JP2001155744A - Proton conductor - Google Patents

Proton conductor

Info

Publication number
JP2001155744A
JP2001155744A JP33698699A JP33698699A JP2001155744A JP 2001155744 A JP2001155744 A JP 2001155744A JP 33698699 A JP33698699 A JP 33698699A JP 33698699 A JP33698699 A JP 33698699A JP 2001155744 A JP2001155744 A JP 2001155744A
Authority
JP
Japan
Prior art keywords
silica
polymer
functional group
electrolyte membrane
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33698699A
Other languages
Japanese (ja)
Inventor
Tomo Morimoto
友 森本
Takanao Suzuki
孝尚 鈴木
Kyoko Tsusaka
津坂恭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP33698699A priority Critical patent/JP2001155744A/en
Publication of JP2001155744A publication Critical patent/JP2001155744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion conductor that ensures a strong electrolyte layer with high material strengh, and stabilizes the ion conductivity electric conductivity for a prolonged time. SOLUTION: A material obtained by introducing an acid functional group like sulfonic acid group into an inorganic material such as silica by chemical bonding is combined with a polymer electrolyte material such as perfluorosulphonic group polymer. The inorganic material combined with the acid functional group may be combined with a polymer containing an acid functional group or a polymer not containg such acid functional group. In the latter, the acid functional group of the inorganic material imparts ion conductivity as the electrolyte group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プロトン伝導体に
関し、さらに詳しくは、プロトン伝導性を有するものと
して高分子電解質型燃料電池の高分子固体電解質膜など
に好適に用いられるプロトン伝導体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proton conductor, and more particularly to a proton conductor having proton conductivity and suitably used for a polymer solid electrolyte membrane of a polymer electrolyte fuel cell. It is.

【0002】[0002]

【従来の技術】従来この種のプロトン伝導体として知ら
れる高分子固体電解質材料は、高分子材料の結合鎖中に
スルホン酸基やカルボン酸基等の電解質基を有するもの
であり、この電解質基が特定のイオンと強固に結合した
り、陽イオン又は陰イオンを選択的に透過する性質を有
していることから、粒子、繊維、あるいは膜状に成形
し、電気透析、拡散透析、電池隔膜等、各種の用途に利
用されているものである。
2. Description of the Related Art A solid polymer electrolyte material conventionally known as a proton conductor of this type has an electrolyte group such as a sulfonic acid group or a carboxylic acid group in a bonding chain of the polymer material. Is strongly bonded to specific ions and has the property of selectively permeating cations or anions, so it is formed into particles, fibers, or membranes, and is used for electrodialysis, diffusion dialysis, battery diaphragm Etc. are used for various purposes.

【0003】そうした中で、例えば高分子電解質型燃料
電池や水電解セルでは高分子固体電解質膜として利用さ
れ、この場合、高分子電解質型燃料電池では、プロトン
伝導性を有する高分子固体電解質膜の一方の面に燃料極
(アノード極)を設け、他方の面に空気極(カソード
極)を設け、純水素あるいは改質水素ガスを燃料ガスと
して燃料極へ供給し、酸素ガスあるいは空気を酸化剤ガ
スとして空気極へ供給し、次の数1に示した電極反応と
プロトン(水素イオン)の電解質膜中の移動による電気
化学反応を通じて起電力を得るものである。また、水電
解は、高分子固体電解質膜を用いて水を電気分解するこ
とにより水素と酸素を製造するものである。
Under these circumstances, for example, a polymer electrolyte fuel cell or a water electrolysis cell is used as a polymer solid electrolyte membrane. In this case, the polymer electrolyte fuel cell uses a polymer solid electrolyte membrane having proton conductivity. A fuel electrode (anode electrode) is provided on one surface, and an air electrode (cathode electrode) is provided on the other surface. Pure hydrogen or reformed hydrogen gas is supplied as a fuel gas to the fuel electrode, and oxygen gas or air is oxidized. The gas is supplied to the air electrode as a gas, and an electromotive force is obtained through an electrode reaction represented by the following equation (1) and an electrochemical reaction caused by the movement of protons (hydrogen ions) in the electrolyte membrane. Water electrolysis is to produce hydrogen and oxygen by electrolyzing water using a polymer solid electrolyte membrane.

【0004】[0004]

【数1】燃料極:H→2H+2e 空気極:O+4H+4e→2H## EQU1 ## Fuel electrode: H 2 → 2H + + 2e Air electrode: O 2 + 4H + + 4e → 2H 2 O

【0005】ところでこのプロトン伝導性を有する高分
子固体電解質材料としては、デュポン社の商品名「Na
fion]で知られるパーフルオロスルホン酸系ポリマ
ー材料のほか、スチレンジビニルベンゼンスルホン酸系
ポリマー材料など各種のイオン交換樹脂系材料が好適な
ものとして挙げられている。
As a solid polymer electrolyte material having proton conductivity, DuPont's trade name "Na
fion], and various ion-exchange resin materials such as styrene divinylbenzene sulfonic acid polymer materials are listed as suitable materials.

【0006】そしてまた、高分子固体電解質膜の要求特
性として、電解質膜中の水分管理が容易であること、
膜強度が高いこと、プロトン伝導性が更に良いこと
等が挙げられており、これらの要求特性に対する改良技
術もいくつか提案されている。
[0006] Further, as the required characteristics of the polymer solid electrolyte membrane, it is easy to control the water content in the electrolyte membrane.
It is mentioned that the membrane strength is high and the proton conductivity is better, and several techniques for improving these required properties have been proposed.

