JP2005521777A - Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix - Google Patents

Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix Download PDF

Info

Publication number
JP2005521777A
JP2005521777A JP2003581295A JP2003581295A JP2005521777A JP 2005521777 A JP2005521777 A JP 2005521777A JP 2003581295 A JP2003581295 A JP 2003581295A JP 2003581295 A JP2003581295 A JP 2003581295A JP 2005521777 A JP2005521777 A JP 2005521777A
Authority
JP
Japan
Prior art keywords
composite material
silica
silica particles
polymer
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003581295A
Other languages
Japanese (ja)
Inventor
サン−アルノー,マルク
ビービン,フィリップ
Original Assignee
エスアイエム コンポジッツ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスアイエム コンポジッツ インコーポレーテッド filed Critical エスアイエム コンポジッツ インコーポレーテッド
Publication of JP2005521777A publication Critical patent/JP2005521777A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ポリ(芳香族エーテルケトン)又はポリ(ベンゾイルフェニレン)、又はそれらの誘導体を基材にしたポリマーマトリックスに分散した酸官能化シリカを含む複合材料。該複合材料は酸性官能価及びシリカ粒子の親水性による良好な保水能力により特徴付けられる。更に、水素ガス又はメタノール溶液のような、燃料電池技術に通常使用されるガス及び液体燃料に対する良好な不透過性がシリカ粒子の存在により得られる。複合材料の良好な機械的性質は該材料を薄いフィルム又は膜の形態に容易に形成させる。その形態で、複合材料は燃料電池用のプロトン交換膜に、膜の乾燥又は湿潤化に、ガス又は溶媒のコンディショニングに、又は酸触媒膜として使用可能である。A composite comprising acid-functionalized silica dispersed in a polymer matrix based on poly (aromatic ether ketone) or poly (benzoylphenylene), or derivatives thereof. The composite material is characterized by good water retention capacity due to acidic functionality and the hydrophilicity of the silica particles. Furthermore, good impermeability to gas and liquid fuels commonly used in fuel cell technology, such as hydrogen gas or methanol solutions, is obtained due to the presence of silica particles. The good mechanical properties of the composite material make it easier to form the material in the form of a thin film or membrane. In that form, the composite material can be used for proton exchange membranes for fuel cells, for drying or wetting membranes, for conditioning gases or solvents, or as acid catalyst membranes.

Description

本発明は、ポリマーマトリックスに分散されたプロトン伝導性シリカ粒子に基づくイオン交換複合材料に関する。本発明はまた、上記複合材料の製造方法、及び、それを用いた、例えば電気化学器具、特に燃料電池内のプロトン交換膜に、乾燥/湿潤化膜として、気体若しくは溶媒のコンディショニングに、又は酸触媒膜として使用できる膜の形成方法に関する。   The present invention relates to an ion exchange composite material based on proton conducting silica particles dispersed in a polymer matrix. The present invention also relates to a method for producing the above composite material and to a proton exchange membrane, for example in an electrochemical instrument, in particular a fuel cell, using it as a drying / wetting membrane, for conditioning a gas or solvent, or for an acid. The present invention relates to a method for forming a film that can be used as a catalyst film.

イオン交換材料は電気化学器具のようないくつかの技術分野、環境上の要求、及び化学反応に多くの用途がある。イオン交換材料の中で、プロトン伝導性材料は、クリーンパワー発生において増加しつつある関心のために、かなり研究されており、クリーンパワー発生にポリマー電解液膜燃料電池(PEMFC)は重要な代表の一つである。   Ion exchange materials have many applications in several technical fields such as electrochemical instruments, environmental requirements, and chemical reactions. Among ion exchange materials, proton conducting materials have been extensively studied due to the increasing interest in clean power generation, and polymer electrolyte membrane fuel cells (PEMFC) are an important representative for clean power generation. One.

材料のプロトン伝導性は、例えば材料の化学構造にプロトン交換基を混入することにより得られる。スルホン酸官能基は最も効率的なプロトン交換基であるが、カルボン酸基又はホスホン酸基等もプロトン移動のために使用できる。   The proton conductivity of the material can be obtained, for example, by incorporating a proton exchange group into the chemical structure of the material. The sulfonic acid functional group is the most efficient proton exchange group, but carboxylic acid groups or phosphonic acid groups can also be used for proton transfer.

スルホン酸基を有するペルフルオロ化又は部分的フルオロ化されたポリマー又はコポリマーについての多くの開発が行われた。この一族の材料は、例えばナフィオン(Nafion)(登録商標)(デュポン デ ネモウス社)(特許文献1;特許文献2)、アシプレックス(Aciplex)(登録商標)(旭化学工業)、フレミオン(Flemion)(商標)(旭硝子株式会社)又はゴア−セレクト(Gore−Select)(登録商標)(ダブリュー.エル.ゴア)(特許文献3;特許文献4;特許文献5)の商品名で市場に見られる。親水性酸領域と疎水性フルオロカーボン領域との間に相分離が起き、材料中の良好なプロトン伝導性に寄与すると思われる(非特許文献1;非特許文献2)。残念なことに、主として膜の急速な脱水を引き起こす材料のフッ素化骨格の疎水性により、高温で(100℃近く)水の管理が問題になる。   Many developments have been made on perfluorinated or partially fluorinated polymers or copolymers having sulfonic acid groups. The material of this family includes, for example, Nafion (registered trademark) (Du Pont de Nemours) (Patent Document 1; Patent Document 2), Aciplex (registered trademark) (Asahi Chemical Industry), Flemion. (Trademark) (Asahi Glass Co., Ltd.) or Gore-Select (registered trademark) (W. El Gore) (Patent Literature 3; Patent Literature 4; Patent Literature 5). It is considered that phase separation occurs between the hydrophilic acid region and the hydrophobic fluorocarbon region and contributes to good proton conductivity in the material (Non-Patent Document 1; Non-Patent Document 2). Unfortunately, water management becomes a problem at high temperatures (near 100 ° C.), mainly due to the hydrophobic nature of the fluorinated backbone of the material that causes rapid dehydration of the membrane.

比較として、フッ素化されていないがスルホン化されたポリマーも、重大な脱水効果が少なく良好なプロトン伝導性を示すことができる。強い化学構造、好ましくは芳香族に基づく構造は、高温で材料に良好な安定性を与えるのに不可欠である。燃料電池への応用に興味深い性質は、例えばポリ(芳香族エーテルケトン)(特許文献6)、ポリ(芳香族エーテルスルホン)又はポリフェニレン(特許文献7)を基材にしたポリマーについて既に示された。   As a comparison, non-fluorinated but sulfonated polymers can also exhibit good proton conductivity with little significant dehydration effect. A strong chemical structure, preferably an aromatic based structure, is essential to give the material good stability at high temperatures. Properties of interest for fuel cell applications have already been shown for polymers based on, for example, poly (aromatic ether ketone) (Patent Document 6), poly (aromatic ether sulfone) or polyphenylene (Patent Document 7).

