JP2009185250A - Manufacturing method of isolated polymer - Google Patents

Manufacturing method of isolated polymer Download PDF

Info

Publication number
JP2009185250A
JP2009185250A JP2008029097A JP2008029097A JP2009185250A JP 2009185250 A JP2009185250 A JP 2009185250A JP 2008029097 A JP2008029097 A JP 2008029097A JP 2008029097 A JP2008029097 A JP 2008029097A JP 2009185250 A JP2009185250 A JP 2009185250A
Authority
JP
Japan
Prior art keywords
polymer
sulfonated aromatic
solvent
solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029097A
Other languages
Japanese (ja)
Inventor
Takashi Tsuda
隆 津田
Hideki Hiraoka
秀樹 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2008029097A priority Critical patent/JP2009185250A/en
Publication of JP2009185250A publication Critical patent/JP2009185250A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Polyethers (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an isolated polymer which can be employed to manufacture an electrolyte polymer that is almost free from a remaining solvent to be highly pure as well as an electrolyte film that is excellent for use in an electrochemical device, a fuel cell, and a direct alcohol type fuel cell. <P>SOLUTION: It has been found that a sulfonated aromatic polyether is dissolved in a water/acetone base mixed solvent, and further, the polyether exhibits excellent solubility in the mixed solvent at a specific amount of the sulfonate group introduced in the polymer and a specific rate of the components in the mixed solvent, and forms a polymer solution that is homogeneous and has a low viscosity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は単離ポリマーの製造方法に関するもので、残存溶媒が少なく高純度の電解質ポリマーの製造や、電解質膜の効率的な製造に応用できるものである。当該電解質膜は電気化学装置、特に燃料電池、さらに詳細には直接アルコール形燃料電池用途に優れたものである。   The present invention relates to a method for producing an isolated polymer, and can be applied to the production of a high purity electrolyte polymer with little residual solvent and the efficient production of an electrolyte membrane. The electrolyte membrane is excellent for electrochemical devices, particularly for fuel cells, and more specifically for direct alcohol fuel cells.

地球的な環境保護の動きが活発化するにつれて、いわゆる温暖化ガスやNOxの排出防止が強く叫ばれている。これらのガスの総排出量を削減するために、自動車用の燃料電池システムの実用化が非常に有効と考えられている。   As global environmental protection activities become more active, so-called greenhouse gas and NOx emission prevention is strongly screamed. In order to reduce the total emission amount of these gases, it is considered that practical application of a fuel cell system for automobiles is very effective.

高分子電解質膜を用いた電気化学装置の一種である固体高分子形燃料電池(PEFC、Polymer Electrolyte Fuel Cell)は、低温動作、高出力密度、環境負荷が少ないという優れた特長を有している。中でも、メタノール燃料のPEFCは、ガソリンと同様に液体燃料として供給が可能なため、電気自動車用動力や携帯機器用電源として有望であると考えられている。   A polymer electrolyte fuel cell (PEFC), which is a type of electrochemical device using a polymer electrolyte membrane, has excellent features such as low temperature operation, high output density, and low environmental impact. . Among them, PEFC, which is a methanol fuel, can be supplied as a liquid fuel in the same manner as gasoline, and thus is considered promising as a power source for electric vehicles and a power source for portable devices.

燃料としてメタノールを用いる場合のPEFCは、改質器を用いてメタノールを水素主成分のガスに変換する改質メタノール形と、改質器を用いずにメタノールを直接使用する直接メタノール形(DMFC、Direct Methanol Polymer Fuel Cell)の二つのタイプに区分される。DMFCは、改質器が不要であるため、軽量化が可能である等の大きな利点があり、その実用化が期待されている。 When using methanol as a fuel, PEFC is divided into a reformed methanol type that uses a reformer to convert methanol into a hydrogen-based gas, and a direct methanol type that uses methanol directly without using a reformer (DMFC, It is divided into two types, Direct Methanol Polymer Fuel Cell). Since DMFC does not require a reformer, it has great advantages such as being able to reduce weight, and its practical use is expected.

しかし、DMFC用の電解質膜として、在来の水素を燃料とするPEFC用の電解質膜であるパーフルオロアルキルスルホン酸膜、例えばDu Pont社のNafion(登録商標)膜等を用いた場合には、メタノールが膜を透過してしまうため、起電力が低下するという問題がある。さらに、これらの電解質膜は非常に高価であるという経済上の問題も有している。   However, when an electrolyte membrane for DMFC is a perfluoroalkylsulfonic acid membrane that is an electrolyte membrane for PEFC using conventional hydrogen as a fuel, such as a Nafion (registered trademark) membrane manufactured by Du Pont, Since methanol permeates the membrane, there is a problem that the electromotive force decreases. Furthermore, these electrolyte membranes also have an economic problem that they are very expensive.

上記の問題を解決する手段として、特許文献1には、ポリイミド、架橋ポリエチレン等、安価で外力に対して変形し難い多孔性基材にプロトン伝導性を有するポリマーを充填してなる電解質膜の提案がなされている。しかしながら前記電解質膜は、基材をプラズマ照射して前記ポリマーをグラフト重合させる工程を含むため、製造設備コストの上昇という問題がある。また燃料電池として連続運転した場合の耐久性も充分とはいえなかった。 As means for solving the above problem, Patent Document 1 proposes an electrolyte membrane in which a porous base material such as polyimide, crosslinked polyethylene, etc., which is inexpensive and hardly deformed by external force, is filled with a polymer having proton conductivity. Has been made. However, since the electrolyte membrane includes a step of subjecting the base material to plasma irradiation and graft polymerization of the polymer, there is a problem of an increase in manufacturing equipment cost. In addition, the durability when continuously operating as a fuel cell was not sufficient.

さらに、特許文献2には、メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の空孔内に、プロトン導電性を有する第1ポリマーを充填してなる電解質膜であって、前記第1ポリマーが2−アクリルアミド−2−メチルプロパン酸由来のポリマーであることを特徴とする電解質膜の提案がなされている。しかしながらこの特許文献記載の電解質膜の耐久性も、未だ不充分なものであった。
特開2002−83612号公報 国際公開03/075386号パンフレット
Further, Patent Document 2 discloses an electrolyte membrane formed by filling pores of a porous substrate that does not substantially swell with an organic solvent containing methanol and water with a first polymer having proton conductivity. An electrolyte membrane has been proposed in which the first polymer is a polymer derived from 2-acrylamido-2-methylpropanoic acid. However, the durability of the electrolyte membrane described in this patent document is still insufficient.
JP 2002-83612 A International Publication No. 03/075386 Pamphlet

炭化水素系電解質の中では耐酸化性・耐熱性に優れる高分子として、芳香族ポリエーテルにスルホン酸基等のイオン交換基を導入した高分子が知られている。例えば、スルホン化ポリエーテルケトン(特許文献3)、スルホン化ポリエーテルスルホン(特許文献4)等が提案されている。
特表平11−502249号公報 特開平10−45913号公報
Among hydrocarbon-based electrolytes, a polymer in which an ion exchange group such as a sulfonic acid group is introduced into an aromatic polyether is known as a polymer excellent in oxidation resistance and heat resistance. For example, sulfonated polyether ketone (Patent Document 3), sulfonated polyethersulfone (Patent Document 4) and the like have been proposed.
Japanese National Patent Publication No. 11-502249 Japanese Patent Laid-Open No. 10-45913

しかしながら、上記のような芳香族ポリエーテルは一般的な低沸点溶媒に溶けないため、高沸点の極性非プロトン性溶媒が常用されており、その結果ポリマーの単離精製工程や電解質膜への成膜過程での作業性・生産性に劣るという問題があった。本発明の目的はこれらの問題を解決すること、すなわち、低沸点で毒性が低く安価な溶媒を用いることにより、作業性・生産性に優れた精製樹脂や電解質膜の製造方法を提供することにある。   However, since aromatic polyethers as described above are insoluble in common low-boiling solvents, high-boiling polar aprotic solvents are commonly used, and as a result, polymers are isolated and purified and formed into electrolyte membranes. There was a problem of poor workability and productivity in the film process. The object of the present invention is to solve these problems, that is, to provide a method for producing a purified resin and an electrolyte membrane excellent in workability and productivity by using a low boiling point, low toxicity and inexpensive solvent. is there.