【0007】例えば、特開平6−111827号公報に
は、イオン交換膜中に微細粒子のシリカあるいは繊維状
のシリカファイバーを含有させ、これにより、電池の比
抵抗を小さくしてイオン伝導性をよくすると共に、無加
湿の運転により水分管理を容易とした技術が開示されて
いる。
For example, JP-A-6-11827 discloses that an ion exchange membrane contains fine particles of silica or fibrous silica fibers, thereby reducing the specific resistance of the battery and improving the ion conductivity. In addition, a technology has been disclosed that facilitates moisture management by non-humidifying operation.

【0008】また例えば、特開平9−219206号公
報には、イオン交換膜中に非導電性のピラー粒子、例え
ば、シリカ、チタニア、アルミナの酸化物等の無機物を
含有させることにより、膜の強度を上げる技術が開示さ
れている。
For example, Japanese Patent Application Laid-Open No. 9-219206 discloses that an ion-exchange membrane contains non-conductive pillar particles, for example, an inorganic substance such as an oxide of silica, titania, or alumina, thereby increasing the strength of the membrane. Is disclosed.

【0009】さらに、特開平8−249923号公報に
は、シリカのような無機酸化物とリン酸あるいはその誘
導体のような無機酸をスチレン−エチレン−ブテン−ス
チレン共重合体(SEBS)を有機バインダとして結着
したプロトン伝導体が開示され、また、特開平10−6
9817号公報には、そのシリカと無機酸をスルホン酸
基を側鎖に持つ重合体(スルホン化したイソプレン)を
やはり有機バインダとして結着したプロトン伝導体が開
示されている。
Further, JP-A-8-249923 discloses that an inorganic oxide such as silica and an inorganic acid such as phosphoric acid or a derivative thereof are made of a styrene-ethylene-butene-styrene copolymer (SEBS) with an organic binder. As disclosed in Japanese Patent Application Laid-Open No. 10-6 / 1998.
No. 9817 discloses a proton conductor in which a polymer (sulfonated isoprene) having a silica and an inorganic acid in a side chain of a sulfonic acid group is also bound as an organic binder.

【00010】[00010]

【発明が解決しようとする課題】しかしながら、上記し
た特開平6−111827号公報、特開平9−2192
06号公報のように、高分子自体にプロトン伝導性があ
り、シリカなどの無機質は保水性あるいは機械的強度を
付与する役割を持たせようとする場合、無機質の添加効
果を有意義なレベルまで上げようとすると、無機質の非
導電性のために電解質自体の導電性が落ちてしまうとい
う欠点がある。
However, Japanese Patent Application Laid-Open Nos. Hei 6-11827 and Hei 9-2192 mentioned above disclose the above problems.
As disclosed in Japanese Patent Publication No. 06-2006, when the polymer itself has proton conductivity, and an inorganic substance such as silica is intended to have a function of imparting water retention or mechanical strength, the effect of adding the inorganic substance is increased to a meaningful level. In this case, there is a disadvantage that the conductivity of the electrolyte itself is reduced due to the non-conductivity of the inorganic substance.

【0011】また、特開平8−249923号公報、特
開平10−69817号公報のように、無機質に加えて
無機酸を含ませてプロトン伝導性を持たせようとする場
合、上記の無機質添加による導電性の低下の問題に加え
て、無機酸がシリカ表面に吸着あるいは単に電解質内に
浸み込んだだけの形になっているため、使用に従って蒸
発あるいは流出などにより電解質内から逸散してしま
い、イオン伝導性を長期間に亘って維持できないという
問題があった。
Further, as disclosed in JP-A-8-249923 and JP-A-10-69817, when an inorganic acid is contained in addition to an inorganic substance to provide proton conductivity, the above-mentioned inorganic substance is added. In addition to the problem of lowering the conductivity, the inorganic acid is adsorbed on the silica surface or simply infiltrates into the electrolyte. In addition, there is a problem that ionic conductivity cannot be maintained for a long period of time.

【0012】本発明の解決しようとする課題は、電解質
膜としての高い材料強度が得られるばかりでなく、長期
間に亘ってイオン伝導性(電気伝導度)を安定して維持
することのできるイオン伝導体を提供することにある。
これにより、電解質膜としての薄膜化が図れ、膜抵抗の
抑制により高い電池出力が安定して得られることを期す
るものである。
The problem to be solved by the present invention is that not only can a high material strength be obtained as an electrolyte membrane, but also an ion that can stably maintain ionic conductivity (electrical conductivity) for a long period of time. It is to provide a conductor.
Thus, it is expected that the electrolyte membrane can be made thinner and a high battery output can be stably obtained by suppressing the membrane resistance.

【0013】[0013]

【課題を解決するための手段】この課題を解決するため
に本発明のイオン伝導体は、無機物に酸性官能基を化学
結合により導入した物質を高分子電解質材料中に含有、
もしくは高分子材料により結着してなることを要旨とす
るものである。
Means for Solving the Problems To solve this problem, the ionic conductor of the present invention contains a substance in which an acidic functional group is introduced into an inorganic substance by chemical bonding in a polymer electrolyte material,
Alternatively, the gist of the present invention is to bind with a polymer material.

