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像 面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L bか ら外に出る略 Z字状の光路を有する。 その後、 後 2群カバーガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を経て、 像面 5の中 心軸 2から外れた半径方向の所定位置に円環状に結像する。 Thereafter, the light enters the rear first group transparent medium Lb through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear first group transparent medium Lb. Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1 and rear 1st group 1st reflection surface 2 2 is partially reflected coating 4a, partly reflected to the opposite side of image plane 5 by total reflection, and rear 1st group second reflecting surface 2 3 is reflected to image surface 5 side by reflecting coating 4b In addition, it has a substantially Z-shaped optical path that exits from the rear group 1 transparent medium Lb through the rear group 1 second transmission surface 24. After that, the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the center axis 2 of the image plane 5. It forms an image in an annular shape.
[ 0 0 8 6 ]  [0 0 8 6]
この実施例 1 の仕様は、  The specification of Example 1 is
全系の画角 50. 00 ° 〜360. 0 ° Angle of view of the entire system 50.00 ° to 360.0 °
後群の画角 26. 8 1 ° 〜60. 22 ° Rear group angle of view 26. 8 1 ° to 60. 22 °
入射瞳径 Φ 0. 94mm Entrance pupil diameter Φ 0.94mm
像の大きさ Φ 4. 04mD!〜 φ 7. 83mm The size of the image Φ 4. 04mD! ~ Φ 7. 83mm
である。 It is.
[ 0 0 8 7 ]  [0 0 8 7]
実施例 2の光学系 1 の中心軸 2に沿ってとつた断面図を図 5に示す。 また、 この実施例の光学系全体の横収差図を図 6に示す。  A sectional view taken along the central axis 2 of the optical system 1 of Example 2 is shown in FIG. Further, FIG. 6 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 0 8 8 ]  [0 0 8 8]
本実施例は、 光学系 1 の中心軸 2に同心に回転対称な屈折率が 1より 大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通に使 用する球面で構成し、 該後群透明媒体 L bの前群 G f として前群透明媒 体 L f を配置した例である。  In this example, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially shared in the optical path. This is an example in which the front group transparent medium L f is arranged as the front group G f of the rear group transparent medium L b.
[ 0 0 8 9 ]  [0 0 8 9]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 第 1群 G 1 と第 2群 G 2からなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b. The rear group G b It consists of the first group G 1 and the second group G 2.
[ 0 0 9 0 ]  [0 0 9 0]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 2の周りで回転対 称な屈折率が 1 より大きい樹脂等からなり、 遠方からの光束が入射し拡 張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過面 1 1 と 中心軸 2 を挟んで反対側で前群第 1 透過面 1 1 より像面 5側に配置さ れていて、 前群第 1透過面 1 1から入射した光束が入射し拡張回転自由 曲面からなる前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と中心軸 1 を 挟んで反対側で前群第 1反射面 1 2より像面 5 と反対側に配置され、 前 群第 1反射面 1 2で反射された光束が入射し拡張回転自由曲面からな る前群第 2反射面 1 3 と、 中心軸 2上で後群 G bに面していて前群第 2 反射面 1 3より像面 5側に配置され、 前群第 2反射面 1 3で反射された 光束が入射し球面からなる前群第 2透過面 1 4 とからなる。 The front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1. The front group transparent medium L f is a rotating pair around the central axis 2. The front group first transmission surface 1 1, the front group first transmission surface 1 1, and the central axis 2 are made of an extended rotation free-form surface. It is located on the opposite side of the front group first transmission surface 1 1 from the image plane 5 side, and the front group first transmission surface 1 1 enters the front group first transmission surface 1 1 Reflecting surface 1 2 and the front group first reflecting surface 1 2 and the central axis 1 are located on the opposite side of the front group first reflecting surface 1 2 from the image surface 5 on the opposite side, and the front group first reflecting surface 1 Front group second reflecting surface 1 3 consisting of an extended rotation free-form surface with the light beam reflected by 2 and the rear group G b on central axis 2 and imaged from front group second reflecting surface 1 3 It is arranged on the surface 5 side, and is composed of a front group second transmission surface 14 made of a spherical surface by the incident light beam reflected by the front group second reflection surface 13.
[ 0 0 9 1 ]  [0 0 9 1]
後 1群 G b 1 は、 中心軸 2の周りで回転対称な屈折率が 1 より大きい 後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で球 面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像 側に形成され、 一部を反射コーティ ング 4 a し、 負のパワーをもつ像面 側に凹面を向けた後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2 に対 して像面 5 と反対側に配置され、 反射コーティ ング 4 b し、 正のパワー をもつ像面側に凹面を向けた後 1群第 2反射面 2 3 と、 後 1群第 2反射 面 2 3より像面 5側に配置され、 負のパワーをもつ後 1群第 2透過面 2 4 とを有する。 後 1群第 1 透過面 2 1 と後 1群第 2反射面 2 3は、 同一 位置同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4 は、 同一位置同一形状からなる。  The rear group 1 G b 1 is composed of the rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. The rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a, with the concave surface facing the negative image surface side, 1st group 1st reflection surface 2 2 and 1st group 1st reflection surface 2 2 opposite to image surface 5 After reflecting the concave coating on the image surface side with positive power and reflecting coating 4b, the 1st group 2nd reflecting surface 2 3 and the 1st group 2nd reflecting surface 2 3 on the image surface 5 side And rear group 1 having a negative power and a second transmitting surface 2 4. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 are in the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 0 9 2 ]  [0 0 9 2]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1 より大きい 後 2群カバーガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平 行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対 して像側に形成される後 2群第 2透過面 3 2 とを有する。  The rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1. The rear 2nd group cover glass Cb2 is formed of a flat plate, and is formed on the image side with respect to the rear 2nd group first transmitting surface 3 1 and the rear 2nd group first transmitting surface 3 1. 2 transmissive surface 3 2.
[ 0 0 9 3 ] 光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1 の物体面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内 に入り、 中心軸 2を横切って前群第 1透過面 1 1 と反対側の前群第 1反 射面 1 2で後群 G bから離れるように上方へ像面 5 と反対側に反射さ れ、 前群第 1反射面 1 2 と中心軸 2に対して反対側で後群 G からより 離れた側に位置している前群第 2反射面 1 3で像面 5側に反射され、 射 出面の前群第 2透過面 1 4を経て前群透明媒体 L f から外に出る。 [0 0 9 3] The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 11 and crosses the central axis 2 before the first group first transmission surface 1. Reflected upward on the opposite side of the image plane 5 away from the rear group G b at the front group first reflective surface 1 2 on the opposite side of 1, and against the front group first reflective surface 1 2 and the central axis 2 The front group second reflecting surface 1 3 located on the opposite side and further away from the rear group G is reflected to the image plane 5 side, and the front group is transparent through the front group second transmitting surface 14 of the emitting surface. Get out of medium L f.
[ 0 0 9 4 ]  [0 0 9 4]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に同 軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群 透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射 面 2 2で一部が反射コーティ ング 4 a、 他部が全反射により像面 5 と反 対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより 像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L b から外に出る略 Z字状の光路を有する。 その後、 後 2群カバ一ガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を経て、 像面 5の 中心軸 2から外れた半径方向の所定位置に円環状に結像する。  After that, it passes through the opening S arranged on the same axis as the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and then enters the rear group 1 transparent medium Lb. Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, part is reflective coating 4 a, other part is total reflection, image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 and then passes through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out of the window. After that, the rear 2nd group cover glass Cb 2 passes through the rear 2nd group 1st transmission surface 3 1 and the rear 2nd group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image plane 5. It forms an image in an annular shape.
[ 0 0 9 5 ]  [0 0 9 5]
この実施例 2の仕様は、  The specification of this Example 2 is
全系の画角 80. 00 ° 〜360 ° Angle of view of the entire system 80.00 ° to 360 °
後群の画角 22. 92 ° 〜58. 29 ° Rear group angle of view 22.92 ° to 58.29 °
入射瞳径 Φ 0. 10mm Entrance pupil diameter Φ 0.10mm
像の大きさ Φ 3. 58mn!〜 Φ 7. 9 1mm The size of the image Φ 3. 58mn! ~ Φ 7. 9 1mm
である。 It is.
[ 0 0 9 6 ]  [0 0 9 6]
実施例 3の光学系 1の中心軸 2に沿ってとつた断面図を図 7に示す。 また、 この実施例の光学系全体の横収差図を図 8に示す。  A sectional view taken along the central axis 2 of the optical system 1 of Example 3 is shown in FIG. Further, FIG. 8 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 0 9 7 ] 本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通に使 用する球面で構成し、 該後群透明媒体 L bの前群 G f として前群透明媒 体し f を配置した例である。 [0 0 9 7] In this embodiment, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1. This is an example in which the front group transparent medium f is arranged as the front group G f of the rear group transparent medium L b.
[ 0 0 9 8 ]  [0 0 9 8]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 0 9 9 ]  [0 0 9 9]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 2の周りで回転対 称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束が入射し拡 張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過面 1 1 と 中心軸 2 を挟んで反対側で前群第 1透過面 1 1 より像面 5 と反対側に 配置されていて、 前群第 1透過面 1 1から入射した光束が入射し拡張回 転自由曲面からなる前群第 1反射面 1 2 と、 後群 G bに面していて中心 軸 2上で前群第 1反射面 1 2より像面 5側に配置され、 前群第 1反射面 1 2で反射された光束が入射し非球面からなる前群第 2透過面 1 4 と からなる。  The front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1. The front group transparent medium L f is made of a resin or the like having a refractive index of rotation greater than 1 around the central axis 2, and the front group first transmission surface 1 is formed of an extended rotation free-form surface by incidence of a light beam from a distance. 1 and the front group first transmission surface 1 1 and the central axis 2 are located on the opposite side of the front group first transmission surface 1 1 from the image surface 5 opposite to the front group first transmission surface 1 1 The front group first reflecting surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from the front and the rear group G b facing the rear group G b on the central axis 2 from the front group first reflecting surface 1 2 to the image surface 5 And a front group second transmission surface 14 made of an aspherical surface on which the light beam reflected by the front group first reflection surface 12 is incident.
[ 0 1 0 0 ]  [0 1 0 0]
後群 G 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい後 1 群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で球面か らなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像側に 形成され、 一部を反射コーティ ング 4 aし、 負のパワーをもつ像面側に 凹面を向けた後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2に対して 像面 5 と反対側に配置され、 一部を反射コーティ ング 4 bし、 正のパヮ 一をもつ後 1群第 2反射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側 に配置され、 負のパワーをもつ後 1群第 2透過面 2 4を有する。 後 1群 第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位置同一形状からなり 、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状 からなる。 The rear group G 1 is composed of a rear group 1 transparent medium L b having a rotationally symmetric refractive index greater than 1 around the central axis 2. The rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4 a, and after the concave surface is directed to the negative image side, the first group 1st reflecting surface 2 2 and the rear 1 group 1st reflecting surface 2 2 opposite to the image surface 5 Is arranged, partly reflective coating 4b, and rear 1st group 2nd reflective surface 2 3 with positive par, and rear 1st group 2nd reflective surface 2 3 are placed on the image plane 5 side, negative Powerful rear 1 group 2nd transmission surface 2 4 Rear 1st group 1st transmitting surface 2 1 and Rear 1st group 2nd reflecting surface 2 3 have the same shape at the same position. The rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 24 have the same shape at the same position.
[ 0 1 0 1 ]  [0 1 0 1]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内 に入り、 中心軸 2 を横切って前群第 1透過面 1 1 と反対側の前群第 1反 射面 1 2で後群 G bに向かって下方へ像面 5側に反射され、 射出面の前 群第 2透過面 1 4を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1. The front group first reflecting surface 1 on the opposite side of 1 is reflected downward toward the rear group G b toward the rear group G b toward the image surface 5 side, passes through the front group second transmitting surface 14 of the exit surface, and passes through the front group transparent medium L. Get out of f.
[ 0 1 0 2 ]  [0 1 0 2]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に同 軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群 透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射 面 2 2で一部が反射コーティ ング 4 a、 他部が全反射により像面 5 と反 対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより 像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L b から外に出る略 Z字状の光路を有する。 その後、 像面 5の中心軸 2から 外れた半径方向の所定位置に円環状に結像する。  After that, it passes through the opening S arranged on the same axis as the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and then enters the rear group 1 transparent medium Lb. Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, part is reflective coating 4 a, other part is total reflection, image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 and then passes through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out of the window. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
[ 0 1 0 3 ]  [0 1 0 3]
この実施例 3の仕様は、  The specification of Example 3 is
全系の画角 60.00° X 360° Angle of view of the entire system 60.00 ° X 360 °
後群の画角 13.52° 〜52.56 ° Rear group angle of view 13.52 ° to 52.56 °
後群の入射瞳径 φ 1.00mm Rear group entrance pupil diameter φ 1.00mm
像の大きさ ψ 2.44mn!〜 Φ 7.95mm The size of the image ψ 2.44mn! ~ Φ 7.95mm
である。 It is.
[ 0 1 0 4 ]  [0 1 0 4]
実施例 4の光学系 1の中心軸 2に沿ってとつた断面図を図 9に示す。 また、 この実施例の光学系全体の横収差図を図 1 0に示す。  A sectional view taken along the central axis 2 of the optical system 1 of Example 4 is shown in FIG. Further, FIG. 10 shows transverse aberration diagrams of the whole optical system of this example.
[ 0 1 0 5 ] 本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通に使 用する球面で構成し、 該後群透明媒体 L bの前に前群透明媒体 L f を配 置した例である。 [0 1 0 5] In this embodiment, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1. This is an example in which the front group transparent medium L f is arranged in front of the rear group transparent medium L b.
[ 0 1 0 6 ]  [0 1 0 6]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 1 0 7 ]  [0 1 0 7]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前群 透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 1の周りで回転対 称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束 2が入射し 拡張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 1 を挟んで反対側で前群第 1透過面 1 1 より像面 5 と反対側 に配置されていて、 前群第 1透過面 1 1から入射した光束が入射し拡張 回転自由曲面からなる前群第 1反射面 1 2と、 前群第 1反射面 1 2 と中 心軸 1 を挟んで反対側で前群第 1反射面 1 2より像面 5 と反対側に配 置され、 前群第 1反射面 1 2で反射された光束が入射し拡張回転自由曲 面からなる前群第 2反射面 1 3 と、 後群 G bに面していて前群第 2反射 面 1 2 と中心軸 2上で前群第 2反射面 1 3より像面 5側に配置され、 前 群第 2反射面 1 3で反射された光束が入射し非球面からなる前群第 2 透過面 1 4とからなる。  The front group G f is composed of a front group transparent medium L f having a refractive index rotationally symmetric around the central axis 2 greater than 1. The front group transparent medium L f is made of a resin or the like whose rotational refractive index is greater than 1 around the central axis 1, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by the incident light beam 2 from a distance. 1 and the first transmission surface 1 1 of the front group and the front axis first transmission surface 1 1 on the opposite side of the central axis 1 from the front group first transmission surface 1 1. The front group first reflecting surface 1 2 consisting of an extended rotation free-form surface and the front group first reflecting surface 1 2 and the central axis 1 on the opposite side across the central axis 1 2 The light beam reflected by the front first group reflecting surface 12 is incident on the opposite side of the image surface 5 and is incident on the front group second reflecting surface 13 consisting of an extended rotation free curved surface and the rear group G b. Located on the image plane 5 side of the front group second reflective surface 1 2 and the central axis 2 on the image plane 5 side from the front group second reflective surface 1 2, and the light beam reflected by the front group second reflective surface 13 is incident The second transmission of the front group consisting of aspherical surfaces Consisting of 1 4.
[ 0 1 0 8 ]  [0 1 0 8]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で球 面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1に対して像 側に形成され、 一部を反射コーティ ング 4 a し、 負のパワーをもつ像面 側に凹面を向けた後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2に対 して像面 5と反対側に配置され、 反射コーティ ング 4 bし、 正のパヮ一 をもつ像面側に凹面を向けた後 1群第 2反射面 2 3 と、 後 1群第 2反射 面 2 3より像面 5側に配置され、 負のパワーをもつ後 1群第 2透過面 2 4とを有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一 位置同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4 は、 同一位置同一形状からなる。 The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. Rear 1st group transparent medium Lb is formed on the image side with respect to rear 1st group 1st transmission surface 2 1 and rear 1st group 1st transmission surface 2 1 consisting of a spherical surface on central axis 2, and partly Reflective coating 4a, and after the concave surface is directed to the negative image side, the first group 1st reflecting surface 2 2 and the back 1 group 1st reflecting surface 2 2 opposite to the image surface 5 Placed in the reflective coating 4b and positive 1st group 2nd reflection surface 2 3 after the concave surface is directed to the image surface side with, and 1st group 2nd transmission after 1st group 2nd reflection surface 2 3 Surface 2 and 4. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 1 0 9 ]  [0 1 0 9]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内 に入り、 中心軸 2 を横切って前群第 1透過面 1 1 と反対側の前群第 1反 射面 1 2で後群 G bから離れるように像面 5 と反対側に反射され、 前群 第 1反射面 1 2 と中心軸 2 に対して反対側で後群 G bから離れた側に 位置している前群第 2反射面 1 3で像面 5側に反射され、 射出面の前群 第 2透過面 1 4を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object plane 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1. Reflected on the opposite side of the image surface 5 away from the rear group G b by the front group first reflective surface 1 2 on the opposite side of 1, and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front group second reflecting surface 1 3 located on the side away from the rear group G b and passes through the front group second transmitting surface 14 of the exit surface and passes through the front group transparent medium L f Go out from.
[ 0 1 1 0 ]  [0 1 1 0]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に同 軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群 透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射 面 2 2で一部が反射コーティング 4 a、 一部が全反射により像面 5と反 対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより 像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L b から外に出る略 Z字状の光路を有する。 その後、 像面 5の中心軸 2から 外れた半径方向の所定位置に円環状に結像する。  After that, it passes through the opening S arranged on the same axis as the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and then enters the rear group 1 transparent medium Lb. Rear group 1 Transparent medium L b enters through rear group 1 first transmission surface 2 1, rear group 1 first reflection surface 2 2, partly reflective coating 4 a, partly total reflection and image surface 5 Reflected on the opposite side, reflected back to the image surface 5 side by the reflective coating 4 b on the rear 1st group second reflecting surface 2 3, then passed through the rear 1st group second transmitting surface 2 4 and then back from the 1st group transparent medium L b It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
[0 1 1 1 ]  [0 1 1 1]
この実施例 4の仕様は、  The specification of this Example 4 is
全系の画角 60.00° X 360° Angle of view of the entire system 60.00 ° X 360 °
後群の画角 26.47° 〜55.67° Rear group angle of view 26.47 °-55.67 °
後群の入射瞳径 Φ 1. OOmm Rear group entrance pupil diameter Φ 1.OOmm
像の大きさ ψ 4.12mii!〜 Φ 7.66mm である。 Image size ψ 4.12mii! ~ Φ 7.66mm It is.
[ 0 1 1 2 ]  [0 1 1 2]
実施例 5の光学系 1 の中心軸 2 に沿ってとつた断面図を図 1 1 に示 す。 また、 この実施例の光学系全体の横収差図を図 1 2に示す。  A cross-sectional view taken along the central axis 2 of the optical system 1 of Example 5 is shown in FIG. In addition, FIG. 12 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 1 1 3 ]  [0 1 1 3]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1より 大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通に使 用する球面で構成し、 該後群透明媒体 L bの前に前群反射体 R f を配置 した例である。  In this embodiment, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index that is concentric and rotationally symmetric with respect to the central axis 2 of the optical system 1 are larger than 1. This is an example in which a front group reflector R f is arranged in front of the rear group transparent medium L b.
[ 0 1 1 4 ]  [0 1 1 4]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で中 心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 1 1 5 ]  [0 1 1 5]
前群 G f は、 中心軸 2の周りで回転対称な前群反射体 R f からなる。 前群反射体 R f は、 像面 5側に凸の前群第 1反射面 1 2からなる。  The front group G f consists of a front group reflector R f that is rotationally symmetric about the central axis 2. The front group reflector R f is composed of a front group first reflecting surface 12 that is convex toward the image plane 5 side.