材料の湿った状態と乾燥した状態との間での寸法の変動を低減しそしてその水保持性を向上させるために、いくつかの無機充填剤をスルホン化ポリマーに添加することができる。その場合、プロトン伝導性は有機相により確保され、一方無機相は水保持を助け、材料の膨張を減少させる(非特許文献3)。   Several inorganic fillers can be added to the sulfonated polymer to reduce dimensional variation between the wet and dry state of the material and improve its water retention. In that case, proton conductivity is ensured by the organic phase, while the inorganic phase helps retain water and reduces the expansion of the material (3).

無機相と有機相の有益な性質の組み合わせは、安定な連続プロトン伝導性相の形成を扱う複合材料の多くの開発においてみられる。これらの開発で、アルコキシシラン誘導体はゾル−ゲル又は共縮合工程を介して重合されて、主として三次元的に架橋結合されたケイ素−酸素に基づく構造となる(特許文献8、特許文献9、特許文献10)。かかる種類の複合材料は有望であるが、それらの製造の制御は容易でなく、しばしば達成するのが難しい。更に、かかる種類の構造はいくらかのイオン交換力を容易に提供しない。より簡単な複合体製造法は燃料電池膜のような電気化学器具への挑戦に興味深い解決法を与えることができる。   The combination of beneficial properties of the inorganic and organic phases is seen in many developments of composite materials that handle the formation of a stable continuous proton conducting phase. With these developments, alkoxysilane derivatives are polymerized via a sol-gel or co-condensation process, resulting in a structure based primarily on silicon-oxygen that is three-dimensionally crosslinked (Patent Document 8, Patent Document 9, Patent Reference 10). Although such types of composite materials are promising, their manufacture is not easy to control and is often difficult to achieve. Furthermore, such kind of structures do not readily provide any ion exchange power. Simpler composite manufacturing methods can provide an interesting solution to the challenge of electrochemical instruments such as fuel cell membranes.

特許文献11(2001年6月8日発行、特願平11−336986号、出願人:トヨタ中央R&D研究所)は、官能化されたシリカを含む高分子量電解質を基材としたプロトン伝導体を記載する。スルホン酸、カルボン酸及びホスホン酸基で官能化されたシリカが記載されている。電解質については、記載はペルフルオロスルホン酸型ポリマー、スチレンジビニルベンゼンスルホン酸型ポリマー及びスチレン−エチレン−ブタジエン−スチレンコポリマーに限られている。スルホン化シリカ及びペルフルオロスルホン酸ポリマーを使用した特定の例において、得られた膜は0.5Vにおいて1A/cm2の電流密度を有するが、それは満足ゆくものではない。他の例においてのみ得られた膜の電流密度についてのデータは得られていない。他の例の膜は例1の膜と実質的に同じか劣ると推定される。従って、電流密度が満足な改良された膜を提供することが要望されている。   Patent Document 11 (issued on June 8, 2001, Japanese Patent Application No. 11-336986, Applicant: Toyota Central R & D Laboratory) describes a proton conductor based on a high molecular weight electrolyte containing functionalized silica. Describe. Silicas functionalized with sulfonic, carboxylic and phosphonic acid groups are described. For electrolytes, the description is limited to perfluorosulfonic acid type polymers, styrene divinylbenzene sulfonic acid type polymers and styrene-ethylene-butadiene-styrene copolymers. In the specific example using sulfonated silica and perfluorosulfonic acid polymer, the resulting membrane has a current density of 1 A / cm 2 at 0.5 V, which is not satisfactory. Data on the current density of films obtained only in other examples are not available. It is estimated that the other example membranes are substantially the same or inferior to the Example 1 membranes. Accordingly, there is a need to provide an improved film with satisfactory current density.

特許文献12(2000年6月8日発行、出願人:ユニバーシッティ ラーバル)はポリマーマトリックスと、膜のプロトン伝導性の向上に寄与する充填剤材料から成る電解膜を開示する。全ての例において、ポリマーマトリックスは芳香族ポリエーテルケトン(PEEK)又はそのスルホン化誘導体(SPEEK)を基材とし、一方充填剤はBPO4又はヘテロポリ酸である。この複合体は耐時間性ではないであろう。何故なら、充填剤がポリマーマトリックスに時間経過と共に溶解するからである。   Patent Document 12 (issued June 8, 2000, Applicant: University Laval) discloses an electrolytic membrane comprising a polymer matrix and a filler material that contributes to improving the proton conductivity of the membrane. In all examples, the polymer matrix is based on aromatic polyetherketone (PEEK) or its sulfonated derivative (SPEEK), while the filler is BPO4 or a heteropolyacid. This composite will not be time resistant. This is because the filler dissolves in the polymer matrix over time.

従って、ポリマーマトリックス中に分散した無機相を基材とした複合材料であって、良好なプロトン交換力を有し、優れた電流密度を膜に与え、耐時間性であり、容易に製造できる複合材料に対する要求がある。
米国特許第3,282,875号 米国特許第4,330,654号 米国特許第5,635,041号 米国特許第5,547,551号 米国特許第5,599,614号 米国特許第6,355,149号 米国特許第5,403,675号 EP1223632 A2 EP 0560899 B1 米国特許第6,277,304号 特開2001−155744 カナダ出願第2,292,703号 T.D.Gierke,G.E.Munn,F.C.WilsonによるJ.Polym.Sci.Polym.Phys.Ed.1981年、19、1687頁 M.Fujimura,T.Hashimoto,H.KawaiによるMacromolecule,1981年、14、1309頁 ”proceedings of 1998 Fuel Cell Seminar”、11月16−19日、パームスプリング、カルフォルニア
Therefore, a composite material based on an inorganic phase dispersed in a polymer matrix, which has a good proton exchange capacity, gives an excellent current density to the membrane, is time resistant, and can be easily manufactured. There is a demand for materials.
U.S. Pat. No. 3,282,875 U.S. Pat. No. 4,330,654 US Pat. No. 5,635,041 US Pat. No. 5,547,551 US Pat. No. 5,599,614 US Pat. No. 6,355,149 US Pat. No. 5,403,675 EP12223632 A2 EP 0560899 B1 US Pat. No. 6,277,304 JP 2001-155744 A Canadian Application No. 2,292,703 T.A. D. Gierke, G .; E. Munn, F.M. C. J. Wilson Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687 M.M. Fujimura, T .; Hashimoto, H .; Macromolecule by Kawai, 1981, 14, 1309. "Processeds of 1998 Fuel Cell Seminar", November 16-19, Palm Spring, California