【0014】この場合「無機物」としては、シリカ、チ
タニア、アルミナ等の非導電性で、水に対して非溶解性
な物質であって、微粒子の形状であることが望ましい。
「酸性官能基」としては、スルホン酸、カルボン酸、ホ
スホン酸等が挙げられる。表面処理はシランカップリン
グ剤により、有機基を結合する方法が望ましい。酸性官
能基の導入は、酸性官能基の既に結合した有機シランカ
ップリング剤を用いることで行っても良いし、後処理で
酸性官能基の導入が可能な官能基を持つシランカップリ
ング剤を用いて無機物の表面を処理した後、酸性官能基
を導入する方法で行っても良い。
In this case, the "inorganic substance" is a non-conductive substance such as silica, titania, and alumina which is insoluble in water, and is preferably in the form of fine particles.
The “acidic functional group” includes sulfonic acid, carboxylic acid, phosphonic acid and the like. For the surface treatment, a method of bonding organic groups with a silane coupling agent is desirable. The introduction of the acidic functional group may be performed by using an organic silane coupling agent to which the acidic functional group is already bonded, or by using a silane coupling agent having a functional group capable of introducing the acidic functional group in a post-treatment. After the surface of the inorganic substance is treated by the above method, the method may be performed by introducing an acidic functional group.

【0015】「高分子材料は、それ自身酸性官能基ある
いはその前駆体を分子内に持っていてもよいし、持って
いなくてもよい。高分子材料は、無機物の結着剤として
の役割を果たす。酸性官能基を持っている高分子材料と
しては、従来、高分子電解質材料として一般的に知られ
るパーフルオロスルホン酸系ポリマーやスチレンジビニ
ルベンゼンスルホン酸系ポリマーが挙げられる。また、
酸性官能基を持っていない高分子材料としては、スチレ
ン−エチレン−ブテン−スチレン共重合体(SEBS)
などが挙げられ、この場合電解質材料としての電解質基
は、無機物に化学結合された酸性官能基が機能するもの
である。無機物と高分子材料との複合化は、高分子材料
を溶媒あるいは熱により液状にし、それに無機物を分散
させてから固化させる方法が望ましい。
"The polymer material may or may not have an acidic functional group or its precursor in the molecule itself. The polymer material plays a role as an inorganic binder. Examples of the polymer material having an acidic functional group include a perfluorosulfonic acid-based polymer and a styrenedivinylbenzenesulfonic acid-based polymer which are conventionally generally known as a polymer electrolyte material.
As a polymer material having no acidic functional group, styrene-ethylene-butene-styrene copolymer (SEBS)
And the like. In this case, the electrolyte group as the electrolyte material is one in which an acidic functional group chemically bonded to an inorganic substance functions. The compounding of the inorganic substance and the polymer material is preferably performed by making the polymer material liquid by using a solvent or heat, dispersing the inorganic substance therein, and then solidifying the liquid.

【0016】本発明では、プロトン伝導性のある酸性官
能基が表面についた無機物を使用しているため、電解質
材料としてのイオン伝導性を損なうことなく、望ましい
機械的強度あるいは保水効果を得るのに必要な量を配合
できる。また、酸性官能基は、無機物の表面に化学結合
により結合しているため、使用中に逸散することもな
く、長期間安定してイオン伝導性が発揮されるものであ
る。さらに材料強度の向上により電解質膜を薄くするこ
とができ、これにより膜抵抗が抑制されて高い電池出力
が得られ、安定したイオン伝導性の発揮と相まって恒久
的に高い電池出力が安定して得られることとなる。
In the present invention, since an inorganic substance having a proton-conductive acidic functional group on the surface is used, it is possible to obtain a desired mechanical strength or water retention effect without impairing the ionic conductivity as an electrolyte material. The required amount can be blended. Further, since the acidic functional group is bonded to the surface of the inorganic substance by a chemical bond, it does not escape during use, and exhibits stable ionic conductivity for a long period of time. In addition, the electrolyte membrane can be made thinner by improving the material strength, thereby suppressing the membrane resistance and obtaining a high battery output, and in combination with the stable ionic conductivity, a permanently high battery output can be obtained stably. Will be done.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施例について詳
細に説明する。
Embodiments of the present invention will be described below in detail.

【0018】(実施例1)実施例1は、無機物であるシ
リカにフェニル基をシランカップリングにより化学結合
させ、これをススホン化した後、酸性官能基を持つ高分
子材料であるパーフルオロスルホン酸ポリマーに混合し
て高分子電解質膜としたものである。具体的には、次の
ような条件で調製した。すなわち、
(Example 1) In Example 1, a phenyl group was chemically bonded to silica, which is an inorganic substance, by silane coupling, and this was sulfonated. Then, perfluorosulfonic acid, a polymer material having an acidic functional group, was used. It is mixed with a polymer to form a polymer electrolyte membrane. Specifically, it was prepared under the following conditions. That is,

【0019】市販の無表面処理のフュームドシリカ(C
abot社製 Cab−o−SilM−5)10gを1
00mlのエタノールに分散させ、これを攪拌しながら
フェニルトリエトキシシランの10%エタノール溶液1
00mlを滴下して加えた。そして滴下後30分間攪拌
を続けた後、濾過によりシリカを濾別し、濾別したシリ
カはエタノールで繰り返し洗浄した後乾燥させ、表面に
フェニル基の結合したシリカを得た。これを100ml
の濃硫酸に分散し、攪拌しながら3時間80℃に保持し
た。冷却後10倍量の純水で徐々に希釈し、その後濾過
によりシリカ分を濾別した。濾別したシリカは純水で繰
り返し洗浄した後乾燥し、表面に結合したフェニル基が
スルホン化されたシリカを得た。
Commercially available surface-free fumed silica (C
abot Co., Ltd., Cab-o-SilM-5)
The mixture was dispersed in 00 ml of ethanol, and the mixture was stirred while a 10% ethanol solution of phenyltriethoxysilane 1
00 ml was added dropwise. Then, after stirring was continued for 30 minutes after the dropwise addition, the silica was separated by filtration, and the filtered silica was repeatedly washed with ethanol and then dried to obtain silica having a phenyl group bonded to the surface. 100 ml of this
Of concentrated sulfuric acid, and kept at 80 ° C. for 3 hours while stirring. After cooling, the mixture was gradually diluted with a 10-fold amount of pure water, and then the silica content was separated by filtration. The silica separated by filtration was repeatedly washed with pure water and then dried to obtain silica in which phenyl groups bonded to the surface were sulfonated.

