WO2009035131A1 - Process for producing polyelectrolyte membrane, polyelectrolyte membrane, membrane-electrode assembly, and fuel cell - Google Patents

Process for producing polyelectrolyte membrane, polyelectrolyte membrane, membrane-electrode assembly, and fuel cell Download PDF

Info

Publication number
WO2009035131A1
WO2009035131A1 PCT/JP2008/066805 JP2008066805W WO2009035131A1 WO 2009035131 A1 WO2009035131 A1 WO 2009035131A1 JP 2008066805 W JP2008066805 W JP 2008066805W WO 2009035131 A1 WO2009035131 A1 WO 2009035131A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer electrolyte
electrolyte membrane
block
carbon atoms
Prior art date
Application number
PCT/JP2008/066805
Other languages
French (fr)
Japanese (ja)
Inventor
Hirohiko Hasegawa
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2009035131A1 publication Critical patent/WO2009035131A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a polymer electrolyte membrane, a polymer electrolyte membrane obtained by the production method, a membrane-one-electrode assembly and a fuel cell using the polymer electrolyte membrane. More specifically, a method for producing a polymer electrolyte membrane suitable for a direct methanol fuel cell, a polymer electrolyte membrane obtained by the production method, a membrane-electrode assembly using the polymer electrolyte membrane, and It relates to fuel cells.
  • Background art a method for producing a polymer electrolyte membrane suitable for a direct methanol fuel cell, a polymer electrolyte membrane obtained by the production method, a membrane-electrode assembly using the polymer electrolyte membrane, and It relates to fuel cells.
  • polymer electrolyte fuel cells have attracted attention as energy devices for housing and automobile power.
  • direct methanol fuel cells using methanol as fuel are attracting attention as power sources for personal computers and portable devices because of their small size.
  • a fuel cell is composed of basic minimum units called cells.
  • Each unit cell is composed of an electrolyte membrane, a catalyst layer provided on both sides of the electrolyte membrane, and a gas diffusion layer provided outside the catalyst layer.
  • Each unit cell is separated and stacked by a separator provided outside the gas diffusion layer to constitute one fuel cell.
  • the catalyst layer provided on both sides of the electrolyte membrane, or the catalyst layer and the gas diffusion layer constitute an electrode part of the unit cell, and fuel (hydrogen molecule, methanol aqueous solution, etc.) is supplied to one electrode part (anode)
  • fuel hydrogen molecule, methanol aqueous solution, etc.
  • an acid-rich reaction occurs in the catalyst layer, and hydrogen ions and electrons are released.
  • Hydrogen ions enter the electrolyte membrane and move in the direction of the other electrode part (force sword) in the electrolyte membrane.
  • the electrons reach the external circuit through the anode, and reach the catalyst layer on the power sword side through the external circuit.
  • the electrode in the unit cell of the fuel cell as described above may indicate only the catalyst layer, or may indicate a joined body of the catalyst layer and the gas diffusion layer.
  • MEA MembraneElectrodeAssembly
  • the membrane-electrode assembly means a catalyst layer or an assembly in which an electrolyte membrane is sandwiched between a catalyst layer and a gas diffusion layer. That is, the membrane-electrode assembly is an assembly in which at least a catalyst layer is formed on both surfaces of the electrolyte membrane.
  • a fuel cell has a principle of directly extracting electric power and heat from a fuel (hydrogen or methanol aqueous solution) and oxygen (air) by an electrochemical reaction, while an electrolyte serving as a passage for hydrogen ions (protons). It is classified into multiple types according to the type.
  • the polymer electrolyte fuel cell is mainly composed of a perfluoroalkane polymer electrolyte membrane represented by “Nafion J (a registered trademark of DuPont)” (fluorine resin ion exchange).
  • Nafion J a registered trademark of DuPont
  • fluorine resin ion exchange fluorine resin ion exchange
  • a methanol aqueous solution is used as the fuel, and direct methanol fuel cells (DMFC: Dielectric Me thanol Fuel 1 Ce 1 1) are handled because the fuel is liquid. It is easy to use and requires no auxiliary equipment such as a humidifier, so it can be downsized and is attracting attention as a battery source for portable equipment such as personal computers and mobile phones.
  • DMFC Dielectric Me thanol Fuel 1 Ce 1 1
  • a direct methanol fuel cell supplies an aqueous methanol solution as fuel to the anode (fuel electrode). Therefore, the anode (fuel electrode) and the power sword (empty Polymer electrolyte membrane (proton conductive membrane) between the gas electrode and the electrode ⁇ Phenomena in which methanol passes through the polymer electrolyte membrane and moves into a force sword when the barrier property to methanol (methanol paraffinity) is low Occurs.
  • This phenomenon is called methanol crossover (MCO), and if a phenomenon occurs, power generation performance deteriorates or methanol leaks from the power sword, causing damage to the battery itself. Such a problem may occur.
  • MCO methanol crossover
  • the perfluoroalkane polymer electrolyte membranes used in conventional solid polymer fuel cells have low methanol barrier properties and are susceptible to methanol crossover. If the fuel cell configuration is directly applied to a methanol fuel cell, sufficient power generation performance cannot be obtained.
  • the present invention provides a method for producing a polymer electrolyte membrane capable of achieving both high methanol barrier properties and proton conductivity, a polymer electrolyte membrane obtained by the production method, and the polymer electrolyte.
  • a membrane-one electrode assembly and a fuel cell using a membrane are provided.
  • the present invention provides the following inventions.
  • the hydrocarbon block-type polymer electrolyte used in the production method of the present invention is also simply referred to as a polymer electrolyte.
  • the polymer electrolyte membrane obtained in the production method of the present invention is a hydrocarbon block type polymer electrolyte membrane obtained from a hydrocarbon block type polymer electrolyte. It is called a membrane.
  • a block copolymer comprising the hydrocarbon-based block-type polyelectrolyte power, a block having a cation exchange group, and a block having substantially no ion exchange group.
  • the block having a cation exchange group has the following general formula (1)
  • Ar 11 represents a divalent aromatic group
  • the divalent aromatic group is a C 1-20 alkyl group which may have a substituent
  • An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted carbon number 6 May have at least one selected from the group consisting of an aryloxy group of ⁇ 20, and an acyl group of 2 to 20 carbon atoms which may have a substituent.
  • X 11 is a direct bond
  • a group represented by 1-O a group represented by 1S-
  • d is an integer of 5 or more.
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • X 12 is a direct bond, a group represented by 1O—, a group represented by 1S—, a carbo Represents a dil group or a sulfonyl group, J 1 represents a cation exchange group, and p and q are 1 or 2
  • d is an integer greater than or equal to 5.
  • Ar 22 represents a divalent aromatic group, and the divalent aromatic group is a carbon number:! -20 alkyl group, a carbon number 1-20 alkoxy group, a carbon number It may have at least one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms, and X 22 is directly A bond, a group represented by 1 O—, a group represented by 1 S—, a carbonyl group or a sulfole group, and e is an integer of 5 or more.
  • Ar 2 , Ar 3 , Ar 4 and Ar 5 independently represent a divalent aromatic group, and the divalent aromatic group is an alkyl group having 1 to 20 carbon atoms. And at least one selected from the group consisting of an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms.
  • X and X ′ each independently represent a direct bond or a divalent group
  • the table A, b and c each independently represent 0 or 1, and n represents an integer of 5 or more.
  • a membrane-one-electrode assembly comprising the polymer electrolyte membrane according to [10] and a catalyst layer provided on both surfaces of the polymer electrolyte membrane.
  • a polymer electrolyte solution containing a hydrocarbon block type polymer electrolyte and a solvent is formed into a membrane to obtain a solvent-containing block type polymer electrolyte membrane (membrane) Process).
  • the solvent-containing block type polymer electrolyte membrane is heated (heat treatment step) to obtain a polymer electrolyte membrane for a fuel cell.
  • the following is a method for forming a hydrocarbon block polymer electrolyte, a method for forming a polymer electrolyte solution containing the polymer electrolyte and a solvent, a method for heat-treating a filmed solvent-containing block-type polymer electrolyte membrane, and heat treatment
  • the polymer electrolyte membrane obtained by the above, and the membrane-electrode assembly and fuel cell obtained using this polymer electrolyte membrane will be described.
  • hydrocarbon block type polymer electrolyte (simply a polymer)
  • electrolyte refers to a block copolymer having a cation exchange group and 50% or more of the total number of atoms composed of carbon and hydrogen.
  • “Plock-type polymer electrolyte” refers to an electrolyte composed of a copolymer in which two or more types of Plock forces having different chemical properties are bonded directly or through a linking group.
  • the copolymer constituting the polymer electrolyte is substantially free of an ion exchange group and a block having a cation exchange group as two or more types of chemically different properties.
  • a block copolymer having a block is preferable.
  • the block copolymer has a block having a cation exchange group and a block having substantially no ion exchange group, the effect of the present invention is remarkably exhibited.
  • the polymer electrolyte preferably contains an aromatic block copolymer from the viewpoint of heat resistance and ease of recycling.
  • the aromatic block copolymer means a block copolymer having an aromatic ring in the main chain of the polymer chain and having a cation exchange group in the side chain and Z or the main chain of the polymer chain.
  • a solvent-soluble one is usually used. It is preferable that it is soluble in a solvent because it can be easily formed into a film by a known solution casting method.
  • the cation exchange group of these aromatic block copolymers may be directly substituted on the aromatic ring constituting the main chain of the polymer, and is linked to the aromatic ring constituting the main chain. It may be linked through a group or a combination thereof.
  • the polymer electrolyte is preferably one in which at least 10% or more of the cation exchange group is in a proton type.
  • the cation exchange group is preferably a sulfonic acid group, a phosphonic acid group, or a sulfonyl imide group. Among these, a sulfonic acid group in which the cation exchange group is a strong acid group is more preferable.
  • the polymer electrolyte may have one of these, or may have two or more of these.
  • the polymer electrolyte is preferably one that forms a Mikuguchi phase separation structure when filmed.
  • a polymer electrolyte that forms such a Mikuguchi phase separation structure is used, the effects of the present invention Appears prominently.
  • “microphase separation structure” means that when polymer electrolyte is made into a membrane, different polymer segments are bonded by chemical bonds, resulting in microscopic phase separation on the order of molecular chain size. Refers to the structure formed by For example, when observed with a transmission electron microscope (TEM), a fine phase (microdomain) having a high density of a block having a cation exchange group and a density of a block having substantially no ion exchange group are present.
  • TEM transmission electron microscope
  • the identity period is several nm to several OO nm.
  • the identity period is 5 ⁇ ⁇ ! ⁇ 100 nm is preferred.
  • block copolymer examples include “a block copolymer having a sulfonated aromatic polymer block” described in JP-A-2001-250567, JP-A-2003-31232, “Polyetherketone, polyethersulfone has a main chain structure and a block having a sulfonic acid group” described in JP-A-2004-359925, JP-A-2005-232439, JP-A-2003-113136, etc. "Plock copolymer”.
  • the block having a cation exchange group is preferably a block including a structure in which a plurality of structural units represented by the following general formula (1) are linked, cation exchange groups is preferably at 0.5 or more on average, and more preferably an average of 1. is 0 or more Re, 0
  • Ar 11 represents a divalent aromatic group
  • the divalent aromatic group represents a C 1-20 alkyl group which may have a substituent, or a substituent.
  • Group, extension, setting The divalent aromatic group may have at least one selected from the group consisting of an acyl group having 2 to 20 carbon atoms which may have a substituent.
  • a cation exchange group is directly bonded to the aromatic ring
  • X 11 represents a direct bond, a group represented by 1 O—, a group represented by 1 S—, a carbo group or a sulfonyl group
  • d is An integer greater than or equal to 5.
  • alkyl group having 1 to 20 carbon atoms that may have the substituent include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and an isoptyl group.
  • N-pentyl group 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group, 2-ethylhexyl group, nor group, decyl group, Alkyl groups having 1 to 20 carbon atoms such as dodecyl group, hexadecyl group, adamantyl group, and icosyl group, and these groups include fluorine atom, hydroxyl group, nitryl group, amino group, methoxy group, ethoxy group An isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, a naphthyloxy group, and the like, and an alkyl group having 1 to 20 carbon atoms in total.
  • alkoxy group having 1 to 20 carbon atoms which may have the substituent include, for example, a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, a sec group.
  • aryl group having 6 to 20 carbon atoms which may have the above substituent include aryl groups such as phenyl group, naphthyl group, anthracenyl group, biphenyl group, and the like. These groups are substituted with fluorine atoms, hydroxyl groups, nitrile groups, amino groups, methoxy groups, ethoxy groups, isopropyloxy groups, phenol groups, naphthyl groups, phenoxy groups, naphthyloxy groups, etc.
  • Aryl groups with 6 to 20 carbon atoms are listed.
  • aryloxy group having 6 to 20 carbon atoms which may have a substituent include, for example, aryloxy groups such as phenoxy group, naphthyloxy group, anthraceroxy group, biphenyloxy group, and the like, and these groups Is substituted with fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group, etc., and the total carbon number is 6 ⁇ 2 And 0 aryloxy group.
  • aryloxy groups such as phenoxy group, naphthyloxy group, anthraceroxy group, biphenyloxy group, and the like, and these groups Is substituted with fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphth
  • acyl group having 2 to 20 carbon atoms which may have the substituent include, for example, an acetyl group, a propiol group, a butyryl group, an isoptylyl group, a benzoyl group, 1 a naphthoyl group, and a 2-naphthoyl group.
  • Examples include an acyl group substituted with a phenoxy group, a naphthyloxy group, or the like, and having a total carbon number of 20 or less.
  • d is an integer of 5 or more that represents the degree of polymerization of the block, 5 to: 100 is preferable, more preferably 10 to 100, and particularly preferably 20 to 5 0 0.
  • a value of d of 5 or more is preferred because the proton conductivity is sufficient as a polymer electrolyte for fuel cells.
  • the value of d is 1 00 0 0 or less, it is preferable because the production of the block is easier.
  • the block having a cation exchange group is more preferably a block represented by the following general formula (2) or (3).
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 6 to 2 carbon atoms.
  • X 12 is a direct bond, a group represented by ____, a group represented by S-, a carbo group or a sulfol group.
  • J 1 represents a cation exchange group
  • p and q are 1 or 2
  • d is an integer of 5 or more.
  • R 1 represents a substituent as described above.
  • a phenylene group or a naphthalenedyl group has substantially no substituent other than a cation exchange group, and is preferably a hydrogen atom. More preferred.
  • the cation exchange group represented by a sulfonic acid group can be represented by the following formulas (2 a-1) to (2 a-3 0).
  • Examples thereof include a block in which d structural units selected from the group consisting of the structural units shown are connected.
  • d is the number of definitions equivalent to d in the above general formula (2), that is, an integer of 5 or more.
  • cation exchange groups represented by sulfonic acid groups are represented by the following (3b-1) to (3b-28).
  • d is the same number of definitions as d in general formula (2), that is, an integer of 5 or more.
  • the block represented by the general formula (2) or (3) can be manufactured based on, for example, a manufacturing method described in JP-A-2004-90002. Furthermore, as the block having the cation exchange group, a structural unit constituting the block represented by the general formula (2) or a structural unit constituting the block represented by the general formula (3), Each of the blocks may be a block formed by connecting d pieces, and it constitutes a structural unit constituting the block represented by the general formula (2) and a block represented by the general formula (3). It may be a block consisting of d structural units connected together. Next, the block having substantially no ion exchange group will be described.
  • substantially free of ion exchange groups means that most of the repeating units mainly constituting this block do not have ion exchange groups. Specifically, the average number of ion-exchange groups per structural unit constituting this block is 0.1 or less, preferably 0.05 or less, and ions are contained in the structural unit. More preferably, no exchange groups are included.
  • the block having substantially no ion exchange group is preferably a block represented by the following general formula (4).
  • Ar 22 represents a divalent aromatic group, and the divalent aromatic group includes an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, It may have at least one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms,
  • X 22 represents a direct bond, a group represented by 1 O—, a group represented by 1 S—, a carbo group or a sulfo group, and e is an integer of 5 or more.
  • alkyl group the alkoxy group, the aryl group, the aryl group, and the opacyl group, which are the substituents of the aromatic group Ar 22 of the general formula (4), are as described above. It is equivalent to general formula (1).
  • E is an integer of 5 or more representing the degree of polymerization of the block, preferably 5 to 1000, more preferably 10 to 1000, and still more preferably 20 to 500.
  • a value of e of 5 or more is preferable because a polymer electrolyte membrane having excellent membrane strength can be obtained.
  • the value of e is 1000 or less, it is preferable because the production of the block is easier.
  • the block having substantially no ion-exchange group is more preferably a block represented by the following general formula (5).
  • Ar 2 , Ar 3 , Ar 4 , and Ar 5 independently represent a divalent aromatic group, and the divalent aromatic group has 1 to 20 carbon atoms. At least one selected from the group consisting of an alkyl group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 2 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms.
  • X and X ′ each independently represent a direct bond or a divalent group
  • Y and Y ′ each independently represent a group represented by 1— or 1 S—.
  • A, b, c each independently represents 0 or 1 and n represents an integer of 5 or more.
  • n is an integer of 5 or more representing the degree of polymerization related to the block, preferably 5 to 1,000, more preferably 10 to 1000, and still more preferably 20 to 500.
  • a value of n of 5 or more is preferable because a polymer electrolyte membrane having excellent membrane strength can be obtained.
  • the value of n is 1000 or less, it is preferable because the production of the block is easier.
  • examples of suitable block copolymers include the copolymers (6-1) to (6-18) having the combination constitution shown in the following (Table 1).
  • (2a-1), (2a-4), (2a-19) and (2a-25) described in the column of the block having a cation exchange group are (5), (5-2), (5-9), ((5)) indicates the structural unit that constitutes the block having a cation exchange group, and is described in the column of the block having substantially no ion exchange group.
  • 5-10) represent structural units constituting a block substantially free of the ion exchange group.
  • the block copolymers are preferably those represented by the following general formulas (7-1) and (7-2).
  • the ion exchange capacity of the block copolymer is 0.5 by adjusting the abundance ratio of the block having a cationic group and the block having substantially no ion group. It is preferable to be in the range of ⁇ 4. Ome qZg, more preferably in the range of 0.8 to 3.5 me qZg.
  • the ion exchange capacity can be determined by a titration method.
  • the above-mentioned block type polyelectrolyte can obtain the optimum molecular weight range as appropriate depending on its structure, etc., but generally expressed in terms of polystyrene-reduced number average molecular weight by GPC (gel permeation chromatography) method, 1000-1000000 is preferred.
  • the lower limit of the number average molecular weight is more preferably 5000, further preferably 10000, while the upper limit is more preferably 500000, further preferably 300000.
  • the film strength tends to be further improved.
  • the average molecular weight is 1000000 or less, the solubility of the polymer electrolyte in a solvent is improved, and the solution viscosity of the resulting solution is lowered. Therefore, film formation by the solution casting method becomes easy.
  • the cation exchange group of the block type polymer electrolyte is a proton type.
  • the thermal decomposition initiation temperature of the block-type molecular electrolyte Accordingly, the heat treatment temperature in the heat treatment described later can be lowered.
  • the proportion of the proton type cation exchange group is preferably 10% or more. More preferably, it is 50% or more, and further preferably 80% or more.
  • Solvent-containing block-type polymer electrolyte membranes can be obtained by membrane-forming a polymer electrolyte solution obtained by dissolving the polymer electrolyte in a suitable solvent (hereinafter also simply referred to as a solution). Process).
  • the method for forming the polymer electrolyte solution into a film is not particularly limited, and a known method such as a spin coating method or a solution casting method can be used, but a solution casting method is preferable.
  • the solution casting method for producing a solvent-containing block type polymer electrolyte membrane on the support material by applying the solution on a support substrate and reducing the amount of solvent is easy to operate.
  • a solution obtained by dissolving the above polymer electrolyte in an appropriate solvent is applied to a porous membrane support, and the polymer electrolyte is retained on the porous membrane support. Then, by reducing the amount of the solvent in the solution, a membrane forming method is also possible in which a composite membrane comprising the porous membrane-like support and the polymer electrolyte held on the membrane-like support is obtained. .
  • a polymer electrolyte membrane may be produced by using this composite membrane as a solvent-containing block type polymer electrolyte membrane.
  • porous membrane support examples include polyimide, polysulfone, polyamide, polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE).
  • PTFE polytetrafluoroethylene
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PET Polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • the solvent is not particularly limited as long as it can dissolve the polyelectrolyte and can be removed thereafter.
  • DM F N, N-dimethylformamide
  • DMA c N, N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DM SO dimethyl sulfoxide
  • Aprotic polar solvents such as dichloromethane, chlorohonolem, chlorinated solvents such as 1,2-dichloroethane, black benzene and dichlorobenzene, alcohols such as methanol, ethanol and propanol, ethylene glycol
  • alkylene glycol monoalkyl ethers such as monomethylenoatenole, ethylene glycolenomonoethylenoleate, propyleneglycolenomonomethyle / leinetenole, and
  • N, N-dimethylformamide hereinafter referred to as “DMF”
  • DMA c N, N-dimethylacetamide
  • DMC N-methyl-2-pyrrolidone
  • NMP N-methyl sulfoxide
  • DMSO dimethyl sulfoxide
  • DMF, DMAc, NMP, DMSO, etc. are preferable because the solubility of the block type polymer electrolyte is high.
  • the support substrate used in the solution casting method is not particularly limited as long as the solvent-containing block type polymer electrolyte membrane obtained after strong film formation can be peeled off without swelling or dissolving by the solution.
  • glass, stainless steel, stainless steel belt, polyethylene terephthalate (PET) film, polytetrafluoroethylene (PTFE) film, etc. are preferably used.
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • the surface of the base material may be subjected to a mold release process, a mirror surface process, an embossing process, or an erasing process as necessary.
  • the concentration of the block type polyelectrolyte in the solution used in the solution casting method is usually 5 to 40% by weight, preferably 5 to 30% by weight, although it depends on the molecular weight of the block type polyelectrolyte itself used. .
  • concentration of the block-type polymer electrolyte is 5% by weight or more, a polymer electrolyte membrane having a practical film thickness is easy to process, and when the concentration is 40% by weight or less, the solution viscosity of the resulting solution is lowered. Therefore, it becomes easy to obtain a film having a smooth surface.
  • heating may be performed in order to reduce the amount of solvent and cure the coating film. In this case, the temperature range of the heating is the heat of the block type polymer electrolyte. It is preferable that the temperature is not higher than the decomposition start temperature. (Heat treatment process for solvent-containing block type polymer electrolyte membrane)
  • the solvent-containing block type polymer electrolyte membrane is heat-treated to obtain a desired polymer electrolyte membrane.
  • the solvent-containing block-type polymer electrolyte membrane is heated at a temperature higher than the thermal decomposition start temperature of the block-type polymer electrolyte constituting the solvent-containing block-type polymer electrolyte membrane.
  • Heat treatment is preferably performed at a temperature 10 to 100 ° C higher than the thermal decomposition start temperature, and heat treatment is performed at a temperature 20 ° C to 80 ° C higher than the thermal decomposition start temperature. Is more preferable.
  • the thermal decomposition starting temperature of the block-type polymer electrolyte can be measured by TGNODTA.
  • the block-type polymer electrolyte When heat at a predetermined temperature higher than the thermal decomposition start temperature of the block-type polymer electrolyte is applied to the solvent-containing block-type polymer electrolyte membrane, the block-type polymer electrolyte in a state where the solvent remains at that temperature The degree of thermal decomposition of can be reduced. That is, even if the polymer electrolyte is heated at a temperature at which thermal decomposition starts, if the solvent remains, it may be possible to increase the molecular weight of the polymer electrolyte before the polymer electrolyte decomposes. is there.
  • the molecular weight of the block type polymer electrolyte constituting the polymer electrolyte membrane after the heat treatment is increased as compared with that before the heat treatment.
  • the degree of increase in the molecular weight of the polymer electrolyte is preferably such that the number average molecular weight after the heat treatment is 1.05 times or more, and 1.10 times or more as compared to the number average molecular weight before the heat treatment. More preferably.
  • the heating time in this heat treatment largely depends on the kind of the solvent-containing block type polymer electrolyte membrane and the heat treatment temperature, but constitutes the solvent-containing block type polymer electrolyte membrane.
  • it is preferably from 1 minute to 5 hours, more preferably from 5 minutes to 3 hours.
  • the control of the heating temperature and the heating time within the above range and the amount of residual solvent in the polymer electrolyte membrane after the heat treatment are set. It is important to maintain the amount of residual solvent in the polymer electrolyte membrane after the heat treatment to be 1% by weight or more.
  • residual solvent amount means the amount of the solvent remaining in the polymer electrolyte membrane after the heat treatment.
  • solvent refers to the solvent used in the casting film formation.
  • after heat treatment means a time range within 6 hours from the end of the heat treatment step.
  • the amount of residual solvent in the polymer electrolyte membrane is 1 in a certain time within a time range of 6 hours or less immediately after the end of the heat treatment step. weight. More than / o.
  • This residual solvent amount can be determined by a gas chromatography method.
  • a solvent-containing block type polymer electrolyte membrane obtained by forming the solution into a membrane is used as a block type high polymer electrolyte membrane constituting the solvent-containing block type polymer electrolyte membrane.
  • Treating at a temperature higher than the thermal decomposition start temperature of the molecular electrolyte, and maintaining the amount of solvent in the solvent-containing polymer electrolyte membrane so that the amount of residual solvent after the heat treatment is 1% by weight or more As a result, it is possible to reduce the thermal decomposition degree of the block-type polymer electrolyte in a state where the solvent remains.
  • the molecular weight of the polymer electrolyte can be increased before the polymer electrolyte decomposes. It may become.
  • the molecular weight of the block-type polymer electrolyte constituting the polymer electrolyte membrane after the heat treatment is increased in the range in which the polymer electrolyte is soluble in the solvent as compared with that before the heat treatment.
  • the obtained polymer electrolyte membrane has been increased in molecular weight (densified) while maintaining flexibility.
  • the polymer electrolyte membrane obtained by the production method of the present invention has a solid polymer fuel cell that has high proton conductivity and hardly permeates methanol, and has excellent handling properties. Especially direct methanol This is considered to be suitable for a fuel cell.
  • the amount of the residual solvent is less than 1% by weight, the flexibility and handling properties of the polymer electrolyte membrane are insufficient. The reason why such an effect is manifested is not necessarily clear, but the present inventor estimates as follows. That is, in the block-type hydrocarbon polymer electrolyte, the block having a cation exchange group has a relatively dense collection of cation exchange groups, and the accumulated cation exchange groups react with each other. It is estimated that good methanol pariasis is developed.
  • the film-forming step (solution casting method) is performed in a temperature region below the thermal decomposition start temperature of the polymer electrolyte, and then the above-described heat treatment is continuously performed.
  • the film-forming step in a temperature range below the thermal decomposition start temperature in advance, it is possible to prevent the appearance failure of the polymer electrolyte membrane due to rapid volatilization of the solvent, and the like. Maintenance of the residual solvent amount is also facilitated.
  • the heat treatment for increasing the molecular weight of the subsequent film is performed at a high temperature exceeding the thermal decomposition start temperature of the block type polymer electrolyte by the solvent component remaining by such control, the heat treatment is not performed.
  • the obtained polymer electrolyte membrane is highly flexible, hardly cracks, and has excellent handling properties.
  • a polymer electrolyte membrane can be produced by the method for producing a polymer electrolyte membrane of the present invention.
  • the thickness of the polymer electrolyte membrane of the present invention is not particularly limited, but is 5 to 200 m. preferable. When it is 5 ⁇ or more, a membrane strength that can be practically used can be obtained, and when it is 200 ⁇ m or less, membrane resistance can be reduced, that is, power generation performance can be improved. More preferably, it is 8 to 100 ⁇ , and even more preferably 15 to 80.
  • the polymer electrolyte membrane of the present invention can be suitably applied to a fuel cell.
  • the direct methanol fuel cell can be preferably applied.
  • the membrane-electrode assembly (MEA) of the present invention and the fuel cell of the present invention will be described.
  • the membrane-electrode assembly of the present invention can be produced by forming at least a catalyst layer on both surfaces of the obtained polymer electrolyte membrane.
  • the catalyst layer contains a catalyst material.
  • the catalyst substance is not particularly limited as long as it can activate an acid reduction reaction between methanol and oxygen, and a known substance can be used.
  • the catalyst substance include noble metals such as platinum and platinum-ruthenium alloys, and complex electrode catalysts (for example, “Fuel Cell and Polymer” edited by the Society of Polymer Science, Fuel Cell Materials Research Group, 1 2 pages, Kyoritsu Shuppan, 2 2005 1 January 10th issue)).
  • platinum or platinum-ruthenium alloy fine particles is used as the catalyst for the catalyst layer (first catalyst layer) on the fuel electrode (anode) side, and the catalyst layer (second catalyst layer) on the air electrode (force sword) side.
  • Platinum fine particles is used as the catalyst.
  • a conductive material carrying the catalyst substance on the surface as the catalyst substance because hydrogen ions and electrons can be easily transported in the catalyst layer.
  • the conductive material include known materials such as conductive carbon materials such as car pump racks and carbon nanotubes, and ceramic materials such as titanium oxide.
  • the catalyst layer preferably contains a polymer electrolyte.
  • the polymer electrolyte has ion conductivity and a binder that binds the catalyst substance.
  • examples include conventionally known Nafion (trade name), aliphatic polymer electrolyte, and aromatic polymer electrolyte made by DuPont.
  • the catalyst layer may contain a water repellent material such as PTFE for the purpose of enhancing the water repellency of the catalyst layer, and calcium carbonate for the purpose of enhancing the gas diffusibility of the catalyst layer.
  • the membrane-one electrode assembly preferably has a gas diffusion layer outside the catalyst layer in order to diffuse the fuel efficiently and uniformly.
  • the gas diffusion layer is not particularly limited as long as it has conductivity, but is preferably a porous carbon nonwoven fabric or carbon paper because it is inexpensive and easy to handle.
  • the other base material is not particularly limited as long as it does not swell or dissolve when the catalyst layer is formed.
  • the gas diffusion layer, glass, stainless steel material, stainless steel belt, polyethylene terephthalate (PET ) Film etc. are preferably used.
  • Other substrate surfaces may be subjected to a mold release treatment, a mirror finish treatment, an embossing treatment, a matting treatment, or the like as necessary.
  • the heating temperature is not particularly limited as long as the resulting polymer electrolyte membrane is not denatured, but is preferably 30 ° C. or higher and 30 ° C. or lower. Such temperature range As a result, the bondability between the catalyst layer and the polymer electrolyte membrane is improved, and the resulting polymer electrolyte membrane is not altered. 50 ° C or more and 250 ° C or less is more preferable.
  • the pressure is preferably 5 kgf / cm 2 or more and 300 kgf Zcm 2 or less. In such a pressure region, the obtained polymer electrolyte membrane is not deformed. 3 O kgf Zcni 2 or more and 2 OO kgf Zcm 2 or less are more preferable. In this way, a membrane-electrode assembly comprising the polymer electrolyte membrane of the present invention and the catalyst layers provided on both surfaces of the polymer electrolyte membrane is obtained. When this membrane-electrode assembly is used in a direct methanol fuel cell (DMFC), the resulting DMFC is excellent in power generation performance and markedly suppresses battery damage due to methanol crossover.
  • DMFC direct methanol fuel cell
  • the force described by taking the case where the membrane-electrode assembly of the present invention is applied to a direct methanol fuel cell (D MFC) as an example.
  • D MFC direct methanol fuel cell
  • it can be suitably used for a fuel cell using hydrogen as a raw material.
  • examples of the present invention will be described. However, the examples shown below are suitable examples for explaining the present invention, and do not limit the present invention at all.
  • the number average molecular weight in terms of polystyrene was determined by gel permeation chromatography (GPC) under the following conditions.
  • the heat-treated polymer electrolyte membrane was placed at room temperature and atmospheric pressure, dissolved in a sample solution (dimethylformamide) within 6 hours, and measured by gas chromatography using a GC device. . The obtained measured values were analyzed based on the following analysis method, and the amount of residual solvent remaining in the polymer electrolyte membrane was calculated.
  • the resistance value was measured, then, the polymer electrolyte membrane was removed, the resistance value was measured again, and the membrane resistance was calculated from the difference between the two.
  • lmo 1 / L dilute sulfuric acid was used as a solution to be brought into contact with both sides of the polymer electrolyte membrane. The proton conductivity was calculated from the film thickness and resistance value when immersed in dilute sulfuric acid.
  • the polymer electrolyte membrane sample obtained in each example was immersed in a 10 wt ° / o methanol water solution for 2 hours, and then this sample polymer electrolyte membrane was formed into an H-shaped diaphragm consisting of cell A and cell B. Hold in the center of the cell, put 10 wt% methanol aqueous solution into cell A and pure water into cell B, and leave at 23 ° C for the initial state and for a certain time t (sec) from the initial state.
  • the methanol concentration in cell B was analyzed, and the methanol permeability coefficient D (cm 2 / sec) was determined by the following equation.
  • V Volume of liquid in cell B (cm 3 )
  • Polymer electrolyte membrane suitable for direct methanol fuel cell is proton conductivity ( ⁇ ) PT / JP2008 / 066805
  • D methanol permeability coefficient
  • the obtained polymer electrolyte membrane was dried at 110 ° C. with a halogen moisture content meter (Mettler Toledo Co., Ltd., trade name “ ⁇ R73”) to determine the absolute dry weight.
  • This polymer electrolyte membrane was immersed in 5 mL of a 0.1 mo 1ZL aqueous solution of sodium hydroxide and then 50 mL of ion exchanged water was added and left for 2 hours. Thereafter, the solution in which the polymer electrolyte membrane was immersed was titrated by gradually adding 0.1 mol 1 ZL of hydrochloric acid to determine the neutralization point.
  • the ion exchange capacity was determined from the absolute dry weight and the amount of 0.1 lmo 1 / L hydrochloric acid required for the neutralization point.
  • the salt exchange rate Y (%) was determined by the following formula (B).
  • the thermal decomposition starting temperature was measured using TG / DTA (Seiko Instruments Inc., SSC-5 200). Increase the temperature from 30 ° C to 110 ° C at 50 ° C / min, hold at 110 ° C for 30 minutes, then increase the temperature from 110 ° C to 300 ° C in 5 ° 0 minutes, reducing weight The temperature at which is started was defined as the thermal decomposition start temperature.
  • reaction mass [A] and the reaction mass [B] were mixed while diluted with DMSO: 68 ml, and this mixture was reacted at 145 ° C for 33 hours 30 minutes. After allowing to cool, the reaction mixture was dropped into a large amount of 2 m o 1 Z L hydrochloric acid aqueous solution, and the resulting precipitate was collected by filtration, and washed and filtered repeatedly with water until the washing solution became neutral. Next, the filtrate was treated twice with a large excess of hot water for 1 hour, then dried under reduced pressure, and the target polymer electrolyte represented by the following general formula (8) (block copolymer A) 33. 3 3 g
  • the number average molecular weight of this block copolymer A is 79000, and the thermal decomposition onset temperature is 210 ° C.
  • the path temperature was raised to 190 ° C, and toluene was distilled off by heating to azeotropically dehydrate water in the system. After toluene was distilled off, the reaction was carried out at the same temperature for 9 hours and 30 minutes. After allowing to cool, the reaction mixture was dropped into a large amount of 2mo 1ZL hydrochloric acid aqueous solution, and the resulting precipitate was collected by filtration, and washed and filtered repeatedly with water until the washing solution became neutral. Next, the filtrate was treated twice with a large excess of hot water for 1 hour, then dried under reduced pressure, and the desired polymer electrolyte represented by the following general formula (9) (random copolymer A) 1 8. 99 g was obtained.
  • general formula (9) random copolymer A
  • the random copolymer A had a number average molecular weight of 43,000 and a thermal decomposition starting temperature of 215 ° C. (Production Example 3)
  • the block copolymer B had a number average molecular weight of 115,000 and a thermal decomposition initiation temperature of 200 ° C.
  • the block copolymer A (thermal decomposition start temperature 210 ° C) obtained in Production Example 1 was dissolved in NMP so as to be 20% by weight to obtain a solution, and then the solution was applied onto a glass substrate. Dried at normal pressure at ° C (filming process).
  • a polymer electrolyte membrane was obtained by the same method as in Example 1 except that the temperature of nitrogen open was 2400 ° C. The amount of residual solvent in the obtained polymer electrolyte membrane was 4% by weight. (Example 3)
  • the block copolymer B obtained in Production Example 3 (pyrolysis start temperature 20 ° C.) was dissolved in NMP to 20% by weight to obtain a solution, and then the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process).
  • the temperature of the nitrogen oven is 200.
  • a polymer electrolyte membrane was obtained by the same method as in Example 1 except that C was used. The amount of residual solvent in the obtained polymer electrolyte membrane was 10% by weight. (Comparative Example 2)
  • the block copolymer A obtained in Production Example 1 was dissolved in NMP so as to be 20% by weight to obtain a solution, and the solution was applied on a glass substrate and dried at 80 ° C. under normal pressure. (Membrane process). It was then heated for 30 minutes in a nitrogen oven at 2700C. The amount of residual solvent in the obtained polymer electrolyte membrane was 0% by weight.
  • the block copolymer A obtained in Production Example 1 is dissolved in NMP so as to be 20% by weight. After the solution was obtained, the solution was applied onto a glass substrate and dried at 80 ° C. under normal pressure (film formation step). The obtained polymer electrolyte membrane was washed with running water for 2 hours to remove substantially all of the remaining solvent and dried at room temperature.
  • Random copolymer A obtained in Production Example 2 (pyrolysis start temperature 2 15 ° C) was dissolved in NMP so as to be 25% by weight, and a solution was obtained. Then, the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process).
  • Random copolymer A obtained in Production Example 2 (pyrolysis start temperature 2 15 ° C) was dissolved in NMP so as to be 25% by weight, and a solution was obtained. Then, the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process). Next, heating was performed for 1 hour in nitrogen open at 200 ° C. (heat treatment step). The amount of residual solvent in the obtained polymer electrolyte membrane was 11% by weight.
  • a polymer electrolyte membrane was obtained in the same manner as in Example 3 except that the temperature of the nitrogen oven was 200 ° C. The amount of residual solvent in the obtained polymer electrolyte membrane was 16% by weight. In Comparative Example 3, the obtained film was fragile and could not be used for post-treatment.
  • each polymer electrolyte membrane was immersed in hydrochloric acid of lnio 1ZL for 3 hours, and the cation exchange group was substantially added. It was converted to a Proton type and washed with running water for 3 hours. The number average molecular weight, proton conductivity ( ⁇ ), and methanol permeability coefficient (D) of the obtained polymer electrolyte membrane were measured based on each of the measurement methods described above.
  • the examples and comparative examples are examples examined by considering the case where a polymer electrolyte membrane is mainly used for a direct methanol fuel cell.
  • Preferred characteristics of polymer electrolytes for direct methanol fuel cells include high proton conductivity ( ⁇ ) and low methanol permeability coefficient (D), that is, low characteristic coefficient (D / ⁇ ). It is.
  • Examples 1 and 2 and Comparative Example 1 both use block copolymer ⁇ ⁇ ⁇ ⁇ as the electrolyte material. Then, with respect to the thermal decomposition starting temperature 2 10 ° C, in Comparative Example 1, heat treatment (film formation) was performed at 200 ° C which is lower than the thermal decomposition starting temperature. In Examples 1 and 2, the thermal decomposition was performed. Heat treatment (film formation) at 230 ° C and 240, which are higher than the starting temperature. As a result, characteristic coefficient, in Comparative Example 1 8. 5 X 1 0- 6, 7. 1 X 1 0- 6 In Example 1, Example 2, 6. 2 X 1 0 one 6, and the electrolyte material The characteristic coefficient is smaller when heat treatment is performed at a temperature higher than the thermal decomposition start temperature.
  • Comparative Examples 4 and 5 both use random copolymers as the electrolyte material.
  • heat treatment film formation was performed at 240 ° C, which is higher than the thermal decomposition start temperature.
  • Heat treatment film formation at 200 ° C.
  • characteristic coefficient in Comparative Example 4 2.
  • Comparative Example 2 and Comparative Example 3 the same electrolyte material (Plock Copolymer A) as in Examples 1 and 2 and Comparative Example 1 was used. Unlike 1, the amount of residual solvent after heat treatment is less than 0.1% by weight. Results remaining Solvent amount became 0.1 less than 1 wt%, has become Comparative Example 2, characteristic coefficient ⁇ ) ⁇ poor (2. 5 X 1 0- 5) , film in Comparative Example 3 becomes brittle, Handling is poor. Examples 3 and 6 both use the block copolymer B as the electrolyte material.
  • a method for producing a polymer electrolyte membrane for a fuel cell that is inexpensive and can achieve both methanol barrier properties and proton conductivity at a high level, and a high yield obtained by the method.
  • a molecular electrolyte membrane, a membrane-one electrode assembly using the polymer electrolyte membrane, and a fuel cell can be provided.
  • the direct methanol fuel cell using the polymer electrolyte membrane of the present invention has high power generation characteristics and low methanol crossover, and the reduction in fuel consumption is reduced based on such characteristics. It can use suitably for the use of. Industrial applicability
  • the production method of the present invention it is possible to obtain a polymer electrolyte membrane that is inexpensive and has both high methanol pariasis and proton conductivity.
  • the direct methanol fuel cell using the polymer electrolyte membrane of the present invention has high power generation characteristics and low methanol crossover, and the reduction in fuel consumption is reduced based on such characteristics. Can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Conductive Materials (AREA)

Abstract

This invention provides a process for producing a polyelectrolyte membrane, comprising a membrane forming step of forming a membrane from a polyelectrolyte solution containing a hydrocarbon block-type polyelectrolyte and a solvent to produce a solvent-containing block-type polyelectrolyte membrane and a heat treatment step of heating the solvent-containing block-type polyelectrolyte membrane to form a polyelectrolyte membrane. The process is characterized in that the temperature of the heat treatment is a temperature above the heat decomposition start temperature of the hydrocarbon block-type polyelectrolyte, and the residual amount of the solvent in the polyelectrolyte membrane after the heat treatment is brought to not less than 1% by weight.

Description

明細書  Specification
高分子電解質膜の製造方法、 高分子電解質膜、 膜—電極接合体及び燃料電池 技術分野  Polymer electrolyte membrane manufacturing method, polymer electrolyte membrane, membrane-electrode assembly, and fuel cell technical field
本発明は、 高分子電解質膜の製造方法、 該製造方法によって得られる高分子電 解質膜、 該高分子電解質膜を用いた膜一電極接合体および燃料電池に関する。 さ らに詳しくは、 直接メタノール型燃料電池に好適な高分子電解質膜の製造方法、 該製造方法によって得られる高分子電解質膜、 該高分子電解質膜を用レ、た膜ー電 極接合体および燃科電池に関する。 背景技術  The present invention relates to a method for producing a polymer electrolyte membrane, a polymer electrolyte membrane obtained by the production method, a membrane-one-electrode assembly and a fuel cell using the polymer electrolyte membrane. More specifically, a method for producing a polymer electrolyte membrane suitable for a direct methanol fuel cell, a polymer electrolyte membrane obtained by the production method, a membrane-electrode assembly using the polymer electrolyte membrane, and It relates to fuel cells. Background art
近年、 住宅や自動車の動力などのエネルギーデバイスとして、 固体高分子型燃 料電池が注目されている。 その中でもメタノールを燃料とする直接メタノール型 燃料電池は、 小型ィヒが可能であるためパーソナルコンピューターや携帯機器の電 源等の用途として注目されている。  In recent years, polymer electrolyte fuel cells have attracted attention as energy devices for housing and automobile power. Among them, direct methanol fuel cells using methanol as fuel are attracting attention as power sources for personal computers and portable devices because of their small size.
周知のように、燃料電池は、セルという基本的な最小単位から構成されている。 各単位セルは、 電解質膜、 該電解質膜の両側に設けられた触媒層、 これら触媒層 の外側に設けられるガス拡散層によって構成されている。 各単位セルは、 前記ガ ス拡散層の外側に設けられるセパレータによって隔離されて積層され、 一つの燃 料電池を構成する。  As is well known, a fuel cell is composed of basic minimum units called cells. Each unit cell is composed of an electrolyte membrane, a catalyst layer provided on both sides of the electrolyte membrane, and a gas diffusion layer provided outside the catalyst layer. Each unit cell is separated and stacked by a separator provided outside the gas diffusion layer to constitute one fuel cell.
前記電解質膜の両側に設けられる触媒層、 または、 触媒層とガス拡散層とは、 単位セルの電極部分を構成し、 一方の電極部分 (アノード) に燃料 (水素分子、 メタノール水溶液など) が供給され、 該燃料が、 前記アノード内の細かい孔 (拡 散層) を通って触媒層に達すると、 該触媒層中で酸ィヒ反応が生じて、 水素イオン と電子とが放出される。 水素イオンは、 電解質膜中に入り、 電解質膜中を他方の 電極部分 (力ソード) の方向に移動する。 電子は、 アノードを経て外部回路に達 し、 外部回路を通って力ソード側の触媒層に到達する。 力ソード側の触媒層中では、 外部回路を経て到達した電子と、 アノードから電 解質膜中を移動してきた水素ィオンと、 そして力ソードのガス拡散層を介して外 部から導入された酸素分子 (空気) とが反応して水となり、 水はガス拡散層を介 して系外に排出される。 The catalyst layer provided on both sides of the electrolyte membrane, or the catalyst layer and the gas diffusion layer constitute an electrode part of the unit cell, and fuel (hydrogen molecule, methanol aqueous solution, etc.) is supplied to one electrode part (anode) When the fuel reaches the catalyst layer through the fine pores (diffusion layer) in the anode, an acid-rich reaction occurs in the catalyst layer, and hydrogen ions and electrons are released. Hydrogen ions enter the electrolyte membrane and move in the direction of the other electrode part (force sword) in the electrolyte membrane. The electrons reach the external circuit through the anode, and reach the catalyst layer on the power sword side through the external circuit. In the catalyst layer on the force sword side, electrons that have reached through the external circuit, hydrogen ions that have moved from the anode into the electrolyte membrane, and oxygen introduced from the outside through the gas diffusion layer of the force sword Molecules (air) react to form water, and the water is discharged out of the system through the gas diffusion layer.
また、 上述のような燃料電池の単位セルにおける電極とは、 触媒層のみを示す 場合もあれば、 触媒層とガス拡散層との接合体を示す場合もある。 そして、 かか る電極により電解質膜が挟まれてなる組立体を、 膜—電極接合体 (MEA=Me mb r a n e E l e c t r o d e As s emb l y) と呼称している。 した がって、 膜一電極接合体は、 触媒層、 または、 触媒層とガス拡散層とにより電解 質膜が挟まれてなる組立体を意味する。 すなわち、 膜一電極接合体は、 電解質膜 の両面に少なくとも触媒層が形成されてなる組立体である。  In addition, the electrode in the unit cell of the fuel cell as described above may indicate only the catalyst layer, or may indicate a joined body of the catalyst layer and the gas diffusion layer. An assembly in which an electrolyte membrane is sandwiched between such electrodes is called a membrane-electrode assembly (MEA = MembraneElectrodeAssembly). Accordingly, the membrane-electrode assembly means a catalyst layer or an assembly in which an electrolyte membrane is sandwiched between a catalyst layer and a gas diffusion layer. That is, the membrane-electrode assembly is an assembly in which at least a catalyst layer is formed on both surfaces of the electrolyte membrane.
現在、 燃料電池は、 上述のように、 燃料 (水素またはメタノール水溶液) と酸 素 (空気) から電気化学反応によって直接電力と熱を取り出す原理を持つ一方、 水素イオン (プロトン) の通路となる電解質の種類によって複数の種類に分類さ れている。  Currently, as described above, a fuel cell has a principle of directly extracting electric power and heat from a fuel (hydrogen or methanol aqueous solution) and oxygen (air) by an electrochemical reaction, while an electrolyte serving as a passage for hydrogen ions (protons). It is classified into multiple types according to the type.
このうち、 固体高分子型燃料電池は、 その電解質膜に、 主として、 「ナフィォ ン J (デュポン社の登録商標) に代表されるパーフルォロアルカン系高分子電解 質膜 (フッ素樹脂系イオン交換膜) が用いられている。 このような固体高分子型 燃料電池は、 室温からほぼ 10 o°cまでの比較的低い温度で作動するため、 自動 車用、 家庭用、 携帯用の電源として有望視されている。  Among these, the polymer electrolyte fuel cell is mainly composed of a perfluoroalkane polymer electrolyte membrane represented by “Nafion J (a registered trademark of DuPont)” (fluorine resin ion exchange). Such polymer electrolyte fuel cells operate at relatively low temperatures from room temperature to almost 10 ° C, so they are promising as power sources for automobiles, homes, and portables. Is being viewed.
このような固体高分子型燃料電池の中でも、 燃料にメタノール水溶液を用レ、た 直接メタノール型燃料電池 (DMFC : D i r e c t Me t h a n o l F u e 1 Ce 1 1) は、 燃料が液体であるために取り扱いも容易で、 加湿器など の補助機器が不要なため、 小型化が可能であり、 パソコンや携帯電話などの携帯 機器のバッテリー源として注目されている。  Among these polymer electrolyte fuel cells, a methanol aqueous solution is used as the fuel, and direct methanol fuel cells (DMFC: Dielectric Me thanol Fuel 1 Ce 1 1) are handled because the fuel is liquid. It is easy to use and requires no auxiliary equipment such as a humidifier, so it can be downsized and is attracting attention as a battery source for portable equipment such as personal computers and mobile phones.
前述のように、直接メタノール型燃料電池は、アノード(燃料極)に、メタノー ル水溶液を燃料として供給する。 したがって、アノード(燃料極) と力ソード(空 気極) との間にある高分子電解質膜 (プロトン伝導膜) ί メタノールに対する バリア性 (メタノールパリア性) が低いと、 メタノールが該高分子電解質膜を透 過して力ソードに移動するという現象が生じる。 この現象は、 メタノールクロス オーバー (MCO: METHANOL C r o s s Ov e r) と呼称されてお り、 力かる現象が生じると、 発電性能の低下やメタノールが力ソードから漏れ出 し、 電池自体に損傷が生じるといった問題が生じるおそれがある。 As described above, a direct methanol fuel cell supplies an aqueous methanol solution as fuel to the anode (fuel electrode). Therefore, the anode (fuel electrode) and the power sword (empty Polymer electrolyte membrane (proton conductive membrane) between the gas electrode and the electrode ί Phenomena in which methanol passes through the polymer electrolyte membrane and moves into a force sword when the barrier property to methanol (methanol paraffinity) is low Occurs. This phenomenon is called methanol crossover (MCO), and if a phenomenon occurs, power generation performance deteriorates or methanol leaks from the power sword, causing damage to the battery itself. Such a problem may occur.
し力 し、 従来の固体高分子型燃料電池に用いられているパーフルォロアルカン 系高分子電解質膜は、 メタノ一ルバリァ性が低く、 メタノールクロスオーバーを 生じやすいため、 従来の固体高分子型燃料電池の構成をそのまま直接メタノール 型燃料電池に適用すると、 十分な発電性能を得ることができない。  However, the perfluoroalkane polymer electrolyte membranes used in conventional solid polymer fuel cells have low methanol barrier properties and are susceptible to methanol crossover. If the fuel cell configuration is directly applied to a methanol fuel cell, sufficient power generation performance cannot be obtained.
これらの理由から、 固体高分子電解質膜として従来重用されているパーフルォ ロアルカン系高分子電解質膜に代わる、 安価で、 高性能の炭化水素系高分子電解 質膜の開発が活発化している (国際公開第 WO 2003/033566号パンフ レツト) 。 しかしながら、一般に、 固体高分子電解質膜のメタノールバリア性と、 発電性能に関わるプロトン伝導性とは、 互いに相反するものであり、 現在のとこ ろ、 高性能な固体高分子型燃料電池用の固体高分子電解質膜、 さらには、 直接メ タノール型燃料電池に好適な固体高分子電解質膜は提供されていない。 発明の開示  For these reasons, the development of inexpensive, high-performance hydrocarbon polymer electrolyte membranes has been activated in place of the perfluoroalkane polymer electrolyte membranes that have been heavily used as solid polymer electrolyte membranes. (WO 2003/033566 pamphlet). However, in general, the methanol barrier property of the solid polymer electrolyte membrane and the proton conductivity related to power generation performance are in conflict with each other. At present, the solid polymer electrolyte membrane for high-performance solid polymer fuel cells There are no molecular electrolyte membranes or solid polymer electrolyte membranes suitable for direct methanol fuel cells. Disclosure of the invention
本発明は、 従来の事情に鑑み、 メタノ一ルバリア性とプロトン伝導性とを高水 準で両立しうる高分子電解質膜の製造方法、 該製造方法によって得られる高分子 電解質膜、 前記高分子電解質膜を用レヽた膜一電極接合体および燃料電池を提供す る。  In view of conventional circumstances, the present invention provides a method for producing a polymer electrolyte membrane capable of achieving both high methanol barrier properties and proton conductivity, a polymer electrolyte membrane obtained by the production method, and the polymer electrolyte. A membrane-one electrode assembly and a fuel cell using a membrane are provided.
すなわち本発明は、 下記の発明を提供する。  That is, the present invention provides the following inventions.
[ 1 ] 炭化水素系プロック型高分子電解質と溶媒とを含有する高分子電解質溶液 を膜化して、 含溶媒ブロック型高分子電解質膜を得る膜化工程と、 前記含溶媒ブ 口ック型高分子電解質膜を加熱することによって高分子電解質膜を得る加熱処理 工程とを有する高分子電解質膜の製造方法であって、 前記加熱処理の温度を、 前 記炭化水素系プロック型高分子電解質の熱分解開始温度より高い温度とし、かつ、 加熱処理後の前記高分子電解質膜の残存溶媒量を 1重量%以上とすることを特徴 とする高分子電解質膜の製造方法。 [1] A membrane forming step of obtaining a solvent-containing block-type polymer electrolyte membrane by forming a polymer electrolyte solution containing a hydrocarbon-based block-type polymer electrolyte and a solvent, and the solvent-containing block A heat treatment process for obtaining a polymer electrolyte membrane by heating the mouth-pack type polymer electrolyte membrane, wherein the temperature of the heat treatment is set to the hydrocarbon-based block type A method for producing a polymer electrolyte membrane, wherein the temperature is higher than the thermal decomposition start temperature of the polymer electrolyte, and the residual solvent amount of the polymer electrolyte membrane after the heat treatment is 1 wt% or more.
本明細書では、 本発明の製造方法において用いる炭化水素系プロック型高分子 電解質を、 単に高分子電解質ともいう。 また、 本発明の製造方法において得られ る高分子電解質膜は、 炭化水素系プロック型高分子電解質から得られる炭化水素 系ブロック型高分子電解質膜であるが、 本明細書では、 単に高分子電解質膜とい う。  In the present specification, the hydrocarbon block-type polymer electrolyte used in the production method of the present invention is also simply referred to as a polymer electrolyte. Further, the polymer electrolyte membrane obtained in the production method of the present invention is a hydrocarbon block type polymer electrolyte membrane obtained from a hydrocarbon block type polymer electrolyte. It is called a membrane.
[2] 前記加熱処理後の炭化水素系プロック型高分子電解質のゲル浸透クロマト グラフィ一法により求められるポリスチレン換算数平均分子量が前記加熱処理前 に比べて高いことを特徴とする [1] 記載の高分子電解質膜の製造方法。 [2] The polystyrene-equivalent number average molecular weight determined by a gel permeation chromatography method of the hydrocarbon-based block polymer electrolyte after the heat treatment is higher than that before the heat treatment. [1] A method for producing a polymer electrolyte membrane.
[ 3 ] 前記高分子電解質膜が直接メタノール型燃料電池用であることを特徴とす る [1] または [2] 記載の高分子電解質膜の製造方法。 [3] The method for producing a polymer electrolyte membrane according to [1] or [2], wherein the polymer electrolyte membrane is used for a direct methanol fuel cell.
[4] 前記炭化水素系プロック型高分子電解質が有するカチオン交換基の少なく とも 10%がプロトン型であることを特徴とする [1] 〜 [3] のいずれか 1つ に記載の高分子電解質膜の製造方法。 . [4] The polymer electrolyte according to any one of [1] to [3], wherein at least 10% of the cation exchange groups possessed by the hydrocarbon-based block type polymer electrolyte is a proton type A method for producing a membrane. .
[ 5 ]前記炭化水素系プロック型高分子電解質力、カチオン交換基を有するプロッ クと、 実質的にイオン交換基を有さないプロックとからなるプロック共重合体で あることを特徴とする [1] 〜 [4] のいずれか 1つに記載の高分子電解質膜の 製造方法。 [5] A block copolymer comprising the hydrocarbon-based block-type polyelectrolyte power, a block having a cation exchange group, and a block having substantially no ion exchange group. [1] ] The manufacturing method of the polymer electrolyte membrane as described in any one of-[4].
[6] 前記カチオン交換基を有するブロックが、 下記一般式 (1)
Figure imgf000006_0001
[式 (1 ) 中、 A r 11は、 2価の芳香族基を示し、 該 2価の芳香族基は、 置換基 を有していてもよい炭素数 1〜 2 0のアルキル基、 置換基を有していてもよい炭 素数 1〜2 0のアルコキシ基、置換基を有していてもよい炭素数 6〜 2 0のァリー ル基、 置換基を有していてもよい炭素数 6〜2 0のァリ一ルォキシ基、 及び、 置 換基を有していてもよい炭素数 2〜 2 0のァシル基からなる群より選ばれる少な くとも一種を有していてもよく、 また、 該 2価の芳香族基は、 少なくとも 1つの カチオン交換基が直接芳香環に結合しており、 X11は、 直接結合、 一 o—で示さ れる基、 一 S—で示される基、 カルボニル基またはスルホ -ル基を示し、 dは 5 以上の整数である。 ] で表される構造単位を有することを特徴とする [ 5 ] 記載 の高分子電解質膜の製造方法。
[6] The block having a cation exchange group has the following general formula (1)
Figure imgf000006_0001
[In the formula (1), Ar 11 represents a divalent aromatic group, and the divalent aromatic group is a C 1-20 alkyl group which may have a substituent, An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted carbon number 6 May have at least one selected from the group consisting of an aryloxy group of ˜20, and an acyl group of 2 to 20 carbon atoms which may have a substituent. In the divalent aromatic group, at least one cation exchange group is directly bonded to the aromatic ring, X 11 is a direct bond, a group represented by 1-O, a group represented by 1S-, a carbonyl Represents a group or a sulfo group, and d is an integer of 5 or more. [5] The method for producing a polymer electrolyte membrane according to [5].
[ 7 ]前記カチオン交換基を有するプロックが、下記一般式(2 ) または (3 ) ·· [7] The block having the cation exchange group is represented by the following general formula (2) or (3):
Figure imgf000006_0002
Figure imgf000006_0002
[式 (2 ) および (3 ) 中、 R 1は、 それぞれ独立に、 水素原子、 炭素数 1〜2 0のアルキル基、炭素数 1〜2 0のアルコキシ基、炭素数 6〜 2 0のァリール基、 炭素数 6〜 2 0のァリールォキシ基、 または炭素数 2〜 2 0のァシル基を表し、 X 1 2は、 直接結合、 一O—で示される基、 一S—で示される基、 カルボ二ル基ま たはスルホ二ル基を表し、 J 1はカチオン交換基を表わし、 p、 qは 1または 2 であり、 dは 5以上の整数である。 ] で表される構造を有することを特徴とする [5] 記載の高分子電解質膜の製造方法。 [In the formulas (2) and (3), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms. Group, an aryloxy group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms, and X 12 is a direct bond, a group represented by 1O—, a group represented by 1S—, a carbo Represents a dil group or a sulfonyl group, J 1 represents a cation exchange group, and p and q are 1 or 2 And d is an integer greater than or equal to 5. [5] The method for producing a polymer electrolyte membrane according to [5].
[8] 前記イオン交換基を実質的に有さないブロックが、 下記一般式 (4) [8] The block having substantially no ion exchange group is represented by the following general formula (4):
Figure imgf000007_0001
Figure imgf000007_0001
[式 (4) 中、 Ar22は、 2価の芳香族基を示し、 該 2価の芳香族基は、 炭素数 :!〜 20のアルキル基、炭素数 1〜 20のアルコキシ基、炭素数 6〜 20のァリー ル基、 炭素数 6〜20のァリールォキシ基、 及ぴ、 炭素数 2〜20のァシル基か らなる群より選ばれる少なくとも一種を有していてもよく、 X22は、 直接結合、 一 O—で示される基、 一 S—で示される基、 カルボニル基またはスルホエル基を 示し、 eは 5以上の整数である。 ] で表される構造単位を有することを特徴とす る [5] 〜 [7] のいずれか 1つに記載の高分子電解質膜の製造方法。 [In the formula (4), Ar 22 represents a divalent aromatic group, and the divalent aromatic group is a carbon number:! -20 alkyl group, a carbon number 1-20 alkoxy group, a carbon number It may have at least one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms, and X 22 is directly A bond, a group represented by 1 O—, a group represented by 1 S—, a carbonyl group or a sulfole group, and e is an integer of 5 or more. ] The manufacturing method of the polymer electrolyte membrane as described in any one of [5]-[ 7 ] characterized by having the structural unit represented by these.
[9] 前記イオン交換基を実質的に有さないプロックが、 下記一般式 (5) : [9] The block having substantially no ion exchange group is represented by the following general formula (5):
-Arz-X - Ar3-Y- - Ar4-X'+-
Figure imgf000007_0002
-Ar z -X-Ar 3 -Y--Ar 4 -X '+-
Figure imgf000007_0002
[式 (5) 中、 Ar2、 Ar3、 Ar4、 Ar5は、 互いに独立に、 2価の芳香族基を 示し、 該 2価の芳香族基は、 炭素数 1〜 20のアルキル基、 炭素数 1〜20のァ ルコキシ基、炭素数 6〜 20のァリール基、炭素数 6〜 20のァリールォキシ基、 または炭素数 2〜 20のァシル基からなる群より選ばれる少なくとも一種を有し ていてもよく、 X、 X' は、 互いに独立に直接結合または 2価の基を表し、 Y、 Υ, は、 互いに独立に一 Ο—で示される基、 または、 一 S—で示される基、 を表 し、 a、 b、 cは互いに独立に 0か 1を表し、 nは 5以上の整数を表す。 ] で表 される構造単位を有することを特徴とする [5] 〜 [7] のいずれか 1つに記載 の高分子電解質膜の製造方法。 [10] [1] 〜 [9] のいずれか 1つに記載の製造方法によって得られること を特徴とする高分子電解質膜。 [In the formula (5), Ar 2 , Ar 3 , Ar 4 and Ar 5 independently represent a divalent aromatic group, and the divalent aromatic group is an alkyl group having 1 to 20 carbon atoms. And at least one selected from the group consisting of an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms. X and X ′ each independently represent a direct bond or a divalent group, and Y, Υ, and independently represent a group represented by 1Ο— or a group represented by 1 S—, The table A, b and c each independently represent 0 or 1, and n represents an integer of 5 or more. ] The manufacturing method of the polymer electrolyte membrane as described in any one of [5]-[7] characterized by having the structural unit represented by these. [10] A polymer electrolyte membrane obtained by the production method according to any one of [1] to [9].
[1 1] [10] 記載の高分子電解質膜と、 前記高分子電解質膜の両面に設けら れた触媒層とからなることを特徴とする膜一電極接合体。 [1 1] A membrane-one-electrode assembly comprising the polymer electrolyte membrane according to [10] and a catalyst layer provided on both surfaces of the polymer electrolyte membrane.
[12] [1 1] 記載の膜一電極接合体を有することを特徴とする燃料電池。 発明を実施するための最良の形態 [12] A fuel cell comprising the membrane-electrode assembly according to [1 1]. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施形態について詳細に説明するが、 本発明は下記実施 形態に限定されるものではない。 本発明の高分子電解質膜の製造方法では、 まず、 炭化水素系ブロック型高分 子電解質と溶媒とを含有する高分子電解質溶液を膜化して、 含溶媒プロック型高 分子電解質膜を得る (膜化工程) 。 次に、 前記含溶媒ブロック型高分子電解質膜 を加熱して (加熱処理工程) 、 燃料電池用の高分子電解質膜を得る。  Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments. In the method for producing a polymer electrolyte membrane of the present invention, first, a polymer electrolyte solution containing a hydrocarbon block type polymer electrolyte and a solvent is formed into a membrane to obtain a solvent-containing block type polymer electrolyte membrane (membrane) Process). Next, the solvent-containing block type polymer electrolyte membrane is heated (heat treatment step) to obtain a polymer electrolyte membrane for a fuel cell.
以下に、 炭化水素系ブロック型高分子電解質、 該高分子電解質と溶媒とを含有 する高分子電解質溶液の膜化方法、 膜化された含溶媒プロック型高分子電解質膜 の加熱処理方法、 加熱処理によって得られた高分子電解質膜、 そして、 この高分 子電解質膜を用いて得られる膜一電極接合体および燃料電池について、説明する。  The following is a method for forming a hydrocarbon block polymer electrolyte, a method for forming a polymer electrolyte solution containing the polymer electrolyte and a solvent, a method for heat-treating a filmed solvent-containing block-type polymer electrolyte membrane, and heat treatment The polymer electrolyte membrane obtained by the above, and the membrane-electrode assembly and fuel cell obtained using this polymer electrolyte membrane will be described.
(炭化水素系プロック型高分子電解質) (Hydrocarbon block type polymer electrolyte)
本発明の製造方法において、 炭化水素系ブロック型高分子電解質 (単に高分子 電解質ともいう) とは、 カチオン交換基を有し、 総原子数の原子の数の 5 0 %以 上が炭素および水素で構成されたブロック共重合体である。 In the production method of the present invention, a hydrocarbon block type polymer electrolyte (simply a polymer) The term “electrolyte” refers to a block copolymer having a cation exchange group and 50% or more of the total number of atoms composed of carbon and hydrogen.
なお、 「プロック型高分子電解質」 とは、 化学的に性質の異なる 2種類以上の プロック力 直接結合あるいは連結基を介して結合した共重合体からなる電解質 のことをいう。本発明の製造方法において、高分子電解質を構成する共重合体は、 化学的に性質の異なる 2種以上のプロックとして、カチオン交換基を有するプロッ クと、 実質的にイオン交換基を有さないプロックとを有するプロック共重合体で あることが好ましい。 カチオン交換基有するプロックと、 実質的にイオン交換基 を有さないブロックとを有するブロック共重合体であると、 本発明の効果が顕著 に現れる。  “Plock-type polymer electrolyte” refers to an electrolyte composed of a copolymer in which two or more types of Plock forces having different chemical properties are bonded directly or through a linking group. In the production method of the present invention, the copolymer constituting the polymer electrolyte is substantially free of an ion exchange group and a block having a cation exchange group as two or more types of chemically different properties. A block copolymer having a block is preferable. When the block copolymer has a block having a cation exchange group and a block having substantially no ion exchange group, the effect of the present invention is remarkably exhibited.
高分子電解質は、 耐熱性やリサイクルの容易さの観点から、 芳香族系プロック 共重合体を含むことが好ましい。 かかる芳香族系ブロック共重合体とは、 高分子 鎖の主鎖に芳香族環を有し、 高分子鎖の側鎖および Zまたは主鎖にカチオン交換 基を有するプロック共重合体を意味する。 かかる芳香族系プロック共重合体とし ては、溶媒に可溶なものが通常使用される。溶媒に可溶であると、公知の溶液キヤ スト法にて、 容易に膜ィヒすることができるため、 好ましい。  The polymer electrolyte preferably contains an aromatic block copolymer from the viewpoint of heat resistance and ease of recycling. The aromatic block copolymer means a block copolymer having an aromatic ring in the main chain of the polymer chain and having a cation exchange group in the side chain and Z or the main chain of the polymer chain. As such an aromatic block copolymer, a solvent-soluble one is usually used. It is preferable that it is soluble in a solvent because it can be easily formed into a film by a known solution casting method.
これらの芳香族系プロック共重合体のカチオン交換基は、 高分子の主鎖を構成 している芳香族環に直接置換していてもよく、 主鎖を構成している芳香族環に連 結基を介して結合していてもよく、または、それらの組み合わせであってもよレ、。 高分子電解質は、 そのカチオン交換基の少なくとも 1 0 %以上がプロトン型で あるものが好ましい。  The cation exchange group of these aromatic block copolymers may be directly substituted on the aromatic ring constituting the main chain of the polymer, and is linked to the aromatic ring constituting the main chain. It may be linked through a group or a combination thereof. The polymer electrolyte is preferably one in which at least 10% or more of the cation exchange group is in a proton type.
前記カチオン交換基としては、 スルホン酸基、 ホスホン酸基、 スルホニルイミ ド基が好ましい。 中でも、 カチオン交換基が、 強酸基であるスルホン酸基がより 好ましい。 高分子電解質はこれらのうち 1種を有してもよく、 これらのうち 2種 以上を併せ持つものでもよい。  The cation exchange group is preferably a sulfonic acid group, a phosphonic acid group, or a sulfonyl imide group. Among these, a sulfonic acid group in which the cation exchange group is a strong acid group is more preferable. The polymer electrolyte may have one of these, or may have two or more of these.
高分子電解質は、 膜ィ匕した際にミク口相分離構造を形成するものが好ましい。 このようなミク口相分離構造を形成する高分子電解質を用いると、 本発明の効果 が顕著に現れる。 ここで、 「ミクロ相分離構造」 とは、 高分子電解質を膜化した 際に、 異種のポリマーセグメント同士が化学結合で結合されていることにより、 分子鎖サイズのオーダーでの微視的相分離が生じてできる構造を指す。 例えば、 透過型電子顕微鏡 (TEM) で観察した場合に、 カチオン交換基を有するブロッ クの密度が高い微細な相 (ミクロドメイン) と、 イオン交換基を実質的に有さな いプロックの密度が高い微細な相 (ミクロドメイン) とが混在し、 各ミクロドメ イン構造のドメイン幅、 すなわち恒等周期が数 nm〜数 1 O O nmであるような 構造を指す。 恒等周期は 5 η π!〜 100 n mであることが好ましい。 The polymer electrolyte is preferably one that forms a Mikuguchi phase separation structure when filmed. When a polymer electrolyte that forms such a Mikuguchi phase separation structure is used, the effects of the present invention Appears prominently. Here, “microphase separation structure” means that when polymer electrolyte is made into a membrane, different polymer segments are bonded by chemical bonds, resulting in microscopic phase separation on the order of molecular chain size. Refers to the structure formed by For example, when observed with a transmission electron microscope (TEM), a fine phase (microdomain) having a high density of a block having a cation exchange group and a density of a block having substantially no ion exchange group are present. It refers to a structure in which high fine phases (microdomains) are mixed and the domain width of each microdomain structure, that is, the identity period is several nm to several OO nm. The identity period is 5 η π! ˜100 nm is preferred.
上記プロック共重合体の具体的な例としては、 特開 2001— 250567号 公報に記載の 「スルホン化された芳香族ポリマーブロックを有するブロック共重 合体」、特開 2003— 31 232号公報、特開 2004— 359925号公報、 特開 2005— 232439号公報、 特開 2003— 1 13136号公報等に記 載の 「ポリエーテルケトン、 ポリエーテルスルホンを主鎖構造とし、 スルホン酸 基を有するプロックを有するプロック共重合体」 が挙げられる。  Specific examples of the block copolymer include “a block copolymer having a sulfonated aromatic polymer block” described in JP-A-2001-250567, JP-A-2003-31232, “Polyetherketone, polyethersulfone has a main chain structure and a block having a sulfonic acid group” described in JP-A-2004-359925, JP-A-2005-232439, JP-A-2003-113136, etc. "Plock copolymer".
上記プロック共重合体において、 カチオン交換基を有するプロックとしては、 下記一般式 (1) で表される構造単位が複数連結されている構造を含むブロック であることが好ましく、構造単位 1つ当たりのカチオン交換基数が、平均して 0. 5個以上であることが好ましく、 平均して 1. 0個以上であることがより好まし レ、0 In the above block copolymer, the block having a cation exchange group is preferably a block including a structure in which a plurality of structural units represented by the following general formula (1) are linked, cation exchange groups is preferably at 0.5 or more on average, and more preferably an average of 1. is 0 or more Re, 0
Ar 11. -X1屮 (1) Ar 11. -X 1屮 (1)
d  d
[式 (1) 中、 Ar11は、 2価の芳香族基を示し、 該 2価の芳香族基は、 置換基 を有していてもよい炭素数 1〜20のアルキル基、 置換基を有していてもよい炭 素数 1〜20のアルコキシ基、置換基を有していてもよい炭素数 6〜 20のァリー ル基、 置換基を有していてもよい炭素数 6〜20のァリールォキシ基、 及ぴ、 置 換基を有していてもよい炭素数 2〜 2 0のァシル基からなる群より選ばれる少な くとも一種を有していてもよく、 また、 該 2価の芳香族基は、 少なくとも 1つの カチオン交換基が直接芳香環に結合しており、 X11は、 直接結合、 一 O—で示さ れる基、 一 S—で示される基、 カルボ-ル基またはスルホ二ル基を示し、 dは 5 以上の整数である。 ] [In the formula (1), Ar 11 represents a divalent aromatic group, and the divalent aromatic group represents a C 1-20 alkyl group which may have a substituent, or a substituent. An optionally substituted alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms that may have a substituent, and an aryloxy group having 6 to 20 carbon atoms that may have a substituent. Group, extension, setting The divalent aromatic group may have at least one selected from the group consisting of an acyl group having 2 to 20 carbon atoms which may have a substituent. A cation exchange group is directly bonded to the aromatic ring, X 11 represents a direct bond, a group represented by 1 O—, a group represented by 1 S—, a carbo group or a sulfonyl group, d is An integer greater than or equal to 5. ]
上記置換基を有していてもよい炭素数 1 〜 2 0のアルキル基としては、例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c —プチル基、 イソプチル基、 n—ペンチル基、 2 , 2—ジメチルプロピル基、 シ クロペンチル基、 n —へキシル基、 シクロへキシル基、 2—メチルペンチル基、 2—ェチルへキシル基、 ノ-ル基、 デシル基、 ドデシル基、 へキサデシル基、 ァ ダマンチル基、 ィコシル基等の炭素数 1 〜 2 0のアルキル基、 及びこれらの基に フッ素原子、 ヒ ドロキシル基、 二トリル基、 アミノ基、 メ トキシ基、 エトキシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル基、 フエノキシ基、 ナフチルォキ シ基等が置換し、 その総炭素数が 1 〜 2 0のアルキル基等が挙げられる。  Examples of the alkyl group having 1 to 20 carbon atoms that may have the substituent include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and an isoptyl group. N-pentyl group, 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group, 2-ethylhexyl group, nor group, decyl group, Alkyl groups having 1 to 20 carbon atoms such as dodecyl group, hexadecyl group, adamantyl group, and icosyl group, and these groups include fluorine atom, hydroxyl group, nitryl group, amino group, methoxy group, ethoxy group An isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, a naphthyloxy group, and the like, and an alkyl group having 1 to 20 carbon atoms in total.
また、上記置換基を有していてもよい炭素数 1 〜 2 0のアルコキシ基としては、 例えば、 メ トキシ基、 エトキシ基、 n—プロピルォキシ基、 イソプロピルォキシ 基、 n—プチルォキシ基、 s e c一ブチルォキシ基、 t e r t—ブチルォキシ基、 イソプチルォキシ基、 n—ペンチルォキシ基、 2 , 2—ジメチルプロピルォキシ 基、 シクロペンチルォキシ基、 n —へキシルォキシ基、 シクロへキシルォキシ基、 2—メチルペンチルォキシ基、 2一ェチルへキシルォキシ基、 デシルォキシ基、 ァダマンチルォキシ基、 へキサデシルォキシ基、 ィコシルォキシ基等の炭素数 1 〜 2 0のアルコキシ基、 及ぴこれらの基にフッ素原子、 ヒ ドロキシル基、 二トリ ル基、 アミノ基、 メ トキシ基、 エトキシ基、 イソプロピルォキシ基、 フエ-ル基、 ナフチル基、 フエノキシ基、 ナフチルォキシ基等が置換し、 その総炭素数が 1 〜 2 0のアルコキシ基等が挙げられる。  Examples of the alkoxy group having 1 to 20 carbon atoms which may have the substituent include, for example, a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, a sec group. Butyloxy group, tert-butyloxy group, isoptyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 21 Alkyloxy group, decyloxy group, adamantyloxy group, hexadecyloxy group, icosyloxy group, etc., an alkoxy group having 1 to 20 carbon atoms, fluorine atom, hydroxyl group, ditrityl group Group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenol group, naphthyl group , Phenoxy group, and Nafuchiruokishi group is substituted, the total carbon number and an alkoxy group having 1 to 2 0.
上記置換基を有していてもよい炭素数 6 〜 2 0のァリール基としては、例えば、 フエニル基、 ナフチル基、 アントラセニル基、 ビフエエル基等のァリール基、 及 ぴこれらの基にフッ素原子、 ヒドロキシル基、 二トリル基、 アミノ基、 メ トキシ 基、 エトキシ基、 イソプロピルォキシ基、 フエ-ル基、 ナフチル基、 フエノキシ 基、 ナフチルォキシ基等が置換し、 その総炭素数が 6〜2 0のァリール基等が挙 げられる。 Examples of the aryl group having 6 to 20 carbon atoms which may have the above substituent include aryl groups such as phenyl group, naphthyl group, anthracenyl group, biphenyl group, and the like. These groups are substituted with fluorine atoms, hydroxyl groups, nitrile groups, amino groups, methoxy groups, ethoxy groups, isopropyloxy groups, phenol groups, naphthyl groups, phenoxy groups, naphthyloxy groups, etc. Aryl groups with 6 to 20 carbon atoms are listed.
上記置換基を有していてもよい炭素数 6〜 2 0のァリールォキシ基としては、 例えば、 フエノキシ基、 ナフチルォキシ基、 アントラセエルォキシ基、 ビフエ- ルォキシ基等のァリールォキシ基、 及びこれらの基にフッ素原子、 ヒドロキシル 基、 二トリル基、 アミノ基、 メ トキシ基、 エトキシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル基、 フエノキシ基、 ナフチルォキシ基等が置換し、 その総 炭素数が 6〜2 0のァリールォキシ基等が挙げられる。  Examples of the aryloxy group having 6 to 20 carbon atoms which may have a substituent include, for example, aryloxy groups such as phenoxy group, naphthyloxy group, anthraceroxy group, biphenyloxy group, and the like, and these groups Is substituted with fluorine atom, hydroxyl group, nitrile group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group, naphthyloxy group, etc., and the total carbon number is 6 ~ 2 And 0 aryloxy group.
上記置換基を有していてもよい炭素数 2〜2 0のァシル基としては、 例えば、 ァセチル基、 プロピオ-ル基、 ブチリル基、 イソプチリル基、 ベンゾィル基、 1 一ナフトイル基、 2—ナフトイル基等の炭素数 2〜 2 0のァシル基、 及びこれら の基にフッ素原子、 ヒ ドロキシル基、 二トリル基、 アミノ基、 メ トキシ基、 エト キシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル基、 フエノキシ基、 ナフ チルォキシ基等が置換し、その総炭素数が 2 0以下であるァシル基が挙げられる。 ここで、 dは、 当該ブロックの重合度を表す 5以上の整数であり、 5〜: 1 0 0 0が好ましく、 より好ましくは 1 0〜 1 0 0 0であり、 特に好ましくは 2 0〜 5 0 0である。 dの値が 5以上であると、 燃料電池用の高分子電解質として、 プロ トン伝導度が十分であるので好ましい。 一方、 dの値が 1 0 0 0以下であれば、 該プロックの製造がより容易であるので好ましレ、。  Examples of the acyl group having 2 to 20 carbon atoms which may have the substituent include, for example, an acetyl group, a propiol group, a butyryl group, an isoptylyl group, a benzoyl group, 1 a naphthoyl group, and a 2-naphthoyl group. Such as an acyl group having 2 to 20 carbon atoms, and a fluorine atom, a hydroxyl group, a nitrile group, an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, a naphthyl group, Examples include an acyl group substituted with a phenoxy group, a naphthyloxy group, or the like, and having a total carbon number of 20 or less. Here, d is an integer of 5 or more that represents the degree of polymerization of the block, 5 to: 100 is preferable, more preferably 10 to 100, and particularly preferably 20 to 5 0 0. A value of d of 5 or more is preferred because the proton conductivity is sufficient as a polymer electrolyte for fuel cells. On the other hand, if the value of d is 1 00 0 0 or less, it is preferable because the production of the block is easier.
上記カチオン交換基を有するブロックは、 下記一般式 (2 ) または (3 ) で表 されるプロックであることがより好ましい。  The block having a cation exchange group is more preferably a block represented by the following general formula (2) or (3).
Figure imgf000012_0001
[式中、 R1は、 それぞれ独立に、水素原子、 炭素数 1〜2 0のアルキル基、 炭素 数 1〜2 0のアルコキシ基、 炭素数 6〜2 0のァリール基、 炭素数 6〜2 0のァ リールォキシ基、 または炭素数 2〜 2 0のァシル基を表し、 X1 2は、 直接結合、 _〇一で示される基、 一 S—で示される基、 カルボ-ル基またはスルホエル基を 表し、 J 1はカチオン交換基を表し、 p、 qは 1または 2であり、 dは 5以上の整 数である。 ]
Figure imgf000012_0001
[In the formula, each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 6 to 2 carbon atoms. Represents an aryloxy group of 0, or an acyl group having 2 to 20 carbon atoms, and X 12 is a direct bond, a group represented by ____, a group represented by S-, a carbo group or a sulfol group. J 1 represents a cation exchange group, p and q are 1 or 2, and d is an integer of 5 or more. ]
上記のようなイオン交換基を有するプロックを有すると、 得られる高分子電解 質膜において、 高水準のプロトン伝導度と吸水寸法安定性とが得られることに加 え、 膜強度をより向上させることができる。  Having a block having an ion exchange group as described above, in addition to obtaining a high level of proton conductivity and water absorption dimensional stability in the obtained polymer electrolyte membrane, further improving the membrane strength. Can do.
また、 R1は上記のとおり、置換基を表すが、 実質的にフエ二レン基、 ナフタレ ンジィル基が、 カチオン交換基以外の置換基を有さないものが好ましく、 水素原 子であることがより好ましい。 In addition, R 1 represents a substituent as described above. However, it is preferable that a phenylene group or a naphthalenedyl group has substantially no substituent other than a cation exchange group, and is preferably a hydrogen atom. More preferred.
上記一般式 (2 ) で表されるプロックの具体例としては、 カチオン交換基をス ルホン酸基で代表させて示すと、 下記の式 (2 a— 1 ) 〜 (2 a— 3 0 ) で示さ れる構造単位からなる群より選ばれる一つの構造単位が d個連結してなるプロッ クを挙げることができる。 ここで、 dは、 上記一般式 (2 ) における dと同等の 定義の数、 すなわち 5以上の整数である。 As a specific example of the block represented by the general formula (2), the cation exchange group represented by a sulfonic acid group can be represented by the following formulas (2 a-1) to (2 a-3 0). Examples thereof include a block in which d structural units selected from the group consisting of the structural units shown are connected. Here, d is the number of definitions equivalent to d in the above general formula (2), that is, an integer of 5 or more.
Figure imgf000014_0001
Figure imgf000014_0001
SO,H t 、 SO3H , 、 SO, H t , SO3H,,
3 (2a-1) 3 (2a-2) S03H (2a-3) 3 (2a-1) 3 (2a-2) S0 3 H (2a-3)
Figure imgf000014_0002
Figure imgf000014_0003
-18)
Figure imgf000015_0001
Figure imgf000015_0002
27)
Figure imgf000014_0002
Figure imgf000014_0003
-18)
Figure imgf000015_0001
Figure imgf000015_0002
27)
Figure imgf000015_0003
S〇3H
Figure imgf000015_0003
S 0 3 H
(2a - 28) 29) (2a— 30)  (2a-28) 29) (2a— 30)
また、 上記一般式 (3) で表されるブロックの具体例としては、 カチオン交換 基をスルホン酸基で代表させて示すと、 下記の (3 b— 1) 〜 (3 b— 28) で 示される構造単位からなる群より選ばれる構造単位が d個連結してなるプロック を挙げることができる。 ここで、 dは一般式 (2) における dと同等の定義の数、 すなわち 5以上の整数である。 As specific examples of the block represented by the general formula (3), cation exchange groups represented by sulfonic acid groups are represented by the following (3b-1) to (3b-28). A block in which d structural units selected from the group consisting of structural units are connected. Here, d is the same number of definitions as d in general formula (2), that is, an integer of 5 or more.
Figure imgf000016_0001
前記一般式 (2) 又は (3) で表されるブロックは、 例えば、 特開 2004— 90002号公報に記載の製造方法などに基づいて製造することができる。 さらに、 前記カチオン交換基を有するブロックとしては、 上記一般式 (2 ) で 表されるブロックを構成する構造単位、 または、 上記一般式 (3 ) で表されるプ ロックを構成する構造単位が、 ぞれぞれ d個連結してなるブロックであってもよ く、上記一般式( 2 )で表されるプロックを構成する構造単位と、上記一般式( 3 ) で表されるブロックを構成する構造単位とが、 あわせて d個連結してなるブロッ クであってもよい。 次に、 上記イオン交換基を実質的に有さないプロックについて説明する。
Figure imgf000016_0001
The block represented by the general formula (2) or (3) can be manufactured based on, for example, a manufacturing method described in JP-A-2004-90002. Furthermore, as the block having the cation exchange group, a structural unit constituting the block represented by the general formula (2) or a structural unit constituting the block represented by the general formula (3), Each of the blocks may be a block formed by connecting d pieces, and it constitutes a structural unit constituting the block represented by the general formula (2) and a block represented by the general formula (3). It may be a block consisting of d structural units connected together. Next, the block having substantially no ion exchange group will be described.
ここで、 「イオン交換基を実質的に有さない」 とは、 このプロックを主として 構成する繰り返し単位のほとんどがィオン交換基を有していないことを意味する。 具体的には、 このブロックを構成している構造単位 1個当たり、 イオン交換基が 平均して 0. 1個以下であり、 0. 0 5個以下であることが好ましく、 構造単位中 にイオン交換基が全く含まれていないことがより好ましい。  Here, “substantially free of ion exchange groups” means that most of the repeating units mainly constituting this block do not have ion exchange groups. Specifically, the average number of ion-exchange groups per structural unit constituting this block is 0.1 or less, preferably 0.05 or less, and ions are contained in the structural unit. More preferably, no exchange groups are included.
このイオン交換基を実質的に有さないブロックは、 下記一般式 (4 ) で表され るブロックであることが好ましい。  The block having substantially no ion exchange group is preferably a block represented by the following general formula (4).
Ar22一 X 22.
Figure imgf000017_0001
Ar 22 1 X 22.
Figure imgf000017_0001
[式 (4 ) 中、 A r 22は、 2価の芳香族基を示し、 該 2価の芳香族基は、 炭素数 1〜2 0のアルキル基、炭素数 1〜2 0のアルコキシ基、炭素数 6〜 2 0のァリー ル基、 炭素数 6〜2 0のァリールォキシ基、 及ぴ、 炭素数 2〜 2 0のァシル基か らなる群より選ばれる少なくとも一種を有していてもよく、 X22は、 直接結合、 一 O—で示される基、 一 S—で示される基、 カルボ-ル基またはスルホ二ル基を 示し、 eは 5以上の整数である。 ] [In the formula (4), Ar 22 represents a divalent aromatic group, and the divalent aromatic group includes an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, It may have at least one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms, X 22 represents a direct bond, a group represented by 1 O—, a group represented by 1 S—, a carbo group or a sulfo group, and e is an integer of 5 or more. ]
ここで、 一般式 (4 ) の芳香族基 A r 22の置換基であるアルキル基、 アルコキ シ基、 ァリール基、 ァリールォキシ基おょぴァシル基の具体的な例示は、 上記一 般式 (1) と同等である。 Here, specific examples of the alkyl group, the alkoxy group, the aryl group, the aryl group, and the opacyl group, which are the substituents of the aromatic group Ar 22 of the general formula (4), are as described above. It is equivalent to general formula (1).
また、 eは該ブロックの重合度を表す 5以上の整数であり、 5〜1000が好 ましく、 より好ましくは 10〜 1000であり、 更に好ましくは 20〜 500で ある。 eの値が 5以上であると、 膜強度に優れる高分子電解質膜が得られるため 好ましい。 一方、 eの値が 1000以下であれば、 該ブロックの製造がより容易 であるので好ましい。  E is an integer of 5 or more representing the degree of polymerization of the block, preferably 5 to 1000, more preferably 10 to 1000, and still more preferably 20 to 500. A value of e of 5 or more is preferable because a polymer electrolyte membrane having excellent membrane strength can be obtained. On the other hand, if the value of e is 1000 or less, it is preferable because the production of the block is easier.
上記イオン交換基を実質的に有さないブロックは、 下記一般式 (5) で表され るプロックであることがより好ましい。  The block having substantially no ion-exchange group is more preferably a block represented by the following general formula (5).
-Ar2-X- Ar3-Y-4 - Ar4-X' - Ar5— Y -Ar2-X -Ar3+
Figure imgf000018_0001
v ΙΛ ノ b
-Ar 2 -X- Ar 3 -Y-4-Ar 4 -X '-Ar 5 — Y -Ar 2 -X -Ar 3 +
Figure imgf000018_0001
v ΙΛ ノ b
[式 (5) 中、 Ar2、 Ar3、 A r 4、 A r 5は、 互いに独立に、 2価の芳香族基を 示し、 該 2価の芳香族基は、 炭素数 1〜 20のアルキル基、 炭素数 1〜20のァ ルコキシ基、炭素数 6〜 2◦のァリール基、炭素数 6〜 20のァリールォキシ基、 または炭素数 2〜 20のァシル基からなる群より選ばれる少なくとも一種を有し ていてもよく、 X、 X' は、 互いに独立に直接結合または 2価の基を表し、 Y、 Y' は、 互いに独立に一 Ο—で示される基、 または、 一 S—で示される基、 を表 し、 a、 b、 cは互いに独立に 0か 1を表し、 nは 5以上の整数を表す。 ] 式 (5) 中の nは該ブロックに係る重合度を表す 5以上の整数であり、 5〜1 000が好ましく、 より好ましくは 10〜1000であり、 更に好ましくは 20 〜500である。 nの値が 5以上であると、 膜強度に優れる高分子電解質膜が得 られるため好ましい。 一方、 nの値が 1000以下であれば、 該ブロックの製造 がより容易であるので好ましい。 [In formula (5), Ar 2 , Ar 3 , Ar 4 , and Ar 5 independently represent a divalent aromatic group, and the divalent aromatic group has 1 to 20 carbon atoms. At least one selected from the group consisting of an alkyl group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 2 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms. X and X ′ each independently represent a direct bond or a divalent group, and Y and Y ′ each independently represent a group represented by 1— or 1 S—. A, b, c each independently represents 0 or 1, and n represents an integer of 5 or more. In Formula (5), n is an integer of 5 or more representing the degree of polymerization related to the block, preferably 5 to 1,000, more preferably 10 to 1000, and still more preferably 20 to 500. A value of n of 5 or more is preferable because a polymer electrolyte membrane having excellent membrane strength can be obtained. On the other hand, if the value of n is 1000 or less, it is preferable because the production of the block is easier.
上記一般式(5) で表されるブロックの具体例としては、 下記一般式(5— 1) 〜 (5— 22) で表されるプロックが挙げられる。 Specific examples of the block represented by the general formula (5) include blocks represented by the following general formulas (5-1) to (5-22).
Figure imgf000019_0001
Figure imgf000019_0001
S08990/800 df/X3d S08990 / 800 df / X3d
I£lSC0/600i O
Figure imgf000020_0001
I £ lSC0 / 600i O
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000021_0003
具体的に、 本発明において、 好適なブロック共重合体としては、 下記 (表 1) に示した組み合わせ構成の共重合体 (6— 1) 〜 (6— 18) を例示すること力 S できる。 なお、 下記 (表 1) において、 カチオン交換基を有するプロックの欄に 記載の (2 a— 1) 、 (2 a— 4) 、 (2 a— 19) 、 (2 a— 25) は、 前記 カチオン交換基を有するブロックを構成す 構造単位を示し、 実質的にイオン交 換基を有さないブロックの欄に記載の (5· 1) 、 (5-2) , (5-9) , (5 — 10) 、 (5— 21) 、 (5-22) は 前記ィオン交換基を実質的に有さな いプロックを構成する構造単位を示す。
Figure imgf000021_0003
Specifically, in the present invention, examples of suitable block copolymers include the copolymers (6-1) to (6-18) having the combination constitution shown in the following (Table 1). In the following (Table 1), (2a-1), (2a-4), (2a-19) and (2a-25) described in the column of the block having a cation exchange group are (5), (5-2), (5-9), ((5)) indicates the structural unit that constitutes the block having a cation exchange group, and is described in the column of the block having substantially no ion exchange group. 5-10), (5-21), and (5-22) represent structural units constituting a block substantially free of the ion exchange group.
[表 1] [table 1]
(表 1) (table 1)
Figure imgf000022_0001
Figure imgf000022_0001
ブロック共重合体は、 下記一般式 (7— 1) および (7— 2) で表されるもの が好ましい。
Figure imgf000023_0001
The block copolymers are preferably those represented by the following general formulas (7-1) and (7-2).
Figure imgf000023_0001
Figure imgf000023_0002
なお、 上記ブロック共重合体としては、 カチオン基を有するブロックと、 実質 的にィオン基を有さないプロックの存在比を調整することにより、 上記プロック 共重合体のイオン交換容量が、 0. 5〜4. Ome qZgの範囲となることが好 ましく、 より好ましくは 0. 8〜3. 5me qZgの範囲となることが好ましい。 上記イオン交換容量は、 滴定法によって求めることができる。
Figure imgf000023_0002
As the block copolymer, the ion exchange capacity of the block copolymer is 0.5 by adjusting the abundance ratio of the block having a cationic group and the block having substantially no ion group. It is preferable to be in the range of ˜4. Ome qZg, more preferably in the range of 0.8 to 3.5 me qZg. The ion exchange capacity can be determined by a titration method.
上記プロック型高分子電解質は、 その構造などにより最適分子量範囲を適宜求 めることができるが、 一般的には GPC (ゲル浸透クロマトグラフィー) 法によ るポリスチレン換算の数平均分子量で表して、 1000〜 1000000が好ま しい。 当該数平均分子量の下限としては 5000がより好ましく、 10000が 更に好ましく、 一方、 上限としては 500000がより好ましく、 300000 が更に好ましい。  The above-mentioned block type polyelectrolyte can obtain the optimum molecular weight range as appropriate depending on its structure, etc., but generally expressed in terms of polystyrene-reduced number average molecular weight by GPC (gel permeation chromatography) method, 1000-1000000 is preferred. The lower limit of the number average molecular weight is more preferably 5000, further preferably 10000, while the upper limit is more preferably 500000, further preferably 300000.
上記平均分子量が、 1000以上であると、膜強度がより向上する傾向にあり、 1000000以下であると、 該高分子電解質の溶媒に対する溶解性が良好とな り、 得られる溶液の溶液粘度が低下することから、 溶液キャスト法による製膜が 容易になる。  When the average molecular weight is 1000 or more, the film strength tends to be further improved. When the average molecular weight is 1000000 or less, the solubility of the polymer electrolyte in a solvent is improved, and the solution viscosity of the resulting solution is lowered. Therefore, film formation by the solution casting method becomes easy.
上記プロック型高分子電解質の少なくとも一部のカチオン交換基がプロトン型 であることが好ましい。 この場合は、 そのブロック型分子電解質の熱分解開始温 度が低くなり、 それに伴って後述の加熱処理における加熱処理温度も低くするこ とができる。 前記カチオン交換基において、 プロトン型のカチオン交換基の割合 は、 1 0 %以上が好ましい。 より好ましくは 5 0 %以上、 更に好ましくは 8 0 % 以上である。 It is preferable that at least a part of the cation exchange group of the block type polymer electrolyte is a proton type. In this case, the thermal decomposition initiation temperature of the block-type molecular electrolyte Accordingly, the heat treatment temperature in the heat treatment described later can be lowered. In the cation exchange group, the proportion of the proton type cation exchange group is preferably 10% or more. More preferably, it is 50% or more, and further preferably 80% or more.
(含溶媒プロック型高分子電解質膜とその膜化方法) (Solvent-containing block-type polymer electrolyte membrane and method for forming the membrane)
高分子電解質を適当な溶媒に溶解して得られる高分子電解質溶液 (以下、 単に 溶液ともいう) を膜ィヒすることによって、 含溶媒ブロック型高分子電解質膜を得 ることができる (膜化工程) 。  Solvent-containing block-type polymer electrolyte membranes can be obtained by membrane-forming a polymer electrolyte solution obtained by dissolving the polymer electrolyte in a suitable solvent (hereinafter also simply referred to as a solution). Process).
高分子電解質溶液の膜化方法としては、 特に限定されるものではなく、 スピン コート法、 溶液キャスト法など公知の方法を用いることができるが、 溶液キャス ト法が好ましい。 前記溶液を、 支持基材上に塗布し、 溶媒量を低減することによ り、 前記支持材上に含溶媒ブロック型高分子電解質膜を製造する溶液キャスト法 は、 操作が簡便である。  The method for forming the polymer electrolyte solution into a film is not particularly limited, and a known method such as a spin coating method or a solution casting method can be used, but a solution casting method is preferable. The solution casting method for producing a solvent-containing block type polymer electrolyte membrane on the support material by applying the solution on a support substrate and reducing the amount of solvent is easy to operate.
その他の膜化方法としては、 上記高分子電解質を適当な溶媒に溶解して得られ た溶液を多孔質な膜状支持体に塗布し、 該多孔質な膜状支持体に高分子電解質を 保持させ、 その後、 溶液の溶媒量を低減することによって、 該多孔質な膜状支持 体と、 該膜状支持体に保持された高分子電解質とからなる複合膜を得る膜化方法 も可能である。 この複合膜を含溶媒ブロック型高分子電解質膜として用いること によって、 高分子電解質膜を製造してもよい。 この膜化方法に用いる多孔質な膜 状支持体としては、 例えば、 ポリイミド、 ポリスルホン、 ポリアミド、 ポリテト ラフノレォロエチレン ( P T F E ) 、 エチレンーテトラフルォロエチレン共重合体 (E T F E) 等を材料とした多孔質膜を用いることができる。  As another membrane formation method, a solution obtained by dissolving the above polymer electrolyte in an appropriate solvent is applied to a porous membrane support, and the polymer electrolyte is retained on the porous membrane support. Then, by reducing the amount of the solvent in the solution, a membrane forming method is also possible in which a composite membrane comprising the porous membrane-like support and the polymer electrolyte held on the membrane-like support is obtained. . A polymer electrolyte membrane may be produced by using this composite membrane as a solvent-containing block type polymer electrolyte membrane. Examples of the porous membrane support used in this membrane formation method include polyimide, polysulfone, polyamide, polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE). A porous membrane can be used.
ポリエチレンテレフタレート ( P E T) フィルム、 ポリテトラフルォロェチレ ン (P T F E) フィルム等が好適に用いられる。  Polyethylene terephthalate (PET) film, polytetrafluoroethylene (PTFE) film, etc. are preferably used.
前記溶媒は、 高分子電解質を溶解可能であり、 その後に除去し得るものである ならば特に制限はなく、 例えば、 N, N—ジメチルホルムアミド (以下、 「DM F」 という) 、 N, N—ジメチルァセトアミド (以下、 「DMA c」 という) 、 N—メチルー 2—ピロリ ドン (以下、 「NMP」 という) 、 ジメチルスルホキシ ド (以下、 「DM S O」 という) 等の非プロトン性極性溶媒、 あるいはジクロロ メタン、 クロロホノレム、 1 , 2—ジクロロェタン、 クロ口ベンゼン、 ジクロロべ ンゼン等の塩素系溶媒、 メタノール、 エタノール、 プロパノール等のアルコール 類、エチレングリコ一/レモノメチノレエーテノレ、エチレングリコーノレモノエチノレエ一 テノレ、 プロピレングリコーノレモノメチ /レエ一テノレ、 プロピレングリコーノレモノエ チルエーテル等のアルキレングリコールモノアルキルエーテルが挙げられる。 中 でも、 N, N—ジメチルホルムアミ ド (以下、 「DMF」 という) 、 N, N—ジ メチルァセトアミド (以下、 「DMA c」 という) 、 N—メチルー 2—ピロリ ド ン (以下、 「NMP」 という) 、 ジメチルスルホキシド (以下、 「DM S O」 と いう) 等の非プロトン性極性溶媒が好ましい。 The solvent is not particularly limited as long as it can dissolve the polyelectrolyte and can be removed thereafter. For example, N, N-dimethylformamide (hereinafter, “DM F ”), N, N-dimethylacetamide (hereinafter referred to as“ DMA c ”), N-methyl-2-pyrrolidone (hereinafter referred to as“ NMP ”), dimethyl sulfoxide (hereinafter referred to as“ DM SO ”) Aprotic polar solvents such as dichloromethane, chlorohonolem, chlorinated solvents such as 1,2-dichloroethane, black benzene and dichlorobenzene, alcohols such as methanol, ethanol and propanol, ethylene glycol Examples thereof include alkylene glycol monoalkyl ethers such as monomethylenoatenole, ethylene glycolenomonoethylenoleate, propyleneglycolenomonomethyle / leinetenole, and propyleneglycolonemonoethylether. Among them, N, N-dimethylformamide (hereinafter referred to as “DMF”), N, N-dimethylacetamide (hereinafter referred to as “DMA c”), N-methyl-2-pyrrolidone (hereinafter referred to as “DMC”). Aprotic polar solvents such as “NMP” and dimethyl sulfoxide (hereinafter referred to as “DMSO”) are preferred.
これらは単独で用いることもできるが、 必要に応じて 2種以上の溶媒を混合し て用いることもできる。 中でも、 DMF、 DMA c、 NM P、 DM S O等が前記 プロック型高分子電解質の溶解性が高く好ましレ、。  These can be used alone, but can be used by mixing two or more solvents as necessary. Among them, DMF, DMAc, NMP, DMSO, etc. are preferable because the solubility of the block type polymer electrolyte is high.
溶液キャスト法に用いる支持基材は、 溶液により膨潤あるいは溶解することな く、 力つ製膜後に得られる含溶媒ブロック型高分子電解質膜が、 剥離し得るもの であるならば、 特に制限はないが、 例えば、 ガラス、 ステンレス材、 ステンレス ベルト、 ポリエチレンテレフタレート ( P E T) フィルム、 ポリテトラフルォロ エチレン (P T F E) フィルム等が好適に用いられる。 該基材表面は必要に応じ 離型処理、鏡面処理、エンボス処理、或いは艷消し処理等が施されていてもよい。 溶液キャスト法に用いる溶液中のブロック型高分子電解質濃度は、 使用したプ ロック型高分子電解質自体の分子量にもよるが、 通常 5〜 4 0重量%、 好ましく は 5〜 3 0重量%である。 このプロック型高分子電解質濃度が 5重量%以上であ ると、実用的な膜厚の高分子電解質膜が加工しやすく、 4 0重量%以下であると、 得られる溶液の溶液粘度が低くなることから、 平滑な表面のフィルムを得ること が容易となる。 また、 この溶液キャスト法 (膜化工程) において溶媒量を低減し、 塗膜を硬化 するために、 加熱してもよいが、 その場合の加熱の温度範囲は、 前記プロック型 高分子電解質の熱分解開始温度以下とすることが好ましい。 (含溶媒ブロック型高分子電解質膜の加熱処理工程) The support substrate used in the solution casting method is not particularly limited as long as the solvent-containing block type polymer electrolyte membrane obtained after strong film formation can be peeled off without swelling or dissolving by the solution. However, for example, glass, stainless steel, stainless steel belt, polyethylene terephthalate (PET) film, polytetrafluoroethylene (PTFE) film, etc. are preferably used. The surface of the base material may be subjected to a mold release process, a mirror surface process, an embossing process, or an erasing process as necessary. The concentration of the block type polyelectrolyte in the solution used in the solution casting method is usually 5 to 40% by weight, preferably 5 to 30% by weight, although it depends on the molecular weight of the block type polyelectrolyte itself used. . When the concentration of the block-type polymer electrolyte is 5% by weight or more, a polymer electrolyte membrane having a practical film thickness is easy to process, and when the concentration is 40% by weight or less, the solution viscosity of the resulting solution is lowered. Therefore, it becomes easy to obtain a film having a smooth surface. Further, in this solution casting method (film formation step), heating may be performed in order to reduce the amount of solvent and cure the coating film. In this case, the temperature range of the heating is the heat of the block type polymer electrolyte. It is preferable that the temperature is not higher than the decomposition start temperature. (Heat treatment process for solvent-containing block type polymer electrolyte membrane)
前記含溶媒プロック型高分子電解質膜は、 加熱処理されて所望の高分子電解質 膜とされる。 この加熱処理工程では、 前記含溶媒プロック型高分子電解質膜を、 前記含溶媒プロック型高分子電解質膜を構成しているプロック型高分子電解質の 熱分解開始温度より高い温度で加熱処理する。 前記熱分解開始温度に対して 1 0 〜 1 0 0 °c高い温度で加熱処理することが好ましく、 前記熱分解開始温度に対し て 2 0 °C〜 8 0 °C高い温度で加熱処理することがより好ましい。この場合のプロッ ク型高分子電解質の熱分解開始温度は T Gノ D T Aにより測定することができる。 含溶媒プロック型高分子電解質膜にそのプロック型高分子電解質の熱分解開始温 度よりも高い所定の温度の熱を加えると、 該温度では、 溶媒が残存する状態下で のブロック型高分子電解質の熱分解程度を小さくすることができる。 すなわち、 高分子電解質が熱分解を開始する温度で加熱しても、 溶媒が残存する場合には、 高分子電解質が分解する前に、 高分子電解質の分子量を増大させることが可能と なることがある。 好ましくは、 高分子電解質が溶媒に可溶な範囲で、 加熱処理前 に比べて、 加熱処理後の高分子電解質膜を構成するプロック型高分子電解質の分 子量が増大する。 なお、 この高分子電解質の分子量の増大の度合いは、 加熱処理 前の数平均分子量に対して加熱処理後の数平均分子量が 1 . 0 5倍以上であると 好ましく、 1 . 1 0倍以上であるとより好ましい。  The solvent-containing block type polymer electrolyte membrane is heat-treated to obtain a desired polymer electrolyte membrane. In this heat treatment step, the solvent-containing block-type polymer electrolyte membrane is heated at a temperature higher than the thermal decomposition start temperature of the block-type polymer electrolyte constituting the solvent-containing block-type polymer electrolyte membrane. Heat treatment is preferably performed at a temperature 10 to 100 ° C higher than the thermal decomposition start temperature, and heat treatment is performed at a temperature 20 ° C to 80 ° C higher than the thermal decomposition start temperature. Is more preferable. In this case, the thermal decomposition starting temperature of the block-type polymer electrolyte can be measured by TGNODTA. When heat at a predetermined temperature higher than the thermal decomposition start temperature of the block-type polymer electrolyte is applied to the solvent-containing block-type polymer electrolyte membrane, the block-type polymer electrolyte in a state where the solvent remains at that temperature The degree of thermal decomposition of can be reduced. That is, even if the polymer electrolyte is heated at a temperature at which thermal decomposition starts, if the solvent remains, it may be possible to increase the molecular weight of the polymer electrolyte before the polymer electrolyte decomposes. is there. Preferably, in the range in which the polymer electrolyte is soluble in the solvent, the molecular weight of the block type polymer electrolyte constituting the polymer electrolyte membrane after the heat treatment is increased as compared with that before the heat treatment. The degree of increase in the molecular weight of the polymer electrolyte is preferably such that the number average molecular weight after the heat treatment is 1.05 times or more, and 1.10 times or more as compared to the number average molecular weight before the heat treatment. More preferably.
また、 この加熱処理における加熱時間は、 前記含溶媒ブロック型高分子電 #質 膜の種類や上記加熱処理温度にも大きく依存するが、 前記含溶媒プロック型高分 子電解質膜を構成しているブロック型高分子電解質の熱分解の程度を抑え、 高い 処理効果や生産性を得るためにも、 1分以上 5時間以下が好ましく、 5分以上 3 時間以下がより好ましい。 溶媒に可溶な範囲で、ブロック型高分子電解質の分子量を増大させるためには、 前記範囲内での加熱温度および加熱時間の制御と、 加熱処理後の高分子電解質膜 中の残存溶媒量を、 加熱処理後の高分子電解質膜中の残存溶媒量が 1重量%以上 となるように、 維持することが重要である。 Further, the heating time in this heat treatment largely depends on the kind of the solvent-containing block type polymer electrolyte membrane and the heat treatment temperature, but constitutes the solvent-containing block type polymer electrolyte membrane. In order to suppress the degree of thermal decomposition of the block type polymer electrolyte and obtain a high treatment effect and productivity, it is preferably from 1 minute to 5 hours, more preferably from 5 minutes to 3 hours. In order to increase the molecular weight of the block-type polymer electrolyte within the range soluble in the solvent, the control of the heating temperature and the heating time within the above range and the amount of residual solvent in the polymer electrolyte membrane after the heat treatment are set. It is important to maintain the amount of residual solvent in the polymer electrolyte membrane after the heat treatment to be 1% by weight or more.
なお、 ここでいう 「高分子電解質膜中の残存溶媒量 1重量%以上」 とは、 高分 子電解質膜全体の重さに対して、 残存溶媒量が 1重量%以上であることを意味す る。 そして、 「残存溶媒量」 とは、 加熱処理後の高分子電解質膜中に残存してい る溶媒の量のことを意味する。 ここでの 「溶媒」 とは、 キャスト製膜時に用いた 溶媒を示す。 なお、 加熱処理後とは、 加熱処理工程の終了直後から、 6時間以内 の時間範囲を意味する。 すなわち、 本発明の高分子電解質膜の製造方法では、 加 熱処理工程の終了直後から、 6時間以内の時間範囲のうち、 ある特定の時間にお いて、高分子電解質膜中の残存溶媒量が 1重量。 /o以上である。 この残存溶媒量は、 ガスクロマトグラフィ一法によつて求めることができる。  As used herein, “the amount of residual solvent in the polymer electrolyte membrane is 1% by weight or more” means that the amount of residual solvent is 1% by weight or more with respect to the weight of the entire polymer electrolyte membrane. The The “residual solvent amount” means the amount of the solvent remaining in the polymer electrolyte membrane after the heat treatment. Here, “solvent” refers to the solvent used in the casting film formation. Note that “after heat treatment” means a time range within 6 hours from the end of the heat treatment step. That is, in the method for producing a polymer electrolyte membrane of the present invention, the amount of residual solvent in the polymer electrolyte membrane is 1 in a certain time within a time range of 6 hours or less immediately after the end of the heat treatment step. weight. More than / o. This residual solvent amount can be determined by a gas chromatography method.
すなわち、 本発明の高分子電解質膜の製造方法においては、 前記溶液を膜化し て得られた含溶媒プロック型高分子電解質膜を、 該含溶媒プロック型高分子電解 質膜を構成するプロック型高分子電解質の熱分解開始温度より高い温度で処理し、 かつ、 該含溶媒高分子電解質膜中の含有溶媒量を該加熱処理の後の残存溶媒量が 1重量%以上となるように維持することにより、溶媒が残存する状態下でのプロッ ク型高分子電解質の熱分解程度を小さくすることができる。 すなわち、 高分子電 解質が熱分解を開始する温度で加熱しても、 溶媒が残存する場合には、 高分子電 解質が分解する前に、 高分子電解質の分子量を増大させることが可能となること がある。好ましくは、高分子電解質が溶媒に可溶な範囲で、加熱処理前に比べて、 加熱処理後の高分子電解質膜を構成するプロック型高分子電解質の分子量が増大 する。 その結果、 得られた高分子電解質膜は、 柔軟性を保ちながらも高分子量化 (緻密化) されている。 このような反応機構により、 本発明の製造方法によって 得られた高分子電解質膜は、 プロトン伝導度を高く保ちながらもメタノールが透 過し難く、 ハンドリング性に優れた、 固体高分子型燃料電池、 特に直接メタノー ル型燃料電池に好適なものになると考えられる。 上記残存溶媒量が 1重量%未満 であると、 高分子電解質膜の柔軟性、 ハンドリング性が不十分となる。 このよう な効果が発現される理由は必ずしも定かではないが、 本発明者は次のように推定 している。 すなわち、 当該ブロック型炭化水素系高分子電解質において、 カチォ ン交換基を有するプロックは、 カチオン交換基が比較的密に集積されており、 こ のように集積されたカチオン交換基同士が反応して、 良好なメタノールパリア性 を発現すると推定される。 That is, in the method for producing a polymer electrolyte membrane of the present invention, a solvent-containing block type polymer electrolyte membrane obtained by forming the solution into a membrane is used as a block type high polymer electrolyte membrane constituting the solvent-containing block type polymer electrolyte membrane. Treating at a temperature higher than the thermal decomposition start temperature of the molecular electrolyte, and maintaining the amount of solvent in the solvent-containing polymer electrolyte membrane so that the amount of residual solvent after the heat treatment is 1% by weight or more As a result, it is possible to reduce the thermal decomposition degree of the block-type polymer electrolyte in a state where the solvent remains. That is, even if the polymer electrolyte is heated at a temperature at which thermal decomposition begins, if the solvent remains, the molecular weight of the polymer electrolyte can be increased before the polymer electrolyte decomposes. It may become. Preferably, the molecular weight of the block-type polymer electrolyte constituting the polymer electrolyte membrane after the heat treatment is increased in the range in which the polymer electrolyte is soluble in the solvent as compared with that before the heat treatment. As a result, the obtained polymer electrolyte membrane has been increased in molecular weight (densified) while maintaining flexibility. Due to such a reaction mechanism, the polymer electrolyte membrane obtained by the production method of the present invention has a solid polymer fuel cell that has high proton conductivity and hardly permeates methanol, and has excellent handling properties. Especially direct methanol This is considered to be suitable for a fuel cell. When the amount of the residual solvent is less than 1% by weight, the flexibility and handling properties of the polymer electrolyte membrane are insufficient. The reason why such an effect is manifested is not necessarily clear, but the present inventor estimates as follows. That is, in the block-type hydrocarbon polymer electrolyte, the block having a cation exchange group has a relatively dense collection of cation exchange groups, and the accumulated cation exchange groups react with each other. It is estimated that good methanol pariasis is developed.
なお、 上記加熱処理工程において、 加熱の際に酸素が多く存在する雰囲気下で 処理を施すと、 酸素による高分子電解質膜の酸化といった望ましくない副反応が 起こるため、 真空下や不活性ガス下で行なうことが好ましい。  In the above heat treatment process, if the heat treatment is performed in an atmosphere in which a large amount of oxygen exists, an undesirable side reaction such as oxidation of the polymer electrolyte membrane due to oxygen occurs. Therefore, in a vacuum or an inert gas It is preferable to do so.
また、 膜化工程 (溶液キャスト法) は、 高分子電解質の熱分解開始温度以下の 温度領域で行い、 その後、 連続して上述の加熱処理を行なうことが好ましい。 膜化工程を予め前記熱分解開始温度以下の温度領域で行なうことで、 急激な溶 媒の揮発などによる高分子電解質膜の外観不良を防ぐことができるし、 前述の加 熱処理中の膜中の残存溶媒量の維持も容易となる。 さらに、 かかる制御によって 残存された溶媒成分により、その後の膜を高分子量ィヒするための加熱処理がプロッ ク型高分子電解質の熱分解開始温度を超える高温にて行われても、 加熱処理によ り得られた高分子電解質膜は、 柔軟性が高く、 クラックが起こり難く、 ハンドリ ング性に優れたものとなる。  Further, it is preferable that the film-forming step (solution casting method) is performed in a temperature region below the thermal decomposition start temperature of the polymer electrolyte, and then the above-described heat treatment is continuously performed. By performing the film-forming step in a temperature range below the thermal decomposition start temperature in advance, it is possible to prevent the appearance failure of the polymer electrolyte membrane due to rapid volatilization of the solvent, and the like. Maintenance of the residual solvent amount is also facilitated. Further, even if the heat treatment for increasing the molecular weight of the subsequent film is performed at a high temperature exceeding the thermal decomposition start temperature of the block type polymer electrolyte by the solvent component remaining by such control, the heat treatment is not performed. The obtained polymer electrolyte membrane is highly flexible, hardly cracks, and has excellent handling properties.
加熱処理後の高分子電解質膜を硫酸や塩酸などで酸処理することにより、 高分 子電解質膜中の高分子電解質が有するカチオン交換基をプロトン型に変換するこ とが好ましい。 さらに、 残存溶媒を除去するため、 加熱処理後の高分子電解質膜 に、 水洗処理を行うことが好ましい。 本発明の高分子電解質膜の製造方法によって、 高分子電解質膜を製造すること ができる。  It is preferable to convert the cation exchange group of the polymer electrolyte in the polymer electrolyte membrane into a proton type by acid treatment of the polymer electrolyte membrane after the heat treatment with sulfuric acid or hydrochloric acid. Furthermore, in order to remove the residual solvent, it is preferable to perform a water washing treatment on the polymer electrolyte membrane after the heat treatment. A polymer electrolyte membrane can be produced by the method for producing a polymer electrolyte membrane of the present invention.
本発明の高分子電解質膜の膜厚は、 特に制限はされないが、 5〜2 0 0 mが 好ましい。 5 μ πι以上であると、 実用に耐える膜強度を得ることができ、 2 0 0 μ m以下であると、 膜抵抗の低減すなわち発電性能を向上させることができる。 より好ましくは 8〜1 0 0 μ πι、 更に好ましくは 1 5〜8 0 である。 The thickness of the polymer electrolyte membrane of the present invention is not particularly limited, but is 5 to 200 m. preferable. When it is 5 μπι or more, a membrane strength that can be practically used can be obtained, and when it is 200 μm or less, membrane resistance can be reduced, that is, power generation performance can be improved. More preferably, it is 8 to 100 μππι, and even more preferably 15 to 80.
本発明の高分子電解質膜は、燃料電池に好適に適用することができる。中でも、 直接メタノール型燃料電池により好適に適用することができる。  The polymer electrolyte membrane of the present invention can be suitably applied to a fuel cell. Among these, the direct methanol fuel cell can be preferably applied.
(膜―電極接合体および燃料電池) (Membrane-electrode assembly and fuel cell)
次に、 本発明の膜一電極接合体 (ME A) および本発明の燃料電池について説 明する。 本発明の膜一電極接合体は、 得られた高分子電解質膜の両面に、 少なくとも触 媒層を形成することで製造することができる。  Next, the membrane-electrode assembly (MEA) of the present invention and the fuel cell of the present invention will be described. The membrane-electrode assembly of the present invention can be produced by forming at least a catalyst layer on both surfaces of the obtained polymer electrolyte membrane.
触媒層は触媒物質を含有する。 前記触媒物質としては、 メタノールと酸素との 酸ィ匕還元反応を活性ィ匕できるものであれば、 特に制限はなく、 公知のものを用い ることができる。 前記触媒物質としては、 例えば、 白金、 白金一ルテニウム合金 等の貴金属類や、 錯体系電極触媒 (例えば、 高分子学会燃料電池材料研究会編、 「燃料電池と高分子」 、 1 0 3〜1 1 2頁、 共立出版、 2 0 0 5年 1 1月 1 0日 発行参照) が挙げられる。 中でも、 白金または白金一ルテニウム合金の微粒子を 用いることが好ましい。 通常、 燃料極 (アノード) 側の触媒層 (第 1の触媒層) の触媒として白金または白金一ルテニウム合金(微粒子)が用いられ、空気極(力 ソード) 側の触媒層 (第 2の触媒層) の触媒として白金 (微粒子) が用いられる。 また、触媒物質として、前記触媒物質を表面に担持した導電性材料を用いると、 触媒層での水素イオン及び電子の輸送を容易にできるため、 好ましい。 前記導電 性材料としては、 カーポンプラックやカーボンナノチューブなどの導電^ ¾カーボ ン材料、 酸化チタンなどのセラミック材料などの公知の材料が拳げられる。  The catalyst layer contains a catalyst material. The catalyst substance is not particularly limited as long as it can activate an acid reduction reaction between methanol and oxygen, and a known substance can be used. Examples of the catalyst substance include noble metals such as platinum and platinum-ruthenium alloys, and complex electrode catalysts (for example, “Fuel Cell and Polymer” edited by the Society of Polymer Science, Fuel Cell Materials Research Group, 1 2 pages, Kyoritsu Shuppan, 2 2005 1 January 10th issue)). Among these, it is preferable to use fine particles of platinum or a platinum-ruthenium alloy. Usually, platinum or platinum-ruthenium alloy (fine particles) is used as the catalyst for the catalyst layer (first catalyst layer) on the fuel electrode (anode) side, and the catalyst layer (second catalyst layer) on the air electrode (force sword) side. ) Platinum (fine particles) is used as the catalyst. In addition, it is preferable to use a conductive material carrying the catalyst substance on the surface as the catalyst substance because hydrogen ions and electrons can be easily transported in the catalyst layer. Examples of the conductive material include known materials such as conductive carbon materials such as car pump racks and carbon nanotubes, and ceramic materials such as titanium oxide.
また、 触媒層は、 高分子電解質を含有することが好ましい。 前記高分子電解質 としては、 イオン伝導性があり、 かつ、 前記触媒物質を結着させるバインダーと して働くものであれば、特に制限はなく、従来知られているデュポン社製のナフィ オン (商品名) 、 脂肪族高分子電解質、 芳香族高分子電解質等が挙げられる。 触媒層は、触媒物質及び高分子電解質以外に、触媒層の撥水性を高める目的で、 P T F Eなどの撥水材を含有してもよく、 また触媒層のガス拡散性を高める目的 で、 炭酸カルシウムなどの造孔材を含有してもよく、 さらに得られる膜一電極接 合体の耐久性を高める目的で金属酸化物などの安定剤などを含有してもよい。 膜一電極接合体は、 触媒層の外側に、 燃料を効率よくかつ均一に拡散させるた めに、 ガス拡散層を有することが好ましい。 前記ガス拡散層は導電性を有するも のであれば特に限定されないが、 安価で取り扱いも容易なため、 多孔質性のカー ボン不織布またはカーボンペーパーが好ましい。 高分子電解質膜の両面に触媒層を形成させる方法としては、 高分子電解質膜上 に直接触媒層を形成させる方法と、 予め高分子電解質膜以外の他の基材上に触媒 層を形成させた後に、 該触媒層と高分子電解質膜とを接合させる方法とがある。 高分子電解質膜上、 または、 高分子電解質膜以外の基材 (以下、 他の基材とも レ、う) 上に、触媒層を形成させる方法としては、特に制限はなく、 ダイコーター、 スクリーン印刷、 スプレー法、 インクジェット法等の公知の方法を使用すること ができる。 The catalyst layer preferably contains a polymer electrolyte. The polymer electrolyte has ion conductivity and a binder that binds the catalyst substance. As long as it works, there is no particular limitation, and examples include conventionally known Nafion (trade name), aliphatic polymer electrolyte, and aromatic polymer electrolyte made by DuPont. In addition to the catalyst substance and the polymer electrolyte, the catalyst layer may contain a water repellent material such as PTFE for the purpose of enhancing the water repellency of the catalyst layer, and calcium carbonate for the purpose of enhancing the gas diffusibility of the catalyst layer. In addition, a stabilizer such as a metal oxide may be contained for the purpose of enhancing the durability of the obtained membrane-one-electrode assembly. The membrane-one electrode assembly preferably has a gas diffusion layer outside the catalyst layer in order to diffuse the fuel efficiently and uniformly. The gas diffusion layer is not particularly limited as long as it has conductivity, but is preferably a porous carbon nonwoven fabric or carbon paper because it is inexpensive and easy to handle. As a method for forming the catalyst layer on both surfaces of the polymer electrolyte membrane, a method in which the catalyst layer is directly formed on the polymer electrolyte membrane and a catalyst layer is formed in advance on a substrate other than the polymer electrolyte membrane. There is a method of joining the catalyst layer and the polymer electrolyte membrane later. There is no particular limitation on the method for forming the catalyst layer on the polymer electrolyte membrane or on a substrate other than the polymer electrolyte membrane (hereinafter also referred to as other substrates). Die coater, screen printing A known method such as a spray method or an ink jet method can be used.
上記他の基材としては、 該触媒層を形成する時に、 膨潤あるいは溶解しないも のであれば、 特に制限はなく、 例えば、 前記ガス拡散層や、 ガラス、 ステンレス 材、 ステンレスベルト、 ポリエチレンテレフタレート (P E T) フィルム等が好 適に用いられる。 他の基材表面には必要に応じ、 離型処理、 鏡面処理、 エンボス 処理、 艷消し処理等を施してもよい。  The other base material is not particularly limited as long as it does not swell or dissolve when the catalyst layer is formed. For example, the gas diffusion layer, glass, stainless steel material, stainless steel belt, polyethylene terephthalate (PET ) Film etc. are preferably used. Other substrate surfaces may be subjected to a mold release treatment, a mirror finish treatment, an embossing treatment, a matting treatment, or the like as necessary.
予め他の基材上に触媒層を形成させ、 該触媒層を高分子電解質膜に接合させる 方法の場合、該接合の際に加熱および加圧する熱プレス法を行うことが好ましい。 加熱温度としては、 得られる高分子電解質膜が変性しない温度領域であれば、 特に制限されないが、 3 0 °C以上 3 0 0 °C以下が好ましい。 このような温度領域 とすると、 触媒層と高分子電解質膜との接合性が向上し、 かつ、 得られる高分子 電解質膜が変質することがない。 50°C以上 250°C以下がより好ましい。 In the case of a method in which a catalyst layer is formed on another substrate in advance and the catalyst layer is bonded to the polymer electrolyte membrane, it is preferable to perform a hot press method in which heating and pressurization are performed during the bonding. The heating temperature is not particularly limited as long as the resulting polymer electrolyte membrane is not denatured, but is preferably 30 ° C. or higher and 30 ° C. or lower. Such temperature range As a result, the bondability between the catalyst layer and the polymer electrolyte membrane is improved, and the resulting polymer electrolyte membrane is not altered. 50 ° C or more and 250 ° C or less is more preferable.
また、 圧力は、 5 k g f /cm2以上 300 k g f Zcm2以下が好ましい。 こ のような圧力領域とすると、 得られる高分子電解質膜が変形することがない。 3 O k g f Zcni2以上 2 O O k g f Zcm2以下がより好ましい。 このようにして、 本発明の高分子電解質膜と、 該高分子電解質膜の両面に設け られた触媒層とからなる膜一電極接合体が得られる。 この膜一電極接合体は、 特 に、 直接メタノール型燃料電池 (DMFC) に用いると、 得られる DMFCは、 発電性能に優れるとともに、 メタノールクロスオーバーによる電池の損傷が著し く抑制される。 The pressure is preferably 5 kgf / cm 2 or more and 300 kgf Zcm 2 or less. In such a pressure region, the obtained polymer electrolyte membrane is not deformed. 3 O kgf Zcni 2 or more and 2 OO kgf Zcm 2 or less are more preferable. In this way, a membrane-electrode assembly comprising the polymer electrolyte membrane of the present invention and the catalyst layers provided on both surfaces of the polymer electrolyte membrane is obtained. When this membrane-electrode assembly is used in a direct methanol fuel cell (DMFC), the resulting DMFC is excellent in power generation performance and markedly suppresses battery damage due to methanol crossover.
以上の説明では、 本発明の膜一電極接合体を、 直接メタノール型燃料電池 (D MFC)に適用する場合を例に挙げて述べている力 本発明の膜一電極接合体は、 DMFCはもちろんのこと、 水素を原料とする燃料電池にも好適に用いることが できる。 以下、 本発明の実施例を説明するが、 以下に示す実施例は、 本発明を説明する ための好適な例示であり、 なんら本発明を限定するものではない。 本発明の実施例を具体的に説明する前に、 各製造例、 各実施例および各比較例 で得られた高分子電解質、 および、 高分子電解質膜の分子量、 残存溶媒量、 プロ トン伝導度、 メタノール透過係数、 イオン交換容量 (I EC) の諸特性値を測定 するための各測定方法を以下に説明する。  In the above description, the force described by taking the case where the membrane-electrode assembly of the present invention is applied to a direct methanol fuel cell (D MFC) as an example. In addition, it can be suitably used for a fuel cell using hydrogen as a raw material. Hereinafter, examples of the present invention will be described. However, the examples shown below are suitable examples for explaining the present invention, and do not limit the present invention at all. Before specifically describing the examples of the present invention, the polymer electrolytes obtained in each production example, each example and each comparative example, and the molecular weight of the polymer electrolyte membrane, the residual solvent amount, and the proton conductivity Each measurement method for measuring various characteristic values of methanol permeability coefficient and ion exchange capacity (IEC) is described below.
[分子量測定] [Molecular weight measurement]
ゲル浸透クロマトグラフィー (GPC) により、 下記条件でポリスチレン換算 の数平均分子量を求めた。 G PC測定装置 TOSOH社製 HLC- 8220 The number average molecular weight in terms of polystyrene was determined by gel permeation chromatography (GPC) under the following conditions. G PC measuring device HLC-8220 manufactured by TOSOH
カラム TOSOH社製 TSK-GEL GMHHR— Μ カラム温度 40°C  Column TOSOH TSK-GEL GMHHR— カ ラ ム Column temperature 40 ° C
移動相溶媒 DMA c (L i B rを 1 Ommo 1 Z d m3になるように添加) 溶媒流量 0. 5 m L/m i n Mobile phase solvent DMA c (L i Br added to 1 Ommo 1 Z dm 3 ) Solvent flow rate 0.5 m L / min
[残存溶媒量] [Residual solvent amount]
加熱処理した高分子電解質膜を、 加熱処理工程の後、 室温、 大気圧下におき、 6時間以内に、 試料溶解液 (ジメチルホルムアミド) に溶解し、 GC装置を用い てガスクロマトグラフィーにより測定した。 得られた測定値を下記解析方法に基 づいて解析し、 高分子電解質膜中に残存する残存溶媒量を算出した。  After the heat treatment process, the heat-treated polymer electrolyte membrane was placed at room temperature and atmospheric pressure, dissolved in a sample solution (dimethylformamide) within 6 hours, and measured by gas chromatography using a GC device. . The obtained measured values were analyzed based on the following analysis method, and the amount of residual solvent remaining in the polymer electrolyte membrane was calculated.
GC装置: 「6890」 (商品名、 ヒューレット 'パッカード社製) 解析方法: 標準溶液の設定濃度を横軸、 ピーク面積値を縦軸とした検量線を 作成した。 次の計算式を用いて高分子電解質膜中の残存溶媒量を算出した。 残存溶媒量 (p pm) = { (PA-Yao) /Gao} X {S S/PEM} ここで、 PA: ピーク面積 GC apparatus: “6890” (trade name, manufactured by Hewlett-Packard Company) Analysis method: A calibration curve was prepared with the horizontal axis representing the set concentration of the standard solution and the vertical axis representing the peak area value. The residual solvent amount in the polymer electrolyte membrane was calculated using the following calculation formula. Residual solvent amount (p pm) = {(PA-Y ao ) / G ao } X {SS / PEM} where PA: peak area
Yac : 検量線の y切片 Y ac : y-intercept of calibration curve
Gac : 検量線の傾き G ac : The slope of the calibration curve
S S : 試料溶解液の量 (mL)  S S: Sample solution volume (mL)
. PEM: 高分子電解質膜秤量値 ( g )  . PEM: polymer electrolyte membrane weighing value (g)
[プロトン伝導度 (σ) の測定] [Measurement of proton conductivity (σ)]
新実験化学講座 19 高分子化学 (I I) 992 ρ (日本化学会編、 丸善) に 記載の方法で各例で得られた高分子電解質膜の膜抵抗を測定した。 ただし、 使用 したセルはカーボン製であり、 また白金黒付白金電極は使用せず、 セルに直接ィ ンピーダンス測定装置の端子を接続した。 まず、 セルに高分子電解質膜をセット 8066805 New Experimental Chemistry Lecture 19 Polymer Chemistry (II) 992 ρ (Edited by The Chemical Society of Japan, Maruzen) The membrane resistance of the polymer electrolyte membrane obtained in each example was measured by the method described in the following. However, the cell used was made of carbon, and the platinum black-plated platinum electrode was not used, and the impedance measurement device terminal was connected directly to the cell. First, set the polymer electrolyte membrane in the cell 8066805
32 32
して抵抗値を測定し、 その後、 高分子電解質膜を除いて再度抵抗値を測定して、 両者の差から膜抵抗を算出した。 高分子電解質膜の両側に接触させる溶液には、 lmo 1/Lの希硫酸を用いた。 希硫酸浸漬時の膜厚と抵抗値からプロトン伝導 度を算出した。 Then, the resistance value was measured, then, the polymer electrolyte membrane was removed, the resistance value was measured again, and the membrane resistance was calculated from the difference between the two. As a solution to be brought into contact with both sides of the polymer electrolyte membrane, lmo 1 / L dilute sulfuric acid was used. The proton conductivity was calculated from the film thickness and resistance value when immersed in dilute sulfuric acid.
[メタノール透過係数 (D) の測定] [Measurement of methanol permeability coefficient (D)]
各例で得られた高分子電解質膜のサンプルを、 10 w t °/o濃度のメタノール水 溶液に 2時間浸漬した後、 このサンプル高分子電解質膜を、 セル Aとセル Bから なる H字型隔膜セルの中央に、 挟持させ、 セル Aに 10 w t %濃度のメタノール 水溶液を、 セル Bに純水を入れ、 23 °Cにおいて、 初期状態及ぴ該初期状態から 一定時間 t (s e c)放置後での、セル B中のメタノール濃度を分析し、メタノー ル透過係数 D (cm2/s e c) を下式により求めた。 The polymer electrolyte membrane sample obtained in each example was immersed in a 10 wt ° / o methanol water solution for 2 hours, and then this sample polymer electrolyte membrane was formed into an H-shaped diaphragm consisting of cell A and cell B. Hold in the center of the cell, put 10 wt% methanol aqueous solution into cell A and pure water into cell B, and leave at 23 ° C for the initial state and for a certain time t (sec) from the initial state. The methanol concentration in cell B was analyzed, and the methanol permeability coefficient D (cm 2 / sec) was determined by the following equation.
D= { (VX L) / (AX t) } X 1 n { 一 Cra) / (C2 - Cn) } ここで、 D = {(VX L) / (AX t)} X 1 n {one C ra ) / (C 2 -C n )} where
V:セル B 中の液の容量 (cm3) V: Volume of liquid in cell B (cm 3 )
L :サンプル高分子電解質膜の膜厚 (cm)  L: Sample polymer electrolyte membrane thickness (cm)
A:サンプル高分子電解質膜の断面積 (cm2) A: Cross section of sample polymer electrolyte membrane (cm 2 )
t :時間 (s e c)  t: Time (s e c)
C, :初期状態におけるセル B中のメタノール濃度 (mo l Zcm3) C,: Methanol concentration in cell B in the initial state (mol l Zcm 3 )
C2:—定時間 t放置後におけるセル B中のメタノール濃度(mo 1 /cm3)C 2 : —Methanol concentration in cell B after standing for a fixed time t (mo 1 / cm 3 )
Cm:初期状態におけるセル A中のメタノール濃度 (mo 1 /cm3) C m : Methanol concentration in cell A in the initial state (mo 1 / cm 3 )
Cn:一定時間 t放置後におけるセル A中のメタノール濃度(mo 1 /cm3) なお、 メタノール透過量は十分に小さいので、 Vは初期の純水容量で一定値と し、 また、 Cm = Cnで初期濃度 (10wt%) として求めた。 C n : Methanol concentration in cell A after standing for a certain time t (mo 1 / cm 3 ) Note that the methanol permeation rate is sufficiently small, so V is a constant value of the initial pure water capacity, and C m = determined by C n as the initial concentration (10 wt%).
[特性パラメータ (DZa) の算出] [Calculation of characteristic parameter (DZa)]
直接メタノール型燃料電池用に好適な高分子電解質膜は、プロトン伝導度(σ) P T/JP2008/066805 Polymer electrolyte membrane suitable for direct methanol fuel cell is proton conductivity (σ) PT / JP2008 / 066805
33 33
が高く、 メタノール透過係数 (D) の小さいが膜である。 その指標として、 上記' で求められた値から、 の値を特性パラメータとして算出した。 この値が小 さいと同じ伝導度 (σ) とした場合、 メタノール透過性が低いことになり、 直接 メタノール型燃料電池 (DMFC) 用の高分子電解質膜として優れていることが 示される。 Is a membrane with a high methanol permeability coefficient (D). As the index, the value of was calculated as a characteristic parameter from the value obtained in the above. If this value is small, the conductivity (σ) is the same, and the methanol permeability is low, indicating that it is excellent as a polymer electrolyte membrane for direct methanol fuel cells (DMFC).
[高分子電解質膜のイオン交換容量 (I EC) ] [Ion exchange capacity of polymer electrolyte membrane (I EC)]
得られた高分子電解質膜をハロゲン水分率計 (メトラートレド社、 商品名 「Η R73」) で 110°Cにて乾燥させ、絶乾重量を求めた。 この高分子電解質膜を、 0. 1 mo 1ZLの水酸ィ匕ナトリウム水溶液 5mLに浸漬した後、 50mLのィ オン交換水を加え、 2時間放置した。 その後、 この高分子電解質膜が浸漬された 溶液に 0. lmo 1ZLの塩酸を徐々に加えることで滴定し、 中和点を求めた。 絶乾重量と中和点に要する 0. lmo 1/L塩酸の量から、 イオン交換容量を求 めた。 また、 塩交換率 Y (%) を下記式 (B) で求めた。  The obtained polymer electrolyte membrane was dried at 110 ° C. with a halogen moisture content meter (Mettler Toledo Co., Ltd., trade name “Η R73”) to determine the absolute dry weight. This polymer electrolyte membrane was immersed in 5 mL of a 0.1 mo 1ZL aqueous solution of sodium hydroxide and then 50 mL of ion exchanged water was added and left for 2 hours. Thereafter, the solution in which the polymer electrolyte membrane was immersed was titrated by gradually adding 0.1 mol 1 ZL of hydrochloric acid to determine the neutralization point. The ion exchange capacity was determined from the absolute dry weight and the amount of 0.1 lmo 1 / L hydrochloric acid required for the neutralization point. In addition, the salt exchange rate Y (%) was determined by the following formula (B).
Y= (1 -Η/Τ) X I 00 (Β)  Y = (1 -Η / Τ) X I 00 (Β)
Τ:塩置換処理前の高分子電解質膜のグラム当たりの全ィオン交換基量 Η:塩置換処理後の高分子電解質膜のグラム当たりの対イオンがプロトンで あるイオン交換基量 [熱分解開始温度]  Τ: Total ion exchange groups per gram of polymer electrolyte membrane before salt substitution treatment Η: Ion exchange group amounts of proton exchanged counter ion per gram of polymer electrolyte membrane after salt substitution treatment [thermal decomposition start temperature ]
熱分解開始温度は TG/DTA (セイコーインストルメント社製、 SSC— 5 200) を用いて測定した。 30°Cから 110°Cまで 50°C/ /分で昇温し、 11 0°Cにて 30分間ホールドしたのち、 110°Cから 300°Cまで 5°0 分で昇温 し、 重量減少が始まる温度を熱分解開始温度とした。 The thermal decomposition starting temperature was measured using TG / DTA (Seiko Instruments Inc., SSC-5 200). Increase the temperature from 30 ° C to 110 ° C at 50 ° C / min, hold at 110 ° C for 30 minutes, then increase the temperature from 110 ° C to 300 ° C in 5 ° 0 minutes, reducing weight The temperature at which is started was defined as the thermal decomposition start temperature.
(製造例 1 :高分子電解質の製造例) (Production example 1: Production example of polymer electrolyte)
アルゴン雰囲気下、 蒸留管を付けたフラスコに、 3, 3, ージフエ二ルー 4, 2008/066805 In a flask with a distillation tube under an argon atmosphere, 3, 3, 2008/066805
34 34
4' —ジヒドロキシビフエ二ノレ : 1 5. 3 2 g (45. 28 mm o 1 ) 、 4, 4, ージフノレォロジフエニノレスノレホン: 1 0. 6 2 g (4 1. 7 7mmo l ) 、 炭酸 カリウム: 6. 5 7 g (47. 54mmo 1 ) 、 ジメチルスルホキシド (DMS O) : 1 1 4m l、 およびトルエン: 1 8m 1を加えて攪拌した。 次いで、 パス 温を 1 50°Cまで昇温し、 トルエンを加熱留去することで系内の水分を共沸脱水 した。 トルエン留去後、 同温度で 2時間反応させた。 これを反応マス [A] とす る。  4 '— Dihydroxybiphenol: 1 5. 3 2 g (45. 28 mm o 1), 4, 4, – Diphnololeophyleninores norephone: 1 0.6 6 2 g (4 1. 7 7 mmo l), potassium carbonate: 6.57 g (47.54 mmo 1), dimethyl sulfoxide (DMS O): 1 1 4 ml, and toluene: 1 8 ml 1 were added and stirred. Next, the pass temperature was raised to 150 ° C, and toluene was distilled off by heating to azeotropically dehydrate water in the system. After the toluene was distilled off, the reaction was carried out at the same temperature for 2 hours. This is the reaction mass [A].
アルゴン雰囲気下、 蒸留管を付けたフラスコに、 ヒドロキノンスルホン酸カリ ゥム: 4, 00 g (1 7. 5 2mmo 1 ) 、 4, 4, —ジフルォロベンゾフエノ ン一 3, 3, _ジスノレホン酸ジカリウム: 9. 56 g (2 1. 0 3 mm o 1 ) 、 炭酸力リウム: 2. 54 g (1 8. 4 Ommo 1 ) 、 DMS O : 60m l , およ ぴトルエン: 9m lを加えて攪拌した。 次いで、 パス温を 1 30°Cまで昇温し、 トルエンを加熱留去することで系内の水分を共沸脱水した。 トルエン留去後、 同 温度で 20時間 30分反応させた。 これを反応マス [B] とする。  In a flask equipped with a distillation tube under an argon atmosphere, potassium hydroquinone sulfonate: 4,000 g (17.5 2mmo 1), 4, 4, — difluorobenzophenone 3, 3, _disnolehon Dipotassium acid: 9.56 g (2 1. 0 3 mm o 1), carbonated potassium: 2.54 g (18.4 Ommo 1), DMS O: 60 ml, and toluene: 9 ml And stirred. Next, the path temperature was raised to 1300C, and the water in the system was azeotropically dehydrated by heating and distilling off the toluene. After toluene was distilled off, the reaction was carried out at the same temperature for 20 hours and 30 minutes. This is the reaction mass [B].
上記反応マス [A] と上記反応マス [B] とを、 DMSO : 6 8m lで希釈し ながら混合し、 この混合液を 1 45°Cで 3 3時間 30分反応させた。 放冷後、 反 応混合物を大量の 2 m o 1 Z L塩酸水溶液中へ滴下し、 生成した沈殿物を濾過回 収、 洗液が中性になるまで水で洗浄濾過を繰り返した。 次いで、 前記濾過物を大 過剰の熱水で 1時間処理することを 2回繰り返した後、 減圧乾燥して目的とする 下記一般式 (8) で示される高分子電解質 (ブロック共重合体 A) 33. 3 3 g  The reaction mass [A] and the reaction mass [B] were mixed while diluted with DMSO: 68 ml, and this mixture was reacted at 145 ° C for 33 hours 30 minutes. After allowing to cool, the reaction mixture was dropped into a large amount of 2 m o 1 Z L hydrochloric acid aqueous solution, and the resulting precipitate was collected by filtration, and washed and filtered repeatedly with water until the washing solution became neutral. Next, the filtrate was treated twice with a large excess of hot water for 1 hour, then dried under reduced pressure, and the target polymer electrolyte represented by the following general formula (8) (block copolymer A) 33. 3 3 g
Figure imgf000035_0001
このブロック共重合体 Aの数平均分子量は 79000であり、 熱分解開始温度は 210°Cであった。
Figure imgf000035_0001
The number average molecular weight of this block copolymer A is 79000, and the thermal decomposition onset temperature is 210 ° C.
(製造例 2) (Production Example 2)
アルゴン雰囲気下、 蒸留管を付けたフラスコに、 3, 3' ージフエ二ルー 4, 4, ージヒ ドロキシビフエ二ノレ : 12. 68 g (37. 48mmo 1 ) 、 4, 4, 一ジフノレオ口べンゾフエノン: 4. 58 g (20. 98mmo 1 ) 、 4, 4 ' 一 ジフ /レオ口べンゾフエノン一 3, 3' —ジスノレホン酸ジカリウム: 7. 50 g (1 6. 5 Ommo 1 ) 、 炭酸力リウム: 5. 44 g (39. 36 mm o 1 ) 、 N— メチルピロリ ドン (NMP) : 96 m 1、 およびトルエン: 44mlを加えて攪 拌した。 次いで、 パス温を 190°Cまで昇温し、 トルエンを加熱留去することで 系内の水分を共沸脱水した。 トルエン留去後、同温度で 9時間 30分反応させた。 放冷後、 反応混合物を大量の 2mo 1ZL塩酸水溶液中へ滴下し、 生成した沈殿 物を濾過回収、 洗液が中性になるまで水で洗浄濾過を繰り返した。 次いで、 前記 濾過物を大過剰の熱水で 1時間処理することを 2回繰り返した後、 減圧乾燥して 目的とする下記一般式 (9) で示される高分子電解質 (ランダム共重合体 A) 1 8. 99 gを得た。  In a flask equipped with a distillation tube in an argon atmosphere, 3, 3'-diphenyl-4, 4, dihydroxybiphenyl: 12. 68 g (37. 48 mmo 1), 4, 4, monodiphnoreo benzophenone: 4 58 g (20. 98 mmo 1), 4, 4 'Diph / Leo mouth benzofenone 1, 3, 3' — Dipotassium disulphonate: 7. 50 g (1 6.5 Ommo 1), Carbonate: 5. 44 g (39. 36 mm o 1), N-methylpyrrolidone (NMP): 96 ml, and toluene: 44 ml were added and stirred. Next, the path temperature was raised to 190 ° C, and toluene was distilled off by heating to azeotropically dehydrate water in the system. After toluene was distilled off, the reaction was carried out at the same temperature for 9 hours and 30 minutes. After allowing to cool, the reaction mixture was dropped into a large amount of 2mo 1ZL hydrochloric acid aqueous solution, and the resulting precipitate was collected by filtration, and washed and filtered repeatedly with water until the washing solution became neutral. Next, the filtrate was treated twice with a large excess of hot water for 1 hour, then dried under reduced pressure, and the desired polymer electrolyte represented by the following general formula (9) (random copolymer A) 1 8. 99 g was obtained.
Figure imgf000036_0001
このランダム共重合体 Aの数平均分子量は 43000であり、 熱分解開始温度 は 215°Cであった。 (製造例 3)
Figure imgf000036_0001
The random copolymer A had a number average molecular weight of 43,000 and a thermal decomposition starting temperature of 215 ° C. (Production Example 3)
アルゴン雰囲気下、共沸蒸留装置を備えたフラスコに、 DMSO: 60 Om 1、 トノレェン: 200mL、 2, 5—ジクロ口ベンゼンスノレホン酸ナトリウム: 26. 8066805 In a flask equipped with an azeotropic distillation apparatus under an argon atmosphere, DMSO: 60 Om 1, Tonoleen: 200 mL, 2,5-dichlorosodium benzenesolephonate: 26. 8066805
36  36
5 g (106. 3mmo 1) 、 末端クロ口型である下記一般式 (10)
Figure imgf000037_0001
で示されるポリエーテルスルホン (住友化学株式会社製、 商品名 「スミカェクセ ル PES 5200PJ ) : 10. 0 g、 2, 2, 一ビビリジル: 43. 8 g (2 80. 2mmo 1)を入れて攪拌した。 その後、パス温を 150°Cまで昇温し、 ト ェンを加熱留去することで系内の水分を共沸脱水した後、 60°Cに冷却した。 次いで、 これにビス (1 , 5—シクロォクタジェン) エッケル: 73. 4 g (2 66. 9mmo l)を加え、 80°Cに昇温し、 同温度で 5時間攪拌した。 放冷後、 反応液を大量の 6mo 1 ZLの塩酸に注ぐことによりポリマーを析出させ濾別し た。
5 g (106. 3mmo 1), the following general formula (10)
Figure imgf000037_0001
Polyethersulfone represented by (Sumitomo Chemical Co., Ltd., trade name “Sumikacel PES 5200PJ”): 10.0 g, 2, 2, 1 bibilidyl: 43.8 g (2 80. 2 mmo 1) was added and stirred. Thereafter, the pass temperature was raised to 150 ° C, and the water in the system was azeotropically dehydrated by distilling off the toluene, followed by cooling to 60 ° C. 5—Cyclooctadiene) Eckel: Add 73.4 g (2 66. 9 mmol), raise the temperature to 80 ° C, and stir for 5 hours at the same temperature. The polymer was precipitated by pouring into ZL hydrochloric acid and separated by filtration.
その後、 6 m o 1 ZL塩酸による洗浄 ·濾過操作を数回繰り返した後、 濾液が 中性になるまで水洗を行い、 減圧乾燥することにより目的とする下記一般式 (1 1) で示される高分子電解質 (ブロック共重合体 B) : 16. 3 gを得た。  Then, after washing and filtering with 6 mo 1 ZL hydrochloric acid were repeated several times, the filtrate was washed with water until the filtrate became neutral and dried under reduced pressure to achieve the target polymer represented by the following general formula (11) Electrolyte (Block copolymer B): 16.3 g was obtained.
Figure imgf000037_0002
このプロック共重合体 Bの数平均分子量は 115000であり、 熱分解開始温 度は 200°Cであった。
Figure imgf000037_0002
The block copolymer B had a number average molecular weight of 115,000 and a thermal decomposition initiation temperature of 200 ° C.
(実施例 1 ) (Example 1)
製造例 1で得たブロック共重合体 A (熱分解開始温度 210°C) を 20重量% となるように NMPに溶解して溶液を得た後、 該溶液をガラス基板上に塗布し、 80°Cで常圧乾燥した (膜化工程) 。  The block copolymer A (thermal decomposition start temperature 210 ° C) obtained in Production Example 1 was dissolved in NMP so as to be 20% by weight to obtain a solution, and then the solution was applied onto a glass substrate. Dried at normal pressure at ° C (filming process).
次いで、 230°Cの窒素オーブン中で 1時間加熱した (加熱処理工程) 。 得られた高分子電解質膜の残存溶媒量は 4重量%であった Next, it was heated in a 230 ° C. nitrogen oven for 1 hour (heat treatment step). The amount of residual solvent in the obtained polymer electrolyte membrane was 4% by weight
(実施例 2 ) (Example 2)
窒素オープンの温度を 2 4 0 °Cとしたこと以外は、実施例 1と同様の方法によつ て高分子電解質膜を得た。得られた高分子電解質膜の残存溶媒量は 4重量%であつ た。 (実施例 3 )  A polymer electrolyte membrane was obtained by the same method as in Example 1 except that the temperature of nitrogen open was 2400 ° C. The amount of residual solvent in the obtained polymer electrolyte membrane was 4% by weight. (Example 3)
製造例 3で得たプロック共重合体 B (熱分解開始温度 2 0 0 °C) を 2 0重量% となるように NMPに溶解して溶液を得た後、 該溶液をガラス基板上に塗布し、 8 0 °Cで常圧乾燥した (膜化工程) 。  The block copolymer B obtained in Production Example 3 (pyrolysis start temperature 20 ° C.) was dissolved in NMP to 20% by weight to obtain a solution, and then the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process).
次いで、 2 1 0 °Cの窒素オープン中で 3 0分間加熱した (加熱処理工程) 。 得られた高分子電解質膜の残存溶媒量は 9重量%であつた。 (比較例 1 )  Next, the substrate was heated for 30 minutes in a nitrogen open at 210 ° C. (heat treatment step). The amount of residual solvent in the obtained polymer electrolyte membrane was 9% by weight. (Comparative Example 1)
窒素オーブンの温度を 2 0 0。Cとしたこと以外は、実施例 1と同様の方法によつ て高分子電解質膜を得た。 得られた高分子電解質膜の残存溶媒量は 1 0重量%で めった。 (比較例 2 )  The temperature of the nitrogen oven is 200. A polymer electrolyte membrane was obtained by the same method as in Example 1 except that C was used. The amount of residual solvent in the obtained polymer electrolyte membrane was 10% by weight. (Comparative Example 2)
製造例 1で得たプロック共重合体 Aを 2 0重量%となるように NMPに溶解し て溶液を得た後、 該溶液をガラス基板上に塗布し、 8 0 °Cで常圧乾燥した (膜ィ匕 工程) 。 次いで、 2 7 0 °Cの窒素オーブン中で 3 0分間加熱した。 得られた髙分 子電解質膜の残存溶媒量は、 0重量%であった。  The block copolymer A obtained in Production Example 1 was dissolved in NMP so as to be 20% by weight to obtain a solution, and the solution was applied on a glass substrate and dried at 80 ° C. under normal pressure. (Membrane process). It was then heated for 30 minutes in a nitrogen oven at 2700C. The amount of residual solvent in the obtained polymer electrolyte membrane was 0% by weight.
(比較例 3 ) (Comparative Example 3)
製造例 1で得たブロック共重合体 Aを 2 0重量%となるように NM Pに溶解し て溶液を得た後、 該溶液をガラス基板上に塗布し、 8 0 °Cで常圧乾燥した (膜化 工程) 。 得られた高分子電解質膜を流水で 2時間洗浄することで、 残存溶媒を実 質的に全て取り除き、 常温で乾燥させた。 The block copolymer A obtained in Production Example 1 is dissolved in NMP so as to be 20% by weight. After the solution was obtained, the solution was applied onto a glass substrate and dried at 80 ° C. under normal pressure (film formation step). The obtained polymer electrolyte membrane was washed with running water for 2 hours to remove substantially all of the remaining solvent and dried at room temperature.
次いで、 2 4 0 °Cの窒素オープン中で 1 5分間加熱した。 得られた高分子電解質 膜は脆弱であり、メタノール透過係数およびプロトン伝導度の測定を行うことは、 不可能であった。 Subsequently, it heated for 15 minutes in nitrogen opening of 2400 degreeC. The obtained polymer electrolyte membrane was fragile, and it was impossible to measure the methanol permeability coefficient and proton conductivity.
(比較例 4 ) (Comparative Example 4)
製造例 2で得たランダム共重合体 A (熱分解開始温度 2 1 5 °C) を 2 5重量% となるように NMPに溶解して溶液を得た後、 該溶液をガラス基板上に塗布し、 8 0 °Cで常圧乾燥した (膜化工程) 。  Random copolymer A obtained in Production Example 2 (pyrolysis start temperature 2 15 ° C) was dissolved in NMP so as to be 25% by weight, and a solution was obtained. Then, the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process).
次いで、 2 4 0 °Cの窒素オーブン中で 1時間加熱した (加熱処理工程) 。 得られ た高分子電解質膜の残存溶媒量は 4重量%であった。 (比較例 5 ) Subsequently, it was heated in a nitrogen oven at 240 ° C. for 1 hour (heat treatment step). The amount of residual solvent in the obtained polymer electrolyte membrane was 4% by weight. (Comparative Example 5)
製造例 2で得たランダム共重合体 A (熱分解開始温度 2 1 5 °C) を 2 5重量% となるように NMPに溶解して溶液を得た後、 該溶液をガラス基板上に塗布し、 8 0 °Cで常圧乾燥した (膜化工程) 。 次いで、 2 0 0 °Cの窒素オープン中で 1時 間加熱した(加熱処理工程)。得られた高分子電解質膜の残存溶媒量は 1 1重量% であった。  Random copolymer A obtained in Production Example 2 (pyrolysis start temperature 2 15 ° C) was dissolved in NMP so as to be 25% by weight, and a solution was obtained. Then, the solution was applied onto a glass substrate. Then, it was dried at 80 ° C. under normal pressure (film forming process). Next, heating was performed for 1 hour in nitrogen open at 200 ° C. (heat treatment step). The amount of residual solvent in the obtained polymer electrolyte membrane was 11% by weight.
(比較例 6 ) (Comparative Example 6)
窒素オーブンの温度を 2 0 0 °Cとした以外は、 実施例 3と同様の方法によって 高分子電解質膜を得た。 得られた高分子電解質膜の残存溶媒量は、 1 6重量%で あった。 比較例 3では得られた膜が脆弱であったため、 後処理に供し得なかったが、 残 りの実施例 1、 2、 3および比較例 1、 2、 4、 5、 6については、 各高分子電 解質膜を lnio 1ZLの塩酸に 3時間浸漬し、 実質的に、 カチオン交換基をプロ トン型に変換して、 流水で 3時間洗浄した。 得られた高分子電解質膜の数平均分 子量、 プロトン伝導度 (σ) 及びメタノール透過係数 (D) の測定を、 前述の各 測定方法に基づいて、 行った。 A polymer electrolyte membrane was obtained in the same manner as in Example 3 except that the temperature of the nitrogen oven was 200 ° C. The amount of residual solvent in the obtained polymer electrolyte membrane was 16% by weight. In Comparative Example 3, the obtained film was fragile and could not be used for post-treatment. For Examples 1, 2, and 3 and Comparative Examples 1, 2, 4, 5, and 6, each polymer electrolyte membrane was immersed in hydrochloric acid of lnio 1ZL for 3 hours, and the cation exchange group was substantially added. It was converted to a Proton type and washed with running water for 3 hours. The number average molecular weight, proton conductivity (σ), and methanol permeability coefficient (D) of the obtained polymer electrolyte membrane were measured based on each of the measurement methods described above.
上記実施例 1〜 3および比較例 1〜6の測定結果を、 下記 (表 2) に示す。 The measurement results of Examples 1 to 3 and Comparative Examples 1 to 6 are shown below (Table 2).
IN3 DO IN3 DO
O cn o  O cn o
(表 2) (Table 2)
Figure imgf000041_0001
Figure imgf000041_0001
実施例および比較例は、 高分子電解質膜を主に直接メタノール型燃料電池に用 いる場合を念頭において、 検討した例示である。 直接メタノール型燃料電池用の 高分子電解質莫として好ましい特性は、 プロトン伝導度 (σ) が高く、 かつメタ ノール透過係数 (D) が小さいこと、 すなわち、 特性係数 (D/σ) が小さいこ とである。 The examples and comparative examples are examples examined by considering the case where a polymer electrolyte membrane is mainly used for a direct methanol fuel cell. Preferred characteristics of polymer electrolytes for direct methanol fuel cells include high proton conductivity (σ) and low methanol permeability coefficient (D), that is, low characteristic coefficient (D / σ). It is.
上記 (表 2) に見るように、 実施例 1, 2および比較例 1は、 電解質材料とし て、 共に、 ブロック共重合体 Αを使用している。 そして、 その熱分解開始温度 2 10°Cに対して、 比較例 1では前記熱分解開始温度以下の 200°Cにて加熱処理 (膜化) しており、 実施例 1および 2では前記熱分解開始温度より高い 230 °C および 240 で加熱処理 (膜化) している。 その結果、 特性係数は、 比較例 1 では 8. 5 X 1 0— 6、 実施例 1では 7. 1 X 1 0— 6、 実施例 2では 6. 2 X 1 0 一6となり、 電解質材料の熱分解開始温度より高い温度で加熱処理した方が特性係 数がより小さくなっている。 As can be seen from Table 2 above, Examples 1 and 2 and Comparative Example 1 both use block copolymer ブ ロ ッ ク as the electrolyte material. Then, with respect to the thermal decomposition starting temperature 2 10 ° C, in Comparative Example 1, heat treatment (film formation) was performed at 200 ° C which is lower than the thermal decomposition starting temperature. In Examples 1 and 2, the thermal decomposition was performed. Heat treatment (film formation) at 230 ° C and 240, which are higher than the starting temperature. As a result, characteristic coefficient, in Comparative Example 1 8. 5 X 1 0- 6, 7. 1 X 1 0- 6 In Example 1, Example 2, 6. 2 X 1 0 one 6, and the electrolyte material The characteristic coefficient is smaller when heat treatment is performed at a temperature higher than the thermal decomposition start temperature.
一方、 比較例 4および比較例 5では、 電解質材料として、 共に、 ランダム共重 合体を使用している。 そして、 その熱分解開始温度 215°Cに対して、 比較例 4 では前記熱分解開始温度より高い 240°Cにて加熱処理 (膜化) しており、 比較 例 3では前記熱分解開始温度以下の 200°Cで加熱処理 (膜化) している。 その 結果、 特性係数は、 比較例 4では 2. 6 X l Cr5、 比較例 5では 1. 2 X 10一5 となり、 電解質材料の熱分解開始温度より高レ、温度で加熱処理した方が特性係数 がより大きくなつている。 On the other hand, in Comparative Examples 4 and 5, both use random copolymers as the electrolyte material. In contrast to the thermal decomposition start temperature of 215 ° C, in Comparative Example 4, heat treatment (film formation) was performed at 240 ° C, which is higher than the thermal decomposition start temperature. Heat treatment (film formation) at 200 ° C. As a result, characteristic coefficient, in Comparative Example 4 2. 6 X l Cr 5, Comparative Example 5 1. 2 X 10 one becomes 5, Kore than the thermal decomposition temperature of the electrolyte material, is better to heat treatment at a temperature The characteristic coefficient is getting larger.
また、 比較例 2と比較例 3では、 実施例 1 , 2およぴ比較例 1と同様の電解質 材料 (プロック共重合体 A) を使用しているが、 上記実施例 1, 2および比較例 1と異なり、 加熱処理後の残存溶媒量が 0. 1重量%未満となっている。 残存溶 媒量が 0. 1重量%未満となった結果、比較例 2では特性係数 Ε)Ζσが悪く (2. 5 X 1 0— 5) なっており、 比較例 3では膜が脆弱となり、 ハンドリング性が悪く なっている。 また、 実施例 3および 6は、 電解質材料として、 共に、 プロック共重合体 Bを- 使用している。 そして、 その熱分解開始温度 2 1 0 °Cに対して、 比較例 6では前 記熱分解開始温度と同じ 2 0 0 °Cにて加熱処理 (膜化) しており、 実施例 3では 前記熱分解開始温度より高い 2 1 0 °Cで加熱処理 (膜化) している。 その結果、 特性係数は、比較例 6では 1 . 2 X 1 0—5、実施例 3では 9 . 7 X 1 0 となり、 電解質材料の熱分解開始温度より高い温度で加熱処理した方が特性係数がより小 さくなっている。 以上説明したように、 本発明によれば、 安価で、 しかもメタノールバリア性と プロトン伝導性とを高水準で両立しうる燃料電池用高分子電解質膜の製造方法、 該製造方法にて得られる高分子電解質膜、 前記高分子電解質膜を用いた膜一電極 接合体および燃料電池を提供することができる。 本発明の高分子電解質膜を使用 した直接メタノール型燃料電池は、 高い発電特性を持ちながら、 メタノールクロ スオーバー性が低く、 係る特性に基づいて燃費の低下が低減されるため、 携帯機 器等の用途に好適に用いることができる。 産業上の利用可能性 In Comparative Example 2 and Comparative Example 3, the same electrolyte material (Plock Copolymer A) as in Examples 1 and 2 and Comparative Example 1 was used. Unlike 1, the amount of residual solvent after heat treatment is less than 0.1% by weight. Results remaining Solvent amount became 0.1 less than 1 wt%, has become Comparative Example 2, characteristic coefficient Ε) Ζσ poor (2. 5 X 1 0- 5) , film in Comparative Example 3 becomes brittle, Handling is poor. Examples 3 and 6 both use the block copolymer B as the electrolyte material. Then, with respect to the thermal decomposition start temperature 2 10 ° C, in Comparative Example 6, heat treatment (film formation) was performed at 20 0 ° C, which is the same as the above-mentioned thermal decomposition start temperature. Heat treatment (film formation) is performed at 210 ° C, which is higher than the thermal decomposition start temperature. As a result, characteristic coefficient, in Comparative Example 6 1. 2 X 1 0- 5 , Example 3, 9. 7 X 1 0, and the characteristic coefficient better to heat treatment than at higher temperatures thermal decomposition temperature of the electrolyte material Is smaller. As described above, according to the present invention, a method for producing a polymer electrolyte membrane for a fuel cell that is inexpensive and can achieve both methanol barrier properties and proton conductivity at a high level, and a high yield obtained by the method. A molecular electrolyte membrane, a membrane-one electrode assembly using the polymer electrolyte membrane, and a fuel cell can be provided. The direct methanol fuel cell using the polymer electrolyte membrane of the present invention has high power generation characteristics and low methanol crossover, and the reduction in fuel consumption is reduced based on such characteristics. It can use suitably for the use of. Industrial applicability
本発明の製造方法によれば、 安価で、 かつ、 メタノールパリア性、 プロトン伝 導度がともに高水準である高分子電解質膜を得ることができる。 本発明の高分子 電解質膜を使用した直接メタノール型燃料電池は、 高い発電特性を持ちながら、 メタノールクロスオーバー性が低く、 係る特性に基づいて燃費の低下が低減され るため、 携帯機器等の用途に好適に用いることができる。  According to the production method of the present invention, it is possible to obtain a polymer electrolyte membrane that is inexpensive and has both high methanol pariasis and proton conductivity. The direct methanol fuel cell using the polymer electrolyte membrane of the present invention has high power generation characteristics and low methanol crossover, and the reduction in fuel consumption is reduced based on such characteristics. Can be suitably used.

Claims

請求の範囲 The scope of the claims
1 . 炭化水素系ブロック型高分子電解質と溶媒とを含有する高分子電解質溶液を 膜化して、含溶媒プロック型高分子電解質膜を得る膜化工程と、前記含溶媒プロッ ク型高分子電解質膜を加熱することによつて高分子電解質膜を得る加熱処理工程 とを有する高分子電解質膜の製造方法であって、 前記加熱処理の温度を、 前記炭 化水素系ブロック型高分子電解質の熱分解開始温度より高い温度とし、 かつ、 加 熱処理後の前記高分子電解質膜の残存溶媒量を 1重量%以上とすることを特徴と する高分子電解質膜の製造方法。 1. a membrane forming step of obtaining a solvent-containing block-type polymer electrolyte membrane by forming a polymer electrolyte solution containing a hydrocarbon block-type polymer electrolyte and a solvent, and the solvent-containing block-type polymer electrolyte membrane; And a heat treatment step of obtaining a polymer electrolyte membrane by heating the polymer electrolyte membrane, wherein the temperature of the heat treatment is set to a thermal decomposition of the hydrocarbon block polymer electrolyte. A method for producing a polymer electrolyte membrane, characterized in that the temperature is higher than the start temperature, and the amount of residual solvent in the polymer electrolyte membrane after heat treatment is 1% by weight or more.
2 . 前記加熱処理後の炭化水素系プロック型高分子電解質のゲル浸透クロマトグ ラフィ一法により求められるポリスチレン換算数平均分子量が前記加熱処理前に 比べて高いことを特徴とする請求項 1記載の高分子電解質膜の製造方法。 2. The polystyrene-equivalent number average molecular weight obtained by gel permeation chromatography of the hydrocarbon-based block-type polymer electrolyte after the heat treatment is higher than that before the heat treatment. A method for producing a molecular electrolyte membrane.
3 . 前記高分子電解質膜が直接メタノール型燃料電池用であることを特徴とする 請求項 1記載の高分子電解質膜の製造方法。 3. The method for producing a polymer electrolyte membrane according to claim 1, wherein the polymer electrolyte membrane is used for a direct methanol fuel cell.
4 . 前記炭化水素系ブロック型高分子電解質が有するカチオン交換基の少なくと も 1 0 %がプロトン型であることを特徴とする請求項 1記載の高分子電解質膜の 製造方法。 4. The method for producing a polymer electrolyte membrane according to claim 1, wherein at least 10% of the cation exchange groups of the hydrocarbon-based block polymer electrolyte is a proton type.
5 . 前記炭化水素系プロック型高分子電解質が、 カチオン交換基を有するプロッ クと、 実質的にィォン交換基を有さないブロックとからなるプロック共重合体で あることを特徴とする請求項 1記載の高分子電解質膜の製造方法。 5. The hydrocarbon block-type polyelectrolyte is a block copolymer comprising a block having a cation exchange group and a block having substantially no ion exchange group. The manufacturing method of the polymer electrolyte membrane of description.
6 . 前記カチオン交換基を有するプロックが、 下記一般式 (1 ) :
Figure imgf000045_0001
[式 (1 ) 中、 A r 11は、 2価の芳香族基を示し、 該 2価の芳香族基は、 置換基 を有していてもよい炭素数 1〜2 0のアルキル基、 置換基を有していてもよい炭 素数 1〜2 0のアルコキシ基、置換基を有していてもよい炭素数 6〜 2 0のァリー ル基、 置換基を有していてもよい炭素数 6〜 2 0のァリールォキシ基、 及び、 置 換基を有していてもよレ、炭素数 2〜 2 0のァシル基からなる群より選ばれる少な くとも一種を有していてもよく、 また、 該 2価の芳香族基は、 少なくとも 1つの カチオン交換基が直接芳香環に結合しており、 X11は、 直接結合、 一 o—で示さ れる基、 一 S—で示される基、 カルボエル基またはスルホ二ル基を示し、 dは 5 以上の整数である。 ] で表される構造単位を有することを特徴とする請求項 5記 載の高分子電解質膜の製造方法。
6. The block having the cation exchange group is represented by the following general formula (1):
Figure imgf000045_0001
[In the formula (1), Ar 11 represents a divalent aromatic group, and the divalent aromatic group is a C 1-20 alkyl group which may have a substituent, An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, and an optionally substituted carbon number 6 May have at least one aryloxy group having ˜20 and a substituent, and may have at least one selected from the group consisting of an acyl group having 2 to 20 carbon atoms, In the divalent aromatic group, at least one cation exchange group is directly bonded to the aromatic ring, X 11 is a direct bond, a group represented by 1 o-, a group represented by 1 S-, a carboel group Or a sulfonyl group, and d is an integer of 5 or more. 6. The method for producing a polymer electrolyte membrane according to claim 5, wherein the polymer electrolyte membrane has a structural unit represented by:
7 . 前記カチオン交換基を有するプロックが、 下記一般式 (2 ) または (3 ) : 7. The block having the cation exchange group is represented by the following general formula (2) or (3):
Figure imgf000045_0002
Figure imgf000045_0002
[式 (2 ) および (3 ) 中、 R 1は、 それぞれ独立に、 水素原子、 炭素数 1〜2 0のアルキル基、炭素数 1〜 2 0のアルコキシ基、炭素数 6〜 2 0のァリール基、 炭素数 6〜2 0のァリールォキシ基、 または炭素数 2〜 2 0のァシル基を表し、 X 1 2は、 直接結合、 一 O—で示される基、 一 S—で示される基、 カルボ二ル基ま たはスルホエル基を表し、 J 1はカチオン交換基を表わし、 p、 qは 1または 2 45 [In the formulas (2) and (3), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms. Group, an aryloxy group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms, and X 12 is a direct bond, a group represented by 1 O—, a group represented by 1 S—, a carbo Represents a dil group or a sulfoel group, J 1 represents a cation exchange group, and p and q are 1 or 2 45
であり、 dは 5以上の整数である。 ] で表される構造を有することを特徴とする 請求項 5記載の高分子電解質膜の製造方法。 And d is an integer greater than or equal to 5. 6. The method for producing a polymer electrolyte membrane according to claim 5, wherein the polymer electrolyte membrane has a structure represented by the following formula.
8. 前記イオン交換基を実質的に有さないプロックが、 下記一般式 (4) 8. The block having substantially no ion exchange group is represented by the following general formula (4)
Figure imgf000046_0001
Figure imgf000046_0001
[式 (4) 中、 Ar22は、 2価の芳香族基を示し、 該 2価の芳香族基は、 炭素数 1〜20のアルキル基、炭素数 1〜 20のアルコキシ基、炭素数 6〜 20のァリー ル基、 炭素数 6〜20のァリールォキシ基、 及び、 炭素数 2〜 20のァシル基か らなる群より選ばれる少なくとも一種を有していてもよく、 X22は、 直接結合、 一 O—で示される基、 一 S—で示される基、 カルボニル基またはスルホ二ル基を 示し、 eは 5以上の整数である。 ] で表される構造単位を有することを特徴とす る請求項 5記載の高分子電解質膜の製造方法。 [In the formula (4), Ar 22 represents a divalent aromatic group, and the divalent aromatic group includes an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 carbon atoms. May have at least one selected from the group consisting of an aryl group having ˜20, an aryloxy group having 6 to 20 carbon atoms, and an acyl group having 2 to 20 carbon atoms, and X 22 is a direct bond, 1 represents a group represented by O—, 1 represents a group represented by S—, a carbonyl group or a sulfonyl group, and e is an integer of 5 or more. 6. The method for producing a polymer electrolyte membrane according to claim 5, comprising a structural unit represented by the following formula:
9. 前記イオン交換基を実質的に有さないブロックが、 下記一般式 (5)
Figure imgf000046_0002
9. The block having substantially no ion exchange group is represented by the following general formula (5)
Figure imgf000046_0002
[式 (5) 中、 Ar2、 Ar3、 A r 4、 Ar5は、 互いに独立に、 2価の芳香族基を 示し、 該 2価の芳香族基は、 炭素数 1〜20のアルキル基、 炭素数 1〜20のァ ルコキシ基、炭素数 6〜 20のァリール基、炭素数 6〜 20のァリールォキシ基、 または炭素数 2〜 20のァシル基からなる群より選ばれる少なくとも一種を有し ていてもよく、 X、 X' は、 互いに独立に直接結合または 2価の基を表し、 Y、 Y' は、 互いに独立に一 Ο—で示される基、 または、 一 S—で示される基、 を表 し、 a、 b、 cは互いに独立に 0か 1を表し、 nは 5以上の整数を表す。 ] で表 される構造単位を有することを特徴とする請求項 5記載の高分子電解質膜の製造 [In the formula (5), Ar 2 , Ar 3 , Ar 4 and Ar 5 each independently represent a divalent aromatic group, and the divalent aromatic group is an alkyl group having 1 to 20 carbon atoms. Or at least one selected from the group consisting of an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an acyl group having 2 to 20 carbon atoms. X and X ′ each independently represent a direct bond or a divalent group, and Y and Y ′ each independently represent a group represented by a single symbol, or a group represented by a single S—. , And a, b and c each independently represent 0 or 1, and n represents an integer of 5 or more. ] 6. The production of the polymer electrolyte membrane according to claim 5, wherein the polymer electrolyte membrane has a structural unit
1 0 . 請求項 1記載の製造方法によって得られることを特徴とする高分子電解質 膜。 10. A polymer electrolyte membrane obtained by the production method according to claim 1.
1 1 . 請求項 1 0記載の高分子電解質膜と、 前記高分子電解質膜の両面に設けら れた触媒層とからなることを特徴とする膜一電極接合体。 11. A membrane-one-electrode assembly comprising the polymer electrolyte membrane according to claim 10 and a catalyst layer provided on both surfaces of the polymer electrolyte membrane.
1 2 . 請求項 1 1記載の膜一電極接合体を有することを特徴とする燃料電池。 1. A fuel cell comprising the membrane-electrode assembly according to claim 1.
PCT/JP2008/066805 2007-09-11 2008-09-10 Process for producing polyelectrolyte membrane, polyelectrolyte membrane, membrane-electrode assembly, and fuel cell WO2009035131A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-235750 2007-09-11
JP2007235750 2007-09-11
JP2008-196605 2008-07-30
JP2008196605 2008-07-30

Publications (1)

Publication Number Publication Date
WO2009035131A1 true WO2009035131A1 (en) 2009-03-19

Family

ID=40452134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066805 WO2009035131A1 (en) 2007-09-11 2008-09-10 Process for producing polyelectrolyte membrane, polyelectrolyte membrane, membrane-electrode assembly, and fuel cell

Country Status (2)

Country Link
JP (1) JP2010056051A (en)
WO (1) WO2009035131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329423A (en) * 2010-07-13 2012-01-25 现代自动车株式会社 Poly (arylene ether) copolymer with cation exchange group, preparation method and application thereof
CN107074754A (en) * 2014-12-19 2017-08-18 株式会社Lg化学 New compound and the polymer dielectric film using the compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2005171025A (en) * 2003-12-09 2005-06-30 Jsr Corp Method of manufacturing proton conductive film
JP2005243492A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion conductive membrane
JP2007126645A (en) * 2005-10-04 2007-05-24 Sumitomo Chemical Co Ltd Polymer having ion exchange group and use of the same
JP2007305571A (en) * 2006-04-13 2007-11-22 Sumitomo Chemical Co Ltd Polymer electrolyte film, manufacturing method therefor, and direct methanol type fuel battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168758B2 (en) * 2005-03-11 2013-03-27 東洋紡株式会社 Production method of ion exchange membrane
JP2006253002A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane
JP5000109B2 (en) * 2005-07-13 2012-08-15 日本曹達株式会社 Binder for electrode preparation, electrode and polymer battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008440A (en) * 2000-06-20 2002-01-11 Jsr Corp Proton conductive film
JP2005171025A (en) * 2003-12-09 2005-06-30 Jsr Corp Method of manufacturing proton conductive film
JP2005243492A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion conductive membrane
JP2007126645A (en) * 2005-10-04 2007-05-24 Sumitomo Chemical Co Ltd Polymer having ion exchange group and use of the same
JP2007305571A (en) * 2006-04-13 2007-11-22 Sumitomo Chemical Co Ltd Polymer electrolyte film, manufacturing method therefor, and direct methanol type fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329423A (en) * 2010-07-13 2012-01-25 现代自动车株式会社 Poly (arylene ether) copolymer with cation exchange group, preparation method and application thereof
CN107074754A (en) * 2014-12-19 2017-08-18 株式会社Lg化学 New compound and the polymer dielectric film using the compound

Also Published As

Publication number Publication date
JP2010056051A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Han et al. Cross-linked highly sulfonated poly (arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application
JP3928611B2 (en) Polyarylene ether compounds, compositions containing them, and methods for producing them
CA2549841C (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
Wang et al. Property enhancement effects of side-chain-type naphthalene-based sulfonated poly (arylene ether ketone) on Nafion composite membranes for direct methanol fuel cells
WO2011046233A1 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2007032541A1 (en) Polymer electrolyte, polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell
EP2104166A1 (en) Membrane-electrode assembly
WO2005037892A1 (en) Block copolymer and use thereof
JP2007109638A (en) Polymer electrolyte, and polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell using same
US20110033774A1 (en) Polymer electrolyte composition and method for preparing the same, and fuel cell
KR101267905B1 (en) Proton conducting copolymer containing diphenyl fuorene-sulfonic acid group, manufacturing method thereof, proton conducting polymer membrane, membrane-electrolyte assembly, and polymer electrolyte membrane fuel cell using the same
JP6259494B2 (en) Fuel cell electrolyte membrane containing polymer blend, membrane-electrode assembly containing the same, and fuel cell
JP2009185250A (en) Manufacturing method of isolated polymer
KR100907476B1 (en) Polymer membranes containing partially fluorinated copolymer, manufacturing method thereof and polymer electrolyte fuel cell using them
EP2169751A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP2008115340A (en) Polymer containing sulfonic acid group, its composition and its use
WO2009035131A1 (en) Process for producing polyelectrolyte membrane, polyelectrolyte membrane, membrane-electrode assembly, and fuel cell
EP2169748A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
Nam et al. Synthesis and properties of bonding layer containing flexible and fluorinated moieties for hydrocarbon-based membrane electrode assemblies
JP2009104926A (en) Membrane electrode assembly
JP2008120956A (en) Sulfonic acid group-containing polymer, production method and application of the same
KR100794466B1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
WO2013161405A1 (en) Composition for electrolyte membranes, solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, membrane-electrode assembly, solid polymer fuel cell, water electrolysis cell, and water electrolysis system
JP2003068327A (en) Film for fuel cell
JP4720090B2 (en) Sulfonic acid group-containing polymer electrolyte membrane and article using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08830341

Country of ref document: EP

Kind code of ref document: A1