本発明の目的は、前述した問題を克服することである。
本発明の別の目的は、関連するプロトン交換力を示すイオン交換複合材料を提供することである。
本発明の別の目的は、容易に製造できる膜の形態のイオン交換複合材料の製造法を提供することである。
本発明の別の目的は、良好な電流密度を有する膜を形成するのに適した複合材料を提供することである。
The object of the present invention is to overcome the aforementioned problems.
Another object of the present invention is to provide an ion exchange composite that exhibits an associated proton exchange capacity.
Another object of the present invention is to provide a process for producing an ion exchange composite in the form of a membrane that can be easily produced.
Another object of the present invention is to provide a composite material suitable for forming a film having a good current density.

本発明の上記の目的及びその他の目的は、下記を含む複合材料を提供することにより達成される:
酸官能化シリカ粒子、
残量はポリ(芳香族エーテルケトン)又はポリ(ベンゾイルフェニレン)、又はそれらの誘導体を基材にしたポリマー、
該複合材料は0.6Vにて少なくとも約1A/cmの電流密度を有する膜を与えることができる。
該複合材料は膜の形態で使用し得る。
The above and other objects of the present invention are achieved by providing a composite material comprising:
Acid functionalized silica particles,
The remaining amount is a polymer based on poly (aromatic ether ketone) or poly (benzoylphenylene), or derivatives thereof,
The composite material can provide a film having a current density of at least about 1 A / cm 2 at 0.6V.
The composite material can be used in the form of a membrane.

本発明の複合材料において、シリカ粒子は好ましくはスルホン酸、カルボン酸及び/又はホスホン酸基で官能化され、スルホン酸基が好ましい。   In the composite material of the present invention, the silica particles are preferably functionalized with sulfonic acid, carboxylic acid and / or phosphonic acid groups, with sulfonic acid groups being preferred.

好ましい態様において、本発明の複合材料は通常、少なくとも約10重量%、好ましくは約20重量%の官能化されたシリカ粒子を含む。   In a preferred embodiment, the composite material of the present invention typically comprises at least about 10% by weight, preferably about 20% by weight, of functionalized silica particles.

ポリマーマトリックスを構成するために使用されるポリマーは酸官能化、例えばスルホン酸、カルボン酸及び/又はホスホン酸基、又はそれらの誘導体で官能化されていてもよい。   The polymer used to construct the polymer matrix may be functionalized with acid functionalization, such as sulfonic acid, carboxylic acid and / or phosphonic acid groups, or derivatives thereof.

該酸基はシリカ粒子及び/又はポリマーに、例えば直線状若しくは枝分かれしたアルキル鎖、直線状若しくは枝分かれした芳香族鎖、又は直線状の、又は直線状若しくは枝分かれしたアルキル若しくは芳香族鎖と枝分かれした、アルキル鎖と芳香族鎖との組み合わせを介して共有結合していてもよく、上記鎖は任意にヘテロ原子及び/又はハロゲン原子を含む。   The acid groups are branched into silica particles and / or polymers with, for example, linear or branched alkyl chains, linear or branched aromatic chains, or linear or linear or branched alkyl or aromatic chains, It may be covalently bonded through a combination of an alkyl chain and an aromatic chain, the chain optionally containing heteroatoms and / or halogen atoms.

本発明の複合材料において、シリカ粒子は下記の特徴を有する:
i.10m/gから1500m/gの表面積、
ii.0.01μmから500μmのシリカ粒子寸法、
iii.0オングストロームから500オングストロームのシリカ孔径。
In the composite material of the present invention, the silica particles have the following characteristics:
i. A surface area of 10 m 2 / g to 1500 m 2 / g,
ii. Silica particle size of 0.01 μm to 500 μm,
iii. Silica pore size from 0 angstrom to 500 angstrom.

イオン交換基は通常シリカ粒子中に0.1から5.0mmol/gの量で存在する。
酸基は通常ポリマー中に0mmol/gから5.0mmol/gの量で存在する。
The ion exchange groups are usually present in the silica particles in an amount of 0.1 to 5.0 mmol / g.
Acid groups are usually present in the polymer in an amount of 0 mmol / g to 5.0 mmol / g.

本発明の膜は、好ましくは燃料電池に、湿潤化又は乾燥用に、コンディショニングガス又は溶媒中で、又は酸触媒膜として使用されるのに意図される。   The membranes of the present invention are preferably intended for use in fuel cells, for wetting or drying, in conditioning gases or solvents, or as acid catalyst membranes.

複合材料は、燃料電池用のプロトン交換膜のような電気化学器具、ガス又は溶媒コンディショニング用の湿潤化又は乾燥用膜、及び酸触媒膜に使用できる膜の形態で容易に製造できる。   Composite materials can be readily manufactured in the form of membranes that can be used for electrochemical instruments such as proton exchange membranes for fuel cells, wetting or drying membranes for gas or solvent conditioning, and acid catalyst membranes.

シリカ粒子は酸基で官能化され、ポリマーマトリックスの内部に分散された場合は、プロトン交換力を有する無機親水性相を構成する。ポリマーマトリックスを含む有機相は、ポリマーの化学構造に初めから存在するイオン交換基、又はポリマーの化学構造に結合されたイオン交換基を含んで、複合材料のプロトン伝導性を増加させ得る。プロトン交換力は官能化されたポリマーマトリックス及び分散されたシリカ粒子の両方によって達成される。   Silica particles are functionalized with acid groups and, when dispersed within the polymer matrix, constitute an inorganic hydrophilic phase having proton exchange capacity. The organic phase comprising the polymer matrix may include ion exchange groups that are initially present in the chemical structure of the polymer or ion exchange groups bonded to the chemical structure of the polymer to increase the proton conductivity of the composite material. Proton exchange power is achieved by both functionalized polymer matrix and dispersed silica particles.

いくつかの官能基は該材料にプロトン交換力を与えるのに適当である。好ましい官能基は酸基、更に好ましくはスルホン酸基(−SOH)である。カルボン酸基(−COH)又はホスホン酸基(−PO)のような他の酸基もまた該構造に接合(グラフト)して、関係するプロトン伝導性を与えることができる。 Some functional groups are suitable for providing proton exchange power to the material. A preferred functional group is an acid group, more preferably a sulfonic acid group (—SO 3 H). Other acid groups such as carboxylic acid groups (—CO 2 H) or phosphonic acid groups (—PO 3 H 2 ) can also be joined (grafted) to the structure to give the relevant proton conductivity.