【0020】そしてこのスルホン化シリカを元の無処理
シリカ分で5wt%になるよう、イソプロピルアルコー
ルに混合し超音波ホモジナイザーを用いて分散した。そ
してこの溶液を5wt%のパーフルオロスルホン酸ポリ
マーに乾燥ポリマー重量に対してスルホン化シリカ分の
重量が次の表1に示した所定の割合になるよう混合した
後、キャスト法により約0.03mmの厚さになるよう
成膜した。
Then, the sulfonated silica was mixed with isopropyl alcohol so that the content of the untreated silica became 5% by weight, and dispersed using an ultrasonic homogenizer. Then, this solution was mixed with 5 wt% of perfluorosulfonic acid polymer so that the weight of the sulfonated silica based on the weight of the dry polymer became a predetermined ratio shown in the following Table 1, and then about 0.03 mm by a casting method. Was formed to have a thickness of

【0021】(比較例1)従来技術として既に述べた特
開平6−111827号公報に示される電解質膜を再現
したもので、この比較例1では、実施例1で用いた市販
の無表面処理のフュームドシリカをそのままスルホン化
することなく、イソプロピルアルコールに5wt%混合
し、超音波ホモジナイザーを用いて分散した。そしてこ
の溶液を実施例1の場合と同様に、5wt%のパーフル
オロスルホン酸ポリマーに表1に示した所定の割合で混
合し、キャスト法により約0.03mmの厚さに成膜し
た。
(Comparative Example 1) This is a reproduction of the electrolyte membrane disclosed in JP-A-6-11827, which has already been described as the prior art. In Comparative Example 1, the commercially available surface-free treatment used in Example 1 was used. Without sulfonating the fumed silica as it was, 5 wt% was mixed with isopropyl alcohol and dispersed using an ultrasonic homogenizer. Then, as in the case of Example 1, this solution was mixed with 5 wt% of perfluorosulfonic acid polymer at a predetermined ratio shown in Table 1, and a film was formed to a thickness of about 0.03 mm by a casting method.

【0022】[0022]

【表1】 [Table 1]

【0023】そして次に、この実施例1で得られた電解
質膜と、比較例1で得られた電解質膜について、水温6
0℃の純水中および相対湿度50%の湿度環境における
電気伝導度を測定した。その結果を表1に併せて示す。
Next, with respect to the electrolyte membrane obtained in Example 1 and the electrolyte membrane obtained in Comparative Example 1,
The electrical conductivity was measured in pure water at 0 ° C. and in a humidity environment with a relative humidity of 50%. The results are shown in Table 1.

【0024】この表1の結果から明らかなように、本実
施例1の電解質膜は、純水中でもRH50%中でも同様
であるが、シリカ分の重量比が増すにつれて電気伝導度
(S/cm)が増大する傾向にあり、逆に比較例1の電
解質膜はシリカ分の重量比の増加とともに電気伝導度が
減少する傾向にある。これは、本実施例1の電解質膜の
場合には、シリカ分の量が増すにつれてそのシリカに結
合している酸性官能基であるスルホン酸基の分量も増す
ことになるから、その酸性官能基の増量によって電気伝
導度が増大していったものと考えられるものである。
As is clear from the results shown in Table 1, the electrolyte membrane of Example 1 is the same whether it is pure water or RH 50%, but as the weight ratio of silica increases, the electric conductivity (S / cm) increases. In contrast, in the electrolyte membrane of Comparative Example 1, the electrical conductivity tends to decrease as the weight ratio of silica increases. This is because, in the case of the electrolyte membrane of Example 1, as the amount of silica increases, the amount of sulfonic acid groups, which are acidic functional groups bonded to the silica, also increases. It is considered that the electric conductivity increased due to the increase of the amount.

【0025】またこの表1の結果から分かるように、同
じシリカの配合量では、本実施例1の電解質膜の方が、
比較例1の電解質膜よりも高い電気伝導度を示してい
る。例えば、シリカ分1%の例で、本実施例1の電解質
膜の純水中での電気伝導度が、0.078(S/cm)
であるのに対して、比較例1のそれは、0.070(S
/cm)である。またRH50%下での電気伝導度で
も、シリカ分1%の場合本実施例1の電解質膜は、0.
032(S/cm)であるのに対して、比較例1のそれ
は、0.023(S/cm)とやはり低い値となってい
る。このことから、シリカに酸性官能基であるスルホン
酸基を化学結合により導入したものを高分子電解質膜中
に配合することは、その電解質膜の電気伝導度を向上さ
せる上で有効であることがわかる。
Further, as can be seen from the results in Table 1, with the same amount of silica, the electrolyte membrane of Example 1 had a higher
4 shows higher electrical conductivity than the electrolyte membrane of Comparative Example 1. For example, when the silica content is 1%, the electric conductivity of the electrolyte membrane of Example 1 in pure water is 0.078 (S / cm).
Whereas that of Comparative Example 1 is 0.070 (S
/ Cm). In addition, even when the electrical conductivity under RH 50% is 1% for the silica content, the electrolyte membrane of Example 1 has a conductivity of 0.1%.
It is 032 (S / cm), whereas that of Comparative Example 1 is also a low value of 0.023 (S / cm). From this fact, it is effective to mix the silica in which a sulfonic acid group, which is an acidic functional group, is introduced into the polymer electrolyte membrane by chemical bonding, in improving the electrical conductivity of the electrolyte membrane. Understand.