[ 0 1 1 6 ]  [0 1 1 6]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大きい 後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で球 面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像 側に形成され、 一部を反射コーティ ング 4 aし、 負のパワーをもつ像面 側に凹面を向けた後 1群第 1反射面 2 2と、 後 1群第 1反射面 2 2に対 して像面 5 と反対側に配置され、 反射コーティ ング 4 b し、 正のパワー をもつ像面側に凹面を向けた後 1群第 2反射面 2 3 と、 後 1群第 2反射 面 2 3より像面 5側に配置され、 負のパワーをもつ後 1群第 2透過面 2 4とを有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一 位置同一形状からなり、 後 1群第 1反射面 2 2と後 1群第 2透過面 2 4 は、 同一位置同一形状からなる。  The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. The rear first group transparent medium Lb is formed on the image side with respect to the rear first group first transmission surface 2 1 and the rear first group first transmission surface 2 1 formed of a spherical surface on the central axis 2, and partly Reflective coating 4a and after the concave surface is directed to the negative image side, the first group 1st reflection surface 2 2 and the back 1 group 1st reflection surface 2 2 opposite to the image surface 5 After reflecting the concave coating on the image surface side with positive power and reflecting coating 4b, the 1st group 2nd reflecting surface 2 3 and the 1st group 2nd reflecting surface 2 3 on the image surface 5 side And rear group 1 having a negative power and a second transmitting surface 2 4. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 1 1 7 ] 光学系 1 は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1 の物体面 3から入射する光束は、 前群反射体 R f の前群第 1反射面 1 1 と、 前群 反射体 R f と後 1群透明媒体 L bの間で中心軸 2 に同軸に配置された 開口 S とを経て、 後 1群透明媒体 L b内に入る。 その後、 前群透明媒体 L f と後 1群透明媒体 L bの間に中心軸 2 に同軸に配置された開口 S とを経て、 後 1群透明媒体 L b内に入る。 後 1群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コ 一ティ ング 4 a、 一部が全反射により像面 5 と反対側に反射され、 後 1 群第 2反射面 2 3で反射コーティ ング 4 bにより像面 5側に反射され、 後 1群第 2透過面 2 4 を経て後 1 群透明媒体 L bから外に出る略 Z字 状の光路を有する。 その後、 像面 5の中心軸 2から外れた半径方向の所 定位置に円環状に結像する。 [0 1 1 7] The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object surface 3 of the optical system 1 is between the front group first reflecting surface 1 1 of the front group reflector R f and between the front group reflector R f and the rear group 1 transparent medium L b. Then, after passing through the opening S arranged coaxially with the central axis 2, the light enters the first group of transparent media Lb. After that, it passes through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and enters the rear group 1 transparent medium Lb. Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflection coating 4a, part is image by total reflection Reflected on the opposite side of surface 5, reflected back to the image surface 5 side by the reflective coating 4b at the first group 2 second reflecting surface 2 3 and then passed through the first group 2 second transmitting surface 24 and rear 1 group transparent medium L It has an approximately Z-shaped optical path that exits from b. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
[ 0 1 1 8 ]  [0 1 1 8]
この実施例 5の仕様は、  The specification of Example 5 is
全系の画角 60.00° (10±30° ) X 360° Angle of view of the entire system 60.00 ° (10 ± 30 °) X 360 °
後群の画角 29.59° 〜49.38° Rear group angle of view 29.59 °-49.38 °
後群の入射瞳径 <ί> 1.00mm Rear pupil diameter <ί> 1.00mm
像の大きさ Φ 2.56 !〜 Φ 3.92mm The size of the statue Φ 2.56! ~ Φ 3.92mm
である。 It is.
[ 0 1 1 9 ]  [0 1 1 9]
また、 最大像高を I max (mm)、 最小像高を I min (mm)、 後群 G rの最 大画角を 0 max (度)、 後群 G r の最小画角を e min (度)、 焦点距離 F = ( I max- I min) / ( Θ max- Θ min) とし、 後群 G rの外径を D (mm) , 平行平面の保護ガラスを除いた後群 G r の全長を L (mm), 後群第 1反 射面 2 2の曲率を 1、 後群第 2反射面 2 3の曲率を R 2 とするとき、 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 The maximum image height is I max (mm), the minimum image height is I min (mm), the maximum field angle of the rear group G r is 0 max (degrees), and the minimum field angle of the rear group G r is e min ( Degree), focal length F = (I max-I min) / (Θ max-Θ min), rear group G r outer diameter D (mm), rear group G r When the total length is L (mm), the curvature of the rear group first reflecting surface 22 is 1, and the curvature of the rear group second reflecting surface 2 3 is R2, Example 1 Example 2 Example 3 Example 4 Example 5
I max 3.92 3.96 3.98 3.83 1.96I max 3.92 3.96 3.98 3.83 1.96
Θ max 60.22 58.29 52.56 55.67 49.38Θ max 60.22 58.29 52.56 55.67 49.38
I min 2.02 1.78 1.22 2.06 1.28 I min 2.02 1.78 1.22 2.06 1.28
物面 Ψ [ Object plane Ψ [
番体実の o  The real o
施号面 1  No. 1
Θ mm 26. 81 22. 92 13. 52 26. 47 29. 59 Θ mm 26. 81 22. 92 13. 52 26. 47 29. 59
F 0. 057 0. 061 0. 071 0. 061 0. 034F 0. 057 0. 061 0. 071 0. 061 0. 034
D 24. 80 21. 60 25. 20 20. 40 12. 00D 24. 80 21. 60 25. 20 20. 40 12. 00
L 9. 600 7. 800 13. 000 6. 20 4. 20L 9. 600 7. 800 13. 000 6. 20 4. 20
D (2X Imax) 3. 167 2. 730 3. 169 2. 663 3. 069D (2X Imax) 3. 167 2. 730 3. 169 2. 663 3. 069
L (2X Imax) 1. 226 0. 986 1. 635 0. 809 1. 074L (2X Imax) 1. 226 0. 986 1. 635 0. 809 1. 074
R 1 6. 92 7. 33 8. 06 9. 35 3. 32R 1 6. 92 7. 33 8. 06 9. 35 3. 32
R 2 8. 10 8. 15 8. 95 8. 89 4. 13R 2 8. 10 8. 15 8. 95 8. 89 4. 13
R 1 /R 2 0. 85 0. 90 0. 90 1. 05 0. 81 である。 R 1 / R 2 0. 85 0. 90 0. 90 1. 05 0. 81.
[ 0 1 2 0 ]  [0 1 2 0]
以下に、 上記実施例 5の構成パラメ一夕を示す。 なお、 以下の表 The configuration parameters of Example 5 are shown below. The table below
" R E " は反射面を示す。 “R E” indicates a reflective surface.
2 1 ]  twenty one ]
例 1  Example 1
曲率半径 面間隔 偏心 屈折率 アッベ釵 Radius of curvature Face spacing Eccentric Refractive index Abbe
∞ oo 偏心(1) ∞ oo eccentricity (1)
1 E R F S [1] 0. 00 偏心 (2) 1. 8348 42. 7 1 E R F S [1] 0. 00 Eccentric (2) 1. 8348 42. 7
2 R E ) E R F S [2〗 0. 00 偏心 (3) 1. 8348 42. 7 3 R E ) E R F S [3] 0. 00 偏心(4) 1. 8348 42.7 4 0. 00 偏心 (5) 2 R E) E R F S [2〗 0. 00 Eccentricity (3) 1. 8348 42. 7 3 R E) E R F S [3] 0. 00 Eccentricity (4) 1. 8348 42.7 4 0. 00 Eccentricity (5)
5 ∞ (絞り) 0. 00  5 ∞ (Aperture) 0.00
6 8. 10 3. 48 1. 8348 42. 7 7 R E ) 6.92 - 3. 48 1. 8348 42. 7 8 R E ) 8. 10 3. 48 1. 8348 42. 7 9 6. 92 4. 23  6 8. 10 3. 48 1. 8348 42. 7 7 R E) 6.92-3. 48 1. 8348 42. 7 8 R E) 8. 10 3. 48 1. 8348 42. 7 9 6. 92 4. 23
10 oo 1. 00 1. 5163 64. 1 11 oo 0. 70  10 oo 1. 00 1. 5163 64. 1 11 oo 0. 70
w 面 oo w plane oo
E R F S [1]  E R F S [1]
R Y 27. 36  R Y 27. 36
Θ 53. 19  Θ 53. 19
R -10. 91  R -10. 91
E R F S [2]  E R F S [2]
R Y -23. 52  R Y -23. 52
Θ 37. 63  Θ 37. 63
R 7. 93  R 7.93
C 4 2. 4445E-05  C 4 2. 4445E-05
E R F S [3] -56.42 ERFS [3] -56.42
-5.65  -5.65
6.05  6.05
8.0159E-05  8.0159E-05
偏心 [1]  Eccentric [1]
X 0.00 Y 0.00 Ζ -9. 64  X 0.00 Y 0.00 Ζ -9. 64
75.00 β 0.00 r 0. 00  75.00 β 0.00 r 0. 00
偏心 [2]  Eccentric [2]
X 0.00 Υ 0.00 z -12. 56  X 0.00 Υ 0.00 z -12. 56
0.00 β 0.00 r 0. 00  0.00 β 0.00 r 0. 00
偏心 [3]  Eccentric [3]
X 0.00 Υ 0.00 z -3. 71  X 0.00 Υ 0.00 z -3. 71
0.00 β 0.00 r 0. 00  0.00 β 0.00 r 0. 00
偏心 [4]  Eccentric [4]
X 0.00 Υ 0.00 z -13. 93  X 0.00 Υ 0.00 z -13. 93
0.00 β 0.00 r 0. 00  0.00 β 0.00 r 0. 00
偏心 [5]  Eccentric [5]
X 0.00 Υ 0.00 z - 1. 00  X 0.00 Υ 0.00 z-1. 00
0.00 β 0.00 r 0. 00  0.00 β 0.00 r 0. 00
[ 0 1 2 2 ] [0 1 2 2]
実施例 2  Example 2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ 物体面 οο CO 偏心(1) Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe Object surface οο CO Eccentricity (1)
1 E R F S [1] 0. 00 偏心 (2) 1. 8348 42. 7 1 E R F S [1] 0. 00 Eccentric (2) 1. 8348 42. 7
2 (R E) E R F S [2] 0. 00 偏心 (3) 1. 8348 42. 72 (R E) E R F S [2] 0. 00 Eccentricity (3) 1. 8348 42. 7
3 (R E) E R F S [3] 0. 00 偏心(4) 1. 8348 42. 73 (R E) E R F S [3] 0. 00 Eccentricity (4) 1. 8348 42. 7
4 -6.46 0. 00 偏心 (5) 4 -6.46 0.00 Eccentric (5)
5 ∞ (絞り) 0. 00  5 ∞ (Aperture) 0.00
6 8. 15 3. 33 1. 8348 42. 7 6 8. 15 3. 33 1. 8348 42. 7
7 (R E ) 7.33 - 3. 33 1. 8348 42. 77 (R E) 7.33-3. 33 1. 8348 42. 7
8 (R E ) 8. 15 3. 33 1. 8348 42. 78 (R E) 8. 15 3. 33 1. 8348 42.7
9 7.33 2. 66 9 7.33 2. 66
10 οο 1. 00 1. 5163 64. 1 10 οο 1. 00 1. 5163 64. 1
11 0Ο 0. 70 11 0Ο 0. 70
像 面 ∞ Image plane ∞
E R F S [1]  E R F S [1]
R Y -5.96  R Y -5.96
Θ 72.36  Θ 72.36
R -9.56 R -9.56
E R F S [2] ERFS [2]
面物 L Face L
実 o  Real o
施 1  Out 1
R Y -16.71  R Y -16.71
Θ 50.86  Θ 50.86
R 7.55  R 7.55
C 4 -2.4173E -04  C 4 -2.4173E -04
E R F S [3]  E R F S [3]
R Y 8 .79  R Y 8 .79
Θ 31 .80  Θ 31 .80
R -6 .39  R -6 .39
C 4 1 • 9000E -03  C 4 1 • 9000E -03
偏心 [1]  Eccentric [1]
X 0. 00 Y 0 Z -5.79  X 0. 00 Y 0 Z -5.79
a 42. 56 β 0 r 0.00 a 42. 56 β 0 r 0.00
偏心 [2]  Eccentric [2]
X 0. 00 Y 0 Z 16.21  X 0. 00 Y 0 Z 16.21
a 0. 00 β 0 r 0.00 I a 0. 00 β 0 r 0.00 I
偏心 [3]  Eccentric [3]
X 0. 00 Υ 0 Z -4.96  X 0. 00 Υ 0 Z -4.96
a 0. 00 β 0 r 0.00 a 0. 00 β 0 r 0.00
偏心 [4]  Eccentric [4]
X 0. 00 Υ 0 Z 18.89  X 0. 00 Υ 0 Z 18.89
a 0. 00 β 0 r 0.00 a 0. 00 β 0 r 0.00
偏心 [5]  Eccentric [5]
X 0. 00 Υ 0 z -0.10  X 0. 00 Υ 0 z -0.10
a 0. 00 β 0 r 0.00 a 0. 00 β 0 r 0.00
2 3 ] twenty three ]
例 3  Example 3
屈折率 アッベ数  Refractive index Abbe number
1.8348 42.7
Figure imgf000035_0001
1.8348 42.7
Figure imgf000035_0001
4 ∞ (絞り) 0.10  4 ∞ (Aperture) 0.10
7 8.95 3.62 1.8348 42.7 8 (R E) 8.06 - 3.62 1.8348 42.7 9 (R E) 8.95 3.62 1.8348 42.7 7 8.95 3.62 1.8348 42.7 8 (R E) 8.06-3.62 1.8348 42.7 9 (R E) 8.95 3.62 1.8348 42.7
10 8.06 9.31 10 8.06 9.31
像 m oo Statue m oo
E R F S [1]  E R F S [1]
R Y -2685 93 R -6.91 RY -2685 93 R -6.91
E R F S E R F S
R Y 14. 47 R Y 14. 47
Θ -45. 37  Θ -45. 37
R 5. 36  R 5. 36
C 4 -4. 6617E-05  C 4 -4. 6617E-05
偏心 [1]  Eccentric [1]
X 0. 00 Y 0.00 Z -7. 24  X 0. 00 Y 0.00 Z -7. 24
-90. 00 β 0.00 r 0. 00  -90.00 β 0.00 r 0. 00
偏心 [2]  Eccentric [2]
X 0. 00 Υ 0.00 z -7. 24  X 0. 00 Υ 0.00 z -7. 24
0. 00 β 0.00 Ύ 0. 00  0. 00 β 0.00 Ύ 0. 00
偏心 [3]  Eccentric [3]
X 0. 00 Υ 0.00 Z -12. 35  X 0. 00 Υ 0.00 Z -12. 35
0. 00 β 0.00 r 0. 00  0. 00 β 0.00 r 0. 00
偏心 [4]  Eccentric [4]
X 0. 00 Υ 0.00 z -0. 10  X 0. 00 Υ 0.00 z -0. 10
0. 00 β 0.00 r 0. 00  0. 00 β 0.00 r 0. 00
[ 0 1 2 4 ] [0 1 2 4]
実施例 4  Example 4
面番号 曲率半径 面間隔 偏心 屈折率 アッベ 物体面 CO oo 偏心(1) Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe Object surface CO oo Eccentricity (1)
1 E R F S [1] 0. 00 偏心 (2) 2. 0033 28. 3 1 E R F S [1] 0. 00 Eccentric (2) 2. 0033 28. 3
2 ( R E ) E R F S [2] 0. 00 偏心 (3) 2. 0033 28. 32 (R E) E R F S [2] 0. 00 Eccentricity (3) 2. 0033 28. 3
3 (R E ) E R F S [3] 0. 00 偏心(4) 2. 0033 28. 33 (R E) E R F S [3] 0. 00 Eccentricity (4) 2. 0033 28. 3
4 A S S [1] 0. 00 偏心 (5) 4 A S S [1] 0. 00 Eccentric (5)
5 ∞ (絞り) 0. 10  5 ∞ (Aperture) 0. 10
6 8.89 3. 34 1. 8348 42. 7 6 8.89 3. 34 1. 8348 42. 7
7 ( R E) 9.35 -3. 34 1. 8348 42. 77 (R E) 9.35 -3. 34 1. 8348 42. 7
8 (R E) 8.89 3. 34 1. 8348 42. 78 (R E) 8.89 3. 34 1. 8348 42. 7
9 9.35 4. 76 9 9.35 4. 76
E R F S [1] E R F S [1]
21.56  21.56
Θ 88.06  Θ 88.06
R -7.74 R -7.74
E R F S [2]  E R F S [2]
R Y -13.48  R Y -13.48
Θ 87.67 Θ 87.67
R 8.55 C4 -1.5105E-04 R 8.55 C4 -1.5105E-04
E R F S [3]  E R F S [3]
R Y 10. 49  R Y 10. 49
Θ 43. 16  Θ 43. 16
R - 6. 45  R-6. 45
C4 6. 0876E-04  C4 6. 0876E-04
A S S [1]  A S S [1]
R -12.90  R -12.90
k 0.0000 k 0.0000
a 2.4853E-03 a 2.4853E-03
偏心 [1] 1  Eccentric [1] 1
X 0. 00 Y 0.00 ζ -14.91  X 0. 00 Y 0.00 ζ -14.91
132 .30 β 0.00 Ύ 0.00  132 .30 β 0.00 Ύ 0.00
偏心 [2]  Eccentric [2]
X 0. 00 Y 0 .00 ζ -6.96  X 0. 00 Y 0 .00 ζ -6.96
0. 00 β 0 .00 r 0.00  0. 00 β 0 .00 r 0.00
偏心 [3]  Eccentric [3]
X 0. 00 Υ 0 .00 ζ  X 0. 00 Υ 0 .00 ζ
0. 00 β 0 .00 Ύ 0.00  0. 00 β 0 .00 Ύ 0.00
偏心 [4]  Eccentric [4]
X 0. 00 Υ 0 .00 ζ  X 0. 00 Υ 0 .00 ζ
0. 00 β 0 .00 Ύ 0.00  0. 00 β 0 .00 Ύ 0.00
偏心 [5]  Eccentric [5]
X 0. 00 Υ 0 .00 ζ -0. 10  X 0. 00 Υ 0 .00 ζ -0. 10
0. 00 β 0 .00 r 0.00  0. 00 β 0 .00 r 0.00
[ 0 1 2 5 ] [0 1 2 5]
実施例 5  Example 5
曲率半径 面間隔 偏心 屈折率 アッベ数 物体面 oo oo  Radius of curvature Surface spacing Eccentricity Refractive index Abbe number Object surface oo oo
1 (R E) -16.88 5.00  1 (R E) -16.88 5.00
2 ∞ (絞り) 0. 10  2 ∞ (Aperture) 0. 10
3 4. 13 1.74 1. 8348 42. 7 3 4. 13 1.74 1. 8348 42. 7
4 (R E ) 3.32 -1.74 1. 8348 42. 74 (R E) 3.32 -1.74 1. 8348 42.7
5 (R E ) 4. 13 1.74 1. 8348 42. 75 (R E) 4. 13 1.74 1. 8348 42.7
6 3.32 2.52 6 3.32 2.52
像 面 CO Image plane CO
[0 1 2 6 ] [0 1 2 6]
以下、 実施例 6〜 1 0に基づいて本発明の光学系について説明する [ 0 1 2 7 ] Hereinafter, the optical system of the present invention will be described based on Examples 6 to 10. [0 1 2 7]
図 1 4は、 後述する実施例 6の光学系 1の中心軸 (回転対称軸) 2に 沿ってとつた断面図である。 なお、 以下の説明は、 結像光学系として説 明するが、 光路を逆にとつて投影光学系として用いることもできる。  FIG. 14 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 6 to be described later. Although the following description will be given as an imaging optical system, it can also be used as a projection optical system with the optical path reversed.
[ 0 1 2 8 ]  [0 1 2 8]
本発明に係る光学系 1は、 中心軸 2に対して回転対称で、 少なくとも 1つの反射面を含む前群 G f と、 開口 Sと、 後群 G bとからなり、 中間 像を光路中に形成することなく像を形成又は投影する光学系 1である。  An optical system 1 according to the present invention is rotationally symmetric with respect to a central axis 2 and includes a front group G f including at least one reflecting surface, an aperture S, and a rear group G b. An intermediate image is placed in the optical path. An optical system 1 that forms or projects an image without forming it.