本発明者等は上記の課題を解決するため鋭意検討した。まず、芳香族ポリエーテルにスルホン基を導入することにより親水性が増加するものの、完全に水溶化するのは困難であることが分かった。そこで、水と低沸点有機溶媒の混合系を広範に探し求めたところ、水/アセトン系混合溶媒がスルホン化芳香族ポリエーテルを溶解せしめ、更には、特定のスルホン基導入量と特定の混合比率で良好な溶解性を示し、均一で低粘度のポリマー溶液が得られることを見出した。   The present inventors have intensively studied to solve the above problems. First, it was found that introduction of a sulfone group into an aromatic polyether increases the hydrophilicity, but it is difficult to completely dissolve in water. Therefore, when extensively searching for a mixed system of water and a low-boiling organic solvent, the water / acetone mixed solvent dissolves the sulfonated aromatic polyether, and further, at a specific sulfone group introduction amount and a specific mixing ratio. It has been found that a polymer solution having good solubility and a uniform and low viscosity can be obtained.

該混合溶媒を使用することによって、スルホン化芳香族ポリエーテルの単離・精製が容易になり、また、高純度の電解質膜が容易に形成できることを発見し本発明を完成するに至った。   By using the mixed solvent, it was found that the sulfonated aromatic polyether can be easily isolated and purified, and a high-purity electrolyte membrane can be easily formed, and the present invention has been completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<スルホン化芳香族ポリエーテル>
本発明において使用されるスルホン化芳香族ポリエーテルは、主鎖の主成分が芳香環から成り、芳香環同士の結合の少なくとも一部がエーテル結合であり、芳香環の一部にスルホン酸基が直接またはスペーサーを介して結合した構造のポリマーである。
芳香環同士の結合部に、エーテル結合(−O−)およびスルホン基(−SO2−)を持つスルホン化芳香族ポリエーテルスルホンおよび、エーテル結合(−O−)およびケトン基(−CO−)を持つスルホン化芳香族ポリエーテルケトンが好ましく用いられる。
好ましいスルホン化芳香族ポリエーテルの骨格構造は、式1で表される分子構造単位を持つ。

Figure 2009185250
(式中、X、Yは独立に芳香族の二価の基を表し、繰返し数nは1〜100の整数である。) <Sulfonated aromatic polyether>
In the sulfonated aromatic polyether used in the present invention, the main component of the main chain is composed of an aromatic ring, at least a part of the bonds between the aromatic rings is an ether bond, and a sulfonic acid group is part of the aromatic ring. A polymer having a structure bonded directly or via a spacer.
Sulfonated aromatic polyethersulfone having an ether bond (—O—) and a sulfone group (—SO 2 —) at the bond between aromatic rings, an ether bond (—O—), and a ketone group (—CO—) A sulfonated aromatic polyether ketone having the following formula is preferably used.
A preferred sulfonated aromatic polyether skeleton structure has a molecular structural unit represented by Formula 1.
Figure 2009185250
(In the formula, X and Y independently represent an aromatic divalent group, and the repeating number n is an integer of 1 to 100.)

該スルホン化芳香族ポリエーテルの典型的な製造方法は、構造単位Xを形成するジオールと、構造単位Yを形成する脱離基を二個持つ化合物の縮合重合である。この際の脱離基としては、ヒドロキシル基による求核置換反応で脱離し得る官能基であり、クロロ基、ブロモ基、ヨード基などのハロゲン基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、トリフロロメタンスルホニルオキシ基などのスルホン酸エステル基が挙げられる。   A typical method for producing the sulfonated aromatic polyether is condensation polymerization of a diol that forms the structural unit X and a compound that has two leaving groups that form the structural unit Y. The leaving group at this time is a functional group that can be eliminated by a nucleophilic substitution reaction with a hydroxyl group, a halogen group such as a chloro group, a bromo group, or an iodo group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, Examples thereof include sulfonic acid ester groups such as trifluoromethanesulfonyloxy group.

構造単位XおよびYの代表例としては、1,4−フェニレン、1,3−フェニレン、1,2−フェニレン、2−フェニル−1,4−フェニレン、2−フェノキシ−1,4−フェニレン、1,4−ナフチレン、2,3−ナフチレン、1,5−ナフチレン、2,6−ナフチレン、2,7−ナフチレン、ビフェニル−4,4‘−ジイル、ビフェニル−3,3’−ジイル、ビフェニル−3,4‘−ジイル、3,3’−ジフェニルビフェニル−4,4‘−ジイル、3,3’−ジフェノキシビフェニル−4,4‘−ジイル、2,2’−ジフェニルプロパン−4,4‘−ジイル、ジフェニルエーテル−4,4’−ジイル、ジフェニルスルホン−4,4‘−ジイル、ベンゾフェノン−4,4’−ジイルなどが挙げられる。   Representative examples of the structural units X and Y include 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, 2-phenyl-1,4-phenylene, 2-phenoxy-1,4-phenylene, 1 , 4-naphthylene, 2,3-naphthylene, 1,5-naphthylene, 2,6-naphthylene, 2,7-naphthylene, biphenyl-4,4′-diyl, biphenyl-3,3′-diyl, biphenyl-3 , 4′-diyl, 3,3′-diphenylbiphenyl-4,4′-diyl, 3,3′-diphenoxybiphenyl-4,4′-diyl, 2,2′-diphenylpropane-4,4′- Diyl, diphenyl ether-4,4′-diyl, diphenylsulfone-4,4′-diyl, benzophenone-4,4′-diyl and the like can be mentioned.

本発明においては、構造単位X,Yの少なくともいずれかにスルホン酸基−SO3Mを含む。ここで,Mは水素、金属原子または四級アンモニウムを意味する。Mが金属原子の場合、水素原子に交換し易く残存しても酸化反応を促進しないことから、アルカリ金属原子またはアルカリ土類金属原子であるのが好ましい。スルホン酸基の結合様式としては、芳香環に直接またはアルキル基等を介して結合した構造が利用できる。 In the present invention, at least one of the structural units X and Y includes a sulfonic acid group —SO 3 M. Here, M means hydrogen, a metal atom or quaternary ammonium. When M is a metal atom, it is preferably an alkali metal atom or an alkaline earth metal atom because the oxidation reaction is not promoted even if it is easily exchanged with a hydrogen atom and remains. As a bonding mode of the sulfonic acid group, a structure bonded to an aromatic ring directly or via an alkyl group can be used.

芳香族ポリエーテル中のイオン交換基の濃度は、濃度が高いほど伝導性が良くなり、一方で濃度が低いほど耐水性や耐久性は良くなることから1.5〜5.0mmol/gが好ましく、2.0〜4.0mmol/gが更に好ましく、2.2〜3.5mmol/gが更に好ましい。   The concentration of the ion exchange group in the aromatic polyether is preferably 1.5 to 5.0 mmol / g because the higher the concentration, the better the conductivity, while the lower the concentration, the better the water resistance and durability. 2.0 to 4.0 mmol / g is more preferable, and 2.2 to 3.5 mmol / g is more preferable.

本発明において使用されるスルホン化芳香族ポリエーテルとしては、以下の式2の構造単位を60重量%以上有するスルホン化芳香族ポリエーテルスルホンが特に好ましく使用できる。

Figure 2009185250
(式中、MはH,Na,K,Li,NH4の中から1つまたは複数を選択できる基を表し、nは0〜2、mは0〜2の正数を表す。)
As the sulfonated aromatic polyether used in the present invention, a sulfonated aromatic polyethersulfone having a structural unit of the following formula 2 of 60% by weight or more can be particularly preferably used.
Figure 2009185250
(In the formula, M represents a group capable of selecting one or more of H, Na, K, Li, and NH 4 , n represents 0 to 2, and m represents a positive number of 0 to 2.)