【0026】次に実際に、本実施例1で得られた電解質
膜と、比較例1で得られた電解質膜を使って高分子電解
質型燃料電池を作製した。そして、加湿した1.5気圧
の純水素(H)および加湿した1.5気圧の空気を作
用ガスとして80℃の作動温度で運転を行い、電流電圧
特性を調べた。図1は、その結果を示したもので、横軸
に電流密度(A/cm)を採り、縦軸に電圧(V)を
採っている。この図では、本実施例品および比較品とも
に、シリカ分1%配合した電解質膜を用いた結果を示し
ている。
Next, a polymer electrolyte fuel cell was actually manufactured using the electrolyte membrane obtained in Example 1 and the electrolyte membrane obtained in Comparative Example 1. Then, operation was performed at an operating temperature of 80 ° C. using humidified pure hydrogen (H 2 ) at 1.5 atm and humidified air at 1.5 atm as a working gas, and current-voltage characteristics were examined. FIG. 1 shows the results, in which the horizontal axis represents current density (A / cm 2 ) and the vertical axis represents voltage (V). This figure shows the results of using the electrolyte membrane containing 1% of silica in both the product of the present example and the comparative product.

【0027】この図1に示されるように、本実施例品と
比較品とを較べたときに測定した全電流密度の範囲(0
〜1.5A/cm)において本実施例品の方が比較品
よりも高い電圧値を示しており、このことより本実施例
品によれば、より高い電池出力が得られることがわか
る。また、比較品の方が低い電流密度で電圧が低下して
しまうのに対して、本実施例品では高い電流密度でも電
圧の低下が小さいことから、さらに優れた電圧特性を有
することとなる。
As shown in FIG. 1, the range of the total current density (0
1.51.5 A / cm 2 ), the product of the present example shows a higher voltage value than the comparative product, which indicates that a higher battery output can be obtained according to the product of the present example. In addition, the voltage of the comparative product decreases at a lower current density, whereas the product of the present embodiment has a smaller voltage decrease even at a high current density, and therefore has more excellent voltage characteristics.

【0028】尚、この図1には示されないが、表1の電
気伝導度の測定結果より推察されるように、特に電解質
の加湿度合いの低い運転条件での電圧は高い値を示し、
高性能を発揮できることが確認された。また、シリカ分
を全く入れなかった場合には、電極同士が短絡を起こ
し、まったく電圧を起こすことができなかったが、シリ
カ分を入れることにより、短絡が起こりにくくなり、圧
縮に対する強度が向上しており、本実施例品によれば、
電解質膜の電気伝導性と機械的強度とが共に高められ、
両立させることができることが確認された。
Although not shown in FIG. 1, as can be inferred from the measurement results of the electric conductivity in Table 1, the voltage particularly under the operating condition where the humidification degree of the electrolyte is low shows a high value.
It was confirmed that high performance could be exhibited. In addition, when no silica component was added, the electrodes caused a short circuit between each other and no voltage could be generated.However, by adding the silica component, the short circuit became less likely to occur, and the strength against compression was improved. According to this example product,
The electrical conductivity and mechanical strength of the electrolyte membrane are both increased,
It was confirmed that they could be compatible.

【0029】(実施例2)実施例2は、実施例1の中間
工程で得られたスルホン化シリカを、酸性官能基を持た
ない高分子材料であるスチレンーエチレンーブテンース
チレン共重合体(SEBS)を有機バインダとして結着
し、電解質膜としたものである。この場合、SEBSの
トルエン溶液に、スルホン化シリカとSEBSとの重量
比が、50:1となるように配合し、キャスト法により
約0.5mmの厚さになるように成膜した。
(Example 2) In Example 2, the sulfonated silica obtained in the intermediate step of Example 1 was converted to a styrene-ethylene butene-styrene copolymer (a polymer material having no acidic functional group). (SEBS) as an organic binder to form an electrolyte membrane. In this case, a weight ratio of sulfonated silica to SEBS was mixed with a toluene solution of SEBS so as to be 50: 1, and a film was formed by a casting method so as to have a thickness of about 0.5 mm.

【0030】(比較例2)従来技術として既に述べた特
開平8−249923号公報に示される電解質膜を再現
したもので、この比較例2では、実施例1で用いたフュ
ームドシリカ10gを5%硫酸水溶液100mlに分散
させ、加熱により水分を蒸発させたのち、120℃のオ
ーブンで5時間熱処理し、硫酸含浸シリカを得た。これ
を実施例2の場合と同様に、スチレンーエチレンーブテ
ンースチレン共重合体(SEBS)を有機バインダとし
て結着させるものであるが、この時、硫酸含浸シリカと
このSEBSとの重量比が、50:1になるよう混合
し、キャスト法により約0.5mmの厚さになるよう成
膜した。
(Comparative Example 2) This is a reproduction of the electrolyte membrane disclosed in JP-A-8-249923, which has already been described as a prior art. In Comparative Example 2, 10 g of the fumed silica used in Example 1 was used. The mixture was dispersed in 100 ml of an aqueous solution of 100% sulfuric acid, the water was evaporated by heating, and then heat-treated in an oven at 120 ° C. for 5 hours to obtain sulfuric acid-impregnated silica. In the same manner as in Example 2, styrene-ethylene butene-styrene copolymer (SEBS) is bound as an organic binder. At this time, the weight ratio of the sulfuric acid-impregnated silica to the SEBS is reduced. , 50: 1, and a film was formed to a thickness of about 0.5 mm by a casting method.