[ 0 1 2 9 ]  [0 1 2 9]
実施例 6の光学系 1は、 少なく とも 1つの反射面を含む前群 G f と、 後群 G bと、 前群 G f と後群 G bの間に配置された開口 Sとを有し、 中 心軸 2を含む断面内で、 中心軸 2の周りで回転対称な光学系 1 において 、 後群 G bは、 開口 Sの像面 5側に配置され、 屈折率が 1より大きい後 群透明媒体としての後 1群透明媒体 L bを有し、 後 1群透明媒体 L bは 、 開口 S近傍の中心軸 2上に配置された後群第 1透過面としての後 1群 第 1透過面 2 1 と、 後 1群第 1透過面 2 1より像面側に配置され、 像面 側に凹面を向けた後群第 1 S射面としての後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2より像面と反対側に配置され、 像面側に凹面を向け た後群第 2反射面としての後 1群第 2反射面 2 3と、 後 1群第 2反射面 2 3より像面側に配置された後群第 2透過面としての後 1群第 2透過 面 2 4と、 を有し、 後 1群第 1透過面 2 1、 後 1群第 1反射面 2 2、 後 1群第 2反射面 2 3及び後 1群第 2透過面 2 4は、 曲面からなり、 後 1 群透明媒体 L bに入射する光束は、 順光線追跡の順に、 開口 Sを通り、 後 1群第 1透過面 2 1 を経て後 1群透明媒体 L b内に入り、 後 1群第 1 反射面 2 2で像面 5 と反対側に反射され、 後 1群第 2反射面 2 3で像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L bから 像面 5側に外へ出る略 Z字状の第 1光路 Aを構成し、 第 1光路 Aの少な く とも後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の間は、 中心軸 2 に対して片側のみで構成され、 第 1光路 A中に中間像が結像されること なく、 中心軸 2周りの物点を開口 S近傍で中心軸 2 と 1回交差して反対 側に結像し、 全体として像面 5に円環状に結像され、 後群の反射面のう ち少なく とも 1面は、 中心軸上で不連続な回転対称な面で構成されてい る。 The optical system 1 of Example 6 includes a front group G f including at least one reflecting surface, a rear group G b, and an aperture S disposed between the front group G f and the rear group G b. In the optical system 1 that is rotationally symmetric about the central axis 2 in the cross section including the central axis 2, the rear group G b is disposed on the image plane 5 side of the aperture S and has a refractive index greater than 1. The rear group 1 transparent medium Lb as the transparent medium has the rear group 1 transparent surface Lb arranged on the central axis 2 in the vicinity of the opening S as the rear group first transmission surface. A rear surface group 1, a rear first group first reflecting surface 2 2, which is arranged on the image surface side from the rear first group first transmission surface 2 1, and has a concave surface facing the image surface side, and a rear first group first reflecting surface 2 2; Rear 1st group 2nd reflective surface 2 3 as rear 1st group 2nd reflective surface which is arranged on the opposite side to the image plane from rear 1st group 1st reflective surface 2 2 and has a concave surface facing the image side 2 Reflecting surface 2 3 Rear surface second transmitting surface arranged on the image side from 3 Rear 1st group 2nd transmission surface 24, and Rear 1st group 1st transmission surface 2 1, Rear 1st group 1st reflection surface 2 2, Rear 1st group 2nd reflection surface 2 3 and Rear 1st group 2nd The transmission surface 24 is a curved surface, and the light beam incident on the rear group 1 transparent medium Lb passes through the aperture S in the order of forward ray tracing, passes through the rear group 1 first transmission surface 21, and the rear group 1 transparent medium. Enters Lb, then reflects back to the opposite side of the image plane 5 from the first group 1st reflecting surface 2 2, reflects to the image surface 5 side from the back 1st group 2nd reflecting surface 2 3, and then back to the 1st group 2nd transmission After passing through the surface 2 4 and forming the first optical path A of approximately Z-shape that exits from the first group transparent medium L b to the image plane 5 side, and at least the rear of the first optical path A. Center axis 2 between 2 and rear 1st group 2nd reflecting surface 2 3 The object point around the central axis 2 crosses the central axis 2 once in the vicinity of the aperture S and is connected to the opposite side without forming an intermediate image in the first optical path A. As a whole, an image is formed in an annular shape on the image plane 5, and at least one of the reflecting surfaces of the rear group is composed of discontinuous rotationally symmetric surfaces on the central axis.
[ 0 1 3 0 ]  [0 1 3 0]
中心軸 2上の物体側から光路順で、 開口 S及びその近傍に配置された 後 1群第 1透過面 2 1、 後 1群第 1反射面 2 2、 後 1群第 2反射面 2 3 、 後 1群第 2透過面 2 4の順に配置され、 後 1群第 1反射面 2 2 と後 1 群第 2反射面 2 3は共に像側に凹面を向け配置されていることが重要 である。  Arranged in the order of the optical path from the object side on the central axis 2 in the aperture S and its vicinity Rear 1st group 1st transmissive surface 2 1 Rear 1st group 1st reflective surface 2 2 Rear 1st group 2nd reflective surface 2 3 It is important that the rear group 1 second transmission surface 2 4 is arranged in this order, and that the rear group 1 first reflection surface 2 2 and the rear group 1 second reflection surface 2 3 are both arranged with the concave surface facing the image side. is there.
[ 0 1 3 1 ]  [0 1 3 1]
開口 Sは物体側の後 1群第 1透過面 2 1近傍にあることが重要で、 開 口 Sを本発明の後 1群透明媒体 L bの像側に配置すると、 非点収差が大 きく発生しフラッ トな像を形成することが出来なくなる。 また、 射出主 光線傾角が大きくなつてしまい、 テレセン性が悪くなる。 さらに、 後 1 群第 1透過面 2 1 と後 1群第 2反射面 2 3の有効径の干渉が起き、 画角 を大きく取ることが出来なくなってしまう。  It is important that the aperture S is located in the vicinity of the first transmission surface 21 of the first group after the object side.Astigmatism is increased when the aperture S is arranged on the image side of the first group of transparent media L b after the present invention. It is generated and a flat image cannot be formed. In addition, the emission chief ray tilt angle increases and telecentricity deteriorates. In addition, interference between the effective diameters of the rear first group first transmission surface 2 1 and the rear first group second reflection surface 2 3 occurs, making it impossible to obtain a large angle of view.
[ 0 1 3 2 ]  [0 1 3 2]
次に、 透過面の間に反射面を配置することにより、 反射面を内部反射 面で構成することにより、 像面湾曲などの収差の発生を少なくすること が可能となる。 また、 後 1群第 1反射面 2 2に当る光線の傾きが空気中 より小さくなるので、 広画角にも良い結果をもたらす。  Next, it is possible to reduce the occurrence of aberrations such as field curvature by disposing the reflecting surface between the transmitting surfaces and configuring the reflecting surface with an internal reflecting surface. In addition, since the inclination of the light ray that strikes the rear first group first reflecting surface 22 is smaller than that in the air, a good result is also obtained for a wide angle of view.
[ 0 1 3 3 ]  [0 1 3 3]
さらに、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3は像側に凹面 を向けていることが重要である。  Furthermore, it is important that the rear first group first reflecting surface 2 2 and the rear first group second reflecting surface 23 have a concave surface facing the image side.
[ 0 1 3 4 ]  [0 1 3 4]
この配置により物体側から光路順に負、 正のパワー配置になり、 所謂 レトロフォーカス構成にすることが可能となり、 広画角化が可能となる 。 また、 この配置により光学系の主点を物体側に配置することが可能と なり、 Fバックを取ることが可能となる。 This arrangement results in a negative and positive power arrangement in order of the optical path from the object side, so-called It becomes possible to make a retro focus configuration, and a wide angle of view becomes possible. In addition, this arrangement makes it possible to place the principal point of the optical system on the object side and take F-back.
[ 0 1 3 5 ]  [0 1 3 5]
さらに、 後 1群第 1反射面 2 2と後 1群第 2反射面 2 3の間の光路は 回転対称軸を跨ぐことなく片側で構成されていることが重要である。  Furthermore, it is important that the optical path between the rear first group first reflecting surface 22 and the rear first group second reflecting surface 23 is formed on one side without straddling the rotational symmetry axis.
[ 0 1 3 6 ]  [0 1 3 6]
回転対称軸と光路が跨ぐことは、 サジタル断面で中間結像することを 意味し、 光路長が長くなつてしまい、 光学系の大型化を招いてしまう。  Crossing the rotationally symmetric axis and the optical path means intermediate imaging with a sagittal section, and the optical path length becomes long, leading to an increase in the size of the optical system.
[ 0 1 3 7 ]  [0 1 3 7]
さらに、 Z字光路になっていることが重要である。  In addition, it is important to have a Z-shaped optical path.
[ 0 1 3 8 ]  [0 1 3 8]
Z字光路をとることにより、 各面での反射角を小さくすることが可能 となり、 偏心収差の発生を少なくすることが可能となる。 また、 開口か ら入射する光束が比較的低い (回転対称軸に近い) うちに後 1群第 1反 射面 2 2に当てる事が可能となり、 後 1群第 1反射面 2 2の強い負のパ ヮーを持たせても、 収差の発生を少なくすることが可能となる。  By taking a Z-shaped optical path, it becomes possible to reduce the reflection angle on each surface and to reduce the occurrence of decentration aberrations. In addition, while the incident light beam from the aperture is relatively low (close to the axis of rotational symmetry), it can be applied to the rear group 1 first reflecting surface 2 2, and the rear group 1 first reflecting surface 2 2 is strongly negative. Even with this power, it is possible to reduce the occurrence of aberrations.
[ 0 1 3 9 ]  [0 1 3 9]
さらに、 光路途中で中間像を形成しないように構成することが重要で ある。  Furthermore, it is important to configure so that an intermediate image is not formed in the middle of the optical path.
[ 0 1 4 0 ]  [0 1 4 0]
光路途中で結像させると、 光束径を小さくすることが可能であるが、 本発明のように光学系の全長を短く出来ることが特徴の光学系におい ては、 中間像を形成すると光学系の全長が長くなつてしまい、 光学系を 小型にすることが不可能になってしまう。  If an image is formed in the middle of the optical path, the diameter of the light beam can be reduced. However, in an optical system characterized in that the total length of the optical system can be shortened as in the present invention, an intermediate image is formed when an intermediate image is formed. The total length becomes long, and it becomes impossible to make the optical system compact.
[ 0 1 4 1 ]  [0 1 4 1]
また、 中心軸 2周りの物点を開口 S近傍で中心軸 2 と 1回交差して反 対側に結像するように構成することが重要である。 [ 0 1 4 2 ] In addition, it is important that the object point around the central axis 2 intersects the central axis 2 once in the vicinity of the aperture S and forms an image on the opposite side. [0 1 4 2]
物体からの光束は、 中心軸 2上の開口 Sを通過すると同時に中心軸 2 と 1回交差して、 物体とは反対側に入射する。 そこで、 各反射面で反射 され結像されるが、 物体と中心軸 2に対して同一側に結像する構成をと ると、 結像されるまでにもう一度中心軸 2 と交差する必要がある。 サジ タル断面では中心軸 2上の開口 Sを通過した光束が再び中心軸 2 と交 差することは、 開口 Sの像を作ることを意味し、 短い光学系全長のなか で、 開口 Sの像を再結像すると射出瞳が像近傍に出来てしまい、 テレセ ン性をよくすることが出来なくなってしまう。 また、 そのための余分な パワーを光路中に設ける必要が生じ、 光学系の大型化を招く こととなつ てしまう。  The light beam from the object passes through the aperture S on the central axis 2 and at the same time intersects the central axis 2 once and enters the opposite side of the object. Therefore, it is reflected and imaged by each reflecting surface, but if it is configured to form an image on the same side of the object and the central axis 2, it needs to intersect the central axis 2 again before it is imaged. . In the sagittal section, the crossing of the light beam that has passed through the aperture S on the central axis 2 again with the central axis 2 means that an image of the aperture S is formed. If the image is re-imaged, the exit pupil will be in the vicinity of the image, making it impossible to improve telecentricity. In addition, it is necessary to provide extra power for this purpose in the optical path, leading to an increase in the size of the optical system.
[ 0 1 4 3 ]  [0 1 4 3]
次に、 像面 5は円環状の平面の像面であることが重要である。  Next, it is important that the image plane 5 is an annular plane image plane.
[ 0 1 4 4 ]  [0 1 4 4]
円環状の平面の像にすることにより、 一つの平面の撮像素子又は表示 素子により撮像又は投影することが可能となる。  By forming an image of an annular plane, it is possible to image or project with one plane imaging element or display element.
[0 1 4 5 ]  [0 1 4 5]
また、 後群 G bの反射面のうち少なくとも 1面は、 中心軸上で不連続 な回転対称な面で構成することが重要である。  In addition, it is important that at least one of the reflecting surfaces of the rear group Gb is composed of a rotationally symmetric surface that is discontinuous on the central axis.
[ 0 1 4 6 ]  [0 1 4 6]
円環状に形成される像の大きさを任意にする自由度が増え、 撮像光学 系の場合には撮像素子を有効に使用することが可能となる。 また、 投影 光学系の場合は表示素子の画素を有効に投影することが可能となる。  The degree of freedom to arbitrarily set the size of the image formed in an annular shape is increased, and in the case of an imaging optical system, the imaging device can be used effectively. In the case of a projection optical system, the pixels of the display element can be effectively projected.
[ 0 1 4 7 ]  [0 1 4 7]
さらに好ましくは、 後 1群第 1反射面 2 2 と後 1群第 2反射面 2 3の うち少なくとも 1面は、 対称面を持たない任意形状の線分を中心軸 2の 周りで回転させて形成される回転対称な拡張回転自由曲面で構成する ことが重要である。 [ 0 1 4 8 ] More preferably, at least one of the rear first group first reflective surface 2 2 and the rear first group second reflective surface 2 3 is formed by rotating a line segment of an arbitrary shape having no symmetry plane around the central axis 2. It is important to configure it with a rotationally symmetric extended free-form surface that is formed. [0 1 4 8]
偏心光学系で光学系を構成すると、 必ず偏心収差が発生する。 この 偏心収差の発生を少なく したり、 小さく補正することが可能となる。  When an optical system is configured with a decentered optical system, decentration aberrations always occur. The occurrence of this decentration aberration can be reduced or corrected to be small.
[ 0 1 4 9 ]  [0 1 4 9]
さ らに好ましく は、 奇数次項を含む任意形状の線分であることが望 ましい。  More preferably, it is a line segment having an arbitrary shape including an odd-order term.
[ 0 1 5 0 ]  [0 1 5 0]
この奇数次項により周辺光路 Aの画面周辺部分の歪の補正や像面の 傾きを補正することが可能となる。  This odd-order term makes it possible to correct the distortion of the peripheral part of the screen in the peripheral optical path A and the inclination of the image plane.
[ 0 1 5 1 ]  [0 1 5 1]
さらに、 後 1群第 1反射面 2 2は画角の広い光線は全反射により反 射するように構成し、 画角中心付近の後 1群第 1反射面 2 2で全反射 しない入射角の光線を反射させるように、 後 1群第 1反射面 2 2の中 心部に反射コーティ ング 4 aすることが好ましい。 これにより画角中 心部の映像も撮像することが可能となる。 さらに後 1群第 1反射面 2 2周辺部は全反射するために、 この部分は反射コーティ ングを行わな いことが望ましい。 これにより中心部分の光線が光学系から射出する のを妨げることがなくなる。  Furthermore, the rear first group first reflecting surface 2 2 is configured so that light rays having a wide angle of view are reflected by total reflection, and the incident angle at which the rear first group first reflecting surface 2 2 is not totally reflected near the center of the angle of view. It is preferable to apply a reflective coating 4a to the center of the rear first group first reflecting surface 22 so as to reflect the light beam. As a result, it is possible to capture an image of the center of the angle of view. Furthermore, since the rear part of the first group 1st reflecting surface 2 2 is totally reflected, it is desirable that this part is not subjected to reflection coating. As a result, the central beam is not prevented from exiting the optical system.
[ 0 1 5 2 ]  [0 1 5 2]
さ らに、 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は後 1群透 明媒体 L bの物体側に近接して配置することが好ましい。  Further, it is preferable that the rear first group first transmission surface 21 and the rear first group second reflection surface 23 be disposed close to the object side of the rear first group transmission medium Lb.
[ 0 1 5 3 ]  [0 1 5 3]
光学系光路長を長く取りつつ全長を短くする為に必要な構成であり、 Z字状の折り返し光路を長く取りつつ光学系の外径を小さくすること が可能となる。 また、 物体からの光束を後 1群第 2反射面 2 3が邪魔 することが少なくなり、 広画角の光学系を構成することが可能となる。  This configuration is necessary for shortening the overall length while increasing the optical path length of the optical system, and it is possible to reduce the outer diameter of the optical system while increasing the Z-shaped folded optical path. In addition, it is less likely that the rear first group second reflecting surface 23 interferes with the luminous flux from the object, and an optical system with a wide angle of view can be configured.
[ 0 1 5 4 ]  [0 1 5 4]
さ らに、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は後 1群透 明媒体 L bの像面 5側に近接して配置することが好ましい。 In addition, the rear 1 group first reflective surface 2 2 and the rear 1 group second transparent surface 2 4 It is preferable to dispose the light medium Lb close to the image plane 5 side.
[ 0 1 5 5 ]  [0 1 5 5]
本構成も前記構成と同様に、 光学系光路長を長く取りつつ全長を短 くする為に必要な構成であり、 Z字の折り返し光路を長く取りつつ光 学系の外径を小さ くすることが可能となる。 また、 光学系を射出して 像面に向かう光束を後 1群第 1反射面 2 2が邪魔することが少なくな り、 円環状の撮像エリアを広く取ることが可能となる。  Similar to the above configuration, this configuration is also necessary for shortening the overall length while taking a longer optical system optical path length, and reducing the outer diameter of the optical system while taking a longer Z-shaped folded optical path. Is possible. In addition, it becomes less likely that the rear first group first reflecting surface 22 2 interferes with the light beam emitted from the optical system and traveling toward the image plane, and an annular imaging area can be widened.
[ 0 1 5 6 ]  [0 1 5 6]
さらに、 後 1群第 2反射面 2 3は周辺部に反射コーティ ング 4 bを 行う ことが望ましく、 中心部分は後 1群第 1透過面 2 1又は開口 Sを 配置する関係から、 反射コーティ ングしないことが望ましい。  Further, it is desirable that the rear first group second reflecting surface 23 be provided with a reflective coating 4 b in the peripheral portion, and the central portion is provided with the rear first group first transmitting surface 21 or the opening S. It is desirable not to.
[ 0 1 5 7 ]  [0 1 5 7]
さ らに好ましく は、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4 を同一場所、 同一形状で構成することが好ましい。 この構成により、 後 1群第 1反射面 2 2に部分的に全反射を使う ことが可能となり光学 系の画角を広く取れる。  More preferably, the rear first group first reflecting surface 2 2 and the rear first group second transmitting surface 2 4 are preferably configured in the same place and in the same shape. With this configuration, it is possible to partially use total reflection for the rear first group first reflecting surface 22, and a wide angle of view of the optical system can be obtained.
[ 0 1 5 8 ]  [0 1 5 8]
さらに好ましく は、 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3 を同一場所、 同一形状で構成することが望ましい。 この構成により、 加工性がよくなる。  More preferably, the rear first group first transmitting surface 2 1 and the rear first group second reflecting surface 2 3 are preferably configured in the same place and in the same shape. This configuration improves workability.
[ 0 1 5 9 ]  [0 1 5 9]
また、 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大 きい前群透明媒体 L f を有し、 前群透明媒体 L f は、 光路順に、 前群 第 1透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2を挟んで反対側で 像面 5側に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と 中心軸 2 に対して同じ側で前群第 1反射面 1 2より像面 5 と反対側に 配置された前群第 2反射面 1 3 と、 前群第 2反射面 1 3より像面 5側 に配置された前群第 2透過面 1 4と、 を有し、 前群透明媒体 L f に入 射する光束は、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前群透 明媒体 L f 内に入り、 前群第 1反射面 1 2で像面 5 と反対側に反射さ れ、 前群第 2反射面 1 3で像面 5側に反射され、 前群第 2透過面 1 4 を経て前群透明媒体 L f から像面 5側に外へ出る光路を構成すること が好ましい。 The front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L f has the first group first transmission in the order of the optical path. Surface 1 1, front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 across front axis 1 1 and central axis 2, and front group first reflective surface 1 2 The front group second reflecting surface 1 3 disposed on the same side of the central axis 2 as the front group first reflecting surface 1 2 and the opposite side of the image surface 5 from the front group first reflecting surface 1 2, and the image surface 5 from the front group second reflecting surface 1 3 The front group second transmission surface 14 arranged on the side, and enters the front group transparent medium L f. The incident light beam enters the front group transparent medium L f through the front group first transmission surface 11 in the order of forward ray tracing, and is reflected by the front group first reflection surface 1 2 to the opposite side to the image surface 5. Therefore, an optical path reflected from the front group second reflecting surface 13 to the image surface 5 side and going out from the front group transparent medium L f to the image surface 5 side through the front group second transmitting surface 14 can be formed. preferable.
[ 0 1 6 0 ]  [0 1 6 0]
また、 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大 きい前群透明媒体 L f を有し、 前群透明媒体 L f は、 光路順に、 前群 第 1透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2を挟んで反対側で 像面 5側に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と 中心軸 2に対して反対側で前群第 1反射面 1 2より像面 5 と反対側に 配置された前群第 2反射面 1 3 と、 前群第 2反射面 1 3より像面 5側 に配置された前群第 2透過面 1 4と、 を有し、 前群透明媒体 L f に入 射する光束は、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前群透 明媒体 L f 内に入り、 前群第 1反射面 1 2で像面 5と反対側に反射さ れ、 前群第 2反射面 1 3で像面 5側に反射され、 前群第 2透過面 1 4 を経て前群透明媒体 L f から像面 5側に外へ出る光路を構成すること が好ましい。  The front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L f has the first group first transmission in the order of the optical path. Surface 1 1, front group first reflective surface 1 1 and front group first reflective surface 1 2 disposed on the opposite side of image plane 5 across front axis 1 1 and central axis 2, and front group first reflective surface 1 2 The front group second reflecting surface 1 3 disposed on the opposite side of the central axis 2 from the front group first reflecting surface 1 2 and opposite to the image surface 5 and the image surface 5 from the front group second reflecting surface 1 3 The light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing. It enters the transparent medium L f, is reflected by the front group first reflective surface 1 2 on the side opposite to the image surface 5, is reflected by the front group second reflective surface 1 3 on the image surface 5 side, and is Construct an optical path that goes out from the front group transparent medium L f to the image plane 5 side through the transmission plane 14 Is preferred.
[ 0 1 6 1 ]  [0 1 6 1]
また、 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大 きい前群透明媒体 L f を有し、 前群透明媒体 L は、 光路順に、 前群 第 1透過面 1 1 と、 前群第 1透過面 1 1 と中心軸 2を挟んで反対側で 像面 5 と反対側に配置された前群第 1反射面 1 2 と、 前群第 1反射面 1 2より像面 5側に配置された前群第 2透過面 1 4と、 を有し、 前群 透明媒体 L f に入射する光束は、 順光線追跡の順に、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に入り、 前群第 1反射面 1 2で像面側 に反射され、 前群第 2透過面 1 4を経て前群透明媒体 L f から像面 5 側に外へ出る光路を構成することが好ましい。 [ 0 1 6 2 ] The front group G f has a front group transparent medium L f having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group transparent medium L is arranged in the order of the optical path in the order of the optical path. 1 1 and front group first reflecting surface 1 1 and front group first reflecting surface 1 2 disposed on the opposite side of image plane 5 on the opposite side of center axis 2 and front group first reflecting surface 1 2 The light beam incident on the front group transparent medium L f passes through the front group first transmission surface 1 1 in the order of forward ray tracing. Then, the light enters the front group transparent medium L f, is reflected to the image surface side by the front group first reflection surface 12, passes through the front group second transmission surface 14, and then exits from the front group transparent medium L f to the image surface 5 side. It is preferable to construct an optical path that goes out to. [0 1 6 2]
また、 最大像高を I max、 前記透明媒体の外径を Dとするとき、  When the maximum image height is I max and the outer diameter of the transparent medium is D,
0. 5 <D/ ( 2 X 1 max) < 1 0 · · · ( 1 ) なる条件を満足することが望ましい。  It is desirable to satisfy the following condition: 0.5 <D / (2 X 1 max) <1 0 · · · (1)
[ 0 1 6 3 ]  [0 1 6 3]
条件式 ( 1 ) は、 下限を超えるとテレセン性が悪くなり特に C C D 等の撮像素子を利用して撮像する場合に周辺光量不足を起こす。 上限 を超えると光学系の外径が大きくなりすぎ光学系が大型になってしま う。  In conditional expression (1), when the lower limit is exceeded, the telecentricity deteriorates, and in particular, when using an image sensor such as C CD, the amount of peripheral light is insufficient. If the upper limit is exceeded, the outer diameter of the optical system becomes too large and the optical system becomes large.
[ 0 1 6 4 ]  [0 1 6 4]
また、 最大像高を I max、 前記開口から前記像面までの距離を Lとす るとき、  When the maximum image height is I max and the distance from the aperture to the image plane is L,
0. 5 < L / ( 2 X 1 max) < 1 0 · · · ( 2 ) なる条件を満足することが望ましい。  It is desirable to satisfy the following condition: 0.5 <L / (2 X 1 max) <1 0 · · · (2)
[ 0 1 6 5 ]  [0 1 6 5]
条件式 ( 2 ) は、 像高に対する光学系全長を規定するものであり、 下限を超えるとやはりテレセン性が悪くなり周辺光量不足を起こす。 上限を超えると全長が長くなりすぎ、 小型の光学系を構成することは できない。  Conditional expression (2) defines the total length of the optical system with respect to the image height. If the lower limit is exceeded, the telecentricity also deteriorates and the peripheral light quantity is insufficient. If the upper limit is exceeded, the total length becomes too long, and a compact optical system cannot be constructed.
[ 0 1 6 6 ]  [0 1 6 6]
また、 後 1群第 1反射面 2 2の曲率を R 1、 後 1群第 2反射面 2 3 の曲率を R 2 とするとき、  Also, when the curvature of the rear first group first reflective surface 2 2 is R 1 and the curvature of the rear first group second reflective surface 2 3 is R 2,
0. 2 <R 1 /R 2 < 5 · · · ( 3 ) なる条件を満足することが望ましい。  0.2 <R 1 / R 2 <5 (3) It is desirable to satisfy the following condition.
[ 0 1 6 7 ]  [0 1 6 7]
条件式 ( 3 ) は、 二つの反射面のパワーの比を規定しているもので あり、 下限を超えると、 後 1群第 1反射面 2 2の曲率半径が小さくな り、 後 1群第 2反射面 2 3の正のパワーに比べて、 後 1群第 1反射面 2 2の負のパワーが大きくなり光学系の全長を短くすることが出来な い。 上限を超えると、 後 1群第 2反射面 2 3の曲率が小さくなり後 1 群第 2反射面 2 3の正のパワーが大きくなりすぎ、 物体側に凸の像面 湾曲が大きく発生する。 Conditional expression (3) regulates the ratio of the power of the two reflecting surfaces. If the lower limit is exceeded, the radius of curvature of the rear first group, first reflecting surface 2 2 becomes smaller, and the rear first group first 2 Reflective surface 2 Compared with the positive power of 3 Rear 1st group 1st reflective surface 2 The negative power of 2 increases and the total length of the optical system cannot be shortened. When the upper limit is exceeded, the curvature of the rear first group second reflecting surface 23 becomes smaller, the positive power of the rear first group second reflecting surface 23 becomes too large, and a large curvature of field on the object side occurs.
[ 0 1 6 8 ]  [0 1 6 8]
さらに、 後 1群第 1反射面 2 2の曲率を R 1、 後 1群第 2反射面 2 3の曲率を R 2 とするとき、  Furthermore, when the curvature of the rear first group first reflective surface 2 2 is R 1 and the curvature of the rear first group second reflective surface 2 3 is R 2,
0. 5 <R 1 /R 2 < 2 · · · ( 3 ) ' なる条件を満足することが望ましい。  It is desirable to satisfy the following condition: 0.5 <R 1 / R 2 <2 (3) '
[ 0 1 6 9 ]  [0 1 6 9]
なお、 すべての実施例の球面で構成されている面は、 非球面で構成 することも可能である。 また、 像側の平行平面は撮像素子保護用のも のであり、 無くても良い。  It should be noted that the surfaces constituted by spherical surfaces in all the embodiments can be constituted by aspheric surfaces. Further, the parallel plane on the image side is for protecting the image sensor and may be omitted.
[ 0 1 7 0 ]  [0 1 7 0]
以下に、 本発明の光学系の実施例 6〜 1 0を説明する。 これら光学 系の構成パラメ一夕は後記する。  Examples 6 to 10 of the optical system of the present invention will be described below. The configuration parameters of these optical systems will be described later.
[ 0 1 7 1 ]  [0 1 7 1]
座標系は、 順光線追跡において、 例えば図 1 3に示すように、 絞り 面 Sが中心軸 2 と交差する点を偏心光学面の原点〇とし、 中心軸 2に 直交する方向を Y軸方向とし、 図 1 3の紙面内を Y— Z平面とする。 そして、 図 1 3の像面 5 と反対側の方向を Z軸正方向とし、 Y軸、 Z 軸と右手直交座標系を構成する軸を X軸正方向とする。 なお、 Z軸の 方向は、 各実施例において異なるので、 各実施例に対応した図の矢印 Zに従うものとする。  In forward ray tracking, for example, as shown in Fig.13, the coordinate system uses the point where the diaphragm surface S intersects the central axis 2 as the origin 〇 of the decentered optical surface, and the direction perpendicular to the central axis 2 as the Y-axis direction. The inside of the paper in Fig. 13 is the Y-Z plane. The direction opposite to the image plane 5 in FIG. 13 is the Z-axis positive direction, and the Y-axis, the Z-axis and the axis constituting the right-handed orthogonal coordinate system are the X-axis positive direction. Since the direction of the Z axis differs in each embodiment, it follows the arrow Z in the figure corresponding to each embodiment.
[ 0 1 7 2 ]  [0 1 7 2]
偏心面については、 その面が定義される座標系の上記光学系 1の原 点〇からの偏心量 (X軸方向、 Y軸方向、 Z軸方向をそれぞれ X, Y, Z ) と、 光学系 1 の原点 Oに定義される座標系の X軸、 Y軸、 Z軸そ れぞれを中心とする各面を定義する座標系の傾き角(それぞれ α , β , r ) ) とが与えられている。 その場合、 aと |6の正はそれぞれの 軸の正方向に対して反時計回りを、 ァの正は Z軸の正方向に対して時 計回りを意味する。 なお、 面の中心軸の a, β , ァの回転のさせ方は、 各面を定義する座標系を光学系の原点に定義される座標系のまず X軸 の回りで反時計回りに a回転させ、 次に、 その回転した新たな座標系 の Y軸の回りで反時計回りに j6回転させ、 次いで、 その回転した別の 新たな座標系の Z軸の回りで時計回りにァ回転させるものである。 For the eccentric surface, the amount of eccentricity from the origin 0 of the optical system 1 in the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the optical system X-axis, Y-axis, Z-axis The tilt angles (α, β, r)) of the coordinate system defining each plane centered on each are given. In that case, the positive of a and | 6 means counterclockwise rotation with respect to the positive direction of each axis, and the positive of a means clockwise rotation with respect to the positive direction of the Z axis. Note that the rotation of a, β, and a on the center axis of the surface is performed by rotating the coordinate system defining each surface a counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Next, rotate the new coordinate system around the Y axis by j6 counterclockwise rotation, and then rotate it around the Z axis of another rotated new coordinate system clockwise. It is.
[ 0 1 7 3 ]  [0 1 7 3]
また、 各実施例の光学系を構成する光学作用面の中、 特定の面とそ れに続く面が共軸光学系を構成する場合には面間隔が与えられており、 その他、 面の曲率半径、 媒質の屈折率、 アッベ数が慣用法に従って与 えられている。  In addition, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, and in addition, the curvature of the surface The radius, the refractive index of the medium, and the Abbe number are given according to conventional methods.
[ 0 1 7 4 ]  [0 1 7 4]
また、 後記の構成パラメ一夕中にデータの記載されていない非球面 に関する項は 0である。 屈折率、 アッベ数については、 d線 (波長 5 8 7. 5 6 n m) に対するものを表記してある。 長さの単位は mmで ある。 各面の偏心は、 上記のように、 基準面からの偏心量で表わす。  In addition, the term for an aspherical surface for which no data is described in the constituent parameters described later is 0. Refractive index and Abbe number are shown for d-line (wavelength 5 8 7. 56 6 nm). The unit of length is mm. The eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
[ 0 1 7 5 ]  [0 1 7 5]
なお、非球面は、以下の定義式で与えられる回転対称非球面である。  The aspheric surface is a rotationally symmetric aspheric surface given by the following definition.
Z = (Y2 /R) / [ 1 + { 1 - ( 1 + k ) Y2 /R2 } 1 /2] Z = (Y 2 / R) / [1 + {1-(1 + k) Y 2 / R 2 } 1/2 ]
+ a Y4 + b Y6 + c Y8 + d Y10+ - · · + a Y 4 + b Y 6 + c Y 8 + d Y 10 +-
• · · ( a ) ただし、 Zを軸とし、 Yを軸と垂直な方向にとる。 ここで、 Rは近軸 曲率半径、 kは円錐定数、 a、 b、 c、 d、 …はそれぞれ 4次、 6次、 8次、 1 0次の非球面係数である。 この定義式の Z軸が回転対称非球 面の軸となる。  • · · (a) where Z is the axis and Y is perpendicular to the axis. Where R is the paraxial radius of curvature, k is the conic constant, a, b, c, d, ... are the 4th, 6th, 8th, and 10th order aspherical coefficients, respectively. The Z axis in this definition is the axis of the rotationally symmetric aspheric surface.
[ 0 1 7 6 ] また、 拡張回転自由曲面は、 以下の定義で与えられる回転対称面で ある。 [0 1 7 6] An extended rotation free-form surface is a rotationally symmetric surface given by the following definition.
[ 0 1 7 7 ]  [0 1 7 7]
まず、 図 2に示すように、 Y _ Z座標面上で原点を通る下記の曲線 ( b ) が定められる。  First, as shown in Fig. 2, the following curve (b) passing through the origin on the Y_Z coordinate plane is determined.
[ 0 1 7 8 ]  [0 1 7 8]
Z = (Y2 /R Y) / [ 1 + { 1 - (C, + 1 ) Y2 /R Y2 } 1 /2] + C 2 Y + C 3 Y2 + C 4 Y3 + C 5 Y + C 6 Y5 + C 7 Y6 Z = (Y 2 / RY) / [1 + {1-(C, + 1) Y 2 / RY 2 } 1/2 ] + C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y + C 6 Y 5 + C 7 Y 6
+ · · · · + C21Y2。+ · · · · + Cn+1 Y" + · · · ·+ · · · · + C 21 Y 2 . + · · · · + C n + 1 Y "+ · · · ·
• · · ( b )• · · (b)
[ 0 1 7 9 ] [0 1 7 9]
次いで、 この曲線 ( b ) を X軸正方向を向いて左回りを正として角 度 Θ ) 回転した曲線 F ( Y) が定められる。 この曲線 F ( Y) も Y— Z座標面上で原点を通る。  Next, a curve F (Y) obtained by rotating the curve (b) in the positive direction of the X axis and turning it counterclockwise is defined as an angle Θ. This curve F (Y) also passes through the origin on the Y-Z coordinate plane.
[ 0 1 8 0 ]  [0 1 8 0]
その曲線 F ( Y) を Y正方向に距離 R (負のときは Y負方向) だけ 平行移動し、 その後に Z軸の周りでその平行移動した曲線を回転させ てできる回転対称面を拡張回転自由曲面とする。 .  The curve F (Y) is translated in the Y positive direction by a distance R (Y negative direction if negative), and then the rotationally symmetric surface formed by rotating the translated curve around the Z axis is expanded and rotated. Let it be a free-form surface. .
[ 0 1 8 1 ]  [0 1 8 1]
その結果、 拡張回転自由曲面は Y— Z面内で自由曲面 (自由曲線) になり、 X— Y面内で半径 I R Iの円になる。  As a result, the extended rotation free-form surface becomes a free-form surface (free curve) in the Y—Z plane and a circle with a radius I R I in the X—Y plane.
[ 0 1 8 2 ]  [0 1 8 2]
この定義から Z軸が拡張回転自由曲面の軸 (回転対称軸) となる。  From this definition, the Z axis is the axis of the extended rotation free-form surface (rotation symmetry axis).
[ 0 1 8 3 ]  [0 1 8 3]
ここで、 R Yは Y— Z断面での球面項の曲率半径、 は円錐定数、 C2 、 C3 、 C4 、 C5 …はそれぞれ 1次、 2次、 3次、 4次…の非球面 係数である。 Where RY is the radius of curvature of the spherical term in the Y-Z cross section, is the conic constant, C 2 , C 3 , C 4 , C 5 … are the first, second, third, fourth, etc. aspheric surfaces, respectively. It is a coefficient.
[ 0 1 8 4 ] なお、 Z軸を中心軸に持つ円錐面は拡張回転自由曲面の 1つとして 与えられ、 R Y =∞, C , , C 2 , C 3 , C 4 , C 5 , "·= 0 とし、 Θ =[0 1 8 4] Note that the conical surface with the Z axis as the central axis is given as one of the extended rotation free-form surfaces, and RY = ∞, C,, C 2 , C 3, C 4 , C 5 , "· = 0 and Θ =
(円錐面の傾き角) 、 R = (X— Z面内での底面の半径) として与え られる。 (Inclination angle of conical surface), R = (X — Radius of the bottom surface in the Z plane).
[ 0 1 8 5 ]  [0 1 8 5]
実施例 6の光学系 1 の中心軸 2に沿ってとつた断面図を図 1 4に示 す。 また、 この実施例の光学系全体の横収差図を図 1 5に示す。 この 横収差図に.おいて、 中央に示された角度は、 (水平方向画角、 垂直方 向の画角) を示し、 その画角における Y方向 (メリジォナル方向) と X方向 (サジタル方向) の横収差を示す。 なお、 マイナスの画角は、 水平方向画角については、 Y軸正方向を向いて右回りの角度、 垂直方 向画角については、 X軸正方向を向いて右回りの角度を意味する。 以 下、 同じ。  A sectional view taken along the central axis 2 of the optical system 1 of Example 6 is shown in FIG. In addition, FIG. 15 shows a lateral aberration diagram of the entire optical system of this example. In this transverse aberration diagram, the angle shown in the center indicates (horizontal angle of view, vertical angle of view), and Y direction (meridional direction) and X direction (sagittal direction) at that angle of view. The lateral aberration is shown. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.
[ 0 1 8 6 ]  [0 1 8 6]
本実施例は、 光学系 1 の中心軸 2 に同心に回転対称な屈折率が 1よ り大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通 に使用する拡張回転自由曲面で構成し、 該後群透明媒体 L bの前に前 群反射体 R f を配置した例である。  In this example, an extended rotation is used in which the transmission surface and the reflection surface of the rear group transparent medium L b having a refractive index larger than 1 concentrically with the central axis 2 of the optical system 1 are partially shared in the optical path. This is an example in which a free-form surface is formed, and a front group reflector R f is arranged in front of the rear group transparent medium L b.
[ 0 1 8 7 ]  [0 1 8 7]
光学系 1 は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で 中心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 1 8 8 ]  [0 1 8 8]
前群 G f は、 中心軸 2の周りで回転対称な前群反射体 R f からなる。 前群反射体 R f は、 非球面からなる像面 5側に凸の前群第 1反射面 1 2を有する。  The front group G f consists of a front group reflector R f that is rotationally symmetric about the central axis 2. The front group reflector R f has a front group first reflecting surface 12 that is convex on the image surface 5 side, which is an aspherical surface.
[ 0 1 8 9 ]  [0 1 8 9]
後 1群 G b 1 は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上 で像面側に凹面を向けた非球面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像側に形成され、 一部を反射コーティン グ 4 a し、 像面側に凹面を向けた負のパワーをもつ拡張回転自由曲面 からなる後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2 に対して像 面 5 と反対側に配置され、 反射コーティ ング 4 bし、 像面側に凹面を 向けた正のパワーをもつ非球面からなる後 1群第 2反射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側に配置され、 像面側に凹面を向けた 負のパワーをもつ拡張回転自由曲面からなる後 1群第 2透過面 2 4と、 を有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位 置同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4 は、 同一位置同一形状からなる。 The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. Rear Group 1 transparent media L b is on the central axis 2 The rear 1st group 1st transmission surface 2 1 and the rear 1st group 1st transmission surface 2 1 are made of aspherical surfaces with the concave surface facing the image surface side. The rear 1st group 1st reflecting surface 2 2 and the rear 1st group 1st reflecting surface 2 2 made of an extended rotation free-form surface with negative power with the concave surface facing the image surface side Reflective coating 4b, rear 1st group 2nd reflective surface 2 3 consisting of aspherical surface with positive power with concave surface facing image side, and rear 1st group 2nd reflective surface 2 3 And a rear first group second transmission surface 24 consisting of an extended rotation free-form surface having a negative power with the concave surface facing the image surface side and disposed on the surface 5 side. Rear 1st group 1st transmission surface 2 1 and Rear 1st group 2nd reflection surface 2 3 have the same position and same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 It consists of the same shape at the same position.
[ 0 1 9 0 ]  [0 1 9 0]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1 の物体 面 3から入射する光束は、 前群反射体 R f の前群第 1反射面 1 2 と、 前群反射体 R f と後 1群透明媒体 L bの間で中心軸 2に同軸に配置さ れた開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2 で一部が反射コーティ ング 4 a、 一部が全反射により像面 5 と反対側 に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像 面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透明媒体 L b から外に出る略 Z字状の光路を有する。 その後、 像面 5の中心軸 2力、 ら外れた半径方向の所定位置に円環状に結像する。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object surface 3 of the optical system 1 is between the front group first reflecting surface 1 2 of the front group reflector R f and between the front group reflector R f and the rear group 1 transparent medium L b. Then, after passing through the aperture S arranged coaxially with the central axis 2, it enters the rear group 1 transparent medium Lb. Rear 1st group transparent medium L b enters after 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, partly reflective coating 4a, partly total reflection image surface 5 Is reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 23, after passing through the 1st group 2nd transmitting surface 24 and the rear 1st group transparent medium Lb. It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction that deviates from the center axis 2 force of the image plane 5.
[ 0 1 9 1 ]  [0 1 9 1]
この実施例 6の仕様は、  The specification of this Example 6 is
全系の画角 60.00° X 360° Angle of view of the entire system 60.00 ° X 360 °
後群の画角 28.59° 〜64.75° Rear group angle of view 28.59 °-64.75 °
後群の入射瞳径 φ Ι. ΟΟππϋ Rear pupil entrance pupil diameter φ Ι. ΟΟππϋ
像の大きさ Φ 2. OOmn!〜 Φ 3.74mm である。 Φ 2. OOmn! ~ Φ 3.74mm It is.
[ 0 1 9 2 ]  [0 1 9 2]
実施例 7の光学系 1の中心軸 2に沿ってとつた断面図を図 1 6に示 す。 また、 この実施例の光学系全体の横収差図を図 1 7に示す。  A cross-sectional view taken along the central axis 2 of the optical system 1 of Example 7 is shown in FIG. In addition, FIG. 17 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 1 9 3 ]  [0 1 9 3]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1よ り大きい後 1群透明媒体 L bの透過面及び反射面を、 光路内で一部共 通に使用する拡張回転自由曲面で構成し、 該後 1群透明媒体 L bの前 群 G f として前群透明媒体 L f を配置した例である。  In this embodiment, the refractive index that is rotationally symmetric with respect to the central axis 2 of the optical system 1 is larger than 1, and then the transmission surface and the reflection surface of the first group of transparent media Lb are partially shared in the optical path. This is an example in which the front group transparent medium L f is arranged as the front group G f of the first group transparent medium L b after being composed of an extended rotation free-form surface.
[ 0 1 9 4 ]  [0 1 9 4]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で 中心軸 2に同軸に配置された開口 Sとからなり、 後群 G bは、 後 1群 G b 1 と後 2群 G b 2からなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b, and the rear group G b It consists of rear 1 group G b 1 and rear 2 group G b 2.
[ 0 1 9 5 ]  [0 1 9 5]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前 群透明媒体 L f からなる。 前群透明媒体 L は、 中心軸 2の周りで回 転対称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束が入 射し拡張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過 面 1 1 と中心軸 2 を挟んで反対側で前群第 1透過面 1 1より像面 5側 に配置されていて、 前群第 1透過面 1 1から入射した光束が入射し拡 張回転自由曲面からなる前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と中心軸 2に対して同じ側で前群第 1反射面 1 2より像面 5 と反対側 に配置され、 前群第 1反射面 1 2で反射された光束が入射し拡張回転 自由曲面からなる前群第 2反射面 1 3 と、 後群 G bに面していて、 前 群第 2反射面 1 3で反射された光束が入射し球面からなる前群第 2透 過面 1 4と、 を有する。  The front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1. The front group transparent medium L is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance. Are arranged on the opposite side of the front group first transmission surface 1 1 and the central axis 2 from the front group first transmission surface 11 1 to the image plane 5 side, and are incident from the front group first transmission surface 11. Front group first reflecting surface 1 2 consisting of an extended rotation free-form surface with the incident light beam, and front group first reflecting surface 12 on the same side with respect to front group first reflecting surface 1 2 and central axis 2 Image surface from front group first reflecting surface 1 2 5 facing the front group second reflecting surface 1 3 consisting of an extended rotation free-form surface and the rear group G b. And a front group second transparent surface 14 made of a spherical surface, into which the light beam reflected by the front group second reflective surface 13 is incident.
[ 0 1 9 6 ]  [0 1 9 6]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上 で像面側に凹面を向けた球面からなる後 1群第 1透過面 2 1 と、 後 1 群第 1透過面 2 1 に対して像側に形成され、 一部を反射コーティ ングRear group 1 G b 1 has a rotationally symmetric refractive index greater than 1 around the central axis 2 After 1 group of transparent media Lb. Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side Partly reflective coating
4 a し、 像面側に凹面を向けた負のパワーをもつ拡張回転自由曲面か らなる後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2に対して像面4a and the rear 1st group 1st reflecting surface 2 2 consisting of an extended rotation free-form surface with negative power with the concave surface facing the image surface side, and the back 1st group 1st reflecting surface 2 2
5と反対側に配置され、 反射コーティ ング 4 b し、 像面側に凹面を向 けた正のパワーをもつ球面からなる後 1群第 2反射面 2 3 と、 後 1群 第 2反射面 2 3より像面 5側に配置され、 像面側に凹面を向けた負の パワーをもつ拡張回転自由曲面からなる後 1群第 2透過面 2 4と、 を 有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位置 同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状からなる。 The rear 1st group 2nd reflective surface 2 3 and the rear 1st group 2nd reflective surface 2 are composed of a spherical surface with a positive power facing the concave surface toward the image surface side. And a rear first group second transmission surface 2 4, which is composed of an extended rotation free-form surface having a negative power with the concave surface facing the image surface side. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and the same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 1 9 7 ]  [0 1 9 7]
後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 2群カバ一ガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対して像側に形成される後 2群第 2透過面 3 2とを有する。  The rear 2 group G b 2 is composed of the rear 2 group cover glass C b 2 whose refractive index rotationally symmetric around the central axis 2 is greater than 1. Rear 2nd group cover glass Cb2 consists of parallel flat plate, rear 2nd group 1st transmission surface 3 1 and rear 2nd group 1st transmission surface 3 1 formed on the image side with respect to rear 2nd group 1st transmission surface 3 1 Surface 3 and 2.
[ 0 1 9 8 ]  [0 1 9 8]
光学系 1は、 光路 Aを形成する。 光学系 1の物体面 3から入射する 光束は、 前群透明媒体 L f の前群第 1透過面 1 1 を経て、 中心軸 2を 横切って前群第 1透過面 1 1 と反対側の前群第 1反射面 1 2で後群 G bから離れるように反射されて、 前群第 1反射面 1 2 と中心軸 2に対 して同じ側で後群 G bからより離れた側に位置している前群第 2反射 面 1 3で後群 G b方向へ再度反射され、 射出面の前群第 2透過面 1 4 を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. The light beam incident from the object plane 3 of the optical system 1 passes through the front group first transmission surface 11 of the front group transparent medium L f, crosses the central axis 2, and the front side opposite to the front group first transmission surface 1 1. Reflected away from the rear group G b by the first group reflecting surface 1 2 and positioned on the same side of the front group first reflecting surface 1 2 and the central axis 2 and further away from the rear group G b Then, the light is reflected again in the rear group Gb direction by the front second group reflecting surface 1 3 and exits from the front group transparent medium L f through the front group second transmitting surface 1 4 on the exit surface.
[ 0 1 9 9 ]  [0 1 9 9]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に 同軸に配置された開口 Sとを経て後 1群透明媒体 L b内に入る。 後 1 群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1 反射面 2 2で一部が反射コーティ ング 4 a、 一部が全反射により像面 5 と反対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群透 明媒体 L bから外に出る略 Z字状の光路を有する。 その後、 後 2群力 バーガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2を 経て、 像面 5の中心軸 2から外れた半径方向の所定位置に円環状に結 像する。 Thereafter, the light enters the rear first group transparent medium L b through the opening S arranged coaxially with the central axis 2 between the front group transparent medium L f and the rear first group transparent medium L b. After 1 In the group transparent medium Lb, it enters after the first group first transmission surface 2 1, and after the first group first reflection surface 2 2, a part is reflective coating 4 a and a part is totally opposite to the image surface 5 due to total reflection. Reflected to the rear side, reflected back to the image surface 5 side by the reflective coating 4b at the first group 2nd reflecting surface 23, and then passed through the rear 1st group 2nd transmitting surface 24 and outside the rear 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out to. After that, the rear 2 group force bar glass Cb 2 passes through the rear 2 group 1st transmission surface 3 1 and the rear 2 group 2nd transmission surface 3 2 to a predetermined radial position away from the central axis 2 of the image surface 5. Form a circle.
[ 0 2 0 0 ]  [0 2 0 0]
この実施例 7の仕様は、  The specification of this Example 7 is
全系の画角 50.00° X 360° Angle of view of entire system 50.00 ° X 360 °
後群の画角 25.22 ° 〜61.94° Rear group angle of view 25.22 ° to 61.94 °
入射瞳径 Φ 1.00龍 Entrance pupil diameter Φ 1.00 dragon
像の大きさ Φ 3.87mn!〜 Φ 7.84mm The size of the image Φ 3.87mn! ~ Φ 7.84mm
である。 It is.
[ 0 2 0 1 ]  [0 2 0 1]
実施例 8の光学系 1の中心軸 2に沿ってとつた断面図を図 1 8に示 す。 また、 この実施例の光学系全体の横収差図を図 1 9に示す。  A sectional view taken along the central axis 2 of the optical system 1 of Example 8 is shown in FIG. In addition, FIG. 19 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 2 0 2 ]  [0 2 0 2]
本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1よ り大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通 に使用する拡張回転自由曲面で構成し、 該後群透明媒体 L bの前群 G f として前群透明媒体 L f を配置した例である。  In this example, an extended rotation is used in which the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially shared in the optical path. This is an example in which a front group transparent medium L f is arranged as a front group G f of the rear group transparent medium L b, which is composed of a free-form surface.
[ 0 2 0 3 ]  [0 2 0 3]
光学系 1 は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で 中心軸 2 に同軸に配置された開口 Sとからなり、 後群 G bは、 第 1群 G 1 と第 2群 G 2からなる。  The optical system 1 is composed of a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b, and the rear group G b is It consists of the first group G 1 and the second group G 2.
[ 0 2 0 4 ] 前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前 群透明媒体 L f からなる。 前群透明媒体 L は、 中心軸 2の周りで回 転対称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束が入 射し拡張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過 面 1 1 と中心軸 2を挟んで反対側で前群第. 1透過面 1 1より像面 5側 に配置されていて、 前群第 1透過面 1 1から入射した光束が入射し拡 張回転自由曲面からなる前群第 1反射面 1 2 と、 前群第 1反射面 1 2 と中心軸 1 を挟んで反対側で前群第 1反射面 1 2より像面 5 .と反対側 に配置され、 前群第 1反射面 1 2で反射された光束が入射し拡張回転 自由曲面からなる前群第 2反射面 1 3 と、 中心軸 2上で後群 G bに面 していて前群第 2反射面 1 3より像面 5側に配置され、 前群第 2反射 面 1 3で反射された光束が入射し球面からなる前群第 2透過面 1 4と からなる。 [0 2 0 4] The front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1. The front group transparent medium L is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance. The front group first transmission surface 1 1 and the central axis 2 are placed on the opposite side of the front group.1 Transmission surface 1 1 is located on the image plane 5 side from the front group first transmission surface 1 1 The front group first reflective surface 1 2 made of an extended rotation free-form surface with the incident luminous flux incident, and the front group first reflective surface 1 2 on the opposite side of the front group first reflective surface 1 2 and the central axis 1 from the front group first reflective surface 1 2 The front group second reflecting surface 1 3 made of an extended rotation free-form surface and incident on the side opposite to the surface 5 and reflected by the front group first reflecting surface 12 and the rear group G on the central axis 2 The front group second transmission surface 1 4 is located on the image plane 5 side of the front group second reflection surface 1 3 and faces the b, and is made of a spherical surface by the incident light beam reflected by the front group second reflection surface 1 3. And consist of
[ 0 2 0 5 ]  [0 2 0 5]
後 1群 G b 1は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上 で像面側に凹面を向けた球面からなる後 1群第 1透過面 2 1 と、 後 1 群第 1透過面 2 1 に対して像側に形成され、 一部を反射コーティ ング 4 a し、 像面側に凹面を向けた負のパワーをもつ拡張回転自由曲面か らなる後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2に対して像面 5 と反対側に配置され、 反射コーティ ング 4 bし、 像面側に凹面を向 けた正のパワーをもつ球面からなる後 1群第 2反射面 2 3 と、 後 1群 第 2反射面 2 3より像面 5側に配置され、 像面側に凹面を向けた負の パワーをもつ拡張回転自由曲面からなる後 1群第 2透過面 2 4と、 を 有する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位置 同一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状からなる。  The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side 1st reflecting surface 2 2 consisting of an extended rotation free-form surface having a negative power with a concave surface facing the image surface side, and a first reflecting surface 2 2 It is located on the opposite side of the image plane 5 with respect to the reflection surface 22, is reflectively coated 4 b, and consists of a spherical surface with a positive power facing the concave surface toward the image surface side. Rear 1st group 2nd reflective surface 2 3 Rear surface 1st group 2nd transmissive surface 2 4 which is arranged on the image surface 5 side from the 2nd reflective surface 2 3 and which consists of an extended rotation free-form surface having negative power with the concave surface facing the image surface side, Have. Rear 1st group 1st transmission surface 2 1 and rear 1st group 2nd reflection surface 2 3 have the same position and the same shape, Rear 1st group 1st reflection surface 2 2 and Rear 1st group 2nd transmission surface 2 4 are the same It consists of the same shape.
[ 0 2 0 6 ] 後 2群 G b 2は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 2群カバーガラス C b 2からなる。 後 2群カバーガラス C b 2は、 平行平板からなり、 後 2群第 1透過面 3 1 と、 後 2群第 1透過面 3 1 に対して像側に形成される後 2群第 2透過面 3 2 とを有する。 [0 2 0 6] The rear 2nd group G b 2 is composed of the rear 2nd group cover glass Cb 2 whose refractive index rotationally symmetric about the central axis 2 is larger than 1. Rear 2nd group cover glass Cb2 consists of parallel flat plate, rear 2nd group 1st transmission surface 3 1 and rear 2nd group 1st transmission surface 3 1 formed on the image side with respect to rear 2nd group 1st transmission surface 3 1 Surface 3 2.
[ 0 2 0 7 ]  [0 2 0 7]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体 面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に入り、 中心軸 2を横切って前群第 1透過面 1 1 と反対側の前群 第 1反射面 1 2で後群 G bから離れるように像面 5 と反対側に反射さ れ、 前群第 1反射面 1 2 と中心軸 2に対して反対側で後群 G bからよ り離れた側に位置している前群第 2反射面 1 3で像面 5側に反射され、 射出'面の前群第 2透過面 1 4を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f through the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1. Front group first reflective surface 1 opposite to 1 is reflected from the rear group G b away from the rear group G b by the opposite side to the image surface 5 and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front second reflecting surface 1 3 located on the side farther from the rear group Gb, and is transparent through the front second transmitting surface 14 of the exit surface. Get out of medium L f.
[ 0 2 0 8 ]  [0 2 0 8]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に 同軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コーティ ング 4 a、 他部が全反射により像 面 5と反対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群 透明媒体 L bから外に出る略 Z字状の光路を有する。 その後、 後 2群 カバーガラス C b 2の後 2群第 1透過面 3 1 と後 2群第 2透過面 3 2 を経て、 像面 5の中心軸 2から外れた半径方向の所定位置に円環状に 結像する。  After that, it passes through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and enters the rear group 1 transparent medium Lb. Rear 1st group transparent medium L b enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflective coating 4a, other part is total reflection, image surface 5 Reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 after passing through the 1st group 2nd transmitting surface 2 4 after the 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out. Then, the rear group 2 cover glass Cb 2 passes through the rear group 2 first transmitting surface 3 1 and the rear group 2 second transmitting surface 3 2, and is circled at a predetermined radial position away from the central axis 2 of the image surface 5. Form an image in a ring.
[ 0 2 0 9 ]  [0 2 0 9]
この実施例 8の仕様は、  The specification of this Example 8 is
全系の画角 80. 00 ° X 360 ° Angle of view of the entire system 80.00 ° X 360 °
後群の画角 37. 93 ° 〜58. 17 ° Rear group angle of view 37. 93 ° to 58. 17 °
入射瞳径 ψ 1. 00mm 像の大きさ φ 4.60mn!〜 ψ 7.20mm Entrance pupil diameter ψ 1.00 mm Image size φ 4.60mn! ~ Ψ 7.20mm
である。 It is.
[ 0 2 1 0 ]  [0 2 1 0]
実施例 9の光学系 1の中心軸 2に沿ってとつた断面図を図 2 0に示 す。 また、 この実施例の光学系全体の横収差図を図 2 1 に示す。  A cross-sectional view taken along the central axis 2 of the optical system 1 of Example 9 is shown in FIG. In addition, Fig. 21 shows a lateral aberration diagram of the entire optical system of this example.
[ 0 2 1 1 ] - 本実施例は、 光学系 1の中心軸 2に同心に回転対称な屈折率が 1よ り大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通 に使用する球面で構成し、 該後群透明媒体 L bの前群 G f として前群 透明媒体 L f を配置した例である。  [0 2 1 1]-In this embodiment, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentrically symmetric with respect to the central axis 2 of the optical system 1 are aligned in the optical path. This is an example in which the front group transparent medium L f is arranged as the front group G f of the rear group transparent medium L b.
[ 0 2 1 2 ]  [0 2 1 2]
光学系 1 は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で 中心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 2 1 3 ]  [0 2 1 3]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前 群透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 2の周りで回 転対称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束が入 射し拡張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透過 面 1 1 と中心軸 2を挟んで反対側で前群第 1透過面 1 1より像面 5 と 反対側に配置されていて、 前群第 1透過面 1 1から入射した光束が入 射し拡張回転自由曲面からなる前群第 1反射面 1 2 と、 後群 G bに面 していて中心軸 2上で前群第 1反射面 1 2より像面 5側に配置され、 前群第 1反射面 1 2で反射された光束が入射し球面からなる前群第 2 透過面 1 4とからなる。  The front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1. The front group transparent medium L f is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 2, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by incidence of a light beam from a distance. 1 and the front group first transmission surface 1 1 and the central axis 2 on the opposite side, the front group first transmission surface 1 1 is disposed on the opposite side of the image plane 5 from the front group first transmission surface 1 1 The front group first reflective surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from the front and the rear group G b on the central axis 2 on the central axis 2 from the front group first reflective surface 1 2 and the image plane 5 And a front group second transmission surface 14 formed of a spherical surface, on which the light beam reflected by the front group first reflection surface 12 2 is incident.
[ 0 2 1 4 ]  [0 2 1 4]
後群 G 1 は、 中心軸 2の周りで回転対称な屈折率が 1より大きい後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上で像 面側に凹面を向けた球面からなる後 1群第 1透過面 2 1 と、 後 1群第 1透過面 2 1 に対して像側に形成され、 一部を反射コーティ ング 4 a し、 像面側に凹面を向けた負のパワーをもつ拡張回転自由曲面からな る後 1群第 1反射面 2 2 と、 後 1群第 1反射面 2 2 に対して像面 5 と 反対側に配置され、 一部を反射コーティ ング 4 b し、 像面側に凹面を 向けた正のパワーをもつ球面からなる後 1群第 2反射面 2 3 と、 後 1 群第 2反射面 2 3より像面 5側に配置され、 像面側に凹面を向けた負 のパワーをもつ拡張回転自由曲面からなる後 1群第 2透過面 2 4を有 する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位置同 一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状からなる。 The rear group G 1 is composed of a rear group 1 transparent medium L b having a rotationally symmetric refractive index greater than 1 around the central axis 2. Rear 1st group transparent medium Lb consists of a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the 1st rear group 1st 1 Reflective surface 2 1 formed on the image side, partially coated with reflection 4a, and made up of an extended rotation free-form surface with negative power with the concave surface facing the image surface. It is placed on the opposite side of the image surface 5 with respect to the surface 2 2 and the rear first group first reflective surface 2 2, and has a positive power with a part of the reflective coating 4 b and the concave surface facing the image surface side A rear 1st group 2nd reflecting surface 2 3 consisting of a spherical surface, and an extended rotation free-form surface with negative power with the concave surface facing the image surface side, placed on the image surface 5 side from the rear 1st group 2nd reflecting surface 2 3 After that, it has 1st group 2nd transmission surface 24. Rear group 1 first transmission surface 2 1 and rear group 1 second reflection surface 2 3 have the same shape at the same position. Rear group 1 first reflection surface 2 2 and rear group 1 second transmission surface 2 4 It consists of the same shape at the same position.
[ 0 2 1 5 ]  [0 2 1 5]
光学系 1 は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体 面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に入り、 中心軸 2を横切って前群第 1透過面 1 1 と反対側の前群 第 1反射面 1 2で後群 G bに向かって下方へ像面 5側に反射され、 射 出面の前群第 2透過面 1 4を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f through the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1. Front group first reflective surface 1 opposite to 1 Reflected downward toward the rear group G b toward the rear group G b toward the image surface 5 side, and through the front group second transmission surface 14 of the projection surface, the front group transparent medium L f Go out from.
[ 0 2 1 6 ]  [0 2 1 6]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に 同軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コーティ ング 4 a、 他部が全反射により像 面 5 と反対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群 透明媒体 L bから外に出る略 Z字状の光路を有する。 その後、 像面 5 の中心軸 2から外れた半径方向の所定位置に円環状に結像する。  After that, it passes through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and enters the rear group 1 transparent medium Lb. Rear 1st group transparent medium L b enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2, part is reflective coating 4a, other part is total reflection, image surface 5 Reflected to the image surface 5 side by the reflective coating 4b at the rear 1st group 2nd reflecting surface 2 3 after passing through the 1st group 2nd transmitting surface 2 4 after the 1st group transparent medium Lb It has an approximately Z-shaped optical path that goes out. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
[ 0 2 1 7 ]  [0 2 1 7]
この実施例 9の仕様は、  The specification of this Example 9 is
全系の画角 40.00° X 360° 後群の画角 24.45° 〜58.38° Angle of view of the entire system 40.00 ° X 360 ° Rear group angle of view 24.45 °-58.38 °
後群の入射瞳径 (ί> 1.00mm Rear pupil entrance pupil diameter (ί> 1.00mm
像の大きさ φ 3.58mE!〜 Φ 7.03mm Image size φ 3.58mE! ~ Φ 7.03mm
である。 It is.
[ 0 2 1 8 ]  [0 2 1 8]
実施例 1 0の光学系 1の中心軸 2に沿ってとつた断面図を図 2 2 に 示す。 また、 この実施例の光学系全体の横収差図を図 2 3に示す。  A sectional view taken along the central axis 2 of the optical system 1 of Example 10 is shown in FIG. Also, the lateral aberration diagram of the entire optical system of this example is shown in FIG.
[ 0 2 1 9 ]  [0 2 1 9]
本実施例は、 光学系 1 の中心軸 2 に同心に回転対称な屈折率が 1よ り大きい後群透明媒体 L bの透過面及び反射面を、 光路内で一部共通 に使用する球面で構成し、 該後群透明媒体 L bの前に前群透明媒体 L f を配置した例である。  In this embodiment, the transmission surface and the reflection surface of the rear group transparent medium Lb having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are partially used in the optical path. This is an example in which the front group transparent medium L f is arranged in front of the rear group transparent medium L b.
[ 0 2 2 0 ]  [0 2 2 0]
光学系 1は、 前群 G f と、 後群 G bと、 前群 G f と後群 G bの間で 中心軸 2に同軸に配置された開口 Sとからなる。  The optical system 1 includes a front group G f, a rear group G b, and an aperture S arranged coaxially with the central axis 2 between the front group G f and the rear group G b.
[ 0 2 2 1 ]  [0 2 2 1]
前群 G f は、 中心軸 2の周りで回転対称な屈折率が 1より大きい前 群透明媒体 L f からなる。 前群透明媒体 L f は、 中心軸 1の周りで回 転対称な屈折率が 1より大きい樹脂等からなり、 遠方からの光束 2が 入射し拡張回転自由曲面からなる前群第 1透過面 1 1 と、 前群第 1透 過面 1 1 と中心軸 1 を挟んで反対側で前群第 1透過面 1 1より像面 5 と反対側に配置されていて、 前群第 1透過面 1 1から入射した光束が 入射し拡張回転自由曲面からなる前群第 1反射面 1 2 と、 前群第 1反 射面 1 2 と中心軸 1 を挟んで反対側で前群第 1反射面 1 2より像面 5 と反対側に配置され、 前群第 1反射面 1 2で反射された光束が入射し 拡張回転自由曲面からなる前群第 2反射面 1 3 と、 後群 G bに面して いて前群第 2反射面 1 2 と中心軸 2上で前群第 2反射面 1 3より像面 5側に配置され、 前群第 2反射面 1 3で反射された光束が入射し球面 からなる前群第 2透過面 1 4とからなる。 The front group G f is composed of a front group transparent medium L f whose refractive index is rotationally symmetric around the central axis 2 and greater than 1. The front group transparent medium L f is made of a resin or the like having a rotationally symmetric refractive index greater than 1 around the central axis 1, and the front group first transmitting surface 1 formed of an extended rotation free-form surface by the incident light beam 2 from a distance. 1 and the front group first transmitting surface 1 1 and the central axis 1 on the opposite side, the front group first transmitting surface 1 1 is disposed on the opposite side of the image surface 5 from the front group first transmitting surface 1 Front group first reflective surface 1 2 consisting of an extended rotation free-form surface with the incident light beam from 1 and front group first reflective surface 1 2 and front group first reflective surface 1 on the opposite side across central axis 1 2 is located on the opposite side of the image plane 5 from the front surface, and the light beam reflected by the front group first reflective surface 1 2 is incident on the front group second reflective surface 1 3 consisting of an extended rotation free-form surface and the rear group G b. Therefore, the light beam reflected on the second reflecting surface 13 of the front group is incident on the second reflecting surface 1 2 and the central axis 2 on the image plane 5 side from the second reflecting surface 1 3 of the front group. Spherical surface And the front group second transmitting surface 14.
[ 0 2 2 2 ]  [0 2 2 2]
後 1群 G b 1 は、 中心軸 2の周りで回転対称な屈折率が 1より大き い後 1群透明媒体 L bからなる。 後 1群透明媒体 L bは、 中心軸 2上 で像面側に凹面を向けた球面からなる後 1群第 1透過面 2 1 と、 後 1 群第 1透過面 2 1 に対して像側に形成され、 一部を反射コーティ ング 4 a し、 像面側に凹面を向けた負のパワーをもつ後 1群第 1反射面 2 2と、 後 1群第 1反射面 2 2に対して像面 5 と反対側に配置され、 反 射コ一ティ ング 4 b し、 像面側に凹面を向けた正のパワーをもつ後 1 群第 2反射面 2 3 と、 後 1群第 2反射面 2 3より像面 5側に配置され、 像面側に凹面を向けた負のパワーをもつ後 1群第 2透過面 2 4とを有 する。 後 1群第 1透過面 2 1 と後 1群第 2反射面 2 3は、 同一位置同 一形状からなり、 後 1群第 1反射面 2 2 と後 1群第 2透過面 2 4は、 同一位置同一形状からなる。  The rear group 1 G b 1 is composed of a rear group 1 transparent medium L b whose refractive index rotationally symmetric about the central axis 2 is greater than 1. Rear 1st group transparent medium Lb is a rear 1st group 1st transmission surface 2 1 consisting of a spherical surface with the concave surface facing the image surface side on the central axis 2 and the rear 1st group 1st transmission surface 2 1 on the image side With a negative power with a concave surface facing the image surface side and a rear first group first reflective surface 2 2 and a rear first group first reflective surface 2 2 The rear 1st group 2nd reflective surface 2 3 and the rear 1st group 2nd reflective that are arranged on the opposite side of the image surface 5 and have a positive power with the concave surface facing the image surface 4b It is arranged on the image surface 5 side from the surface 23 and has a rear first group second transmission surface 24 having negative power with the concave surface facing the image surface side. Rear group 1 first transmission surface 2 1 and rear group 1 second reflection surface 2 3 have the same shape at the same position. Rear group 1 first reflection surface 2 2 and rear group 1 second transmission surface 2 4 It consists of the same shape at the same position.
[ 0 2 2 3 ]  [0 2 2 3]
光学系 1は、 光路 Aを形成する。 光路 Aにおいて、 光学系 1の物体 面 3から入射する光束は、 前群第 1透過面 1 1 を経て前群透明媒体 L f 内に入り、 中心軸 2 を横切って前群第 1透過面 1 1 と反対側の前群 第 1反射面 1 2で後群 G bから離れるように像面 5 と反対側に反射さ れ、 前群第 1反射面 1 2 と中心軸 2 に対して反対側で後群 G bから離 れた側に位置している前群第 2反射面 1 3で像面 5側に反射され、 射 出面の前群第 2透過面 1 4を経て前群透明媒体 L f から外に出る。  The optical system 1 forms the optical path A. In the optical path A, the light beam incident from the object surface 3 of the optical system 1 enters the front group transparent medium L f via the front group first transmission surface 1 1, crosses the central axis 2, and the front group first transmission surface 1. Front group first reflective surface 1 opposite to 1 is reflected from the rear group G b away from the rear group G b by the opposite side to the image surface 5 and opposite to the front group first reflective surface 1 2 and the central axis 2 Is reflected to the image plane 5 side by the front group second reflecting surface 1 3 located on the side away from the rear group Gb, and passes through the front group second transmitting surface 1 4 of the projecting surface and passes through the front group transparent medium L. Get out of f.
[ 0 2 2 4 ]  [0 2 2 4]
その後、 前群透明媒体 L f と後 1群透明媒体 L bの間で中心軸 2に 同軸に配置された開口 Sとを経て、 後 1群透明媒体 L b内に入る。 後 1群透明媒体 L bでは、 後 1群第 1透過面 2 1 を経て入り、 後 1群第 1反射面 2 2で一部が反射コーティ ング 4 a、 一部が全反射により像 面 5 と反対側に反射され、 後 1群第 2反射面 2 3で反射コーティ ング 4 bにより像面 5側に反射され、 後 1群第 2透過面 2 4を経て後 1群 透明媒体 L bから外に出る略 Z字状の光路を有する。 その後、 像面 5 の中心軸 2から外れた半径方向の所定位置に円環状に結像する。 After that, it passes through the opening S arranged coaxially with the central axis 2 between the front group transparent medium Lf and the rear group 1 transparent medium Lb, and enters the rear group 1 transparent medium Lb. Rear 1st group transparent medium Lb enters through rear 1st group 1st transmission surface 2 1, rear 1st group 1st reflection surface 2 2 partly reflective coating 4a, partly due to total reflection image surface 5 Reflected on the side opposite to the back, and the back 1st group 2nd reflecting surface 2 3 Reflective coating 4 b Reflected toward the image plane 5 by b, and passes through rear group 1 second transmission surface 24 and rear group 1 transparent medium L. It has a substantially Z-shaped optical path exiting from b. Thereafter, an image is formed in an annular shape at a predetermined position in the radial direction deviating from the central axis 2 of the image plane 5.
[ 0 2 2 5 ]  [0 2 2 5]
この実施例 1 0の仕様は、  The specification of this Example 10 is
全系の画角 60.00。 X 360° Angle of view of the entire system 60.00. X 360 °
後群の画角 24.17° 〜55· 75° Rear group angle of view 24.17 ° to 55
後群の入射瞳径 Φ 1. OOfflm Rear group entrance pupil diameter Φ 1.OOfflm
像の大きさ Φ 3.84mm~ φ 7.53mm Image size Φ 3.84mm to φ 7.53mm
である。 It is.
[ 0 2 2 6 ]  [0 2 2 6]
また、 最大像高を I max (mm), 最小像高を I min (mm)、 後群 G rの 最大画角を Θ max (度)、 後群 G rの最小画角を Θ min (度)、 焦点距離 The maximum image height is I max (mm), the minimum image height is I min (mm), the maximum field angle of the rear group G r is Θ max (degrees), and the minimum field angle of the rear group G r is Θ min (degrees) ), Focal length
F = ( I max- I min) /( Θ max- 0 min)とし、後群 G rの外径を D (mm)、 平行平面の保護ガラスを除いた後群 G rの全長を L (mm), 後群第 1反 射面 2 2の曲率を R 1、 後群第 2反射面 2 3の曲率を R 2とするとき、 実施例 6 実施例 7 実施例 8 実施例 9 実施例 10F = (I max-I min) / (Θ max-0 min), the outer diameter of the rear group G r is D (mm), and the total length of the rear group G r is L (mm ), Where the curvature of the rear-group first reflecting surface 22 is R1, and the curvature of the rear-group second reflecting surface 23 is R2, Example 6 Example 7 Example 8 Example 9 Example 10
I max 1. 87 3. 92 3. 54 3. 51 3. 77I max 1. 87 3. 92 3. 54 3. 51 3. 77
Θ max 64. 75 61. 94 58. 17 58. 38 55. 75Θ max 64. 75 61. 94 58. 17 58. 38 55. 75
I min 1. 00 1. 93 2. 30 1. 79 1. 92I min 1. 00 1. 93 2. 30 1. 79 1. 92
Θ min 28. 59 25. 22 37. 93 24. 45 24. 17Θ min 28. 59 25. 22 37. 93 24. 45 24. 17
F 0. 024 0. 054 0. 061 0. 051 0. 059F 0. 024 0. 054 0. 061 0. 051 0. 059
D 6. 00 10. 80 9. 60 11. 20 11. 60D 6.00 10. 80 9. 60 11. 20 11. 60
L 2. 800 ' 4. 800 4. 400 4. 80 5. 20L 2. 800 '4. 800 4. 400 4. 80 5. 20
D (2X Imax) 1. 604 1. 378 1. 356 1. 594 1. 540D (2X Imax) 1.604 1. 378 1. 356 1. 594 1. 540
L (2x Imax) 0. 749 0. 612 0. 621 0. 683 0. 690L (2x Imax) 0. 749 0. 612 0. 621 0. 683 0. 690
R 1 2. 54 2. 54 9. 11 6. 12 6. 65R 1 2. 54 2. 54 9. 11 6. 12 6. 65
R 2 3. 52 3. 52 8. 82 7. 14 7. 80R 2 3. 52 3. 52 8. 82 7. 14 7. 80
R 1 /R 2 0. 72 0. 72 1. 03 0. 86 0. 85 である。 R 1 / R 2 0. 72 0. 72 1. 03 0. 86 0. 85.
[ 0 2 2 7 ] 以下に、 上記実施例 6 1 0の構成パラメ一夕を示す。 なお、 以下 の表中の "R E" は反射面を示す。 [0 2 2 7] The configuration parameters of Example 6 10 will be described below. In the table below, “RE” indicates a reflective surface.
[ 0 2 2 8 ] [0 2 2 8]
実施例 6  Example 6
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数 物体面 oo oo 偏心 (1) Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface oo oo Eccentricity (1)
1 (R E) 非球面 [1] 0.00 偏心 (2)  1 (R E) Aspherical surface [1] 0.00 Eccentricity (2)
2 ∞ (絞り) 0.00  2 ∞ (Aperture) 0.00
3 非球面 [2] 0.00 偏心 (3) 42.7 3 Aspherical surface [2] 0.00 Eccentricity (3) 42.7
4 ( R E) E R F S [1] 0.00 偏心 (4) 42.74 (R E) E R F S [1] 0.00 Eccentricity (4) 42.7
5 ( R E) 非球面 [2] 0.00 偏心 (3)
Figure imgf000061_0001
42.7
5 (RE) Aspherical surface [2] 0.00 Eccentricity (3)
Figure imgf000061_0001
42.7
6 E R F S [1] 3.49 偏心 (4) 6 E R F S [1] 3.49 Eccentricity (4)
像 面 oo Statue face oo
[ 0 2 2 9 ]  [0 2 2 9]
なお、 像面に対する面間隔は 、 基準面 (絞り面) からの間隔とする In addition, the surface distance to the image surface is the distance from the reference surface (aperture surface).
[ 0 2 3 0 ] [0 2 3 0]
E R F S [1]  E R F S [1]
R Y -2. 54  R Y -2. 54
Θ -16. 68  Θ -16. 68
R -0. 80  R -0. 80
C 4 2. 7077E-002  C 4 2. 7077E-002
非球面 [1]  Aspherical [1]
曲率半径 24.30 Curvature radius 24.30
k -9.1220E+000 k -9.1220E + 000
非球面 [2]  Aspherical [2]
曲率半径 -3.52 Radius of curvature -3.52
k 1.4073E-001 k 1.4073E-001
偏心 [1]  Eccentric [1]
X 0.00 Y 0.00 X 0.00 Y 0.00
110.00 β 0.00  110.00 β 0.00
偏心 [2]  Eccentric [2]
X 0.00 Υ 0.00 Ζ 4.52 X 0.00 Υ 0.00 Ζ 4.52
面物像 L Face image L
番体実な 2 u o o 47° 92356 o 1  Real 2 u o o 47 ° 92356 o 1
号面お施面 2 2 ( (  Front side 2 2 ((
0. 00 β 0. 00 r 0. 00  0. 00 β 0. 00 r 0. 00
偏心 [3]  Eccentric [3]
X 0. 00 Y 0. 00 z -0. 10 X 0. 00 Y 0. 00 z -0. 10
Figure imgf000062_0001
Figure imgf000062_0001
偏心 [4]  Eccentric [4]
X 0. 00 Y 0. 00 z - 1. 74  X 0. 00 Y 0. 00 z-1. 74
0. 00 β 0. 00 r 0. 00  0. 00 β 0. 00 r 0. 00
3 1 ]  3 1]
例 7  Example 7
曲率半径 面間隔 偏心 屈折率 アッベ数 οο ∞ 偏心 ( 1)  Radius of curvature Surface spacing Eccentricity Refractive index Abbe number οο ∞ Eccentricity (1)
Ε R F S [ 1] 0. 00 偏心 (2) 1. 8348 42. 7 Ε R F S [1] 0. 00 Eccentric (2) 1. 8348 42. 7
R E ) E R F S [2] 0. 00 偏心 (3) 1. 8348 42. 7 R E ) E R F S [3] 0. 00 偏心(4) 1. 8348 42. 7R E) E R F S [2] 0. 00 Eccentricity (3) 1. 8348 42. 7 R E) E R F S [3] 0. 00 Eccentricity (4) 1. 8348 42. 7
- 18. 83 0. 00 偏心 (5) -18. 83 0. 00 Eccentric (5)
∞ (絞り ) 0. 00  ∞ (Aperture) 0.00
8. 08 0. 00 1. 8348 42. 7 8. 08 0. 00 1. 8348 42. 7
R E ) E R F S [4] 0. 00 偏心 (6) 1. 8348 42. 7 R E ) 8. 08 0. 00 1. 8348 42. 7R E) E R F S [4] 0.00 Eccentricity (6) 1. 8348 42. 7 R E) 8. 08 0. 00 1. 8348 42. 7
E R F S [4] 5. 72 E R F S [4] 5. 72
CO 1. 00 1. 5 163 64. 1 CO 1. 00 1. 5 163 64. 1
CO 0. 70 CO 0. 70
CO  CO
3 2 ]  3 2]
、 第 1 0面に対する面間隔は、 基準面 (絞り面) からの間隔とす る。  The surface distance to the 10th surface is the distance from the reference surface (diaphragm surface).
[ 0 2 3 3 ]  [0 2 3 3]
E R F S [ 1 ]  E R F S [1]
R Y 16. 7 1  R Y 16. 7 1
Θ 49. 59 Θ 49. 59
R - 10. 48 R-10. 48
E R F S [2]  E R F S [2]
R Y -22. 92  R Y -22. 92
Θ 36. 92 [9]、つ'翳 Θ 36. 92 [9] Tsutsu
00 •0 义 00 •0 SI 00 •0 Ώ 00 • 0 义 00 • 0 SI 00 • 0 Ώ
00 '卜 Z 00 •0 入 00 •0 X 00 '卜 Z 00 • 0 On 00 • 0 X
[S] 、つ'翳  [S]
00 •0 1 00 •0 00 •0 Ό ε ト Z 00 •0 入 00 •0 X  00 • 0 1 00 • 0 00 • 0 ε ε G Z 00 • 0 On 00 • 0 X
[V]  [V]
00 •0 1 00 •0 00 •0 Ό 8 'S- Z 00 •0 入 00 •0 X  00 • 0 1 00 • 0 00 • 0 Ό 8 'S-Z 00 • 0 on 00 • 0 X
[ε] 、つ'  [ε]
00 •0 1 00 •0 00 •0 Ό 00 • 0 1 00 • 0 00 • 0 Ό
•n- Z 00 •0 入 00 •0 X• n-Z 00 • 0 input 00 • 0 X
、つ'翳 Tsutsu
00 •0 义 00 Ό 00 •s Ό 00 • 0 义 00 Ό 00 • s Ό
"01 - Z 00 •0 入 00 •0 X "01-Z 00 • 0 input 00 • 0 X
[I ] 、つ,  [I]
C00-3C866 · 1- D  C00-3C866 1-D
' \ - '\-
66 . 01 Θ66. 01 Θ
18 ' Ζ A H 18 'Ζ A H
C00-aC866 V D C00-aC866 V D
Ο ΐ ·9 Η 'ト θ εε 'se- 入 Η d Η a  9 ΐ99 'G θ εε' se- input Η d Η a
91 ·8 Η 91 · 8 Η
T0S990/800Zdf/X3d 19 88 贿 600Ζ OAV 数 T0S990 / 800Zdf / X3d 19 88 贿 600Ζ OAV number
とす
Figure imgf000064_0001
Toss
Figure imgf000064_0001
E R F S [1]  E R F S [1]
R Y - 6. 52  R Y-6. 52
Θ 65. 91  Θ 65. 91
R -9. 51  R -9. 51
E R F E R F
R Y -17. 99 R Y -17. 99
Θ 51. 78  Θ 51. 78
R 7. 06  R 7.06
C 4 -8. 6892E-005  C 4 -8. 6892E-005
E R F S [3]  E R F S [3]
R Y 6.10  R Y 6.10
Θ 36.27 R -7. 96 Θ 36.27 R -7. 96
C 4 — 1. 1833E-004 C 4 — 1. 1833E-004
E R F S [4 E R F S [4
R Y 9. 1 1 R Y 9. 1 1
Θ -7. 46  Θ -7. 46
R 1. 52 R 1.52
偏心 [ 1]  Eccentric [1]
X 0. 00 Y 0. 00 Ζ -7. 04 45. 00 β 0. 00 r 0. 00 偏心 [2]  X 0. 00 Y 0. 00 Ζ -7. 04 45. 00 β 0. 00 r 0. 00 Eccentricity [2]
X 0. 00 Y 0. 00 Z - 16. 54 a 0. 00 β 0. 00 r 0. 00 偏心 [3]  X 0. 00 Y 0. 00 Z-16. 54 a 0. 00 β 0. 00 r 0. 00 Eccentric [3]
X 0. 00 Υ 0. 00 Z -4. 83 0. 00 β 0. 00 r 0. 00 偏心 [4]  X 0. 00 Υ 0. 00 Z -4. 83 0. 00 β 0. 00 r 0. 00 Eccentricity [4]
X 0. 00 Υ 0. 00 Z - 17. 96 0. 00 β 0. 00 r 0. 00 偏心 [5]  X 0. 00 Υ 0. 00 Z-17. 96 0. 00 β 0. 00 r 0. 00 Eccentric [5]
X 0. 00 Υ 0. 00 Z -0. 10 0. 00 β 0. 00 r 0. 00 偏心 [6]  X 0. 00 Υ 0. 00 Z -0. 10 0. 00 β 0. 00 r 0. 00 Eccentricity [6]
X 0. 00 Υ 0. 00 Z 0. 10 0. 00 β 0. 00 r 0. 00 偏心 [7]  X 0. 00 Υ 0. 00 Z 0. 10 0. 00 β 0. 00 r 0. 00 Eccentric [7]
0. 00 Υ 0. 00 Z 3. 36 0. 00 β 0. 00 r 0. 00 0. 00 Υ 0. 00 Z 3. 36 0. 00 β 0. 00 r 0. 00
像 Γ Image Γ
な o o  O o
面お 22  Surface 22
実施例 9  Example 9
面番号 曲率半径 面間隔 偏心 屈折率 アッベ 物体面 ∞ 偏心 (1) Surface number Curvature radius Surface spacing Eccentric Refractive index Abbe Object surface ∞ Eccentricity (1)
1 E R F S [1] 0.00 偏心 (2) 64. 1 1 E R F S [1] 0.00 Eccentricity (2) 64. 1
2 ( R E ) E R F S [2] 0.00 偏心 (3) 64. 12 (R E) E R F S [2] 0.00 Eccentricity (3) 64.1
3 -10. 32 0.00 偏心 (4) 3 -10. 32 0.00 Eccentricity (4)
4 ∞ (絞り ) 0. 10  4 ∞ (Aperture) 0. 10
7 -7. 14 0.00 偏心 (5) 42.7 7 -7. 14 0.00 Eccentricity (5) 42.7
8 ( R E ) E R F S [3] 0.00 偏心 (6) 1.8348 42.78 (R E) E R F S [3] 0.00 Eccentricity (6) 1.8348 42.7
9 ( R E ) -7. 14. 0.00 偏心 (5) 42. 79 (R E) -7. 14. 0.00 Eccentricity (5) 42.7
10 E R F S [3] 10.46 偏心 (6) 10 E R F S [3] 10.46 Eccentricity (6)
CO  CO
3 8 ]  3 8]
、 像面に対する面間隔は、 基準面 (絞り面) からの間隔とする 3 9 ]  The distance from the image plane is the distance from the reference plane (aperture plane) 3 9]
E R F S [1]  E R F S [1]
R Y 103. 57  R Y 103. 57
Θ -37.90  Θ -37.90
R 7.54  R 7.54
E R F S [2]  E R F S [2]
R Y -15.54  R Y -15.54
Θ -47.84  Θ -47.84
R - 6.27  R-6.27
C 4 -1. 3391E-005  C 4 -1. 3391E-005
E R F S [3]  E R F S [3]
R Y -6. 12  R Y -6. 12
Θ 12. 22  Θ 12. 22
R 1. 28  R 1. 28
C 4 -6.8442E-004  C 4 -6.8442E-004
偏心 [1]  Eccentric [1]
X 0.00 Y 0.00 Z 7. 28  X 0.00 Y 0.00 Z 7. 28
90.00 B 0.00 r 0.00  90.00 B 0.00 r 0.00
偏心 [2] X 0.00 Y 0 00 ζ 7.28 Eccentric [2] X 0.00 Y 0 00 ζ 7.28
0. 00 β 0 00 r 0.00  0. 00 β 0 00 r 0.00
偏心 [3]  Eccentric [3]
X 0. 00 Y 0 00 ζ 12.52  X 0. 00 Y 0 00 ζ 12.52
0. 00 β 0 00 r 0.00  0. 00 β 0 00 r 0.00
偏心 [4]  Eccentric [4]
X 0. 00 Υ 0 00 ζ 0.10  X 0. 00 Υ 0 00 ζ 0.10
a 0. 00 β 0 00 r 0.00 a 0. 00 β 0 00 r 0.00
偏心 [5]  Eccentric [5]
X 0. 00 Υ 0 00 ζ -0.10  X 0. 00 Υ 0 00 ζ -0.10
a 0. 00 β 0 00 r 0.00 a 0. 00 β 0 00 r 0.00
偏心 [6]  Eccentric [6]
X 0. 00 Υ 0 00 Ζ -3.21  X 0. 00 Υ 0 00 Ζ -3.21
0.00 β 0. 00 0.00  0.00 β 0.00 0.00
[ 0 2 4 0 ]  [0 2 4 0]
実施例 10  Example 10
面番号 曲率半径 面間隔 屈折率 アッベ数 物体面 οο οο (1) Surface number Curvature radius Surface spacing Refractive index Abbe number Object surface οο οο (1)
1 E R F S [1] 0.00 (2) 1. 8348 42.7 1 E R F S [1] 0.00 (2) 1. 8348 42.7
2 (R E) E R F S [2] 0.00 (3) 1. 8348 42.72 (R E) E R F S [2] 0.00 (3) 1. 8348 42.7
3 (R E) E R F S [3] 0.00 (4) 1. 8348 42.73 (R E) E R F S [3] 0.00 (4) 1. 8348 42.7
4 -8. 90 0.00 (5) 4 -8. 90 0.00 (5)
5 οο (絞り) 0.00  5 οο (Aperture) 0.00
6 7. 80 0.00 (6) 1. 8348 42.7 6 7. 80 0.00 (6) 1. 8348 42.7
7 (R E) E R F S [4] 0.00 (7) 1. 8348 42.77 (R E) E R F S [4] 0.00 (7) 1. 8348 42.7
8 (R E) 7. 80 0.00 (6) 1. 8348 42.78 (R E) 7. 80 0.00 (6) 1. 8348 42.7
9 E R F S [4] 9.17 (7) 9 E R F S [4] 9.17 (7)
像 面 ∞ Image plane ∞
[ 0 2 4 1 ]  [0 2 4 1]
なお、 像面に対する面間隔は 、 基準面 (絞り面) からの間隔とする。  Note that the distance from the image plane is the distance from the reference plane (aperture plane).
[ 0 2 4 2 ]  [0 2 4 2]
E R F S [1〗  E R F S [1〗
R Y 23.83 U 'CI- z 00 '0 入 00 Ό X RY 23.83 U 'CI- z 00' 0 input 00 Ό X
00 '0 上 oo 'o d 00 Ό » '8- Z 00 Ό 入 00 ·0 X 00 '0 Top oo' o d 00 Ό »'8- Z 00 Ό Enter 00 · 0 X
[ε]  [ε]
00 '0 上 oo 'o d 00 ·0 » 00 '0 up oo' o d 00 · 0 »
SP Z oo 'o 入 00 ·0 X SP Z oo 'o Enter 00 0 X
[Z]、つ'  [Z]
00 '0 上 00 Ό £1 00 'SCI » 00 '0 Top 00 Ό £ 1 00' SCI »
Z8 '6- Z 00 Ό A 00 "0 X Z8 '6- Z 00 Ό A 00 "0 X
[1]、つ'翳  [1]
刚— 3s ·τ PD  刚 — 3s · τ PD
Of Ί H -z\- Θ Of Ί H -z \-Θ
59 '9 A59 '9 A
[t^] S Η Ή 3 [t ^] S Η Ή 3
500-38510 Ί - D ΐΐ •S- H 500-38510 Ί-D ΐΐ • S- H
■ Θ 61 "8 入 ¾[■ Θ 61 "8 into ¾ [
[ε] S d Η 3 [ε] S d Η 3
900-3U8S •ί- D  900-3U8S • ί- D
00 Ί H '68 Θ 00 Ί H '68 Θ
86 ΌΙ- 入 ¾86 ΌΙ- Enter ¾
[E] s d H a [E] s d H a
ε ·9- Η ε 9- Η
Zl '98 θ Zl '98 θ
T0S990/800Zdf/X3d 99 88 贿 600Ζ OAV 0. 00 β 0. 00 r 0. 00 T0S990 / 800Zdf / X3d 99 88 贿 600 Ζ OAV 0. 00 β 0. 00 r 0. 00
偏心 [5]  Eccentric [5]
X 0. 00 Y 0. 00 ζ - 0. 10  X 0. 00 Y 0. 00 ζ-0. 10
a 0. 00 β 0. 00 r 0. 00 a 0. 00 β 0. 00 r 0. 00
偏心 [6〗  Eccentric [6〗
X 0. 00 Υ 0. 00 ζ 0. 10  X 0. 00 Υ 0. 00 ζ 0. 10
0; 0. 00 β 0. 00 r 0. 00  0; 0. 00 β 0. 00 r 0. 00
偏心 [7]  Eccentric [7]
X 0. 00 Υ 0. 00 ζ 3. 5 1  X 0. 00 Υ 1.00 ζ 3.5 1
0. 00 β 0. 00 r 0. 00  0. 00 β 0. 00 r 0. 00
[ 0 2 4 3 ] [0 2 4 3]
図 2 4は、 本実施例の画像と撮像素子の配置例を示す。 図 2 4 ( a ) は、 画面比が 1 6 : 9の撮像素子を使用した例である。 上下方向の画像 は使用しない場合、 光路 Aの画像 A 1の左右の位置に撮像素子 5 0の大 きさを合致させると好ましい。 図 2 4 ( b ) は、 画面比が 4 : 3の撮像 素子 5 0を使用し、 上下方向の映像は使用しない場合を示す。 図 2 4 ( c ) は、 画面比が 4 : 3の撮像素子 5 0を使用し、 光路 Aでの画像 A 1 に撮像素子 5 0の大きさを合致させた例である。 このように、 配置をす ると、 光路 Aの画像 A 1 をすベて撮像することができる。  FIG. 24 shows an arrangement example of the image and the image sensor of the present embodiment. Figure 24 (a) shows an example using an image sensor with a screen ratio of 16: 9. When the image in the vertical direction is not used, it is preferable to match the size of the image sensor 50 with the left and right positions of the image A 1 in the optical path A. Fig. 24 (b) shows the case where an image sensor 50 with a screen ratio of 4: 3 is used and the image in the vertical direction is not used. FIG. 24 (c) is an example in which an image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A 1 in the optical path A. In this way, with the arrangement, the entire image A 1 of the optical path A can be captured.
[ 0 2 4 4 ]  [0 2 4 4]
以下に、 本発明の光学系 1の適用例として、 撮影光学系 1 0 1又は投 影光学系 1 0 2の使用例を説明する。 図 2 5は、 内視鏡先端の撮影光学 系として本発明による撮影光学系 1 0 1 を用いた例を示すための図で あり、 図 2 5 ( a ) は、 硬性内視鏡 1 1 0の先端 1 1 0 aに本発明によ る撮影光学系を取り付けて画像を撮像観察する例である。 図 2 5 ( b ) にその先端の概略の構成を示す。 本発明によるパノラマ撮影光学系 1 0 1 の入射面 1 1 の周囲には円周方向に伸びる開口 1 0 6 を有するケー シング等からなるフレア絞り 1 0 7が配置され、 フレア光が入射するの を防止している。 また、 図 2 5 ( c ) は、 軟性電子内視鏡 1 1 3 の先端 に本発明によるパノラマ撮影光学系 1 0 1 を同様に取り付けて、 表示装 置 1 1 4に撮影された画像を、 画像処理を施して歪みを補正して表示す るようにした例である。 Hereinafter, as an application example of the optical system 1 of the present invention, a usage example of the photographing optical system 1001 or the projection optical system 100 will be described. FIG. 25 is a diagram for illustrating an example in which the photographing optical system 10 1 according to the present invention is used as a photographing optical system at the distal end of the endoscope. FIG. 25 (a) shows a rigid endoscope 110. This is an example in which an imaging optical system according to the present invention is attached to the tip 110 of a and an image is taken and observed. Figure 25 (b) shows the schematic configuration of the tip. In the panoramic imaging optical system 10 1 according to the present invention, a case having an opening 1 0 6 extending in the circumferential direction around the entrance surface 1 1. A flare stop 10 7 composed of a ring or the like is arranged to prevent the flare light from entering. Fig. 25 (c) shows an image captured on the display device 1 1 4 by attaching the panoramic imaging optical system 1 0 1 according to the present invention to the tip of the flexible electronic endoscope 1 1 3 in the same manner. This is an example in which image processing is performed to correct distortion and display.
[ 0 2 4 5 ]  [0 2 4 5]
図 2 6及び図 2 7は、 カプセル内視鏡 1 2 0に本発明による撮影光学 系 1 0 1 を取り付けて 3 6 0 ° 全方位の画像を撮像観察する例である。 本発明による撮影光学系 1 0 1 の光路 Aにおける前群 G f の第 1透過 面 1 1 の周囲には円周方向に伸びる開口 1 0 6 を有するケーシング等 に、 フレア絞り 1 0 7が形成され、 フレア光が入射するのを防止してい る。  FIG. 26 and FIG. 27 are examples in which the imaging optical system 10 1 according to the present invention is attached to the capsule endoscope 120 and images of 360 ° omnidirectional images are taken and observed. A flare stop 1 0 7 is formed in a casing or the like having an opening 10 6 extending in the circumferential direction around the first transmission surface 1 1 of the front group G f in the optical path A of the photographing optical system 10 1 according to the present invention. This prevents flare light from entering.
[ 0 2 4 6 ]  [0 2 4 6]
図 2 5、 図 2 6及び図 2 7に示すように、 内視鏡に撮影光学系 1 0 1 を用いることにより、 撮影光学系 1 0 1の後方の画像を撮像観察するこ とができ、 従来と異なる角度から様々な部位を撮像観察することができ る。  As shown in FIG. 25, FIG. 26, and FIG. 27, by using the photographing optical system 10 1 for the endoscope, the image behind the photographing optical system 1 0 1 can be imaged and observed. Various parts can be imaged and observed from different angles.
[ 0 2 4 7 ]  [0 2 4 7]
図 2 8 ( a ) は、 自動車 1 3 0の前方に撮影光学系として本発明によ る撮影光学系 1 0 1 を取り付けて、 車内の表示装置に各撮影光学系 1 0 1 を経て撮影された画像を、 画像処理を施して歪みを補正して同時に表 示するようにした例を示す図であり、 図 2 8 ( b ) は、 自動車 1 3 0の 各コーナやへッ ド部のポールの頂部に撮影光学系として本発明による 撮影光学系 1 0 1 を複数取り付けて、 車内の表示装置に各撮影光学系 1 0 1 を経て撮影された画像を、 画像処理を施して歪みを補正して同時に 表示するようにした例を示す図である。 この場合、 図 2 4 ( a ) に示し たように、 光路 Aの画像 A 1の左右の位置に撮像素子 5 0の大きさを合 致させると、 左右の画像が広く撮像でき、 好ましい。 [ 0 2 4 8 ] FIG. 28 (a) shows a photographed optical system 1 0 1 according to the present invention attached to the front of an automobile 1 30 as a photographing optical system, and photographed through each photographing optical system 1 0 1 on a display device in a car. FIG. 28 (b) shows an example in which the processed image is subjected to image processing to correct distortion and displayed simultaneously. A plurality of photographic optical systems 1 0 1 according to the present invention are attached as the photographic optical system on the top of the image sensor, and the image captured through each of the photographic optical systems 1 0 1 is applied to a display device in a vehicle to correct distortion by performing image processing. FIG. 5 is a diagram showing an example in which images are displayed simultaneously. In this case, as shown in FIG. 24 (a), it is preferable to match the size of the image sensor 50 to the left and right positions of the image A 1 on the optical path A because the left and right images can be captured widely. [0 2 4 8]
また、 図 2 9は、 投影装置 1 4 0の投影光学系として本発明による投 影光学系 1 0 2を用い、 その像面 5に配置した表示素子にパノラマ画像 を表示し、 投影光学系 1 0 2を通して 3 6 0 ° 全方位に配置したスクリ ーン 1 4 1 に 3 6 0 ° 全方位画像を投影表示する例である。  FIG. 29 shows a projection optical system 1 0 2 using a projection optical system 1 0 2 according to the present invention as a projection optical system, displaying a panoramic image on a display element arranged on the image plane 5, and projecting optical system 1 This is an example in which a 360 ° omnidirectional image is projected and displayed on screen 14 1 arranged in 360 ° omnidirectional through 0-2.
[ 0 2 4 9 ]  [0 2 4 9]
さらに、 図 3 0は、 建物 1 5 0の外部に本発明による撮影光学系 1 0 1 を用いた撮影装置 1 5 1 を取り付け、 屋内に本発明による撮影光学系 1 0 1 を用いた投影装置 1 5 1 を配置し、 撮影装置 1 5 1で撮像された 映像を電線 1 5 2を介して投影装置 1 4 0に送るように接続している。 このような配置において、 屋外の 3 6 0 ° 全方位の被写体 Pを、 撮影光 学系 1 0 1 を経て撮影装置 1 5 1で撮影し、 その映像信号を電線 1 5 2 を介して投影装置 1 4 0に送り、 像面に配置した表示素子にその映像を 表示して、 投影光学系 1 0 2を通して屋内の壁面等に被写体 Pの映像 P ' を投影表示するようにしている例である。 産業上の利用分野  Further, FIG. 30 shows a projection device using the photographing optical system 1 0 1 according to the present invention indoors, with the photographing device 15 1 using the photographing optical system 1 0 1 according to the present invention attached outside the building 15 50. 1 5 1 is arranged and connected so that the image captured by the imaging device 1 51 is sent to the projection device 1 4 0 via the electric wire 1 5 2. In such an arrangement, an outdoor 360 ° omnidirectional subject P is photographed by the photographing device 1 5 1 through the photographing optical system 1 0 1, and the video signal is projected through the electric wire 15 2. This is an example in which the image P ′ of the subject P is projected and displayed on an indoor wall surface etc. through the projection optical system 1 0 2 . Industrial application fields
[ 0 2 5 0 ]  [0 2 5 0]
以上の本発明の光学系においては、 簡単な構成で広い画角を観察又は 広い画角に映像を投影することが可能な小型で収差が良好に補正され た解像力の良い光学系を得ることができる。  In the optical system of the present invention described above, it is possible to obtain a compact optical system with good resolving power with good aberration correction that can observe a wide angle of view or project an image with a wide angle of view with a simple configuration. it can.

Claims

請求の範囲 The scope of the claims
[ 1 ]  [1]
少なくとも 1つの反射面を舍む前群と、 後群と、 前記前群と前記後群 の間に配置された開口とを有し、 中心軸を含む断面内で、 前記中心軸の 周りで回転対称な光学系において、 前記後群は、 前記開口の像面側に配 置され、 屈折率が 1より大きい後群透明媒体を有し、 前記後群透明媒体 は、 前記開口近傍の前記中心軸上に配置された後群第 1透過面と、 前記 後群第 1透過面より像面側に配置され、 像面側に凹面を向けた後群第 1 反射面と、 前記後群第 1反射面より像面と反対側に配置され、 像面側に 凹面を向けた後群第 2反射面と、 前記後群第 2反射面より像面側に配置 された後群第 2透過面と、 を有し、 前記後群第 1反射面と前記後群第 2 反射面のうち少なくとも 1面は、 中心軸上で連続な曲面で構成されてお り、 前記後群透明媒体に入射する光束は、 順光線追跡の順に、 前記開口 を通り、 前記後群第 1透過面を経て前記後群透明媒体内に入り、 前記後 群第 1反射面で像面と反対側に反射され、 前記後群第 2反射面で像面側 に反射され、 前記後群第 2透過面を経て前記後群透明媒体から像面側に 外へ出る略 Z字状の第 1光路を構成し、 前記第 1光路の少なく とも前記 後群第 1反射面と前記後群第 2反射面の間は、 前記中心軸に対して片側 のみで構成され、 前記第 1光路中に中間像が結像されることなく、 像面 に円環状に結像されることを特徴とする光学系。  A front group sandwiching at least one reflecting surface; a rear group; and an opening disposed between the front group and the rear group, and rotating around the central axis in a cross section including the central axis In the symmetric optical system, the rear group is disposed on the image plane side of the opening and has a rear group transparent medium having a refractive index larger than 1, and the rear group transparent medium has the central axis in the vicinity of the opening. A rear group first transmission surface disposed above, a rear group first reflection surface disposed closer to the image plane side than the rear group first transmission surface, with a concave surface facing the image plane side, and the rear group first reflection A rear group second reflecting surface that is disposed on the opposite side of the image surface from the surface, with a concave surface facing the image surface side, and a rear group second transmitting surface disposed on the image surface side from the rear group second reflecting surface; And at least one of the rear group first reflective surface and the rear group second reflective surface is formed of a continuous curved surface on a central axis, and the rear group transparent medium The light beam incident on the body passes through the aperture in the order of forward ray tracing, enters the rear group transparent medium through the rear group first transmission surface, and is on the side opposite to the image plane on the rear group first reflection surface. A substantially Z-shaped first optical path that is reflected and reflected to the image plane side by the rear group second reflecting surface and exits from the rear group transparent medium to the image plane side through the rear group second transmitting surface is configured. In addition, at least the rear group first reflecting surface and the rear group second reflecting surface of the first optical path are configured only on one side with respect to the central axis, and an intermediate image is formed in the first optical path. An optical system characterized by being formed in an annular shape on the image plane without being imaged.
[ 2 ]  [2]
前記後群の第 1反射面は球面であることを特徴とする請求項 1 に記 載の光学系。  The optical system according to claim 1, wherein the first reflecting surface of the rear group is a spherical surface.
[ 3 ]  [3]
前記後群第 1反射面は、 全反射作用と、 反射コーティ ングにより反射 するように構成され、 前記反射コーティ ングは前記後群第 1反射面の中 心軸近傍のみに施されていることを特徴とする請求項 1 に記載の光学 系。 The rear group first reflective surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is formed in the rear group first reflective surface. The optical system according to claim 1, wherein the optical system is provided only in the vicinity of the mandrel.
[ 4 ]  [ Four ]
前記後群第 1透過面と前記後群第 2反射面は、 前記後群透明媒体の物 体側に配置されていることを特徴とする請求項 1 に記載の光学系。  2. The optical system according to claim 1, wherein the rear group first transmission surface and the rear group second reflection surface are disposed on an object side of the rear group transparent medium.
[ 5 ]  [ Five ]
前記後群第 1透過面と前記後群第 2反射面は、 同一位置同一形状から なることを特徴とする請求項 1 に記載の光学系。  The optical system according to claim 1, wherein the rear group first transmission surface and the rear group second reflection surface have the same shape at the same position.
[ 6 ]  [6]
前記後群第 1反射面と前記後群第 2透過面は、 前記後群透明媒体の像 面側に配置されていることを特徴とする請求項 1 に記載の光学系。  2. The optical system according to claim 1, wherein the rear group first reflecting surface and the rear group second transmitting surface are arranged on an image surface side of the rear group transparent medium.
[ 7 ]  [7]
前記後群第 1反射面と前記後群第 2透過面は、 同一位置同一形状から なることを特徴とする請求項 1 に記載の光学系。  2. The optical system according to claim 1, wherein the rear group first reflecting surface and the rear group second transmitting surface have the same position and the same shape.
[ 8 ]  [8]
前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面側に配置された前群第 1反射面と、 前記前群第 1反射面 より像面と反対側に配置された前群第 2反射面と、 前記前群第 2反射面 より像面側に配置された前群第 2透過面と、 を有し、 前記前群透明媒体 に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経て前記 前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像 面と反対側に反射され、 中心軸と交差することなく、 前記前群第 2反射 面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体か ら像面側に外へ出る光路を構成することを特徴とする請求項 1 に記載 の光学系。 .  The front group has a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1. The front group transparent medium includes a front group first transmission surface, and the front group first transmission surface. A front group first reflecting surface disposed on the image surface side, a front group second reflecting surface disposed on the opposite side of the image surface from the front group first reflecting surface, and an image from the front group second reflecting surface. A front group second transmission surface disposed on the surface side, and the light beam incident on the front group transparent medium passes through the front group first transmission surface in the order of forward ray tracing, and enters the front group transparent medium. After crossing the central axis, it is reflected to the opposite side to the image plane by the front group first reflection surface, and is reflected to the image plane side by the front group second reflection surface without crossing the central axis. 2. The optical system according to claim 1, wherein an optical path that exits from the front group transparent medium to the image surface side through the front group second transmission surface is configured. .
[ 9 ]  [9]
前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面側に配置された前群第 1反射面と、 前記前群第 1反射面 より像面と反対側に配置された前群第 2反射面と、 前記前群第 2反射面 より像面側に配置された前群第 2透過面と、 を有し、 前記前群透明媒体 に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経て前記 前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像 面と反対側に反射され、 再度中心軸と交差した後、 前記前群第 2反射面 で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体から 像面側に外へ出る光路を構成することを特徴とする請求項 1に記載の 光学系。 The front group has a front group transmission with a refractive index greater than 1 which is rotationally symmetric about the central axis. The front group transparent medium includes a front group first transmission surface, a front group first reflection surface disposed closer to the image plane than the front group first transmission surface, and the front group first reflection A front group second reflecting surface disposed on the opposite side of the image surface from the surface; and a front group second transmitting surface disposed on the image surface side from the front group second reflecting surface; and the front group transparent The light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then is opposite to the image plane at the front group first reflection surface. Is reflected to the side, and again intersects the central axis, then is reflected to the image surface side by the front group second reflecting surface, and exits from the front group transparent medium to the image surface side through the front group second transmitting surface. The optical system according to claim 1, wherein the optical system constitutes an optical path.
[ 1 0 ]  [ Ten ]
前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面と反対側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体か ら像面側に外へ出る光路を構成することを特徴とする請求項 1 に記載 の光学系。  The front group has a front group transparent medium having a rotational symmetry about a central axis and a refractive index larger than 1, the front group transparent medium includes a front group first transmission surface, and the front group first transmission surface. A front group first reflecting surface disposed on the opposite side of the image surface, and a front group second transmitting surface disposed on the image surface side with respect to the front group first reflecting surface. A light beam incident on the medium enters the front group transparent medium via the front group first transmission surface in the order of forward ray tracing, and intersects the central axis, and then the image plane side on the front group first reflection surface. 2. The optical system according to claim 1, further comprising an optical path that is reflected by the light beam and exits to the image surface side from the front group transparent medium through the front group second transmission surface.
[ 1 1 ]  [1 1]
最大像高を I max、 前記後群の外径を Dとするとき、  When the maximum image height is I max and the outer diameter of the rear group is D,
0. 5 <D/ (2 X 1 max) < 1 0 · · · ( 1 ) なる条件を満足することを特徴とする請求項 1に記載の光学系。  The optical system according to claim 1, wherein the following condition is satisfied: 0.5 <D / (2 X 1 max) <1 0 ··· (1)
[ 1 2 ]  [1 2]
最大像高を I max、 前記開口から前記像面までの距離を Lとするとき  When the maximum image height is I max and the distance from the aperture to the image plane is L
0. 5 < L / (2 X 1 max) < 1 0 ( 2 ) なる条件を満足することを特徴とする請求項 1 に記載の光学系。 0.5 <L / (2 X 1 max) <1 0 (2) The optical system according to claim 1, wherein the following condition is satisfied.
[ 1 3 ]  [ 13 ]
後群第 1反射面の曲率を R l、 後群第 2反射面の曲率を R 2 とすると さ、 Let R 1 be the curvature of the first reflecting surface of the rear group, and R 2 be the curvature of the second reflecting surface of the rear group.
Figure imgf000075_0001
Figure imgf000075_0001
なる条件を満足することを特徴とする請求項 1 に記載の光学系。 The optical system according to claim 1, wherein the following condition is satisfied.
[ 1 4 ] ..  [ 14 ] ..
請求項 1 に記載の光学系を用いた内視鏡。  An endoscope using the optical system according to claim 1.
[ 1 5 ]  [1 5]
少なく とも 1つの反射面を含む前群と、 後群と、 前記前群と前記後群 の間に配置された開口とを有し、 中心軸を含む断面内で、 前記中心軸の 周りで回転対称な光学系において、 前記後群は、 前記開口の像面側に配 置され、 屈折率が 1より大きい後群透明媒体を有し、 前記後群透明媒体 は、 前記開口近傍の前記中心軸上に配置された後群第 1透過面と、 前記 後群第 1透過面より像面側に配置され、 像面側に凹面を向けた後群第 1 反射面と、 前記後群第 1反射面より像面と反対側に配置され、 像面側に 凹面を向けた後群第 2反射面と、 前記後群第 2反射面より像面側に配置 された後群第 2透過面と、 を有し、 前記後群透明媒体に入射する光束は 、 順光線追跡の順に、 前記開口を通り、 前記後群第 1透過面を経て前記 後群透明媒体内に入り、 前記後群第 1反射面で像面と反対側に反射され 、 前記後群第 2反射面で像面側に反射され、 前記後群第 2透過面を経て 前記後群透明媒体から像面側に外へ出る略 Z字状の第 1光路を構成し、 前記第 1光路の少なく とも前記後群第 1反射面と前記後群第 2反射面 の間は、 前記中心軸に対して片側のみで構成され、 前記第 1光路中に中 間像が結像されることなく、 前記中心軸周りの物点を前記開口近傍で前 記中心軸と 1回交差して反対側に結像し、 全体として像面に円環状に結 像され、 前記後群の反射面のうち少なくとも 1面は、 中心軸上で不連続 な回転対称な面で構成されていることを特徴とする光学系。 [ 1 6 ] A front group including at least one reflecting surface; a rear group; and an opening disposed between the front group and the rear group, and rotating around the central axis in a cross section including the central axis In the symmetric optical system, the rear group is disposed on the image plane side of the opening and has a rear group transparent medium having a refractive index larger than 1, and the rear group transparent medium has the central axis in the vicinity of the opening. A rear group first transmission surface disposed above, a rear group first reflection surface disposed closer to the image plane side than the rear group first transmission surface and having a concave surface facing the image plane side; and the rear group first reflection A rear group second reflecting surface that is disposed on the opposite side of the image surface from the surface, with a concave surface facing the image surface side, and a rear group second transmitting surface disposed on the image surface side from the rear group second reflecting surface; The light beam incident on the rear group transparent medium passes through the opening in the order of forward ray tracing, passes through the rear group first transmission surface, and enters the rear group transparent medium. The rear group first reflecting surface is reflected to the opposite side of the image plane, the rear group second reflecting surface is reflected to the image plane side, and the rear group second transmitting surface is passed through the rear group transparent medium. A substantially Z-shaped first optical path that goes out to the surface side is configured, and at least a portion of the first optical path between the rear group first reflecting surface and the rear group second reflecting surface is in relation to the central axis. Consists of only one side, and without forming an intermediate image in the first optical path, an object point around the central axis intersects the central axis once in the vicinity of the aperture and forms an image on the opposite side And an optical system characterized in that the optical system is formed in an annular shape on the image plane as a whole, and at least one of the rear group reflecting surfaces is constituted by a rotationally symmetric surface that is discontinuous on the central axis. . [1 6]
前記後群の反射面のうち少なく とも 1面は、 中心軸上で不連続な任意 形状の線分を中心軸の周りで回転させて形成される拡張回転自由曲面 で構成されていることを特徴とする請求項 1 5 に記載の光学系。  At least one of the rear surface reflecting surfaces is formed of an extended rotation free-form surface formed by rotating a line segment having an arbitrary shape discontinuous on the central axis around the central axis. The optical system according to claim 15.
[ 1 7 ]  [1 7]
前記後群の反射面のうち少なく とも 1面は、 奇数次項を含む任意形状 の線分を中心軸の周りで回転させて形状される拡張回転自由曲面で構 成されていることを特徴とする請求項 1 5 に記載の光学系。  At least one of the rear surface reflecting surfaces is composed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment including an odd-order term around the central axis. The optical system according to claim 15.
[ 1 8 ]  [1 8]
前記後群第 1反射面は、 全反射作用と、 反射コーティ ングにより反射 するように構成され、 前記反射コーティ ングは前記後群第 1反射面の中 心軸近傍のみに施されていることを特徴とする請求項 1 5 に記載の光 学系。  The rear group first reflective surface is configured to reflect by a total reflection action and a reflective coating, and the reflective coating is applied only in the vicinity of the central axis of the rear group first reflective surface. The optical system according to claim 15, characterized in that it is characterized in that:
[ 1 9 ]  [1 9]
. 前記後群第 1透過面と前記後群第 2反射面は、 前記後群透明媒体の物 体側に配置されていることを特徴とする請求項 1 5 に記載の光学系。  16. The optical system according to claim 15, wherein the rear group first transmitting surface and the rear group second reflecting surface are disposed on the object side of the rear group transparent medium.
[2 0 ]  [2 0]
前記後群第 1透過面と前記後群第 2反射面は、 同一位置同一形状から なることを特徴とする請求項 1 5 に記載の光学系。  The optical system according to claim 15, wherein the rear group first transmission surface and the rear group second reflection surface have the same shape at the same position.
[2 1 ]  [twenty one ]
前記後群第 1反射面と前記後群第 2透過面は、 前記後群透明媒体の像面 側に配置されていることを特徴とする請求項 1 5 に記載の光学系。 16. The optical system according to claim 15, wherein the rear group first reflecting surface and the rear group second transmitting surface are disposed on the image plane side of the rear group transparent medium.
[2 2 ]  [twenty two ]
前記後群第 1反射面と前記後群第 2透過面は、 同一位置同一形状からな ることを特徴とする請求項 1 5 に記載の光学系。 16. The optical system according to claim 15, wherein the rear group first reflecting surface and the rear group second transmitting surface have the same position and the same shape.
[2 3 ]  [twenty three ]
前記前群は、 中心軸の周りで回転対称な屈折率が 1 より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面側に配置された前群第 1反射面と、 前記前群第 1反射面 より像面と反対側に配置された前群第 2反射面と、 前記前群第 2反射面 より像面側に配置された前群第 2透過面と、 を有し、 前記前群透明媒体 に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経て前記 前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像 面と反対側に反射され、 中心軸と交差することなく、 前記前群第 2反射 面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体か ら像面側に外へ出る光路を構成することを特徴とする請求項 1 5に記 載の光学系。 The front group includes a front group transparent medium having a refractive index rotationally symmetric about a central axis greater than 1. The front group transparent medium includes a front group first transmission surface, and the front group first medium. A front group first reflecting surface disposed on the image surface side from the transmission surface, a front group second reflecting surface disposed on the side opposite to the image surface from the front group first reflecting surface, and the front group second reflecting surface A front group second transmission surface disposed closer to the image plane side, and a light beam incident on the front group transparent medium passes through the front group first transmission surface in the order of forward ray tracing, After entering the medium and intersecting the central axis, it is reflected to the opposite side of the image surface by the front group first reflecting surface, and reflected to the image surface side by the front group second reflecting surface without intersecting the central axis. 16. The optical system according to claim 15, further comprising an optical path that exits from the front group transparent medium to the image surface side through the front group second transmission surface.
[ 2 4 ]  [ twenty four ]
前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面側に配置された前群第 1反射面と、 前記前群第 1反射面 より像面と反対側に配置された前群第 2反射面と、 前記前群第 2反射面 より像面側に配置された前群第 2透過面と、 を有し、 前記前群透明媒体 に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経て前記 前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射面で像 面と反対側に反射され、 再度中心軸と交差した後、 前記前群第 2反射面 で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体から 像面側に外へ出る光路を構成することを特徴とする請求項 1 5に記載 の光学系。  The front group has a front group transparent medium having a rotational symmetry about a central axis and a refractive index larger than 1, the front group transparent medium includes a front group first transmission surface, and the front group first transmission surface. A front group first reflecting surface disposed on the image surface side, a front group second reflecting surface disposed on the opposite side of the image surface from the front group first reflecting surface, and an image from the front group second reflecting surface. A front group second transmission surface disposed on the surface side, and the light beam incident on the front group transparent medium passes through the front group first transmission surface in the order of forward ray tracing, and enters the front group transparent medium. After crossing the central axis, it is reflected to the opposite side of the image plane by the front group first reflecting surface, and after crossing the central axis again, it is reflected to the image plane side by the front group second reflecting surface, 16. The optical system according to claim 15, wherein an optical path that exits from the front group transparent medium to the image surface side through the front group second transmission surface is configured.
[ 2 5 ]  [ twenty five ]
前記前群は、 中心軸の周りで回転対称な屈折率が 1より大きい前群透 明媒体を有し、 前記前群透明媒体は、 前群第 1透過面と、 前記前群第 1 透過面より像面と反対側に配置された前群第 1反射面と、 前記前群第 1 反射面より像面側に配置された前群第 2透過面と、 を有し、 前記前群透 明媒体に入射する光束は、 順光線追跡の順に、 前記前群第 1透過面を経 て前記前群透明媒体内に入り、 中心軸と交差した後、 前記前群第 1反射 面で像面側に反射され、 前記前群第 2透過面を経て前記前群透明媒体か ら像面側に外へ出る光路を構成することを特徴とする請求項 1 5 に記 載の光学系。 The front group has a front group transparent medium having a rotational symmetry about a central axis and a refractive index larger than 1, the front group transparent medium includes a front group first transmission surface, and the front group first transmission surface. A front group first reflecting surface disposed on the opposite side of the image surface, and a front group second transmitting surface disposed on the image surface side with respect to the front group first reflecting surface. The light beam incident on the medium enters the front group transparent medium through the front group first transmission surface in the order of forward ray tracing, intersects the central axis, and then the front group first reflection. 16. The optical system according to claim 15, wherein an optical path that is reflected by the surface to the image surface side and exits to the image surface side from the front group transparent medium through the front group second transmission surface is formed. system.
[2 6 ]  [2 6]
最大像高を I max、 前記後群の外径を Dとするとき、 When the maximum image height is I max and the outer diameter of the rear group is D,
0. 5 <D/ ( 2 X 1 max) < 1 0 - - · ( 1 ) なる条件を満足することを特徴とする請求項 1 5に記載の光学系。  The optical system according to claim 15, wherein the following condition is satisfied: 0.5 <D / (2 X 1 max) <1 0 − − (1)
[2 7 ]  [2 7]
最大像高を I max、 前記開口から前記像面までの距離を Lとするとき  When the maximum image height is I max and the distance from the aperture to the image plane is L
0. 5 < L / ( 2 X 1 max) < 1 0 · · · ( 2 ) なる条件を満足することを特徴とする請求項 1 5に記載の光学系。 The optical system according to claim 15, wherein the following condition is satisfied: 0.5 <L / (2 X 1 max) <1 0... (2)
[2 8]  [2 8]
後群第 1反射面の曲率を R 1、 後群第 2反射面の曲率を R 2 とすると き、 .  When the curvature of the first reflecting surface of the rear group is R1, and the curvature of the second reflecting surface of the rear group is R2,
0. 2 <R 1 /R 2 < 5 * · · ( 3 ) なる条件を満足することを特徴とする請求項 1 5に記載の光学系。  16. The optical system according to claim 15, wherein the following condition is satisfied: 0.2 <R 1 / R 2 <5 * (3)
[2 9 ]  [2 9]
後群第 1反射面の曲率を R l、 後群第 2反射面の曲率を R 2とすると さ、  Let R 1 be the curvature of the first reflecting surface of the rear group, and R 2 be the curvature of the second reflecting surface of the rear group.
0. 5 <R 1 /R 2 < 2 * · · ( 3 ) ' なる条件を満足することを特徴とする請求項 1 5に記載の光学系。  The optical system according to claim 15, wherein the following condition is satisfied: 0.5 <R 1 / R 2 <2 * (3) ′.
[3 0 ]  [3 0]
請求項 1 5に記載の光学系を用いた内視鏡。  An endoscope using the optical system according to claim 15.
PCT/JP2008/066501 2007-09-27 2008-09-08 Optical system and endoscope using same WO2009041288A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-251103 2007-09-27
JP2007251103 2007-09-27
JP2007-313633 2007-12-04
JP2007313633A JP2009139480A (en) 2007-12-04 2007-12-04 Optical system and endoscope using the same
JP2008-071176 2008-03-19
JP2008071176A JP5031631B2 (en) 2007-09-27 2008-03-19 Optical system and endoscope using the same

Publications (1)

Publication Number Publication Date
WO2009041288A1 true WO2009041288A1 (en) 2009-04-02

Family

ID=40511176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066501 WO2009041288A1 (en) 2007-09-27 2008-09-08 Optical system and endoscope using same

Country Status (1)

Country Link
WO (1) WO2009041288A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103251A (en) * 2011-01-25 2011-06-22 苏州大学 Panoramic lens and zooming method thereof
WO2013098031A1 (en) * 2011-12-30 2013-07-04 Asml Holding N.V. Catadioptric objective for scatterometry
CN111164488A (en) * 2017-09-29 2020-05-15 卡尔蔡司显微镜有限责任公司 Optical lens and lens for use in a medium supply device, medium supply device and microscope
US20210232038A1 (en) * 2020-01-24 2021-07-29 Canon Kabushiki Kaisha Optical system and image pickup apparatus having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174973A (en) * 1993-12-21 1995-07-14 Olympus Optical Co Ltd Visual display device
JPH08122642A (en) * 1994-10-26 1996-05-17 Olympus Optical Co Ltd Optical system
JP2006330353A (en) * 2005-05-26 2006-12-07 Olympus Corp Optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174973A (en) * 1993-12-21 1995-07-14 Olympus Optical Co Ltd Visual display device
JPH08122642A (en) * 1994-10-26 1996-05-17 Olympus Optical Co Ltd Optical system
JP2006330353A (en) * 2005-05-26 2006-12-07 Olympus Corp Optical system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103251A (en) * 2011-01-25 2011-06-22 苏州大学 Panoramic lens and zooming method thereof
CN102103251B (en) * 2011-01-25 2013-04-03 苏州大学 Panoramic lens and zooming method thereof
WO2013098031A1 (en) * 2011-12-30 2013-07-04 Asml Holding N.V. Catadioptric objective for scatterometry
US8982481B2 (en) 2011-12-30 2015-03-17 Asml Holding N.V. Catadioptric objective for scatterometry
CN111164488A (en) * 2017-09-29 2020-05-15 卡尔蔡司显微镜有限责任公司 Optical lens and lens for use in a medium supply device, medium supply device and microscope
US20210232038A1 (en) * 2020-01-24 2021-07-29 Canon Kabushiki Kaisha Optical system and image pickup apparatus having the same
US11644740B2 (en) * 2020-01-24 2023-05-09 Canon Kabushiki Kaisha Optical system and image pickup apparatus having the same

Similar Documents

Publication Publication Date Title
JP4884085B2 (en) Optical system
JP4780713B2 (en) Optical system
JP4728034B2 (en) Rotationally asymmetric optical system
JP5025354B2 (en) Optical element, optical system including the same, and endoscope using the same
JP5074114B2 (en) Optical element, optical system including the same, and endoscope using the same
WO2008153114A1 (en) Optical element, optical system, and endoscope using same
WO2009008536A1 (en) Optical element, optical system equipped with same and endoscope using same
JP5030675B2 (en) Optical system and endoscope using the same
JP2008152073A (en) Optical system
JP4648758B2 (en) Optical system
JP4648690B2 (en) Optical system
JP5508694B2 (en) Optical system and endoscope using the same
JP5031631B2 (en) Optical system and endoscope using the same
JP4489553B2 (en) Optical system
WO2009041288A1 (en) Optical system and endoscope using same
JP2008309860A (en) Optical system and endoscope using the same
JP5025355B2 (en) Optical element, optical system including the same, and endoscope using the same
JP4508775B2 (en) Panorama attachment optics
JP2011257630A (en) Attachment optical system
WO2009041332A1 (en) Optical system and endoscope using same
JP4493466B2 (en) Optical system
JP2009080410A (en) Optical system and endoscope using the same
JP4585352B2 (en) Optical system
JP4849591B2 (en) Optical system
JP4839013B2 (en) Optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08834632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08834632

Country of ref document: EP

Kind code of ref document: A1