上記の構造単位中のスルホン酸基の平均数は1〜4個が好ましく、1.5〜3個が更に好ましい。スルホン酸基の導入方法としては、モノマー段階での導入即ちスルホン酸基含有モノマーを予め用意してこれを重合原料に用いる方法と、重合の後にスルホン化反応によって芳香環にスルホン酸基を導入する方法がある。いずれの方法を用いても構わないが、スルホン酸基含量の制御が容易であることからモノマー段階での導入が好ましい。   The average number of sulfonic acid groups in the structural unit is preferably 1 to 4, more preferably 1.5 to 3. As a method for introducing a sulfonic acid group, introduction at a monomer stage, that is, a method in which a sulfonic acid group-containing monomer is prepared in advance and used as a polymerization raw material, and a sulfonic acid group is introduced into an aromatic ring by a sulfonation reaction after polymerization. There is a way. Any method may be used, but introduction at the monomer stage is preferable because the control of the sulfonic acid group content is easy.

<水/アセトン混合溶媒>
本発明においてスルホン化芳香族ポリエーテルの溶媒として使用される水/アセトン混合溶媒の重量比率は、95/5〜30/70であり、90/10〜40/60が好ましい。混合比率をこの範囲内に設定することにより、均一で低粘度のスルホン化芳香族ポリエーテル溶液が調製できる。
<Water / acetone mixed solvent>
In the present invention, the weight ratio of the water / acetone mixed solvent used as the solvent for the sulfonated aromatic polyether is 95/5 to 30/70, preferably 90/10 to 40/60. By setting the mixing ratio within this range, a sulfonated aromatic polyether solution having a uniform and low viscosity can be prepared.

構成成分である水とアセトンは沸点が低いため、汎用の極性非プロトン性溶媒たとえばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルイミダゾリジノン、エチレンカーボネート、プロピレンカーボネート等と比較してポリマーからの溶媒除去が極めて容易である。   Since water and acetone, which are constituent components, have a low boiling point, compared with general-purpose polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, dimethylimidazolidinone, ethylene carbonate, propylene carbonate, etc. Solvent removal from the polymer is very easy.

場合により水/アセトン以外の成分、例えば他の溶媒、触媒、硬化剤、開始剤、界面活性剤、安定剤等を少量なら含んで構わない。これらの成分の許容含有量は、水/アセトン混合溶媒100重量部に対して50重量部%以下であり、30重量%以下が好ましく、20重量部以下が更に好ましい。   In some cases, components other than water / acetone, for example, other solvents, catalysts, curing agents, initiators, surfactants, stabilizers and the like may be contained in small amounts. The allowable content of these components is 50 parts by weight or less, preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the water / acetone mixed solvent.

<ポリマー単離工程>
本発明におけるポリマー単離工程とは、スルホン化芳香族ポリエーテルの溶液から溶媒を取り除いて、高純度のスルホン化芳香族ポリエーテルを得る工程を意味する。具体的には、以下の(1)〜(3)の3工程が挙げられ、以下に詳しく説明する。
<Polymer isolation step>
The polymer isolation step in the present invention means a step of obtaining a high purity sulfonated aromatic polyether by removing the solvent from the solution of the sulfonated aromatic polyether. Specifically, the following three steps (1) to (3) may be mentioned and will be described in detail below.

(1)スルホン化芳香族ポリエーテル溶液に沈殿剤を混合してポリマーを沈殿させ、沈澱したポリマーを乾燥して溶媒を除去する工程
スルホン化芳香族ポリエーテルの合成反応は通常溶液で行なわれ、合成直後の反応液はスルホン化芳香族ポリエーテル以外に溶媒や触媒・残存原料・副生物など含む。スルホン化芳香族ポリエーテルを単離するために、通常はこの反応液に沈澱剤を添加してポリマーを凝集・沈澱させ、沈澱したポリマーを乾燥して単離ポリマーを得る。このプロセスを数回繰返すことにより高純度のスルホン化芳香族ポリエーテルが得ることができる。
(1) A step of mixing a precipitant with a sulfonated aromatic polyether solution to precipitate a polymer, drying the precipitated polymer and removing the solvent. The synthesis reaction of the sulfonated aromatic polyether is usually carried out in a solution, The reaction solution immediately after the synthesis contains a solvent, catalyst, residual raw material, by-product and the like in addition to the sulfonated aromatic polyether. In order to isolate the sulfonated aromatic polyether, usually, a precipitating agent is added to the reaction solution to aggregate and precipitate the polymer, and the precipitated polymer is dried to obtain an isolated polymer. By repeating this process several times, a high-purity sulfonated aromatic polyether can be obtained.

汎用の極性非プロトン性溶媒を使用する従来の方法では、触媒・残存原料・副生物は除去できるものの、高沸点ゆえに極性非プロトン性溶媒がポリマー中に残存し易かった。一方、本発明では低沸点の水/アセトン混合溶媒を使用するため、マイルドな乾燥条件でも溶媒を完全に除去することができる。   In the conventional method using a general-purpose polar aprotic solvent, although the catalyst, the remaining raw material, and the by-product can be removed, the polar aprotic solvent easily remains in the polymer because of its high boiling point. On the other hand, since a low boiling point water / acetone mixed solvent is used in the present invention, the solvent can be completely removed even under mild drying conditions.

この際用いられる沈澱剤としては、スルホン化芳香族ポリエーテルを溶解しない各種の有機溶媒や水が使用される。有機溶媒としては、各種の脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒、エーテル系溶媒の中で沸点が150℃以下のものが好ましく使用され、沸点が130℃以下のものが更に好ましい。
沈澱剤として使用できる有機溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、酢酸エチル、酢酸プロピル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロピルアルコール、ブタノール、テトラヒドロフラン、ジオキサン、ジエチルエーテル等が挙げられ、この中ではヘキサン、シクロヘキサン、酢酸エチル、アセトン、メチルエチルケトン、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフランが好ましく用いられ、アセトン、メチルエチルケトン、メタノール、エタノール、イソプロピルアルコールが更に好ましく用いられる。これらの溶媒は二成分以上の混合溶媒として使用することもできる。
As the precipitant used in this case, various organic solvents and water that do not dissolve the sulfonated aromatic polyether are used. As the organic solvent, those having a boiling point of 150 ° C. or less among various aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, ester solvents, ketone solvents, alcohol solvents and ether solvents are preferably used. More preferably, the boiling point is 130 ° C. or lower.
Specific examples of organic solvents that can be used as the precipitating agent include pentane, hexane, cyclohexane, heptane, octane, ethyl acetate, propyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropyl alcohol, butanol, tetrahydrofuran Hexane, cyclohexane, ethyl acetate, acetone, methyl ethyl ketone, methanol, ethanol, isopropyl alcohol, and tetrahydrofuran are preferably used, and acetone, methyl ethyl ketone, methanol, ethanol, isopropyl alcohol are more preferable. Used. These solvents can also be used as a mixed solvent of two or more components.

この工程に供されるスルホン化芳香族ポリエーテル溶液の濃度は、2重量%〜50重量%が好ましく、4重量%〜30重量%が更に好ましい。また、使用する溶媒/沈澱剤の混合重量比率は、50/50〜5/95が好ましく、30/70〜10/90が更に好ましい。混合方法としては、攪拌したスルホン化芳香族ポリエーテル溶液中に沈澱剤を加える方法と、攪拌した沈澱剤中にスルホン化芳香族ポリエーテル溶液を加える方法のいずれを用いても構わない。   The concentration of the sulfonated aromatic polyether solution used in this step is preferably 2% to 50% by weight, more preferably 4% to 30% by weight. Further, the mixing weight ratio of the solvent / precipitating agent to be used is preferably 50/50 to 5/95, and more preferably 30/70 to 10/90. As a mixing method, either a method of adding a precipitant into a stirred sulfonated aromatic polyether solution or a method of adding a sulfonated aromatic polyether solution into a stirred precipitant may be used.

沈澱剤との混合で生成したポリマーの沈澱は、デカンテーションや濾過によって液から分離し、常圧下または減圧下において、常温または加熱することにより溶媒や沈澱剤を除去することができる。   The polymer precipitate formed by mixing with the precipitating agent is separated from the liquid by decantation or filtration, and the solvent and the precipitating agent can be removed by heating at normal temperature or under reduced pressure at room temperature or heating.

(2)スルホン化芳香族ポリエーテル溶液を成膜後、常圧または減圧下で溶媒を蒸発させて電解質膜を得る工程
スルホン化芳香族ポリエーテルの電解質膜を作成する代表的な方法は、ポリマー溶液をコーター等を用いて成膜し、常圧または減圧下で溶媒を蒸発させてフィルムを得る方法である。通常使用される極性非プロトン性溶媒では、沸点が高いため電解質フィルムを得るのに長時間を要し、また、電解質膜中に溶媒が残存し易いという問題がある。本発明においては低沸点の水/アセトン混合溶媒を使用するため、蒸発速度が高く生産性に優れる。また、フィルム中の残存溶媒も少なく高純度のスルホン化芳香族ポリエーテル電解質膜を得ることができる。
(2) Step of obtaining an electrolyte membrane by evaporating a solvent under normal pressure or reduced pressure after forming a sulfonated aromatic polyether solution A typical method for preparing an electrolyte membrane of sulfonated aromatic polyether is a polymer In this method, a solution is formed into a film using a coater or the like, and the solvent is evaporated under normal pressure or reduced pressure to obtain a film. Usually used polar aprotic solvents have a high boiling point, so that it takes a long time to obtain an electrolyte film, and the solvent tends to remain in the electrolyte membrane. In the present invention, since a low boiling point water / acetone mixed solvent is used, the evaporation rate is high and the productivity is excellent. In addition, a high-purity sulfonated aromatic polyether electrolyte membrane can be obtained with little residual solvent in the film.

また、本発明においては、水/アセトンの混合比率をスルホン化芳香族ポリエーテルの組成に応じて調節することにより、高濃度かつ低粘度の溶液とすることができる。従って、電解質膜の厚さの可変範囲が広く、厚みの制御も容易となる。   Moreover, in this invention, it can be set as a high concentration and low-viscosity solution by adjusting the mixing ratio of water / acetone according to the composition of the sulfonated aromatic polyether. Accordingly, the variable range of the thickness of the electrolyte membrane is wide and the thickness can be easily controlled.

成膜したフィルムの乾燥は常圧または減圧下で行い、必要に応じ加熱して溶媒を蒸発させる。乾燥の初期過程は主に低沸点のアセトンが揮発するため、常圧・常温でも揮発速度は十分に速い。乾燥の後期過程では主に水が揮発するので、蒸発を促進したい場合には必要に応じ加熱および/又は減圧すれば良い。   The formed film is dried under normal pressure or reduced pressure, and the solvent is evaporated by heating as necessary. Since the low boiling point acetone volatilizes mainly in the initial drying process, the volatilization rate is sufficiently fast even at normal pressure and room temperature. Since water is mainly volatilized in the latter stage of drying, heating and / or decompression may be performed as necessary to promote evaporation.

(3)スルホン化芳香族ポリエーテル溶液を多孔性基材に含浸させ、必要に応じ架橋処理を施した後、乾燥または水洗により溶媒を除去して電解質膜を得る工程
多孔性フィルムにスルホン化芳香族ポリエーテルを充填した複合体フィルムを作成する場合でも、水/アセトン混合溶媒を使用することにより溶媒の除去が容易になる。また、溶液粘度が低いため通常の極性非プロトン性溶媒と比べてポリマー濃度を高くでき、多孔性基材への充填量を高くすることができる。また、有機ポリマーの多孔性基材は極性非プロトン性溶媒に溶解したり膨潤したりし易いため、実質的に使用できない場合が多い。他方、水/アセトン混合溶媒は多孔性基材として多用されるエンプラ系ポリマーを侵さないため、これらの多孔性基材が自由に使用できる。
(3) A step of impregnating a porous substrate with a sulfonated aromatic polyether solution and performing a crosslinking treatment as necessary, and then removing the solvent by drying or washing with water to obtain an electrolyte membrane. Even when a composite film filled with a group polyether is prepared, removal of the solvent is facilitated by using a water / acetone mixed solvent. In addition, since the solution viscosity is low, the polymer concentration can be increased as compared with a normal polar aprotic solvent, and the filling amount into the porous substrate can be increased. In addition, organic polymer porous substrates are often not practically usable because they easily dissolve or swell in polar aprotic solvents. On the other hand, since the water / acetone mixed solvent does not attack the engineering plastic polymer frequently used as the porous substrate, these porous substrates can be used freely.

乾燥ではなく水洗によって残存溶媒を除去する場合、水中に抽出された溶媒により排水のCODが上がるため、排水処理が必要な場合がある。水/アセトン混合溶媒を使用すればCOD成分自体が少なく、除去も極めて容易である。   When the residual solvent is removed by washing with water instead of drying, wastewater treatment may be necessary because the COD of the wastewater is increased by the solvent extracted into water. If a water / acetone mixed solvent is used, the COD component itself is small and removal is very easy.

使用したスルホン化芳香族ポリエーテルの組成によっては、電解質膜として使用中に水溶性の成分が徐々に水中に溶出し、電解質膜の耐久性が悪いことがある。このような場合は架橋処理を施して水不溶化し、その後乾燥または水洗すれば良い。   Depending on the composition of the sulfonated aromatic polyether used, water-soluble components gradually elute into water during use as an electrolyte membrane, and the durability of the electrolyte membrane may be poor. In such a case, a crosslinking treatment may be performed to insolubilize the water, followed by drying or washing with water.

単離したポリマーの形態は上記の単離工程によって決まり、(1)の場合は不定形(粉末状、顆粒状、ペレット状、ゴム状など)、(2)と(3)はフィルム状である。以降の項では(3)の工程について更に詳細に説明する。   The form of the isolated polymer is determined by the above-mentioned isolation process. In the case of (1), it is indeterminate (powder, granule, pellet, rubber, etc.), and (2) and (3) are films. . In the following section, step (3) will be described in more detail.

<多孔性基材>
ポリマー単離工程(3)で使用する多孔性基材は、メタノールおよび水に対して実質的に膨潤しない材料であることが好ましく、特に乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ましい。
<Porous substrate>
The porous substrate used in the polymer isolation step (3) is preferably a material that does not substantially swell with respect to methanol and water. It is desirable that there is little.

面積増加率は、浸漬時間や温度によって変化するが、本発明で使用する多孔性基材は25℃における純水に1時間浸漬したときの面積増加率が、乾燥時に比較して最大でも20%以下であることが好ましい。   Although the area increase rate varies depending on the immersion time and temperature, the porous substrate used in the present invention has an area increase rate of 20% at the maximum when immersed in pure water at 25 ° C. for 1 hour compared to the time of drying. The following is preferable.

また、多孔性基材は燃料電池を運転する際の温度に対して耐熱性を有するものがよく、外力が加えられても容易に延びないものがよい。   Further, the porous substrate is preferably one having heat resistance against the temperature at which the fuel cell is operated, and one that does not easily extend even when an external force is applied.

そのような性質を持つ材料として、無機材料ではガラスまたはアルミナ若しくはシリカ等のセラミックス等が挙げられる。また、有機材料ではポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド等の芳香族高分子、ポリオレフィンを放射線の照射や架橋剤を加えて架橋したり延伸する等の方法で、外力に対して延び等の変形をし難くしたもの等が挙げられる。これらの材料は単独で用いても2種以上を積層する等により複合化して用いてもよい。   Examples of the material having such a property include inorganic materials such as glass or ceramics such as alumina or silica. For organic materials, polyimide, polyamideimide, polyetherimide, polyethersulfone, polyetherketone, polyphenylene ether, polyphenylene sulfide, and other aromatic polymers and polyolefins are crosslinked or stretched by applying radiation or a crosslinking agent. And the like, which are difficult to be deformed such as extending with respect to an external force. These materials may be used alone or in combination by stacking two or more of them.

これらの多孔性基材の中では、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド、ポリアミドイミド、ポリエーテルスルホン等の芳香族高分子が充填工程の作業性が良く、基材の入手し易さの点からも好ましい。   Among these porous substrates, aromatic polymers such as stretched polyolefins, crosslinked polyolefins, stretched polyolefins, polyimides, polyamideimides, and polyethersulfones have good workability in the filling process, and the substrate is available. It is preferable also from the point of easiness.

本発明で用いる多孔性基材の空孔率は、膜強度が保たれる範囲内で大きい方が電解質膜の伝導性が良くなるため5〜95%が好ましく、さらに好ましくは20〜80%である。   The porosity of the porous substrate used in the present invention is preferably from 5 to 95%, more preferably from 20 to 80%, since the conductivity of the electrolyte membrane is improved when the membrane strength is maintained within the range where the membrane strength is maintained. is there.

また、平均孔径は0.001〜100μmの範囲にあることが好ましく、さらに好ましくは0.01〜10μmの範囲である。平均孔径はガス吸着式細孔分布計や、水銀ポロシメーター、電子顕微鏡写真などの方法で得ることができる。   Moreover, it is preferable that an average hole diameter exists in the range of 0.001-100 micrometers, More preferably, it is the range of 0.01-10 micrometers. The average pore diameter can be obtained by a method such as a gas adsorption pore distribution meter, a mercury porosimeter, or an electron micrograph.

さらに基材の厚さは厚い方が膜強度が高くなって好ましいが、薄い方が膜抵抗が小さくなるという利点もあり、200μm以下が好ましい。より好ましくは1〜150μm、さらに好ましくは5〜100μmである。   Furthermore, the thicker the substrate, the better the film strength, but the thinner the film, the smaller the film resistance, and the more preferable is 200 μm or less. More preferably, it is 1-150 micrometers, More preferably, it is 5-100 micrometers.

<架橋処理>
本発明では、多孔性基材に充填したスルホン化芳香族ポリエーテルの耐久性を改良する目的で、必要に応じ架橋処理を施すことができる。架橋方法としては、予めスルホン化芳香族ポリエーテル分子中に反応性基を導入しておき、多孔性基材に充填した後に熱や光で架橋させる方法が挙げられる。
<Crosslinking treatment>
In the present invention, for the purpose of improving the durability of the sulfonated aromatic polyether filled in the porous substrate, a crosslinking treatment can be performed as necessary. Examples of the crosslinking method include a method in which a reactive group is introduced into a sulfonated aromatic polyether molecule in advance, and the porous substrate is filled with heat and then light.

この際、架橋反応を効率的に行なうため、架橋剤や硬化剤、硬化促進剤、触媒、開始剤、界面活性剤などの低分子化合物を使用することもできる。これらの化合物は、予めスルホン化芳香族ポリエーテル溶液中に添加しておけば良い。   At this time, a low molecular compound such as a crosslinking agent, a curing agent, a curing accelerator, a catalyst, an initiator, or a surfactant can also be used in order to efficiently perform the crosslinking reaction. These compounds may be added in advance to the sulfonated aromatic polyether solution.

例えば、ビニル基による光開始重合を架橋に利用する場合は、分子内にビニル基を有するスルホン化芳香族ポリエーテルを予め調製しておき、低分子ビニル化合物や光開始剤を含む溶液を多孔性基材に含浸させ、紫外線を照射して光架橋させればよい。   For example, when photoinitiated polymerization with vinyl groups is used for crosslinking, a sulfonated aromatic polyether having a vinyl group in the molecule is prepared in advance, and a solution containing a low molecular weight vinyl compound or a photoinitiator is porous. What is necessary is just to impregnate a base material and to irradiate an ultraviolet-ray and to carry out photocrosslinking.

多孔性基材に含浸させるスルホン化芳香族ポリエーテル溶液の濃度は、10〜90質量%が好ましく、20〜70質量%の溶液とするのがさらに好ましい。この際使用する溶媒は、既に説明した水/アセトン系混合溶媒を用いる。   The concentration of the sulfonated aromatic polyether solution impregnated into the porous substrate is preferably 10 to 90% by mass, and more preferably 20 to 70% by mass. As the solvent used in this case, the water / acetone mixed solvent already described is used.

また含浸作業をより行い易くする目的で、多孔性基材の親水化処理、ポリマー前駆体溶液への界面活性剤の添加、または含浸中における超音波の照射も行うことができる。   Further, for the purpose of facilitating the impregnation operation, hydrophilic treatment of the porous substrate, addition of a surfactant to the polymer precursor solution, or ultrasonic irradiation during the impregnation can be performed.

<溶媒の除去>
調製した電解質膜中に含まれるアセトンは、乾燥または水洗により容易に除去できる。アセトンは沸点が低いため室温放置でも容易に除去できるが、乾燥効率を上げるために熱風乾燥機や乾燥炉など通常の乾燥装置を使用することもできる。また、乾燥工程を経ることなくそのまま水洗することによっても容易に除去できる。水中に抽出されたアセトンは、水中の濃度に応じて適宜排水処理すれば良い。
<Removal of solvent>
Acetone contained in the prepared electrolyte membrane can be easily removed by drying or washing with water. Since acetone has a low boiling point, it can be easily removed even at room temperature, but a normal drying device such as a hot air dryer or a drying furnace can also be used to increase the drying efficiency. It can also be easily removed by washing with water without going through a drying step. Acetone extracted into water may be appropriately drained according to the concentration in water.

以下、本発明を実施例および比較例によりさらに詳しく説明するが、本発明の範囲がこれらの例により限定されるものではない。また実施例および比較例中の部は特に断りの無い限り質量部を意味するものとする。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, the scope of the present invention is not limited by these examples. Moreover, the part in an Example and a comparative example shall mean a mass part unless there is particular notice.

(実施例1) スルホン化芳香族ポリエーテルスルホンの合成と精製(1)
攪拌機、ディーンスターク装置、温度計を据え付けた500mL4つ口フラスコに、4,4’−ビフェノール(以下BPと略称する)を10.69g、ジクロロジフェニルスルホン(以下DCDPSと略称する)を4.54g、スルホン化ジクロロジフェニルスルホン(以下S−DCDPSと略称する)を17.59g、炭酸カリウムを9.67g、N−メチルピロリドン(以下NMPと略称する)を42.4gおよびトルエンを106.14g仕込んだ。フラスコをオイルバスに浸し、バス温度140℃で4時間攪拌した。この間、ディーンスターク装置にて分離した水を適宜除去した。次にバス温度を約30分かけて190℃まで昇温し、トルエンを反応液から留去させた。バス温度190℃で4時間反応し、末端ヒドロキシ型芳香族ポリエーテルの溶液を得た。
Example 1 Synthesis and purification of sulfonated aromatic polyethersulfone (1)
In a 500 mL four-necked flask equipped with a stirrer, a Dean Stark apparatus, and a thermometer, 10.69 g of 4,4′-biphenol (hereinafter abbreviated as BP), 4.54 g of dichlorodiphenyl sulfone (hereinafter abbreviated as DCDPS), 17.59 g of sulfonated dichlorodiphenylsulfone (hereinafter abbreviated as S-DCDPS), 9.67 g of potassium carbonate, 42.4 g of N-methylpyrrolidone (hereinafter abbreviated as NMP) and 106.14 g of toluene were charged. The flask was immersed in an oil bath and stirred at a bath temperature of 140 ° C. for 4 hours. During this time, the water separated by the Dean Stark apparatus was appropriately removed. Next, the bath temperature was raised to 190 ° C. over about 30 minutes, and toluene was distilled off from the reaction solution. The mixture was reacted at a bath temperature of 190 ° C. for 4 hours to obtain a terminal hydroxy aromatic polyether solution.

この溶液にNMPを113.42g、酢酸を1.26g添加し混合した。この溶液を一晩静置し、沈澱物を濾過後1Lビーカー中に溶液を移した。攪拌子で激しく攪拌しながら、イソプロパノール(以下IPAと略称する)518gを少しずつ滴下し、樹脂を沈澱させた。IPAの全量を投入後、更に2時間攪拌した。このスラリーを吸引濾過後真空乾燥し、スルホン化度70%のスルホン化芳香族ポリエーテルスルホンの粗生成物27.3gを得た。
粗生成物を水/アセトン混合溶媒(重量比1/1)に溶解して濃度15重量%のポリマー溶液とし、これを20倍量のIPA/水混合液(重量比5/1)中に攪拌下で滴下してポリマーを沈澱させた。沈澱を濾過後、50℃で2時間真空乾燥し、芳香族ポリエーテルスルホンの精製物を得た。ガスクロマトグラフィーを用いて残存溶媒(アセトンおよびIPA)を定量したところ、いずれも0.1%以下であった。
To this solution, 113.42 g of NMP and 1.26 g of acetic acid were added and mixed. The solution was allowed to stand overnight, the precipitate was filtered, and the solution was transferred into a 1 L beaker. While stirring vigorously with a stirrer, 518 g of isopropanol (hereinafter abbreviated as IPA) was added dropwise little by little to precipitate the resin. After the entire amount of IPA was added, the mixture was further stirred for 2 hours. This slurry was suction filtered and then vacuum dried to obtain 27.3 g of a crude product of sulfonated aromatic polyethersulfone having a sulfonation degree of 70%.
The crude product was dissolved in a water / acetone mixed solvent (weight ratio 1/1) to obtain a polymer solution having a concentration of 15% by weight, and this was stirred into a 20-fold amount of IPA / water mixture (weight ratio 5/1). The polymer was precipitated by dropwise addition below. The precipitate was filtered and then vacuum dried at 50 ° C. for 2 hours to obtain a purified product of aromatic polyethersulfone. When residual solvents (acetone and IPA) were quantified using gas chromatography, they were all 0.1% or less.

(比較例1) スルホン化芳香族ポリエーテルスルホンの合成と精製(2)
実施例1と同じ方法で得たスルホン化度70%のスルホン化芳香族ポリエーテルスルホンの粗生成物を、NMPに溶解して濃度15重量%のポリマー溶液とし、これを20倍量のIPA中に攪拌下で滴下してポリマーを沈澱させた。沈澱を濾過後、50℃で2時間真空乾燥し、スルホン化芳香族ポリエーテルスルホンの精製物を得た。ガスクロマトグラフィーを用いて残存溶媒(アセトンおよびIPA)を定量したところ、IPAは0.1%以下であったものの、NMPを3.2%含むことが分かった。
(Comparative Example 1) Synthesis and purification of sulfonated aromatic polyethersulfone (2)
The crude product of sulfonated aromatic polyethersulfone having a sulfonation degree of 70% obtained by the same method as in Example 1 was dissolved in NMP to give a polymer solution having a concentration of 15% by weight, and this was dissolved in 20 times the amount of IPA. Was added dropwise with stirring to precipitate the polymer. The precipitate was filtered and then vacuum dried at 50 ° C. for 2 hours to obtain a purified product of sulfonated aromatic polyethersulfone. When residual solvents (acetone and IPA) were quantified using gas chromatography, it was found that although IPA was 0.1% or less, it contained 3.2% of NMP.

(実施例2) スルホン化芳香族ポリエーテルスルホンの合成と精製(3)
攪拌機、ディーンスターク装置、温度計を据え付けた500mL4つ口フラスコに、BPを10.69g、S−DCDPSを25.13g、炭酸カリウムを9.67g、NMPを42.4gおよびトルエンを106.14g仕込み、実施例1と同様の条件で反応・単離し、スルホン化度100%のスルホン化芳香族ポリエーテルスルホンの粗生成物35.7gを得た。
この粗生成物を水/アセトン混合溶媒(重量比50/50)に溶解して濃度15重量%のポリマー溶液とし、これを20倍量のIPA中に攪拌下で滴下してポリマーを沈澱させた。沈澱を濾過後、50℃で2時間真空乾燥し、芳香族ポリエーテルスルホンの精製物を得た。ガスクロマトグラフィーを用いて残存溶媒(アセトンおよびIPA)を定量したところ、いずれも0.1%以下であった。
(Example 2) Synthesis and purification of sulfonated aromatic polyethersulfone (3)
A 500 mL four-necked flask equipped with a stirrer, Dean-Stark apparatus, and thermometer was charged with 10.69 g of BP, 25.13 g of S-DCDPS, 9.67 g of potassium carbonate, 42.4 g of NMP, and 106.14 g of toluene. The reaction and isolation were conducted under the same conditions as in Example 1 to obtain 35.7 g of a crude product of a sulfonated aromatic polyethersulfone having a sulfonation degree of 100%.
This crude product was dissolved in a water / acetone mixed solvent (weight ratio 50/50) to form a polymer solution having a concentration of 15% by weight, and this was dropped into 20 times the amount of IPA with stirring to precipitate the polymer. . The precipitate was filtered and then vacuum dried at 50 ° C. for 2 hours to obtain a purified product of aromatic polyethersulfone. When residual solvents (acetone and IPA) were quantified using gas chromatography, they were all 0.1% or less.

(比較例2) スルホン化芳香族ポリエーテルスルホンの合成と精製(4)
実施例2と同じ方法で得たスルホン化度100%のスルホン化芳香族ポリエーテルスルホンの粗生成物を、NMPに溶解して濃度15重量%のポリマー溶液とし、これを20倍量のIPA中に攪拌下で滴下してポリマーを沈澱させた。沈澱を濾過後、50℃で2時間真空乾燥し、芳香族ポリエーテルスルホンの精製物を得た。ガスクロマトグラフィーを用いて残存溶媒(NMPおよびIPA)を定量したところ、IPAは0.1%以下であったものの、NMPを3.4%含むことが分かった。
(Comparative Example 2) Synthesis and purification of sulfonated aromatic polyethersulfone (4)
A crude product of a sulfonated aromatic polyethersulfone having a sulfonation degree of 100% obtained by the same method as in Example 2 was dissolved in NMP to obtain a polymer solution having a concentration of 15% by weight. Was added dropwise with stirring to precipitate the polymer. The precipitate was filtered and then vacuum dried at 50 ° C. for 2 hours to obtain a purified product of aromatic polyethersulfone. When residual solvents (NMP and IPA) were quantified using gas chromatography, it was found that although IPA was 0.1% or less, it contained 3.4% of NMP.

(実施例3) スルホン化芳香族ポリエーテルスルホンの溶解性試験(1)
実施例1で得られたスルホン化度70%のスルホン化芳香族ポリエーテルスルホンと、実施例2で得られたスルホン化度100%のスルホン化芳香族ポリエーテルスルホンの水/アセトン混合溶媒への溶解性を調べた。ポリマー濃度は20重量%とし、水/アセトンの重量比を100/0,85/15,75/15,65/35,50/50,25/75と変化させた。いずれのポリマーとも、重量比100/0ではゲル状態で流動性なし、25/75では不溶であった。重量比85/15から50/50の比率では可溶であり低粘度の溶液を与えた。
(Example 3) Solubility test of sulfonated aromatic polyethersulfone (1)
A sulfonated aromatic polyethersulfone having a sulfonation degree of 70% obtained in Example 1 and a sulfonated aromatic polyethersulfone having a sulfonation degree of 100% obtained in Example 2 in a water / acetone mixed solvent. The solubility was examined. The polymer concentration was 20% by weight, and the weight ratio of water / acetone was changed to 100/0, 85/15, 75/15, 65/35, 50/50, 25/75. All the polymers were not fluid in the gel state at a weight ratio of 100/0 and insoluble at 25/75. A weight ratio of 85/15 to 50/50 gave a soluble and low viscosity solution.

(実施例4) スルホン化芳香族ポリエーテルスルホンの溶解性試験(2)
実施例2で得られたスルホン化度100%のスルホン化芳香族ポリエーテルスルホンの水/アセトン混合溶媒(重量比50/50)、NMP、ジメチルアセトアミドへの溶解性を調べた。ポリマー濃度は40重量%とし、三種類の溶媒に加熱溶解後、数日間静置した後その性状を観察した。ジメチルアセトアミドの溶液には沈澱が生成しており、溶解性が不十分と分かった。水/アセトン混合溶媒とNMPでは均一な溶液であったが、水/アセトン混合溶媒の方が低粘度であった。
(Example 4) Solubility test of sulfonated aromatic polyethersulfone (2)
The solubility of the sulfonated aromatic polyethersulfone having a sulfonation degree of 100% obtained in Example 2 in a water / acetone mixed solvent (weight ratio 50/50), NMP, and dimethylacetamide was examined. The polymer concentration was 40% by weight, and after heating and dissolving in three kinds of solvents, the polymer was allowed to stand for several days, and then its properties were observed. A precipitate was formed in the dimethylacetamide solution, indicating that the solubility was insufficient. The water / acetone mixed solvent and NMP were uniform solutions, but the water / acetone mixed solvent had a lower viscosity.

(実施例5) 溶媒キャストフィルムの作成(1)
実施例1で得られた芳香族ポリエーテルスルホンの精製物を水/アセトン混合溶媒(重量比50/50)に溶解し、濃度20重量%の溶液を得た。この溶液10gを底面の平滑なシャーレ(面積144cm2)に流し入れ、室温で1日間放置して溶媒を揮発させた。更に120℃で30分間熱処理して、厚さ約120μmのキャストフィルムを得た。フィルム中の残存溶媒量をガスクロマトグラフィーで定量したところ、水分・アセトンとも0.1%以下であった。
(Example 5) Preparation of solvent cast film (1)
The purified aromatic polyethersulfone obtained in Example 1 was dissolved in a water / acetone mixed solvent (weight ratio 50/50) to obtain a solution having a concentration of 20% by weight. 10 g of this solution was poured into a petri dish (area 144 cm 2 ) having a smooth bottom, and left at room temperature for 1 day to volatilize the solvent. Furthermore, it heat-processed for 30 minutes at 120 degreeC, and obtained the cast film about 120 micrometers thick. When the amount of residual solvent in the film was quantified by gas chromatography, it was 0.1% or less for both water and acetone.

(比較例3) 溶媒キャストフィルムの作成(2)
水/アセトン混合溶媒の代わりにNMPを溶媒として使用すること以外は、実施例5と全く同様の方法でキャストフィルムを得た。フィルム中の残存溶媒量をガスクロマトグラフィーで定量したところ、2.8%のNMPを含有することが分かった。
(Comparative Example 3) Preparation of solvent cast film (2)
A cast film was obtained in the same manner as in Example 5 except that NMP was used as the solvent instead of the water / acetone mixed solvent. The amount of residual solvent in the film was quantified by gas chromatography and found to contain 2.8% NMP.

(合成例)末端ビニル型スルホン化芳香族ポリエーテルスルホンの合成(1)
実施例1で合成したスルホン化芳香族ポリエーテルスルホンの精製物を20.0g、NMPを40g、85%KOHを0.75g仕込み、80℃のオイルバス中で30分攪拌して樹脂を溶解した。オイルバスを60℃に設定し、クロルメチルスチレン2.3gを仕込んで7時間反応した。0.1mol/リットル濃度のHCl水溶液による滴定から求めた塩基価は0.013meq./gで一定値になり、反応は終了したと判断された。
この溶液にNMPを55.6g、酢酸を0.15g添加し混合した。この溶液を、実施例1と同じ方法で樹脂の単離・精製を行ない、末端ビニル型スルホン化芳香族ポリエーテルスルホンの粉末17.8gを得た。H−NMRスペクトルから計算したビニル基濃度は0.393meq./gであった。
(Synthesis Example) Synthesis of terminal vinyl type sulfonated aromatic polyethersulfone (1)
20.0 g of a purified product of sulfonated aromatic polyether sulfone synthesized in Example 1, 40 g of NMP, and 0.75 g of 85% KOH were charged, and the resin was dissolved by stirring in an oil bath at 80 ° C. for 30 minutes. . The oil bath was set to 60 ° C., and 2.3 g of chloromethylstyrene was charged and reacted for 7 hours. The base number determined from titration with a 0.1 mol / liter HCl aqueous solution was 0.013 meq. It became a constant value at / g, and the reaction was judged to be complete.
To this solution, 55.6 g of NMP and 0.15 g of acetic acid were added and mixed. The resin was isolated and purified from this solution in the same manner as in Example 1 to obtain 17.8 g of a terminal vinyl type sulfonated aromatic polyethersulfone powder. The vinyl group concentration calculated from the 1 H-NMR spectrum was 0.393 meq. / G.

(実施例6)本発明の単離ポリマーの製造方法による複合膜の作成
合成例で得た末端ビニル型スルホン化芳香族ポリエーテルスルホンを5g、N−フェニルマレイミド(以下PMIと略称する)を0.34g、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンを0.15gおよび水/アセトン混合溶媒(重量比70/30)を10gを混合・加熱して均一溶液とした。
この溶液中に多孔性基材(架橋ポリエチレン膜、サイズ6cm×6cm、厚さ16μm、空孔率38%)を浸漬し、多孔性膜中に溶液を十分含浸させた。この膜をPETフィルムで挟んで含浸液を十分かき出した後、高圧水銀ランプにて紫外線を4分間照射して重合させた。硬化膜をPETフィルムから剥がし、扇風機で1分間乾かした後、得られた電解質膜を20gの1mol/リットル濃度のHCl水溶液に一晩浸漬した。当該HCl水溶液中に抽出された溶媒をガスクロマトグラフィーで定量したところ、アセトンの含有量は20ppm以下であった。
(Example 6) Preparation of composite membrane by production method of isolated polymer of the present invention 5 g of terminal vinyl-type sulfonated aromatic polyether sulfone obtained in the synthesis example and 0 for N-phenylmaleimide (hereinafter abbreviated as PMI) .34 g, 0.15 g of 2-hydroxy-2-methyl-1-phenylpropan-1-one and 10 g of a water / acetone mixed solvent (weight ratio 70/30) were mixed and heated to obtain a homogeneous solution.
A porous substrate (crosslinked polyethylene film, size 6 cm × 6 cm, thickness 16 μm, porosity 38%) was immersed in this solution, and the porous film was sufficiently impregnated with the solution. This membrane was sandwiched between PET films, and the impregnating solution was sufficiently scraped off, followed by polymerization by irradiation with ultraviolet rays for 4 minutes with a high-pressure mercury lamp. The cured film was peeled off from the PET film and dried with an electric fan for 1 minute, and then the obtained electrolyte film was immersed in 20 g of a 1 mol / liter HCl aqueous solution overnight. When the solvent extracted into the aqueous HCl solution was quantitatively determined by gas chromatography, the content of acetone was 20 ppm or less.

(比較例6)本発明を利用しない複合膜の作成
水/アセトン混合溶媒の代わりにNMPを溶媒として使用すること以外は、実施例6と全く同様の方法で複合膜を作成し、膜の乾燥と1mol/リットル濃度のHCl水溶液への浸漬も同様に行なった。当該HCl水溶液中に抽出された溶媒をガスクロマトグラフィーで定量したところ、730ppmのNMPを含有することが分かった。
(Comparative Example 6) Preparation of composite membrane not using the present invention A composite membrane was prepared in the same manner as in Example 6 except that NMP was used as a solvent instead of the water / acetone mixed solvent, and the membrane was dried. In the same manner, immersion in a 1 mol / liter HCl aqueous solution was also performed. When the solvent extracted into the aqueous HCl solution was quantified by gas chromatography, it was found to contain 730 ppm of NMP.

以上の結果から明らかなように、本発明の方法、すなわちスルホン化芳香族ポリエーテルの溶媒として水/アセトン混合溶媒を使用することにより、ポリマーの単離が容易になり、高純度のスルホン化芳香族ポリエーテルが得られる。また、この単離方法を電解質膜の製造工程に利用すれば、残存溶媒を含まない高純度の電解質膜が簡素なプロセスで製造できる。
As is clear from the above results, by using the water / acetone mixed solvent as the solvent of the method of the present invention, that is, the sulfonated aromatic polyether, the polymer can be easily isolated and the sulfonated fragrance having high purity can be obtained. Group polyethers are obtained. Moreover, if this isolation method is utilized for the manufacturing process of an electrolyte membrane, a high purity electrolyte membrane which does not contain a residual solvent can be manufactured by a simple process.

本発明は、電解質樹脂として有用なスルホン化芳香族ポリエーテルの単離方法であり、この方法で得られたポリマーは、例えば電解質樹脂膜として、燃料電池や各種センサー等の電気化学デバイス素子や、電気分解用の分離膜の用途に適用できる。


The present invention is a method for isolating a sulfonated aromatic polyether useful as an electrolyte resin, the polymer obtained by this method, for example, as an electrolyte resin film, electrochemical device elements such as fuel cells and various sensors, Applicable to the use of separation membrane for electrolysis.


Claims (7)

スルホン化芳香族ポリエーテル溶液から溶媒を除去してポリマーを単離する工程において、溶媒に水/アセトン混合溶媒を使用することを特徴とする単離ポリマー製造方法。 A method for producing an isolated polymer, wherein a water / acetone mixed solvent is used as a solvent in the step of isolating the polymer by removing the solvent from the sulfonated aromatic polyether solution. 水/アセトン混合溶媒の質量比率が95/5〜30/70である、請求項1に記載の単離ポリマー製造方法。 The method for producing an isolated polymer according to claim 1, wherein the mass ratio of the water / acetone mixed solvent is 95/5 to 30/70. スルホン化芳香族ポリエーテルがスルホン化芳香族ポリエーテルスルホンまたはスルホン化芳香族ポリエーテルケトンである、請求項1または2に記載の単離ポリマー製造方法。 The method for producing an isolated polymer according to claim 1 or 2, wherein the sulfonated aromatic polyether is a sulfonated aromatic polyethersulfone or a sulfonated aromatic polyetherketone. スルホン化芳香族ポリエーテルが式に示す構造単位を60質量%以上有するスルホン化芳香族ポリエーテルスルホンである、請求項1〜3のいずれかに記載の単離ポリマー製造方法。
Figure 2009185250
(式中、MはH,Na,K,Li,NH4の中から1つまたは複数を選択できる基を表し、nは0〜2、mは0〜2の正数を表す。)
The isolated polymer manufacturing method according to any one of claims 1 to 3, wherein the sulfonated aromatic polyether is a sulfonated aromatic polyethersulfone having 60% by mass or more of the structural unit represented by the formula.
Figure 2009185250
(In the formula, M represents a group capable of selecting one or more of H, Na, K, Li, and NH 4 , n represents 0 to 2, and m represents a positive number of 0 to 2.)
スルホン化芳香族ポリエーテル溶液を多孔性基材に含浸させた後、多孔性基材の空孔中でポリマーを単離させることを特徴とする請求項1〜4のいずれかに記載の単離ポリマー製造方法。   The isolation according to any one of claims 1 to 4, wherein the polymer is isolated in the pores of the porous substrate after the porous substrate is impregnated with the sulfonated aromatic polyether solution. Polymer production method. スルホン化芳香族ポリエーテル溶液を液膜とした後、常圧または減圧下で溶媒を蒸発させることによってフィルム状のポリマーを単離させることを特徴とする請求項1〜4のいずれかに記載の単離ポリマー製造方法。   The film-like polymer is isolated by evaporating the solvent under normal pressure or reduced pressure after the sulfonated aromatic polyether solution is made into a liquid film. Isolated polymer production method. ポリマー単離工程が、スルホン化芳香族ポリエーテル溶液に沈殿剤を混合してポリマーを沈澱させることを特徴とする、請求項1〜4のいずれかに記載の単離ポリマー製造方法。


The method for producing an isolated polymer according to any one of claims 1 to 4, wherein the polymer isolation step comprises precipitating a polymer by mixing a precipitant in the sulfonated aromatic polyether solution.


JP2008029097A 2008-02-08 2008-02-08 Manufacturing method of isolated polymer Pending JP2009185250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029097A JP2009185250A (en) 2008-02-08 2008-02-08 Manufacturing method of isolated polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029097A JP2009185250A (en) 2008-02-08 2008-02-08 Manufacturing method of isolated polymer

Publications (1)

Publication Number Publication Date
JP2009185250A true JP2009185250A (en) 2009-08-20

Family

ID=41068805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029097A Pending JP2009185250A (en) 2008-02-08 2008-02-08 Manufacturing method of isolated polymer

Country Status (1)

Country Link
JP (1) JP2009185250A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015366A1 (en) * 2011-07-28 2013-01-31 住友化学株式会社 Method for producing polyether sulfone
JP2013064080A (en) * 2011-09-20 2013-04-11 Toray Ind Inc Sulfonate group-containing polymer, sulfonate group-containing aromatic compound, and polyelectrolyte material, polyelectrolyte molding and polymer electrolyte fuel cell using the same
CN103980477A (en) * 2014-05-22 2014-08-13 吉林大学 Method of terminating polymerization reaction of polyarylether polymer by acid
WO2014208714A1 (en) * 2013-06-28 2014-12-31 東洋紡株式会社 Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor
US9701789B2 (en) 2011-09-20 2017-07-11 Toray Industries, Inc. Sulfonic acid group-containing polymer, sulfonic acid group-containing aromatic compound and method of making the same, as well as polymer electrolyte material, polymer electrolyte molded product and solid polymer fuel cell using the same
WO2019078171A1 (en) * 2017-10-16 2019-04-25 国立大学法人京都大学 Method for concentrating or separating polymer compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015366A1 (en) * 2011-07-28 2013-01-31 住友化学株式会社 Method for producing polyether sulfone
JP2013064080A (en) * 2011-09-20 2013-04-11 Toray Ind Inc Sulfonate group-containing polymer, sulfonate group-containing aromatic compound, and polyelectrolyte material, polyelectrolyte molding and polymer electrolyte fuel cell using the same
US9701789B2 (en) 2011-09-20 2017-07-11 Toray Industries, Inc. Sulfonic acid group-containing polymer, sulfonic acid group-containing aromatic compound and method of making the same, as well as polymer electrolyte material, polymer electrolyte molded product and solid polymer fuel cell using the same
WO2014208714A1 (en) * 2013-06-28 2014-12-31 東洋紡株式会社 Polyarylene sulfonic acids and precursors thereof, production method of polyarylene sulfonic acids and precursors thereof, and composite electrolyte film and production method therefor
JPWO2014208714A1 (en) * 2013-06-28 2017-02-23 東洋紡株式会社 Polyarylene sulfonic acids and precursors thereof, production method thereof, composite electrolyte membrane and production method thereof
CN103980477A (en) * 2014-05-22 2014-08-13 吉林大学 Method of terminating polymerization reaction of polyarylether polymer by acid
CN103980477B (en) * 2014-05-22 2016-03-23 吉林大学 A kind of method utilizing acid to stop polyarylether polymer polyreaction
WO2019078171A1 (en) * 2017-10-16 2019-04-25 国立大学法人京都大学 Method for concentrating or separating polymer compound

Similar Documents

Publication Publication Date Title
Chen et al. Partially fluorinated poly (arylene ether) s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes
Zhang et al. Cross-linked membranes based on sulfonated poly (ether ether ketone)(SPEEK)/Nafion for direct methanol fuel cells (DMFCs)
WO2011016444A1 (en) Novel sulfonic acid group-containing segmented block copolymer and use thereof
JPWO2009136631A1 (en) Novel sulfonic acid group-containing segmented block copolymer polymer and use thereof, and method for producing novel block copolymer polymer
JP5720568B2 (en) Solid polymer electrolyte composition, ion exchange membrane, membrane / electrode assembly, fuel cell
JP2014218661A (en) Hydroxyl group-containing sulfonated polyethersulfone copolymer and preparation method thereof, polymer electrolyte membrane for fuel cell and membrane electrode assembly comprising the same
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
JP2009185250A (en) Manufacturing method of isolated polymer
KR101758237B1 (en) Ion Exchange Membrane and Method for Manufacturing the Same
KR100800313B1 (en) Organic-inorganic hybrid membranes containing sulfonated polyhedral oligosilsesquioxane nanoparticles for direct methanol fuel cell applications
JP6259494B2 (en) Fuel cell electrolyte membrane containing polymer blend, membrane-electrode assembly containing the same, and fuel cell
EP2042543A1 (en) Method for producing polymer electrolyte emulsion
KR101798499B1 (en) Branched sulfonated polyphenylene polymer and polymer electrolyte membrane for fuel cell comprising the same
JP4757274B2 (en) Polyethersulfone-based polymer electrolyte, solid polymer electrolyte membrane, fuel cell, and production method thereof
JP2007109472A (en) Membrane electrode assembly for fuel cell
JP2008115340A (en) Polymer containing sulfonic acid group, its composition and its use
JP2005521777A (en) Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix
KR20120009789A (en) Proton-conducting polymer, polymer electrolyte membrane comprising polymer, cation-exchange resin comprising polymer, cation-exchange membrane comprising polymer, method for preparing polymer
JP4940549B2 (en) Novel sulfonic acid group-containing segmented block copolymer and its use
JP5627491B2 (en) Solid polymer electrolyte membrane and method for producing the same
JP2006176665A (en) New sulfonate group-containing segmented block copolymer and application of the same
JP2007039525A (en) Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
KR101235738B1 (en) Proton conductive copolymer, method for preparing the saem and use thereof
JP2003147076A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
JP5537457B2 (en) Prepolymer and prepolymer solution, and catalyst layer