【0031】次に、この実施例2で得られた電解質膜
と、比較例2で得られた電解質膜について、80℃の温
水中に浸漬保持し、その状態での電気伝導度(S/c
m)の経時的変化を調べた。図2は、その80℃温水中
での電気伝導度(S/cm)を保持時間(min)の関
数として示したものである。尚、この80℃温水中での
電気伝導度の測定は、この種の電解質膜が高分子電解質
型燃料電池のみならず、水電解セルの電解質膜としての
用途もあることから、この水電解セルでの使用条件を想
定したものである。
Next, the electrolyte membrane obtained in Example 2 and the electrolyte membrane obtained in Comparative Example 2 were immersed and held in hot water at 80 ° C., and the electrical conductivity (S / c) in that state was maintained.
m) with time. FIG. 2 shows the electric conductivity (S / cm) in hot water at 80 ° C. as a function of the holding time (min). The measurement of the electric conductivity in the hot water at 80 ° C. was carried out because this type of electrolyte membrane is used not only as a polymer electrolyte fuel cell but also as an electrolyte membrane of a water electrolysis cell. It is based on the conditions of use in.

【0032】この図2に示されるように、比較例2の電
解質膜は、80℃の温水に浸漬後短時間で電気伝導度が
落ちてしまったのに対し、実施例2の電解質膜は、80
℃の温水に浸漬しても電気伝導度が長時間維持されるこ
とが確認された。このような結果となった理由として
は、比較例2の電解質膜の場合は、シリカが硫酸と化学
結合しているわけではないので、そのシリカが含浸され
る硫酸が電解質膜から抜け出し、温水中に溶出してしま
うことから、電解質膜中にはシリカが単独で残されるこ
ととなって電気伝導度が低下したものであり、本実施例
の場合は、スルホン化シリカとして化学結合した状態に
あるから、そのような現象は起こらず、安定して高い電
気伝導度が得られたものと考察される。
As shown in FIG. 2, the electrolyte membrane of Comparative Example 2 had a short period of electrical conductivity after being immersed in hot water at 80 ° C., whereas the electrolyte membrane of Example 2 had 80
It was confirmed that the electrical conductivity was maintained for a long time even when immersed in warm water at ℃. The reason for such a result is that, in the case of the electrolyte membrane of Comparative Example 2, since silica is not chemically bonded to sulfuric acid, the sulfuric acid impregnated with the silica escapes from the electrolyte membrane and is heated in hot water. In this case, silica is left alone in the electrolyte membrane, resulting in a decrease in electrical conductivity.In the case of this embodiment, the silica is chemically bonded as sulfonated silica. Therefore, it is considered that such a phenomenon did not occur and a high electric conductivity was stably obtained.

【0033】以下実施例について説明したが、本発明は
上記した実施例に何ら限定されるものではなく、本発明
の趣旨を逸脱しない範囲で種々の改変が可能である。例
えば、上記実施例では、「無機物」としてシリカの例を
示したが、非導電性で膜強度を高めるという観点から、
シリカ以外のチタニア、アルミナ等の酸化物なども当然
に適用できるものである。また、「酸性官能基」も電解
質膜などの用途において電解質基としての機能を果たす
ものであれば、上記実施例のスルホン酸基に限らず、カ
ルボン酸やホスホン酸等の各種の酸基が適用される。
Although the embodiments have been described below, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, an example of silica was shown as the “inorganic substance”, but from the viewpoint of increasing the film strength by being non-conductive,
Naturally, oxides such as titania and alumina other than silica can also be applied. In addition, as long as the “acidic functional group” also functions as an electrolyte group in applications such as an electrolyte membrane, various acid groups such as carboxylic acid and phosphonic acid are not limited to the sulfonic acid group of the above example. Is done.

【0034】さらに、高分子電解質材料も上記実施例1
に示したパーフルオロスルホン酸系のみならず、スチレ
ンジビニルベンゼンスルホン酸系、その他の各種の炭化
水素系高分子電解質材料にも適用されるものであり、ま
た、酸性官能基を有する無機物の結着剤としての有機バ
インダも上記実施例2に示した、酸性官能基を持たない
スチレンーエチレンーブテンースチレン共重合体のほ
か、酸性官能基を側鎖に持つスルホン化イソプレン等の
各種有機材料が適用されることは言うまでもないことで
ある。
Further, a polymer electrolyte material was prepared in the same manner as in Example 1 above.
It is applicable not only to the perfluorosulfonic acid type shown in (1), but also to styrene divinylbenzenesulfonic acid type and other various hydrocarbon-based polymer electrolyte materials, and also to the binding of inorganic substances having acidic functional groups. The organic binder used as the agent is not only the styrene-ethylene butene-styrene copolymer having no acidic functional group shown in Example 2 but also various organic materials such as sulfonated isoprene having an acidic functional group in the side chain. It goes without saying that it applies.