イオン交換基は有機相及び無機相の化学構造に共有結合するのが好ましい。化学結合は、直鎖若しくは枝分かれ鎖のアルキル若しくは芳香族鎖又は直鎖若しくは枝分かれ鎖の両者の組み合わせであるのが好ましく、いくつかのヘテロ原子又はハロゲン原子を偶発的に含んでいることができる。   The ion exchange groups are preferably covalently bonded to the chemical structure of the organic and inorganic phases. The chemical bond is preferably a linear or branched alkyl or aromatic chain or a combination of both a linear or branched chain and may contain some heteroatoms or halogen atoms incidentally.

上記のように、色々な種類のシリカを複合材料中の無機相の形成に使用できる。好ましいシリカは多孔性シリカであるが、他の種類も使用し得、下記が挙げられるが、これらに限定されない:無定形シリカ、ヒュームドシリカ、球状シリカ、不規則シリカ、構造(structured)シリカ、モレキュラーシーブシリカ、シレスキオキサン(silesquioxane)誘導体、及びそれらの混合物。シリカ粒子の量及びそれらの平均サイズは連続親水性相の形成及び該材料の機械的性質に重要な役割を果たす。   As described above, various types of silica can be used to form the inorganic phase in the composite material. The preferred silica is porous silica, but other types may be used, including but not limited to: amorphous silica, fumed silica, spherical silica, irregular silica, structured silica, Molecular sieve silica, silesquioxane derivatives, and mixtures thereof. The amount of silica particles and their average size play an important role in the formation of the continuous hydrophilic phase and the mechanical properties of the material.

ポリ(芳香族エーテルケトン)の一族で、好ましいポリマーは、ビクトレックス(イギリス)で製造され、下記の式を有するポリ(オキシ−1,4−フェニレン−オキシ−1,4−フェニレン−カルボニル−1,4−フェニレン)(PEEK)である:   A family of poly (aromatic ether ketones), the preferred polymer is poly (oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1) manufactured by Victrex (UK) and having the formula: , 4-phenylene) (PEEK):

Figure 2005521777
Figure 2005521777

PEEKのガラス転移温度は典型的には約200℃であり、必要な耐熱性及び耐薬品性を有するので、強い複合体となる。   The glass transition temperature of PEEK is typically about 200 ° C. and has the necessary heat and chemical resistance, resulting in a strong composite.

スルホン化は、スルホン化材料にプロトン交換力を与えるスルホン酸基を接合することによりポリマー構造を変更する普通の方法である。プロトン移動性の能力は該材料中の該酸基の量及び分散に依存する。   Sulfonation is a common method of altering the polymer structure by joining sulfonic acid groups that impart proton exchange power to the sulfonated material. The ability of proton mobility depends on the amount and dispersion of the acid groups in the material.

この種の構造のスルホン化について、いくつかの研究が現在入手可能である。本発明に使用するのに最も適したスルホン化法の一つは、EP 8895及び後にBr.Polym.J.第17巻、1985年、第4頁に記載されたように、濃H2SO4中でのスルホン化を用いる方法である。このスルホン化反応は、著しい鎖の切断又は分解が起きないので、クロロスルホネン化の手段よりもポリマーに損傷が少ない。ポリマーが一旦スルホン化されると、スルホン化されたPEEKに対応する式は典型的には次の通りである:   Several studies are currently available on sulfonation of this type of structure. One of the most suitable sulfonation methods for use in the present invention is EP 8895 and later Br. Polym. J. et al. Vol. 17, 1985, page 4, using sulfonation in concentrated H2SO4. This sulfonation reaction causes less damage to the polymer than means of chlorosulfonation, since no significant chain scission or degradation occurs. Once the polymer is sulfonated, the formula corresponding to sulfonated PEEK is typically as follows:

Figure 2005521777
Figure 2005521777

スルホン化の度合いはx/nに相当し、xは一つのスルホン酸基を有する繰り返し単位の数に相当する。従って、100%のスルホン化のPEEKは繰り返し単位当たり一つの酸基を有するか、三つの芳香族環当たり一つの酸基を有する。スルホン化ポリマー1g当たりのスルホン酸基の数はポリマーのイオン交換力(IEC)を決定する。例えば、100%スルホン化PEEKは2.9mmol/gのIECを有する。   The degree of sulfonation corresponds to x / n, where x corresponds to the number of repeating units having one sulfonic acid group. Thus, 100% sulfonated PEEK has one acid group per repeat unit or one acid group per three aromatic rings. The number of sulfonic acid groups per gram of sulfonated polymer determines the ion exchange power (IEC) of the polymer. For example, 100% sulfonated PEEK has an IEC of 2.9 mmol / g.

芳香族環に結合したスルホン酸基の量は、温度、時間、酸中のポリマーの濃度のようないくつかのパラメータに依存する。プロトン容量、溶解性、保水性、及び膨張係数のようなスルホン化PEEK(SPEEK)の多くの性質は、そのスルホン化速度、即ちイオン交換力、と共に変化する。   The amount of sulfonic acid groups attached to the aromatic ring depends on several parameters such as temperature, time, and the concentration of the polymer in the acid. Many properties of sulfonated PEEK (SPEEK), such as proton capacity, solubility, water retention, and expansion coefficient, vary with its sulfonation rate, ie, ion exchange capacity.

無機相に対して、スルホン酸基で官能化したシリカの使用はプロトン伝導性の利益を与えるだけでなく、官能化していないシリカよりも保水性においてよりよい効率を与える。典型的には、酸シリカの保水性は通常のシリカの2倍高い。例えば、相対湿度70%の環境において、通常のシリカの保水性が15%であるのに対して酸シリカの保水性は約30%である。   For inorganic phases, the use of silica functionalized with sulfonic acid groups not only provides proton conductivity benefits, but also provides better efficiency in water retention than unfunctionalized silica. Typically, water retention of acid silica is twice as high as normal silica. For example, in an environment where the relative humidity is 70%, the water retention capacity of normal silica is 15%, whereas the water retention capacity of acid silica is about 30%.

シリカの構造もまた保水性に重要な役割を果たす。例えば、低い嵩密度構造は高い嵩密度のシリカと比べて保水性を増加させるが、主として比表面積が高いことによる。典型的には、低い嵩密度構造は高い嵩密度構造よりも2倍の水を取り込むことができる。例えば、相対湿度70%で、低い嵩密度構造を有するシリカの保水性は、高い嵩密度構造を有するシリカの保水性が7%であるのに対して約15%である。更に、低い嵩密度構造に見られるような大きい表面積は無機化合物中への酸官能価の充填量を改良する。例えば、官能化された低嵩密度のシリカの充填量は典型的には1.7mmol/gであるが、それは典型的には多孔性高嵩密度シリカの0.9mmol/gの2倍より低い。   The structure of silica also plays an important role in water retention. For example, a low bulk density structure increases water retention compared to high bulk density silica, but mainly due to its high specific surface area. Typically, a low bulk density structure can take up twice as much water as a high bulk density structure. For example, the water retention of silica having a low bulk density structure at a relative humidity of 70% is about 15% compared to 7% for silica having a high bulk density structure. Furthermore, the large surface area as seen in the low bulk density structure improves the loading of acid functionality into the inorganic compound. For example, the loading of functionalized low bulk density silica is typically 1.7 mmol / g, which is typically less than twice the 0.9 mmol / g of porous high bulk density silica. .

低嵩密度のスルホン酸シリカは典型的には、例えばChem.Mater.2000,12巻,2448頁に記載されたような共縮合法により製造できる。スルホン酸基は高嵩密度シリカに、例えばJ.Chromato.1976年,117巻,269頁に記載された方法を用いて接合することができる。いくつかの種類の結合がスルホン酸基をシリカ粒子に結合するのに可能である。本発明にいては、限定するものではないが好ましい結合は、プロピルフェニル鎖を扱う。結合はまたあらゆる種類のアルキル誘導体又は芳香族誘導体及びそれらの組み合わせを含んでもよく、化学構造中にヘテロ原子及び/又はハロゲンを有しても又は有していなくともよい。   Low bulk density silica sulfonate can typically be produced by a co-condensation process as described, for example, in Chem. Mater. 2000, 12, page 2448. The sulfonic acid group can be bonded to high bulk density silica, for example, using the method described in J. Chromato. 1976, 117, 269. Several types of bonds are possible to bond the sulfonic acid groups to the silica particles. In the present invention, a preferred but not limited bond deals with a propylphenyl chain. The bond may also include any type of alkyl or aromatic derivative and combinations thereof, and may or may not have heteroatoms and / or halogens in the chemical structure.

複合材料は酸シリカ粒子をポリマーマトリックス中に添加しそして両者を均一に混合することにより製造される。好ましい方法は、ポリマー溶液を介して進行するが、ここでシリカ粒子又は該ポリマー溶液と同じ溶媒若しくは該ポリマー溶液と混和性の溶媒中のシリカ懸濁液を加える。次ぎに該懸濁液は、均一な薄層中にまき散らす前に均質化し、そして乾燥する。満足な混合物はまた、熔融相に基づく方法のように、溶媒を使用せずに得られる。   The composite material is made by adding acid silica particles into the polymer matrix and mixing both uniformly. A preferred method proceeds through the polymer solution, where silica particles or a silica suspension in the same solvent as the polymer solution or a solvent miscible with the polymer solution is added. The suspension is then homogenized and dried before being sprinkled into a uniform thin layer. Satisfactory mixtures can also be obtained without the use of solvents, as in the process based on the melt phase.

複合材料の機械的性質は主としてポリマーマトリックスの機械的性質及びシリカ含量に依存する。機械的性質は、破れずに取り扱うことができるフィルムの厚さの下限を決定する。非常に堅いポリマーは薄いフィルムを破れずに十分変形させることができず、一方非常に可撓性の構造は薄いフィルム中に複合材料を保持することができない。同じように、多すぎる無機粒子は良好な引裂抵抗を妨害し、フィルムを特に脆くする。   The mechanical properties of the composite depend mainly on the mechanical properties of the polymer matrix and the silica content. Mechanical properties determine the lower limit of film thickness that can be handled without tearing. A very stiff polymer cannot fully deform a thin film without tearing, while a very flexible structure cannot hold a composite material in a thin film. Similarly, too many inorganic particles interfere with good tear resistance and make the film particularly brittle.

複合材料の溶解性は特にポリマーマトリックスの溶解性に依存する。前に述べたように、ポリマーの溶解性は温度及びそのイオン交換力に依存する。該材料が水のような特定の液体中に水和状態で使用できる最高温度は、ポリマーの溶解性に直接関係する。複合材料中の十分なシリカは、10から30重量%の間であり得るが、プロトン伝導性をある程度まで向上させるが、その程度は使用した対応するシリカの密度に依存する。   The solubility of the composite material depends in particular on the solubility of the polymer matrix. As mentioned earlier, the solubility of the polymer depends on the temperature and its ion exchange capacity. The maximum temperature at which the material can be used in a hydrated state in a particular liquid, such as water, is directly related to the solubility of the polymer. Sufficient silica in the composite can be between 10 and 30% by weight, but improves proton conductivity to some extent, depending on the density of the corresponding silica used.

本発明においては、多くのパラメータを容易に変えて、最終複合体の性質を調整することができる。典型的には、下記のパラメータを複合材料の配合のために考えなければならない:溶媒溶解性、使用温度、最終形態の材料の厚さ、及び期待するイオン交換値。次ぎにポリマーマトリックスの対応するスルホン化率を決定する。引き続きシリカの特性を、所望する酸負荷及び保水性に依存して主として多孔度の要求を考えながら評価する。
本発明を、以下の非限定的例により例示する。
In the present invention, many parameters can be easily changed to adjust the properties of the final composite. Typically, the following parameters must be considered for composite formulation: solvent solubility, use temperature, final form material thickness, and expected ion exchange value. The corresponding sulfonation rate of the polymer matrix is then determined. The properties of the silica are subsequently evaluated, mainly considering the porosity requirements depending on the desired acid load and water retention.
The invention is illustrated by the following non-limiting examples.

実施例1
PEEKのスルホン化
スルホン化55%のPEEKを、例えば2LのHSO(HO中95−98%)中のPEEK50gを室温で48時間撹拌することにより得る。溶液をHO中に注ぎ、スルホン化したPEEK(SPEEK)に相当する固相を2〜3回5Lの純水中で激しく洗う。単離された固体をまず約70℃のオーブン中で一晩乾燥し、次ぎに更に洗浄した後、100℃で減圧下で数日間乾燥する。約40gのSPEEKが得られる(収率約80%)。元素分析でスルホン化ポリマーのイオウ含量が与えられ、次ぎに対応するイオン交換力(IEC)を計算する。1.6±0.1mmol/gのIECが得られ、約55%のスルホン化率に相当する。
Example 1
The sulfonated sulfonated 55 percent of PEEK of PEEK, obtained by stirring 48 hours e.g. PEEK50g of H 2 SO 4 (H 2 O in 95-98%) in a 2L at room temperature. The solution is poured into H 2 O and the solid phase corresponding to the sulfonated PEEK (SPEEK) is washed vigorously 2-3 times in 5 L of pure water. The isolated solid is first dried in an oven at about 70 ° C. overnight, then further washed and then dried at 100 ° C. under reduced pressure for several days. About 40 g of SPEEK is obtained (yield about 80%). Elemental analysis gives the sulfur content of the sulfonated polymer and calculates the corresponding ion exchange power (IEC) next. An IEC of 1.6 ± 0.1 mmol / g is obtained, corresponding to a sulfonation rate of about 55%.

実施例2
複合体フィルムの製造
a)55%スルホン化PEEK(SPEEK)1gを10mLのジメチルホルムアミド(DMF)中に室温で溶解し、濾紙で濾過する。2mLのDMF中に0.2707gのスルホン酸接合シリカを含む懸濁液を透明なポリマー溶液に加える。撹拌後、均質な混合物を385cmのガラス基体上に、70℃で数日乾燥する前に広げる。溶媒を完全に蒸発させた後、水に浸すとフィルムはガラス基体から容易に取り除かれる。一旦乾燥すると、80重量%の55%スルホン化PEEKと20重量%の酸シリカからなる複合体フィルムの厚さは40±10μmである。
b)0.1755gのSPEEK55を1.7mLのDMF中に溶解し、濾過する。0.0195gのスルホン酸接合シリカを該ポリマー溶液に加える。均質化後、混合物を25cm2のガラス基体上に広げる。一旦乾燥すると、90重量%の55%スルホン化PEEKと10重量%の酸シリカを含む複合体フィルムは50μmの厚さを有する。
Example 2
Preparation of Composite Film a) 1 g of 55% sulfonated PEEK (SPEEK) is dissolved in 10 mL of dimethylformamide (DMF) at room temperature and filtered through filter paper. A suspension of 0.2707 g sulfonic acid conjugated silica in 2 mL DMF is added to the clear polymer solution. After stirring, the homogeneous mixture is spread on a 385 cm 2 glass substrate before being dried at 70 ° C. for several days. After complete evaporation of the solvent, the film is easily removed from the glass substrate when immersed in water. Once dried, the composite film composed of 80% by weight 55% sulfonated PEEK and 20% by weight acid silica is 40 ± 10 μm.
b) 0.1755 g SPEEK55 is dissolved in 1.7 mL DMF and filtered. 0.0195 g of sulfonic acid conjugated silica is added to the polymer solution. After homogenization, the mixture is spread on a 25 cm 2 glass substrate. Once dried, a composite film comprising 90 wt% 55% sulfonated PEEK and 10 wt% acid silica has a thickness of 50 μm.

実施例3
燃料電池試験用の複合体フィルム上への電極蒸着
市販のPt/C電極(エレクトロケム社からのPt/バルカンXC−72)を複合フィルム上に、該膜を挟む二つの該電極の側面に少量のSPEEK55の10%DMF溶液(w/v)を広げることにより積層する。アセンブリーを減圧下、室温で1日、減圧下で60℃で1晩、そして80℃で数日乾燥する。
Example 3
Electrode deposition on a composite film for fuel cell testing A commercially available Pt / C electrode (Pt / Vulcan XC-72 from Electrochem) is placed on a composite film with a small amount on the sides of the two electrodes sandwiching the membrane. Laminate by spreading a 10% DMF solution (w / v) of SPEEK55. The assembly is dried under vacuum at room temperature for 1 day, under vacuum at 60 ° C. overnight, and at 80 ° C. for several days.

実施例4
性能比較
本発明の膜を用いて得られる性能を、JP2001−155744(例1)の膜を用いて得られる性能と比較する。
日本の参考文献の複合材料はポリマー溶液の内部に混合された5%(w/v)の無機相を含む。無機相はカップリング剤としてフェニルシランを用いて接合したフュームドシリカであり、その後濃HSO(HSOcc)と反応させる。有機相は無機相の結合剤である。本件の場合、スルホン酸基を有するペルフルオル化ポリマーであるフィオン(Nafion)(登録商標)を使用する。実験用に、燃料電池を80℃でH2/空気雰囲気下で22psigにて運転する。0.6から0.7Vの電圧下では、燃料電池は0.5A/cmの電流密度を生じ、0.5Vでは1A/cmの電流密度を生じる。日本の参考文献による膜は1重量%のシリカを含むが、本発明の膜は20重量%のシリカを含むことがわかるであろう。
本発明の複合材料はポリマー溶液内部に混合された無機相を10%(w/v)含む。無機相は、共縮合により得られそしてクロロスルホン化により官能化されたシリカを含む。有機相はSPEEKである。実験用に、燃料電池を75℃でH/空気雰囲気下で20/30psigにて運転する。0.7Vの電圧下では、燃料電池は1A/cmの電流密度を生じ、0.6Vでは1.7A/cmから1.8A/cmの電流密度を生じ、そして0.5Vでは2.2A/cmから2.3A/cmの電流密度を生じる。
同様の運転条件下で、図1にみられるように、本発明は日本特許よりもずっと高い電流密度を発生する。図1では、使用した材料は、1g当たり1.4mmolのスルホン酸基を含むシリカ20重量%と実施例1におけるように製造したSPEEK55 80重量%から成る。
Example 4
Performance Comparison The performance obtained using the membrane of the present invention is compared with the performance obtained using the membrane of JP2001-155744 (Example 1).
The composite material of the Japanese reference contains 5% (w / v) inorganic phase mixed inside the polymer solution. The inorganic phase is fumed silica joined using phenylsilane as a coupling agent and then reacted with concentrated H 2 SO 4 (H 2 SO 4 cc). The organic phase is an inorganic phase binder. In this case, Nafion®, a perfluorinated polymer having sulfonic acid groups, is used. For the experiment, the fuel cell is operated at 80 deg. C in an H2 / air atmosphere at 22 psig. Under a voltage of 0.6 to 0.7 V, the fuel cell produces a current density of 0.5 A / cm 2 and at 0.5 V produces a current density of 1 A / cm 2 . It will be appreciated that the membrane according to the Japanese reference contains 1% by weight of silica, whereas the membrane of the present invention contains 20% by weight of silica.
The composite material of the present invention contains 10% (w / v) of an inorganic phase mixed inside the polymer solution. The inorganic phase comprises silica obtained by cocondensation and functionalized by chlorosulfonation. The organic phase is SPEEK. For experiments, the fuel cell is operated at 75 ° C. under H 2 / air atmosphere at 20/30 psig. Under a voltage of 0.7 V, the fuel cell produces a current density of 1 A / cm 2, a current density of 1.7 A / cm 2 to 1.8 A / cm 2 at 0.6 V, and 2 at 0.5 V. A current density of 2 A / cm 2 to 2.3 A / cm 2 is produced.
Under similar operating conditions, as seen in FIG. 1, the present invention generates a much higher current density than the Japanese patent. In FIG. 1, the material used consists of 20% by weight of silica containing 1.4 mmol of sulfonic acid groups per gram and 80% by weight of SPEEK55 prepared as in Example 1.

本発明は上記の態様に限定されず、多くの変更が特許請求の範囲内で可能であることが理解される。   It will be appreciated that the invention is not limited to the above-described embodiments, and that many modifications are possible within the scope of the claims.

本発明の膜の電流密度対電圧の分極曲線である。3 is a polarization curve of current density vs. voltage of the film of the present invention.

Claims (21)

酸官能化シリカ粒子、
残量はポリ(芳香族エーテルケトン)又はポリ(ベンゾイルフェニレン)、又はそれらの誘導体を基材にしたポリマーマトリックス、
を含む複合材料であって、0.6Vにて少なくとも約1A/cmの電流密度を有する膜を与えることができる複合材料。
Acid functionalized silica particles,
The remaining amount is a polymer matrix based on poly (aromatic ether ketone) or poly (benzoylphenylene), or derivatives thereof,
A composite material capable of providing a film having a current density of at least about 1 A / cm 2 at 0.6V.
上記官能化シリカ粒子が上記ポリマーマトリックス中に分散されている、請求項1記載の複合材料。   The composite material of claim 1, wherein the functionalized silica particles are dispersed in the polymer matrix. 上記シリカ粒子がスルホン酸基、カルボン酸基及び/又はホスホン酸基で官能化されている、請求項1記載の複合材料。   The composite material according to claim 1, wherein the silica particles are functionalized with sulfonic acid groups, carboxylic acid groups and / or phosphonic acid groups. 上記シリカ粒子がスルホン酸基で官能化されている、請求項2記載の複合材料。   The composite material according to claim 2, wherein the silica particles are functionalized with sulfonic acid groups. 少なくとも約10重量%の酸官能化シリカ粒子を含む、請求項1記載の複合材料。   The composite of claim 1, comprising at least about 10% by weight of acid functionalized silica particles. 少なくとも約20重量%の酸官能化シリカ粒子を含む、請求項5記載の複合材料。   6. The composite material of claim 5, comprising at least about 20% by weight acid functionalized silica particles. 上記ポリマーが酸で官能化されている、請求項1記載の複合材料。   The composite material of claim 1, wherein the polymer is functionalized with an acid. 上記ポリマーがスルホン酸基、カルボン酸基及び/又はホスホン酸基、又はそれらの誘導体で官能化されている、請求項7記載の複合材料。   The composite material according to claim 7, wherein the polymer is functionalized with sulfonic acid groups, carboxylic acid groups and / or phosphonic acid groups, or derivatives thereof. 上記酸基がシリカ粒子及び/又はポリマーに共有結合されている、請求項2又は8記載の複合材料。   The composite material according to claim 2 or 8, wherein the acid group is covalently bonded to silica particles and / or a polymer. 上記酸基が、直線状若しくは枝分かれしたアルキル鎖、直線状若しくは枝分かれした芳香族鎖、又は直線状の、又は直線状若しくは枝分かれしたアルキル若しくは芳香族鎖と枝分かれした、アルキル鎖と芳香族鎖との組み合わせを介して共有結合されており、上記鎖は任意にヘテロ原子及び/又はハロゲン原子を含む、請求項9記載の複合材料。   The acid group is a linear or branched alkyl chain, a linear or branched aromatic chain, or a linear or linear or branched alkyl or aromatic chain; The composite material according to claim 9, wherein the composite material is covalently bonded through a combination and the chain optionally contains heteroatoms and / or halogen atoms. 上記シリカ粒子が下記の特徴を有する、請求項1記載の複合材料:
i.10m/gから1500m/gの表面積、
ii.0.01μmから500μmのシリカ粒子寸法、
iii.0オングストロームから500オングストロームのシリカ孔径。
The composite material of claim 1, wherein the silica particles have the following characteristics:
i. A surface area of 10 m 2 / g to 1500 m 2 / g,
ii. Silica particle size of 0.01 μm to 500 μm,
iii. Silica pore size from 0 angstrom to 500 angstrom.
イオン交換基が上記シリカ粒子中に0.1から5.0mmol/gの量で存在する、請求項1記載の複合材料。   The composite material according to claim 1, wherein ion exchange groups are present in the silica particles in an amount of 0.1 to 5.0 mmol / g. 上記酸基がポリマー中に0mmol/gから5.0mmol/gの量で存在する、請求項7記載の複合材料。   The composite material according to claim 7, wherein the acid groups are present in the polymer in an amount of 0 mmol / g to 5.0 mmol / g. 上記シリカが無定形シリカ又はその誘導体、ヒュームドシリカ若しくはその誘導体、球状シリカ若しくはその誘導体、多孔性不規則シリカ若しくはその誘導体、多孔性構造シリカ若しくはその誘導体、不規則多孔性モレキュラーシーブシリカ若しくはその誘導体、球状モレキュラーシーブシリカ若しくはその誘導体、及びシレスキオキサン化合物若しくはその誘導体から成る群から選ばれる、請求項1記載の複合材料。   The silica is amorphous silica or derivative thereof, fumed silica or derivative thereof, spherical silica or derivative thereof, porous irregular silica or derivative thereof, porous structural silica or derivative thereof, irregular porous molecular sieve silica or derivative thereof 2. The composite material according to claim 1, selected from the group consisting of: spherical molecular sieve silica or a derivative thereof; and silesquioxane compound or a derivative thereof. 上記ポリマーがポリ(アリールエーテルケトン)(PEEK)又はその誘導体である、請求項1記載の複合材料。   The composite material according to claim 1, wherein the polymer is poly (aryl ether ketone) (PEEK) or a derivative thereof. 上記ポリマーがポリ(ベンゾイルフェニレン)(PBP)又はその誘導体である、請求項1記載の複合材料。   The composite material of claim 1, wherein the polymer is poly (benzoylphenylene) (PBP) or a derivative thereof. 請求項1ないし16の複合材料を含む膜。   A membrane comprising the composite material of claims 1-16. 燃料電池に使用する請求項17記載の膜。   The membrane according to claim 17, which is used in a fuel cell. 湿潤化又は乾燥において使用する請求項17記載の膜。   18. A membrane according to claim 17 for use in wetting or drying. ガス又は溶媒のコンディショニングに使用する請求項17記載の膜。   18. A membrane according to claim 17 for use in gas or solvent conditioning. 酸触媒膜として使用する請求項17記載の膜。   The membrane according to claim 17, which is used as an acid catalyst membrane.
JP2003581295A 2002-03-28 2003-03-26 Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix Pending JP2005521777A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36777102P 2002-03-28 2002-03-28
PCT/CA2003/000435 WO2003083985A2 (en) 2002-03-28 2003-03-26 Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix

Publications (1)

Publication Number Publication Date
JP2005521777A true JP2005521777A (en) 2005-07-21

Family

ID=28675398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003581295A Pending JP2005521777A (en) 2002-03-28 2003-03-26 Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix

Country Status (6)

Country Link
EP (1) EP1504486A2 (en)
JP (1) JP2005521777A (en)
KR (1) KR100759143B1 (en)
AU (1) AU2003212171A1 (en)
CA (1) CA2480345A1 (en)
WO (1) WO2003083985A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094070A (en) * 2007-10-09 2009-04-30 Sungkyunkwan Univ Foundation For Corporate Collaboration Manufacturing method applying organic solvent drying method of peek electrolyte membrane with sulfate group uniformly attached thereto

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
US6630265B1 (en) 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
JP2007512659A (en) 2003-10-10 2007-05-17 バラード パワー システムズ インコーポレイティド Water insoluble additives for improving the conductivity of ion exchange membranes.
KR100684787B1 (en) * 2005-03-31 2007-02-20 삼성에스디아이 주식회사 Polymer membrane for fuel cell, method of preparing the same, and stack for fuel cell and full cell system comprising the same
CN101297377A (en) 2005-08-19 2008-10-29 国立大学法人东京大学 Proton conductive hybrid material, and catalyst layer for fuel cell using the same
CN101336265B (en) * 2005-12-22 2012-11-07 Bdfip控股有限公司 Water insoluble additive for improving conductivity of an ion exchange membrane
WO2008120379A1 (en) * 2007-03-29 2008-10-09 Fujitsu Limited Electrolyte membrane, process for producing the same, membrane electrode assembly and polymer electrolyte fuel cell
FR2917733B1 (en) * 2007-06-22 2011-05-06 Commissariat Energie Atomique ORGANOMODIFIED INORGANIC PARTICLES, PROCESS FOR PREPARING THE SAME, AND USE IN COMPOSITE MATERIAL FOR FUEL CELL MEMBRANE
DE102014208547A1 (en) * 2014-05-07 2015-11-12 Volkswagen Ag Membrane electrode unit with functionalized carrier material and fuel cell with such a

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2256829A1 (en) * 1998-12-18 2000-06-18 Universite Laval Composite electrolyte membranes for fuel cells
CA2292703A1 (en) * 1998-12-18 2000-06-18 Serge Kaliaguine Composite electrolyte membranes for fuel cells and methods of making same
JP2001155744A (en) * 1999-11-29 2001-06-08 Toyota Central Res & Dev Lab Inc Proton conductor
FR2811323B1 (en) * 2000-07-07 2006-10-06 Fuma Tech Gmbh HYBRID MATERIAL, USE OF SAID HYBRID MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094070A (en) * 2007-10-09 2009-04-30 Sungkyunkwan Univ Foundation For Corporate Collaboration Manufacturing method applying organic solvent drying method of peek electrolyte membrane with sulfate group uniformly attached thereto

Also Published As

Publication number Publication date
KR20040111458A (en) 2004-12-31
AU2003212171A8 (en) 2003-10-13
WO2003083985A3 (en) 2004-12-16
AU2003212171A1 (en) 2003-10-13
WO2003083985A2 (en) 2003-10-09
EP1504486A2 (en) 2005-02-09
CA2480345A1 (en) 2003-10-09
KR100759143B1 (en) 2007-09-14

Similar Documents

Publication Publication Date Title
Zhang et al. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery
Zhang et al. Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes
Tripathi et al. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
JP5109130B2 (en) Proton conductive hybrid material and catalyst layer for fuel cell using the same
Chen et al. Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework
US20050282053A1 (en) Composite electrolyte with crosslinking agents
Martina et al. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application
Park et al. Composite membranes based on a sulfonated poly (arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs
Wang et al. Property enhancement effects of side-chain-type naphthalene-based sulfonated poly (arylene ether ketone) on Nafion composite membranes for direct methanol fuel cells
JP2012529144A (en) Ceramic porous support, reinforced composite electrolyte membrane using the same, and membrane-electrode assembly including the same
JP2005525683A (en) Improved electrolyte membrane, method for its production and their application in fuel cells
US7709542B2 (en) Proton-exchange composite containing nanoparticles having outer oligomeric ionomer, and methods of forming
JP2005525682A (en) Graft polymer electrolyte membrane, its production method and its application to fuel cells
Yadav et al. Insight toward the electrochemical properties of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) via impregnating functionalized boron nitride: alternate composite polymer electrolyte for direct methanol fuel cell
JP2010530915A (en) Composites for fuel cell membranes based on organically modified inorganic particles and methods for their preparation
Peng et al. Enhancing proton conductivity of sulfonated poly (ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide
Li et al. Sulfonated poly (ether ether ketone)/sulfonated covalent organic framework composite membranes with enhanced performance for application in vanadium redox flow batteries
JP2005521777A (en) Ion exchange composites based on proton conducting silica particles dispersed in a polymer matrix
Nam et al. Sulfur-doped hierarchically porous open cellular polymer/acid complex electrolyte membranes for efficient water-free proton transport
KR100590967B1 (en) High Temperature Proton Exchange Membrane using Ionomer/Soild Proton Conductor by nano-templating, Preparation Method thereof and Fuel Cell Containing the Same
Banerjee et al. Electrolyte membranes for fuel cells: synthesis, characterization and degradation analysis
JP4524579B2 (en) Proton conductive composite and electrochemical device
CN108070097B (en) Block copolymer, ion exchange membrane, and method for producing same
Theerthagiri et al. TiO2‐graphene dispersed sulfonated polyphenylenesulfide sulfone nanocomposites for medium temperature PEMFCs
Liu et al. Proton conductivity of aromatic polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090312