【0035】[0035]

【発明の効果】本発明のイオン伝導体によれば、無機物
に酸性官能基を化学結合した物質を高分子電解質材料中
に含有させたり、あるいは高分子材料により結着してイ
オン伝導性を持たせるようにしたものであるから、無機
物の存在により電解質としての材料強度が上がって薄膜
化による膜抵抗の抑制を図ることができ、また、酸性官
能基はその無機物に化学結合されていることにより電解
質膜としての使用中に膜外に溶出、あるいは流出するこ
ともなく、イオン伝導性を安定して発揮できるものであ
る。したがって高い電池出力が恒久的に得られるもので
あり、高分子電解質型燃料電池として、宇宙用や軍用等
の特殊な用途のみならず、例えば、自動車用の低公害動
力源等の民生用への適用が大いに期待され、また、水電
解セル用の電解質膜その他各種の用途への拡大も図られ
るものである。
According to the ionic conductor of the present invention, a substance obtained by chemically bonding an inorganic functional group to an acidic functional group is contained in a polymer electrolyte material or is bound by a polymer material to have ionic conductivity. Because of the presence of the inorganic substance, the strength of the material as an electrolyte can be increased and the film resistance can be suppressed by thinning, and the acidic functional group is chemically bonded to the inorganic substance. It does not elute or flow out of the membrane during use as an electrolyte membrane, and can exhibit ionic conductivity stably. Therefore, a high battery output can be obtained permanently, and as a polymer electrolyte fuel cell, it can be used not only for special applications such as space and military use, but also for consumer use such as a low-pollution power source for automobiles. The application is greatly expected, and it is expected to be expanded to electrolyte membranes for water electrolysis cells and various other uses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における電解質膜を用いた
燃料電池セルとしての電流電圧特性の説明図である。
FIG. 1 is an explanatory diagram of current-voltage characteristics as a fuel cell using an electrolyte membrane according to a first embodiment of the present invention.

【図2】本発明の第2実施例における電解質膜の80℃
温水中での電気伝導度の経時的変化を示した図である。
FIG. 2 shows a temperature of 80 ° C. of an electrolyte membrane in a second embodiment of the present invention.
FIG. 3 is a diagram showing a change over time in electric conductivity in warm water.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 1/10 C25B 1/10 13/08 301 13/08 301 H01B 1/06 H01B 1/06 A H01M 8/10 H01M 8/10 (72)発明者 津坂恭子 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4D006 GA17 JA02Z MA13 MA31 MB07 MB17 MB20 MC24 MC28 MC28X MC65 MC65X MC73 MC73X MC74 MC74X MC75 NA50 PA01 PB02 PB27 PB28 PC01 4J002 AA001 BC041 BC121 BP001 BQ001 DE136 DE146 DJ016 FB096 FB156 GQ02 4K021 AA01 BA02 DB32 DC01 DC03 5G301 CA30 CD01 5H026 AA06 BB08 BB10 EE11 EE19──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25B 1/10 C25B 1/10 13/08 301 13/08 301 H01B 1/06 H01B 1/06 A H01M 8 / 10 H01M 8/10 (72) Inventor Kyoko Tsusaka 41-1, Oku-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-term (reference) in Toyota Central Research Laboratory, Inc. 4D006 GA17 JA02Z MA13 MA31 MB07 MB17 MB20 MC24 MC28 MC28X MC65 MC65X MC73 MC73X MC74 MC74X MC75 NA50 PA01 PB02 PB27 PB28 PC01 4J002 AA001 BC041 BC121 BP001 BQ001 DE136 DE146 DJ016 FB096 FB156 GQ02 4K021 AA01 BA02 DB32 DC01 DC03 5G301 CA30 CD01 5H010 BB08 BB08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機物に酸性官能基を化学結合により導
入した物質を高分子電解質材料中に含有、もしくは、高
分子材料により結着してなることを特徴とするイオン伝
導体。
1. An ion conductor comprising a substance in which an acidic functional group is introduced into an inorganic substance by a chemical bond in a polymer electrolyte material or bound by a polymer material.
JP33698699A 1999-11-29 1999-11-29 Proton conductor Pending JP2001155744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33698699A JP2001155744A (en) 1999-11-29 1999-11-29 Proton conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33698699A JP2001155744A (en) 1999-11-29 1999-11-29 Proton conductor

Publications (1)

Publication Number Publication Date
JP2001155744A true JP2001155744A (en) 2001-06-08

Family

ID=18304432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33698699A Pending JP2001155744A (en) 1999-11-29 1999-11-29 Proton conductor

Country Status (1)

Country Link
JP (1) JP2001155744A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037506A1 (en) * 2000-11-06 2002-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte
WO2003050823A1 (en) 2001-12-11 2003-06-19 Sony Corporation Proton conductor, single-ion conductor, and processes for producing these
WO2003083985A2 (en) * 2002-03-28 2003-10-09 Sim Composites Inc. Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix
WO2003102971A1 (en) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Surface-modified inorganic porous material and fuel cell comprising the same as electrolyte
EP1646097A2 (en) * 2004-09-24 2006-04-12 Sim Composites Inc. Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
JP2006244920A (en) * 2005-03-04 2006-09-14 Fujitsu Ltd Solid electrolyte composition and polymer electrolyte fuel cell
KR100708646B1 (en) * 2004-06-17 2007-04-18 삼성에스디아이 주식회사 Modified inorganic material with ion exchange capacity, composite electrolyte membrane comprising the same, and fuel cell employing the same
JP2009513758A (en) * 2005-10-27 2009-04-02 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
US7604887B2 (en) 2002-07-25 2009-10-20 Panasonic Corporation Electrolyte membrane, membrane electrode assembly using this and fuel cell
US7670508B2 (en) 2002-11-18 2010-03-02 Sony Corporation Proton conductor, single ion conductor, manufacturing methods thereof, and electrochemical capacitor
JP2010527903A (en) * 2007-05-28 2010-08-19 セラム ハイド Proton exchange membrane and battery including the membrane
JP2010530915A (en) * 2007-06-22 2010-09-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Composites for fuel cell membranes based on organically modified inorganic particles and methods for their preparation
JP2011517331A (en) * 2008-03-06 2011-06-02 セラム ハイド Materials for electrochemical devices
US7977392B2 (en) 2005-12-22 2011-07-12 Daimler Ag Water insoluble additive for improving conductivity of an ion exchange membrane
WO2023182240A1 (en) * 2022-03-23 2023-09-28 帝人株式会社 Silica material, ion exchange resin composition, electrolyte membrane, membrane-electrode joined body, proton-exchange membrane fuel cell, proton-exchange membrane electrolyzer, and electrochemical hydrogen compressor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037506A1 (en) * 2000-11-06 2002-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte
US7488559B2 (en) * 2000-11-06 2009-02-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte
WO2003050823A1 (en) 2001-12-11 2003-06-19 Sony Corporation Proton conductor, single-ion conductor, and processes for producing these
WO2003083985A2 (en) * 2002-03-28 2003-10-09 Sim Composites Inc. Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix
WO2003083985A3 (en) * 2002-03-28 2004-12-16 Sim Composites Inc Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix
KR100759143B1 (en) * 2002-03-28 2007-09-14 심 콤포지트 인코포레이티드 Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix
WO2003102971A1 (en) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Surface-modified inorganic porous material and fuel cell comprising the same as electrolyte
US7604887B2 (en) 2002-07-25 2009-10-20 Panasonic Corporation Electrolyte membrane, membrane electrode assembly using this and fuel cell
US7670508B2 (en) 2002-11-18 2010-03-02 Sony Corporation Proton conductor, single ion conductor, manufacturing methods thereof, and electrochemical capacitor
US8173712B2 (en) * 2004-06-17 2012-05-08 Samsung Sdi Co., Ltd. Modified inorganic material with ion exchange capacity, composite electolyte membrane comprising the same, and fuel cell comprising the composite electrolyte membrane
KR100708646B1 (en) * 2004-06-17 2007-04-18 삼성에스디아이 주식회사 Modified inorganic material with ion exchange capacity, composite electrolyte membrane comprising the same, and fuel cell employing the same
EP1646097A2 (en) * 2004-09-24 2006-04-12 Sim Composites Inc. Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
EP1646097A3 (en) * 2004-09-24 2008-10-01 Sim Composites Inc. Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
JP2006244920A (en) * 2005-03-04 2006-09-14 Fujitsu Ltd Solid electrolyte composition and polymer electrolyte fuel cell
JP2009513758A (en) * 2005-10-27 2009-04-02 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
US8137590B2 (en) 2005-10-27 2012-03-20 Wacker Chemie Ag Particles comprising zwitterionic structural elements
JP4914449B2 (en) * 2005-10-27 2012-04-11 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
US7977392B2 (en) 2005-12-22 2011-07-12 Daimler Ag Water insoluble additive for improving conductivity of an ion exchange membrane
JP2010527903A (en) * 2007-05-28 2010-08-19 セラム ハイド Proton exchange membrane and battery including the membrane
JP2010529938A (en) * 2007-05-28 2010-09-02 セラム ハイド Method for activating boron nitride
JP2010530915A (en) * 2007-06-22 2010-09-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Composites for fuel cell membranes based on organically modified inorganic particles and methods for their preparation
JP2011517331A (en) * 2008-03-06 2011-06-02 セラム ハイド Materials for electrochemical devices
WO2023182240A1 (en) * 2022-03-23 2023-09-28 帝人株式会社 Silica material, ion exchange resin composition, electrolyte membrane, membrane-electrode joined body, proton-exchange membrane fuel cell, proton-exchange membrane electrolyzer, and electrochemical hydrogen compressor

Similar Documents

Publication Publication Date Title
JP5150895B2 (en) Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
KR100403754B1 (en) Composite Polymeric Electrolyte Membrane, Preparation Method Thereof and Fuel Cell Containing the Same
CA2636653C (en) Solid electrolyte with high ion-conductivity and method for manufacturing the same, and electrochemical system using solid electrolyte
JP2001155744A (en) Proton conductor
US20040048129A1 (en) Composite polymer electrolytes for proton exchange membrane fuel cells
KR20160087214A (en) Porous Nafion membrane and method for preparing the same
JPH1092440A (en) Gas diffusion electrode based on poly(vinylidene fluoride) carbon blend
WO1998029916A1 (en) Gas diffusion electrode, solid polymer electrolyte membrane, method of producing them, and solid polymer electrolyte type fuel cell using them
WO2003023883A1 (en) Electrode catalyst layer for fuel cell
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP2003086192A (en) Fuel cell and its manufacturing method
JP2007005308A (en) Polymer electrolyte membrane for fuel cell, its manufacturing method and fuel cell system including it
JP2003033668A (en) Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
JP2008004533A (en) Ionic conductor
JP2010526911A (en) Novel electrolyte using Lewis acid / Bronsted acid complex
JP2007311311A (en) Ion conductor
JP2010050098A (en) Fuel cell electrode using triazole modified polymer, and membrane electrode composite including the same
WO2006054672A1 (en) Conductive thin film forming proton conductive composition, and proton conductive composite film
JP2006190606A (en) Electrode for fuel cell, fuel cell, and method of manufacturing electrode for fuel cell
JP4238423B2 (en) Carbon sheet manufacturing method and fuel cell electrode manufacturing method
JP2004319292A (en) Fuel cell cathode and solid polymer fuel cell provided with it
CN111095637B (en) Method of preparing catalyst layer, and membrane electrode assembly and fuel cell including the same
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
JP2005019285A (en) Fuel cell cell
JP2013114901A (en) Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees