WO2009033415A1 - Système de réseau optique passif à mélange de multiplexages par répartition en longueur d'onde et par répartition temporelle, terminal et procédé de transmission de signal - Google Patents

Système de réseau optique passif à mélange de multiplexages par répartition en longueur d'onde et par répartition temporelle, terminal et procédé de transmission de signal Download PDF

Info

Publication number
WO2009033415A1
WO2009033415A1 PCT/CN2008/072282 CN2008072282W WO2009033415A1 WO 2009033415 A1 WO2009033415 A1 WO 2009033415A1 CN 2008072282 W CN2008072282 W CN 2008072282W WO 2009033415 A1 WO2009033415 A1 WO 2009033415A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
user
port
central
Prior art date
Application number
PCT/CN2008/072282
Other languages
English (en)
French (fr)
Inventor
Deming Liu
Songlin Zhu
Minming Zhang
Hai Liu
Li Zhang
Changjian Ke
Sui Xiao
Original Assignee
Zte Corporation
Huazhong University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation, Huazhong University Of Science And Technology filed Critical Zte Corporation
Priority to US12/676,588 priority Critical patent/US8554079B2/en
Priority to EP08800794A priority patent/EP2192712A4/en
Publication of WO2009033415A1 publication Critical patent/WO2009033415A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0011Construction using wavelength conversion

Definitions

  • the present invention relates to the field of optical access networks, and in particular, to a hybrid wavelength division time division multiplexing passive optical network system, a terminal, and a signal transmission method thereof.
  • Optical access is an important part of next-generation networks, and is the main direction for the development of optical communication technologies in the next decade. To meet the growing demand for converged access for various services, it is important to study new access technologies and technologies. The meaning.
  • Passive Optical Network is one of the important technologies for optical access.
  • the prior art mainly includes wavelength division multiplexing passive optical network (WDM-PON) and time division multiplexing passive optical network (TDM-PON), including Gigabit Passive Optical Network (G-PON) and Ethernet.
  • Source Optical Network E-PON).
  • E-PON and G-PON are limited. At present, there are only 32 lines or 64 lines. When the authority room is installed across multiple areas, it is necessary to lay dozens of optical fiber connection optical line terminals with a span of 10 ⁇ 40km (OLT). And optical network unit (ONU), not only the construction cost and maintenance cost are high, but also face the contradiction of limited access fiber resources.
  • WDM-PON ONUs can cause problems with installation, maintenance, and inventory if they use a specific transmit wavelength laser. Therefore, all ONU optical transceiver modules must be unified, that is, a so-called colorless ONU is realized.
  • the existing colorless ONU implementation scheme can be implemented by using an externally provided unmodulated light source to the ONU, as described in the Chinese invention patent CN200510131990, or by an OLT controlling the tunable laser in the ONU, as described in U.S. Patent No. US2007092256.
  • an unmodulated light source to the ONU causes a series of technical problems. For example, if the unmodulated light source is transmitted through the downlink, the optical power is greatly attenuated. In order to compensate for the optical power attenuation, the network structure is complicated. And this technology is not compatible with the existing G-PON optical transceiver module technology.
  • the object of the present invention is to solve the problems in the prior art, and provide a hybrid wavelength division time division multiplexing passive optical network system and a terminal, thereby implementing multiple time division multiplexing without changing the wavelength of the ONU light of the user end. Wavelength division multiplexing of PON units.
  • Another object of the present invention is to apply to a hybrid wavelength division time division multiplexing passive optical network system and a signal transmission method of a terminal.
  • the present invention provides a hybrid wavelength division time division multiplexing passive optical network system, comprising: a plurality of optical modules on an optical line terminal side connected to a central end all-optical wavelength conversion unit, the central office
  • the all-optical wavelength conversion unit is connected to a user-end all-optical wavelength conversion unit through an optical fiber, and the user-side all-optical wavelength conversion unit is connected to a plurality of optical distributors, each of which is connected to a plurality of optical network units;
  • the central-end all-optical wavelength conversion unit converts optical signals of the same wavelength emitted by the optical module into optical signals of different wavelengths in a downlink direction, multiplexed and transmitted to the all-optical wavelength conversion unit of the user end; And optical signals of different wavelengths from the all-optical wavelength conversion unit of the user end are demultiplexed and sent to an optical module of the optical line terminal side for receiving;
  • the all-optical wavelength conversion unit of the user end demultiplexes the optical signals of different wavelengths transmitted by the central end all-optical wavelength conversion unit in the downlink direction, and respectively transmits the optical signals of different wavelengths to the corresponding optical distributors.
  • An optical distributor is allocated to the connected optical network unit; receiving optical signals of the same wavelength from the optical network unit condensed by the distributor in an uplink direction, and converting the optical signals of the same wavelength into light of different wavelengths
  • the signal is multiplexed and transmitted to the central office all-optical wavelength conversion unit.
  • the central end all-optical wavelength conversion unit is connected to at least two optical modules; the central-end all-optical wavelength conversion unit includes at least two central-end three-port wavelength division multiplexers, and at least two central ends.
  • An optical wavelength converter and a central office wavelength division multiplexer wherein an uplink multiplexing port of each central office three-port wavelength division multiplexer is respectively connected to an uplink demultiplexing port of the central office wavelength division multiplexer,
  • the downlink demultiplexing ports of each of the central office three-port wavelength division multiplexers are respectively connected to one input port of the central office optical wavelength converter, and the output ports of each of the central office optical wavelength converters are respectively A downlink multiplexing port of the central office wavelength division multiplexer is connected, and a third optical port of each central office three-port wavelength division multiplexer is connected to one optical module;
  • the central-end three-port wavelength division multiplexer separately multiplexes and demultiplexes optical signals of different wavelengths on the upper and lower sides, and the central-end
  • the user-end all-optical wavelength conversion unit is connected to at least two optical splitters; the user-end all-optical wavelength conversion unit includes a user-side wavelength division multiplexer and at least two user-side optical wavelength conversions. And at least two user-side three-port wavelength division multiplexers, each of which has a downlink multiplexing port connected to a downlink demultiplexing port of the user-side wavelength division multiplexer
  • the uplink demultiplexing ports of each of the three-port wavelength division multiplexers of the client are respectively connected to one input port of the optical wavelength converter of the client, and the output ports of each of the optical wavelength converters of the user end are respectively
  • An uplink multiplexing port of the user-side wavelength division multiplexer is connected, and a third port of each of the three-port wavelength division multiplexers of the client is connected to an optical distributor;
  • the user-side three-port wavelength division multiplexer separately demultiplexes and multiplexes optical signals of different wavelengths of uplink and downlink, and the user-side optical wavelength converter respectively respectively uses the three-port wavelength division multiplexer of the user end
  • the signal is sent to the user-side wavelength division multiplexer for multiplexing.
  • the user-side optical wavelength converter uses a passive wavelength conversion medium, and the detecting light source is placed on the optical line terminal side, and the detecting light is remotely transmitted through the optical fiber; or the user-side optical wavelength converter is active. Wavelength conversion medium.
  • the present invention also provides a hybrid wavelength division time division multiplexing passive optical network system, comprising: a plurality of specific transmission wavelength optical modules of an optical line terminal are connected to a central office wavelength division multiplexer, and the local end wave is divided The user is connected to a user-side all-optical wavelength conversion unit through an optical fiber, and the optical-wavelength conversion unit of the user end is connected to a plurality of optical distributors, and each optical distributor is connected to a plurality of optical network units;
  • the central wavelength division multiplexer multiplexes optical signals of different wavelengths sent by the specific transmission wavelength optical module in a downlink direction, and sends the optical signals to the all-optical wavelength conversion unit at the user end;
  • Optical signals of different wavelengths of the all-optical wavelength conversion unit of the user end are demultiplexed and concurrently Receiving to the optical module on the optical line terminal side for receiving;
  • the all-optical wavelength conversion unit of the user end demultiplexes optical signals of different wavelengths from the central office wavelength division multiplexer in the downlink direction, and respectively transmits optical signals of different wavelengths to corresponding optical distributors,
  • An optical distributor is allocated to the connected optical network unit; in an uplink direction, an optical signal of the same wavelength from the optical network unit that is concentrated by the optical distributor is received, and the optical signal of the same wavelength is converted into a different wavelength
  • the optical signal is multiplexed and transmitted to the central office wavelength division multiplexer.
  • the user-end all-optical wavelength conversion unit is connected to at least two optical splitters; the user-end all-optical wavelength conversion unit includes a user-side wavelength division multiplexer and at least two user-side optical wavelength conversions. And at least two user-side three-port wavelength division multiplexers, each of which has a downlink multiplexing port connected to a downlink demultiplexing port of the user-side wavelength division multiplexer
  • the uplink demultiplexing ports of each of the three-port wavelength division multiplexers of the client are respectively connected to one input port of the optical wavelength converter of the client, and the output ports of each of the optical wavelength converters of the user end are respectively
  • An uplink multiplexing port of the user-side wavelength division multiplexer is connected, and a third port of each of the three-port wavelength division multiplexers of the client is connected to an optical distributor;
  • the user-side three-port wavelength division multiplexer separately demultiplexes and multiplexes optical signals of different wavelengths of uplink and downlink, and the user-side optical wavelength converter respectively respectively uses the three-port wavelength division multiplexer of the user end
  • the signal is sent to the user-side wavelength division multiplexer for multiplexing.
  • the user-side optical wavelength converter uses a passive wavelength conversion medium, and the detecting light source is placed on the optical line terminal side, and the detecting light is remotely transmitted through the optical fiber; or the user-side optical wavelength converter is active. Wavelength conversion medium.
  • the present invention also provides an optical line terminal, comprising: a plurality of optical modules and a central end all-optical wavelength conversion unit, wherein the optical module is configured to generate optical signals of the same wavelength in a downlink direction, and send the optical signals to the optical Said all-optical wavelength conversion unit;
  • the central end all-optical wavelength conversion unit is configured to convert the optical signal into optical signals of different wavelengths in a downlink direction, and multiplex the optical signals of different wavelengths; and perform optical signals of different wavelengths in an uplink direction. After demultiplexing, it is sent to the optical module on the optical line terminal side for reception. Further, the optical line terminal further includes a detecting light source for providing the detecting light to the user end all-optical wavelength converting unit.
  • the present invention also provides an optical line terminal, comprising at least two specific transmit wavelength optical modules and a central office wavelength division multiplexer, wherein the specific transmit wavelength optical module is configured to generate optical signals of different wavelengths in a downlink direction, Transmitting the optical signal to the central office wavelength division multiplexer;
  • the central wavelength division multiplexer is configured to multiplex the optical signal in a downlink direction; demultiplexing optical signals of different wavelengths in an uplink direction and transmitting the optical signals to the optical module;
  • a detection light source for providing probe light to the user end all-optical wavelength conversion unit.
  • the invention also provides a signal transmission method, comprising:
  • the initial optical signals of the same wavelength are respectively converted into optical signals of different wavelengths, multiplexed and transmitted through the optical fiber, and sent to the user end, and demultiplexed by the all-optical wavelength conversion unit at the user end.
  • the optical signals of different wavelengths are respectively transmitted to the corresponding optical distributors, and are distributed to the connected optical network units by the optical distributors.
  • the signal transmission method further includes:
  • the all-optical wavelength conversion unit of the user end converts the optical signals of the same wavelength emitted by the plurality of optical network units into optical signals of different wavelengths, multiplexes them and transmits them through the optical fiber, and sends them to the central office, and is decoded by the central optical line terminal. Used to receive optical signals of different wavelengths.
  • the invention also provides a signal transmission method, comprising:
  • the initial optical signals of different wavelengths are multiplexed, transmitted to the user end through optical fiber transmission, demultiplexed by the user end, and optical signals of different wavelengths are respectively transmitted to corresponding optical distributions.
  • the light distributor is assigned to the connected optical network unit.
  • the signal transmission method further includes:
  • the all-optical wavelength conversion unit at the user end converts a plurality of optical signals of the same wavelength into optical signals of different wavelengths, multiplexes them, transmits them through the optical fiber, transmits them to the central office, and demultiplexes them by the central optical line terminal. Thereby receiving optical signals of different wavelengths.
  • the following advantages are achieved: 1. It is not necessary to change the existing time-division passive optical network structure, which is beneficial to making full use of existing access network resources and ensuring time-division multiplexing of passive optical networks to the next generation. Smooth transition of optical access network; 2. Single fiber transmission between OLT and ONU through multiple wavelengths and high branch ratio, greatly improving fiber utilization and reducing the cost of laying optical fiber; 3.
  • the wavelength of the ONU device of the network client facilitates the optical link between the optical line terminal (OLT) and the optical network unit (ONU) of the colorless user terminal device, and enables the wavelength division multiplexing passive optical network based on the all-optical wavelength converter (AOWC) -WDM-PON)
  • the optical network unit ONU installation, maintenance and inventory are greatly reduced; 4, the central office uses low-cost fixed-wavelength converter, which can greatly reduce the cost; 5.
  • the user terminal uses remote pumping (remote transmission detection) When the optical wavelength converter is used, the "passive" feature of the access network can be maintained.
  • FIG. 1 is a schematic structural diagram of a hybrid wavelength division time division multiplexing passive optical network system based on wavelength conversion according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a central end all-optical wavelength conversion unit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a user-end all-optical wavelength conversion unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a hybrid wavelength division time division multiplexing passive optical network system based on remote pump wavelength conversion according to an embodiment of the present invention. Preferred embodiment of the invention
  • the core idea of the present invention is: ⁇ use the simplest possible network technology to make the WDM-PON ONU achieve colorless, and at the same time make the original TDM-PON technology achieve a smooth transition, and pass multiple wavelengths and high branches between the OLT and the ONU. Compared with the realization of single fiber transmission, the utilization of the fiber is greatly improved, and the cost of laying the fiber is reduced.
  • FIG. 1 is a schematic structural diagram of a wavelength division based hybrid wavelength division time division multiplexing passive optical network system according to the present invention. It includes the optical modules (optical module 1 ⁇ optical module n) of the n time division multiplexing PON units on the OLT side, the central end full wavelength converter AOWC unit (AOWC1), and the client AOWC single Element (AOWC2) and POCs of n time division multiplexed PON units and nxm ONUs (ONUn ⁇ ONUnm), where n and m are natural numbers.
  • AOWC1 and AOWC2 are connected by a transmission fiber.
  • Each optical module includes an optical transmitting module (eg, TX1), a light receiving module (eg, RX1), and a wavelength division multiplexer (eg, WDM-1).
  • the wavelength of each optical module sent downstream is ⁇ .
  • the optical signal is converted into an optical signal of A D wide A Dn in AOWC1 and coupled to the transmission fiber for downward transmission, and the optical signal of different optical wavelengths (A D1 ⁇ A Dn ) is solved by AOWC2
  • the multiplexing is respectively transmitted to the corresponding optical splitter POC, that is, the optical signals of different optical wavelengths are respectively transmitted to different POCs, and are allocated to the connected ONUs by the POC, for example, the POCs shown in FIG. 1 will be optical signals. Assigned to ONU n
  • the optical signal of the wavelength ⁇ ⁇ transmitted by each ONU is transmitted to the AOWC2 after being aggregated by the corresponding POC, and the upstream wavelength of each ONU is converted into the optical wavelength of A m ⁇ ⁇ ⁇ ⁇ according to the corresponding different ⁇ unit.
  • the optical signal is coupled to the transmission fiber for upward transmission, and then AOWC1 is used to demultiplex the optical signals of different optical wavelengths (?, m ⁇ ⁇ ⁇ ) and transmit them to the optical modules of the time division multiplexing unit, respectively. That is, optical signals of different optical wavelengths are respectively transmitted to different optical modules.
  • n optical modules and central office AOWC units can be integrated into one OLT.
  • the optical module of the time division multiplex unit is used, and other optical modules can be used in practical applications.
  • the POC can be connected to one or more ONUs, AOWC1 can also be connected to one or more optical modules, and AOWC2 can also be connected to one or more POCs.
  • the client AOWC unit can use a passive wavelength conversion medium, and the detection source is placed at the central office, which can be integrated into the central office OLT; specifically, the user-side wavelength converter OWC (as shown in FIG. 3, OWC1) ⁇ OWCn ) uses passive wavelength conversion media.
  • WDM A is a schematic structural view of a central end all-optical wavelength conversion unit of the present invention. It includes n central office three-port WDMs - such as WDM A l ⁇ WDM A n, n central office OWC - such as OWC A l ⁇ OWC A n, and a 2n+l port central office WDM (here Referred to as WDM A ).
  • Uplink multiplexing WDM A 1 is an uplink solution with which the port WDM A multiplexing connected port, downstream WDM A 1 demultiplexed connected to input ports ports OWC A l a, OWC A l to output port WDM A wherein A downlink multiplex port is connected, and the third port of the WDM A 1 is connected to an optical module on the OLT side.
  • the fiber is physically connected to the optical module.
  • WDM A 2 is connected to OWC A 2 and WDM A in the same way, and so on.
  • WDM A l ⁇ WDM A n receives the downstream optical signal of wavelength A D and demultiplexes the output, and OWC A l ⁇ OWC A n will have the wavelength ⁇ .
  • OWC A l ⁇ OWC A n will have the wavelength ⁇ .
  • different optical modules on the OLT side they are converted into ⁇ D1 ⁇ Dn respectively .
  • the selection of the downstream wavelength ⁇ D1 ⁇ ⁇ Dn should be within the receiving wavelength range of the optical receiving module of the ONU, where n is a natural number, that is, at least two of the central office OWC and the central office three-port WDM. If there is only one optical module in the actual application, the third port of the redundant central office three-port WDM is idle.
  • WDM B 2n+l port client WDM
  • OWC 2n+l port client OWC
  • WDM B l 2n+l port client OWC
  • WDM B l 2n+l port client OWC
  • WDM B l 2n+l port client OWC
  • WDM B l 2n+l port client OWC
  • WDM B l 2n+l port client OWC
  • WDM B l client OWC
  • WDM B l ⁇ WC B n three port WDM
  • WDM B downlink multiplexing port WDM b 1 wherein a downlink demultiplexed connected port, WDM b up a demultiplexing connected to input ports port OWC B l a, OWC B l to output port WDM B wherein An uplink multiplex port is connected, and the third port of WDM B 1 is connected to a POC, and can be physically connected to the POC through the optical fiber.
  • WDM B is connected to WDM B 2 and OWC B 2 in the same way, and so on.
  • WDM B l ⁇ WDM B n receives the upstream optical signal with wavelength ⁇ ⁇ and demultiplexes the output.
  • OWC B l ⁇ OWC B n converts the wavelength ⁇ u into ⁇ m ⁇ ⁇ Un according to different optical modules on the OLT side.
  • the selection of the upstream wavelength ⁇ m ⁇ ⁇ Un should be within the receiving wavelength range of the optical module of the OLT, where n is a natural number, that is, at least two of the user-side OWC and the user-side three-port WDM in the all-optical wavelength conversion unit of the user end. If there is only one POC in the actual application, the third port of the redundant client three-port WDM is spare.
  • optical signals of different wavelengths can be sent to and output from the wavelengths.
  • the optical wavelength converter in the central-end all-optical wavelength conversion unit of the present invention can use the semiconductor integrated with the semiconductor optical amplifier cross-gain modulation.
  • the optical wavelength converter the optical signal of a certain wavelength is incident by the input port of the three-port filter, enters the semiconductor optical amplifier chip through the reflective port and the reflection filter, and modulates the DC detection light to form a converted optical signal of another wavelength, and the converted light
  • the signal then enters the three-port filter via the reflective filter and the three-port filter reflection port, and the wavelength-converted modulated optical signal is output by the transmission port.
  • the semiconductor all-optical wavelength converter is a prior art and has been Optical wavelength converters (Application No. 200510019270) are described in detail. Other forms of optical wavelength conversion units, such as optical wavelength conversion based on semiconductor optical amplifier cross-phase modulation and four-wave mixing effects, based on fiber nonlinear effects, may also be used. Optical wavelength conversion and optical wavelength conversion based on "optical-electric-optical", etc. When it is necessary to maintain the "passive" characteristics of the access network, the optical wavelength converter in the all-optical wavelength conversion unit of the user terminal can also be used. Remote pumping (remote delivery of probe light) mode.
  • the 2n+l port wavelength division multiplexer in the all-optical wavelength conversion unit of the present invention can use an array waveguide grating of 1 ⁇ 2 ⁇ port, wherein n of the 2 ⁇ ports are selected as demultiplexing output ports and n ports are used as Multiplexed input ports.
  • the present invention does not It is necessary to change the wavelength of the ONU device of the passive optical network client, which is beneficial to realize the optical link between the optical line terminal (OLT) and the optical network unit (ONU) of the colorless user terminal device, so that the wavelength division multiplexing based on the all-optical wavelength converter is not
  • the optical network unit ONU of the source optical network (AOWC-WDM-PON) is greatly reduced in installation, maintenance and inventory.
  • the user uses a remotely pumped (remotely transmitted probe) optical wavelength converter, the "passive" feature of the access network can be maintained.
  • the specific transmit wavelength optical module on the OLT side is connected to a central office WDM (herein referred to as WDM C ), and the WDM C is connected to a user AOWC unit (herein referred to as AOWC) through a transmission fiber, and the AOWC is connected to the N POC, multiple ONUs are connected under each POC.
  • WDM C central office WDM
  • AOWC user AOWC unit
  • the POC can be connected to one or more ONUs.
  • the AOWC can also be connected to one or more POCs.
  • the central office WDM can also be connected to one or more specific transmit wavelength optical modules.
  • Each optical module includes an optical transmitting module (eg, TX1), a light receiving module (eg, RX1), and a wavelength division multiplexer (eg, WDM-1).
  • TX1 optical transmitting module
  • RX1 light receiving module
  • WDM-1 wavelength division multiplexer
  • the optical module has a structure as shown in FIG. 1, and details are not described herein again.
  • the structure of the all-optical wavelength conversion unit at the user end is the same as that described in FIG. 3, and details are not described herein again.
  • the specific implementation of the wavelength division time division hybrid multiplexing passive optical network based on remote pump wavelength conversion is: (1) First determine the number of wavelength division multiplexed wavelengths, the nominal wavelength of the wavelength division multiplex, and the bandwidth.
  • the specific transmission wavelength optical module on the OLT side uses a wavelength-multiplexed optical reception module of a nominal wavelength, an optical transmission module, and a pump spectrum light source.
  • Colorless ONU uses a standard wavelength optical transceiver module for PON systems.
  • the optical transmission modules ( ⁇ 1 to ⁇ ) of the specific transmission wavelengths in the optical modules of the n PON units on the OLT side transmit the optical signals of the predetermined wavelength division multiplexed wavelengths ⁇ D1 to ⁇ Dn .
  • the optical signals of the wavelength division multiplexed wavelengths ⁇ D1 ⁇ ⁇ Dn are combined by WDM C and then transmitted downstream of a single optical fiber.
  • the wavelength division multiplexing wavelength transmitted on a single optical fiber is converted into different nominal wavelengths A D1 ⁇ A Dn by AO WC and transmitted to the optical receiving modules of the respective ONUs via the POC.
  • each ONU transmits an optical signal of an uplink nominal wavelength ⁇ ⁇ in a predetermined time slot, and synthesizes a complete uplink frame signal through the POC.
  • the optical signal of the upstream nominal wavelength ⁇ ⁇ is converted into the optical signal of the specified wavelength division multiplexed wavelength into the ⁇ ⁇ ⁇ by AOWC , and is multiplexed, then transmitted on a single optical fiber, and then divided by WDM C.
  • the wave transmits the optical signal of the predetermined wavelength division multiplexed wavelength ⁇ m to ⁇ Un to the light receiving modules ( RX1 to RXn ) of the corresponding optical module on the OLT side.
  • the detection source can be integrated in the central office OLT. That is, n optical modules, central office WDMs, and detection sources can be integrated into one OLT.
  • the detection source is set at the central office, the AOWC of the client uses a passive wavelength conversion medium.
  • the wavelength of the ONU device of the passive optical network user terminal can be changed without changing the optical line terminal (OLT) and the colorless user terminal equipment optical network.
  • the optical link of the unit (ONU) enables the installation, maintenance and inventory of the optical network unit ONU of the wavelength division multiplexed passive optical network (AOWC-WDM-PON) based on the all-optical wavelength converter to be greatly reduced.
  • the present invention also provides two optical line terminals, and an optical line terminal is as shown in FIG. 1, including at least two.
  • Light mode Block in practical application, only one is also included
  • the optical module generates an optical signal of the same wavelength in a downlink direction, and sends the optical signal to the central AOWC unit
  • the central AOWC unit converts the optical signal into optical signals of different wavelengths, and multiplexes the optical signals of different wavelengths; in the uplink direction, the central AOWC unit performs optical signals of different wavelengths. After demultiplexing, it is sent to the optical module.
  • a detection light source is further included in the optical line terminal to provide the probe light to the user AOWC unit.
  • Another optical line terminal includes: at least two specific transmit wavelength optical modules (in practice, only one is included) and a central office wavelength division multiplexer WDM, the optical module Generating optical signals of different wavelengths in the downlink direction, and transmitting the optical signals to the central office WDM, where the central office WDM multiplexes the optical signals; in the uplink direction, the central office WDMs will have different wavelengths.
  • the optical signal is demultiplexed and sent to the optical module, and further includes a detecting light source to provide the detecting light to the user AOWC unit.
  • the signal transmission method applied to the hybrid wavelength division time division multiplexing passive optical network system of the present invention is described below, and the signal transmission method applied to the wavelength division based hybrid wavelength division time division multiplexing passive optical network system shown in FIG. 1 includes:
  • the optical fiber terminal (OLT) side converts the initial at least two optical signals of the same wavelength into optical signals of different wavelengths, multiplexes them and transmits them through the optical fiber, and sends them to the user end, where the user end demultiplexes them.
  • the optical signals are multiplexed, transmitted to the UE via optical fiber transmission, demultiplexed by the AOWC unit at the user end, and optical signals of different wavelengths are respectively transmitted to each of the specified (ie, connected to the corresponding wavelength port) optical distribution.
  • the optical signals are multiplexed and transmitted through the optical fiber, sent to the central office, and demultiplexed by the central optical line terminal to receive optical signals of different wavelengths.
  • the present invention Prior to the uplink and downlink signal transmissions described in the signal transmission method of the present invention, the present invention first determines the number of wavelength division multiplexed wavelengths, the nominal wavelength of the wavelength division multiplexing, and the bandwidth.
  • the optical module on the OLT side uses wavelength division multiplexed light receiving modules and optical transmitting modules of nominal wavelengths as well as pump spectrum light sources.
  • Colorless ONU uses a standard wavelength optical transceiver module for PON systems.
  • the invention does not need to change the structure of the existing time-division passive optical network, and is beneficial to fully utilizing existing access network resources, and ensuring a smooth transition of the time-division multiplexed passive optical network to the next-generation optical access network.
  • the transmission of a single fiber between the OLT and the ONU through multiple wavelengths and high branch ratios greatly increases the utilization of the fiber and reduces the cost of laying the fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

混合波分时分复用无源光网络系统、 终端及信号传输方法
技术领域
本发明涉及光接入网络领域, 尤其涉及一种混合波分时分复用无源光网 络系统、 终端及其信号传输方法。 背景技术
光接入是下一代网络的重要组成部分, 是未来十年光通信技术发展的主 要方向, 为满足各种业务的融合接入需求的不断增长, 接入新方式与新技术 的研究具有十分重要的意义。
无源光网络( PON )是光接入的重要技术之一。 目前现有技术主要包括 波分复用无源光网络( WDM-PON ) 以及时分复用无源光网络 (TDM-PON) , 其中包括吉比特无源光网络(G-PON )和以太网无源光网络(E-PON ) 。
E-PON和 G-PON的单纤接入容量受到限制, 目前只有 32线或 64线, 当 局端机房跨区设置时, 需要铺设数十芯光纤连接跨距 10 ~ 40km 的光线路终 端 (OLT )和光网络单元(ONU ) , 不但建设成本与维护成本高, 而且会面 临接入管线光纤资源受限的矛盾。
WDM-PON的 ONU如果釆用特定发送波长激光器, 将会引起安装、 维 护以及库存等问题。 因此必须使所有的 ONU光收发模块统一, 即实现所谓的 无色 ONU。
现有的无色 ONU实现方案或是釆用外界提供未调制光源给 ONU, 如中 国发明专利 CN200510131990所述; 或是由 OLT控制 ONU中的可调激光器 来实现, 如美国发明专利 US2007092256 所述。 但是外界提供未调制光源给 ONU会引起一系列的技术问题, 譬如未调制光源经过下行传输, 光功率被大 大衰减。 为了弥补光功率衰减, 网络结构复杂化。 并且这种技术与现有的 G-PON的光收发模块技术不能兼容。 发明内容 本发明的目的是解决现有技术中存在的问题, 提供一种混合波分时分复 用无源光网络系统及终端 ,从而在不需改变用户端 ONU光波长的前提下实现 多个时分复用 PON单元的波分复用。
本发明的另一目的是应用于混合波分时分复用无源光网络系统和终端的 信号传输方法。
为了解决上述技术问题, 本发明提供了一种混合波分时分复用无源光网 络系统, 包括: 光线路终端侧的若干个光模块连接至一个局端全光波长转换 单元, 所述局端全光波长转换单元与一用户端全光波长转换单元通过光纤相 连接, 所述用户端全光波长转换单元连接若干个光分配器, 每个光分配器分 别连接若干个光网络单元; 其中,
所述局端全光波长转换单元在下行方向将所述光模块发出的相同波长的 光信号转换成不同波长的光信号, 复用并发送到所述用户端全光波长转换单 元; 在上行方向将来自所述用户端全光波长转换单元的不同波长的光信号进 行解复用, 并发送给所述光线路终端侧的光模块接收;
所述用户端全光波长转换单元在下行方向将所述局端全光波长转换单元 发送的不同波长的光信号进行解复用, 将不同波长的光信号分别传送至相应 的光分配器, 由光分配器分配给所连接的光网络单元; 在上行方向接收由所 述分配器汇聚的来自所述光网络单元的相同波长的光信号, 将所述相同波长 的光信号转换成不同波长的光信号, 复用并发送到所述局端全光波长转换单 元。
进一步的, 所述局端全光波长转换单元所连接的光模块至少为两个; 所述局端全光波长转换单元包括至少两个局端三端口波分复用器、 至少 两个局端光波长转换器以及一个局端波分复用器, 每个局端三端口波分复用 器的上行复用端口分别与所述局端波分复用器的一个上行解复用端口相连, 每个局端三端口波分复用器的下行解复用端口分别与所述局端光波长转换器 的一个输入端口相连, 每个所述局端光波长转换器的输出端口分别与所述局 端波分复用器的一个下行复用端口相连, 每个局端三端口波分复用器的第三 个端口各连接一个光模块; 其中, 所述局端三端口波分复用器将上、下行不同波长的光信号分别进行复用、 解复用 , 所述局端光波长转换器分别将所述局端三端口波分复用器发送过来 的由所述光模块发出的下行相同波长的光信号转换为不同波长的光信号, 并 发送给所述局端波分复用器进行复用。
进一步的,所述用户端全光波长转换单元所连接的光分配器至少为两个; 所述用户端全光波长转换单元包括一个用户端波分复用器、 至少两个用 户端光波长转换器和至少两个用户端三端口波分复用器, 每个用户端三端口 波分复用器的下行复用端口分别与所述用户端波分复用器的一个下行解复用 端口相连, 每个用户端三端口波分复用器的上行解复用端口分别与所述用户 端光波长转换器的一个输入端口相连, 每个所述用户端光波长转换器的输出 端口分别与所述用户端波分复用器的一个上行复用端口相联, 每个用户端三 端口波分复用器的第三个端口各连接一个光分配器; 其中,
所述用户端三端口波分复用器将上、 下行不同波长的光信号分别进行解 复用、 复用, 所述用户端光波长转换器分别将所述用户端三端口波分复用器 信号, 并发送给所述用户端波分复用器进行复用。
进一步的, 所述用户端光波长转换器釆用无源波长转换介质, 其探测光 源放置在光线路终端侧, 通过光纤实现远程输送探测光; 或者所述用户端光 波长转换器釆用有源波长转换介质。
本发明还提供了一种混合波分时分复用无源光网络系统, 包括: 光线路 终端的若干个特定发送波长光模块连接至一局端波分复用器, 所述局端波分 复用器与一用户端全光波长转换单元通过光纤相连接, 所述用户端全光波长 转换单元下连若干个光分配器, 每个光分配器下均连接若干个光网络单元; 其中,
所述局端波分复用器将所述特定发送波长光模块发送的不同波长的光信 号在下行方向进行复用, 发送到所述用户端全光波长转换单元; 在上行方向 将来自所述用户端全光波长转换单元的不同波长的光信号进行解复用, 并发 送给所述光线路终端侧的光模块接收;
所述用户端全光波长转换单元在下行方向将来自所述局端波分复用器的 不同波长的光信号进行解复用, 将不同波长的光信号分别传送至相应的光分 配器, 由光分配器分配给所连接的光网络单元; 在上行方向, 接收由所述光 分配器汇聚的来自所述光网络单元的相同波长的光信号, 将所述相同波长的 光信号转换成不同波长的光信号, 复用并发送到所述局端波分复用器。
进一步的,所述用户端全光波长转换单元所连接的光分配器至少为两个; 所述用户端全光波长转换单元包括一个用户端波分复用器、 至少两个用 户端光波长转换器和至少两个用户端三端口波分复用器, 每个用户端三端口 波分复用器的下行复用端口分别与所述用户端波分复用器的一个下行解复用 端口相连, 每个用户端三端口波分复用器的上行解复用端口分别与所述用户 端光波长转换器的一个输入端口相连, 每个所述用户端光波长转换器的输出 端口分别与所述用户端波分复用器的一个上行复用端口相联, 每个用户端三 端口波分复用器的第三个端口各连接一个光分配器; 其中,
所述用户端三端口波分复用器将上、 下行不同波长的光信号分别进行解 复用、 复用, 所述用户端光波长转换器分别将所述用户端三端口波分复用器 信号, 并发送给所述用户端波分复用器进行复用。
进一步的, 所述用户端光波长转换器釆用无源波长转换介质, 其探测光 源放置在光线路终端侧, 通过光纤实现远程输送探测光; 或者所述用户端光 波长转换器釆用有源波长转换介质。
本发明还提供了一种光线路终端, 包括若干个光模块和一个局端全光波 长转换单元, 所述光模块用于在下行方向产生相同波长的光信号, 将所述光 信号发送至所述局端全光波长转换单元;
所述局端全光波长转换单元用于在下行方向将所述光信号转换为不同波 长的光信号, 并将所述不同波长的光信号进行复用; 在上行方向将不同波长 的光信号进行解复用后发送给所述光线路终端侧的光模块接收。 进一步的, 所述的光线路终端还包括一个探测光源, 用于提供探测光给 用户端全光波长转换单元。
本发明还提供了一种光线路终端, 包括至少两个特定发送波长光模块和 一个局端波分复用器, 所述特定发送波长光模块用于在下行方向产生不同波 长的光信号, 将所述光信号发送至所述局端波分复用器;
所述局端波分复用器用于在下行方向对所述光信号进行复用; 在上行方 向将不同波长的光信号进行解复用并发送给所述光模块;
还包括一个探测光源, 用于提供探测光给用户端全光波长转换单元。
本发明还提供了一种信号传输方法, 包括:
在局端光线路终端将初始的若干个相同波长的光信号分别转换成不同波 长的光信号, 进行复用并经光纤传输, 发送到用户端, 由用户端全光波长转 换单元进行解复用并将不同波长的光信号分别传送至相应的光分配器, 由光 分配器分配给所连接的光网络单元。
进一步的, 所述的信号传输方法还包括:
用户端全光波长转换单元将若干个光网络单元发出的相同波长的光信号 转换成不同波长的光信号, 进行复用并经光纤传输, 发送到局端, 由局端光 线路终端进行解复用, 从而接收各个不同波长的光信号。
本发明还提供了一种信号传输方法, 包括:
在局端光线路终端将初始的若干个不同波长的光信号进行复用, 经光纤 传输发送到用户端, 由用户端进行解复用, 并将不同波长的光信号分别传送 至相应的光分配器, 由光分配器分配给所连接的光网络单元。
进一步的, 所述的信号传输方法还包括:
在用户端全光波长转换单元将若干个发出的相同波长的光信号转换成不 同波长的光信号, 进行复用并经光纤传输, 发送到局端, 由局端光线路终端 进行解复用, 从而接收各个不同波长的光信号。 通过釆用本发明的技术方案, 实现了以下优点: 1、 不需要改变现有时分 无源光网络结构, 有利于充分利用现有接入网资源, 保证时分复用无源光网 络向下一代光接入网络的平滑过渡; 2、在 OLT和 ONU之间通过多波长和高 分支比实现单一光纤的传输, 大大提高光纤的利用率, 降低铺设光纤的成本; 3、 不需要改变无源光网络用户端 ONU设备波长, 有利于实现光线路终端 ( OLT ) 与无色用户终端设备光网络单元(ONU ) 的光链接, 使基于全光波 长转换器的波分复用无源光网络(AOWC-WDM-PON ) 的光网络单元 ONU 安装, 维护以及库存大大降低; 4、 局端釆用低成本固定波长转换器, 可以大 幅度降低成本; 5、用户端釆用远程泵浦(远程输送探测光)光波长转换器时, 可以保持接入网络的 "无源 "特征。
附图概述
图 1是本发明实施例的一种基于波长转换的混合波分时分复用无源光网 络系统结构示意图;
图 2是本发明实施例的局端全光波长转换单元结构示意图;
图 3是本发明实施例的用户端全光波长转换单元结构示意图;
图 4是本发明实施例的一种基于远程泵浦波长转换的混合波分时分复用 无源光网络系统结构示意图。 本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
本发明的核心思想是: 釆用尽可能简单的网络技术来使 WDM-PON 的 ONU实现无色,同时使原来的 TDM-PON技术实现平滑过渡,在 OLT和 ONU 之间通过多波长和高分支比实现单一光纤的传输, 大大提高光纤的利用率, 降低铺设光纤的成本。
图 1是本发明的一种基于波长转换的混合波分时分复用无源光网络系统 结构示意图。 它包括 OLT侧的 n个时分复用 PON单元的光模块(光模块 1 ~ 光模块 n ) 、 局端全波长转换器 AOWC单元(AOWC1 ) 、 用户端 AOWC单 元( AOWC2 )以及 n个时分复用 PON单元的 POC和 nxm个 ONU ( ONUn ~ ONUnm ) , 其中 n和 m是自然数。 AOWC1和 AOWC2通过传输光纤相连接。 每个光模块包括一光发送模块(如, TX1 ) 、 一光接收模块(如, RX1 )和 一波分复用器(如, WDM-1 )。 每个光模块下行发送的波长为 λ。的光信号, 在 AOWC1中被转换为光波长为 A D广 A Dn的光信号, 并被耦合到传输光纤中 向下传输, 经 AOWC2将不同光波长( A D1~ A Dn ) 的光信号解复用, 分别传 送至相应的光分配器 POC, 也就是将不同光波长的光信号分别传送给不同的 POC, 由 POC分配给所连接的 ONU, 例如, 图 1中所示的 POC将光信号分 配给 ONUn
Figure imgf000009_0001
对于每个 ONU上行发送的波长为 λ υ的光信号, 经对应的 POC汇聚后 传送至 AOWC2, 各个 ONU的上行光波长按照所对应的不同 ΡΟΝ单元被相 应转换为光波长为 A m ~ λ υη的光信号, 并被耦合到传输光纤中向上传输, 再利用 AOWC1将不同光波长(?、m ~ λ υη )的光信号解复用, 分别传送至时 分复用 ΡΟΝ单元的各个光模块,也就是将不同光波长的光信号分别传送给不 同的光模块。
其中 η个光模块和局端 AOWC单元(图 1中为 AOWC1 )可以集成在一 个 OLT中。
在图 1中, 釆用的是时分复用 ΡΟΝ单元的光模块, 实际应用中也可以使 用其它光模块。 另夕卜,实际应用时, POC可以连接一个或多个 ONU, AOWC1 也可以连接一个或多个光模块, AOWC2也可以连接一个或多个 POC。
此外, 用户端 AOWC单元( AOWC2 )可釆用无源波长转换介质, 将探 测光源放在局端, 可集成在局端的 OLT中; 具体为用户端波长转换器 OWC (如图 3所示, OWC1 ~ OWCn )釆用无源波长转换介质。
图 2是本发明的局端全光波长转换单元结构示意图。 它包括 n个局端三 端口 WDM——如 WDMAl~WDMAn、n个局端 OWC——如 OWCAl~OWCAn、 以及 1个 2n+l端口的局端 WDM (此处简称 WDMA ) 。 WDMA1的上行复用 端口与 WDMA的其中一个上行解复用端口相连, WDMA1的下行解复用端口 与 OWCAl的输入端口相连, OWCAl的输出端口与 WDMA的其中一个下行 复用端口相连, WDMA1的第三个端口连接一个 OLT侧的光模块, 可以通过 光纤与光模块物理连接。 WDMA2与 OWCA2及 WDMA的连接方式亦同, 以 此类推。 WDMAl~WDMAn接收波长为 A D的下行光信号并解复用输出, OWCAl~OWCAn将波长 λ。按照 OLT侧不同的光模块分别转换为 λ D1~Dn。下 行波长 λ D1~ λ Dn的选取应该在 ONU的光接收模块接收波长范围内, 其中 n 为自然数, 即局端 OWC和局端三端口 WDM釆用至少两个。 如果实际应用 时光模块只有一个, 则多余的局端三端口 WDM的第三个端口为空闲。
图 3是本发明的用户端全光波长转换单元结构示意图。 它包括 1个 2n+l 端口的用户端 WDM (此处简称为 WDMB ) 、 n 个用户端 OWC ( OWCBl~OWCBn ) 以及 n个用户端三端口 WDM ( WDMBl~WDMBn ) 。 WDMB1的下行复用端口与 WDMb的其中一个下行解复用端口相连, WDMb1 的上行解复用端口与 OWCBl的输入端口相连, OWCBl的输出端口与 WDMB 的其中一个上行复用端口相联, WDMB1 的第三个端口连接一个 POC, 可以 通过光纤与 POC物理连接。 WDMB与 WDMB2及 OWCB2的连接方式亦同, 以此类推。 WDMBl~WDMBn接收波长为 λ υ的上行光信号并解复用输出, OWCBl~ OWCBn将波长 λ u按照 OLT侧不同的光模块分别转换为 λ m~ λ Un。 上行波长 λ m~ λ Un的选取应该在 OLT的光模块接收波长范围内,其中 n为自 然数, 即用户端全光波长转换单元中用户端 OWC和用户端三端口 WDM釆 用至少两个。 如果实际应用时 POC只有一个, 则多余的用户端三端口 WDM 的第三个端口为空余。
由于 AOWC不同端口出来不同的波长, 因此根据 AOWC各端口 (实质 是内部的 WDM器件)与光模块(或光分配器) 的连接关系, 就可以将不同 波长的光信号发送给与输出该波长的端口连接的光模块(或光分配器) 。
由于局端釆用低成本固定波长转换器, 可以大幅度降低成本, 因此本发 明所述的局端全光波长转换单元中的光波长转换器可釆用基于半导体光放大 器交叉增益调制的半导体全光波长转换器, 一定波长的光信号由三端口滤波 器输入端口入射, 经由其反射端口、 反射滤波器进入半导体光放大器芯片并 调制直流探测光, 形成另一波长的转换光信号, 该转换光信号再经由反射滤 波器和三端口滤波器反射端口进入三端口滤波器, 由其透射端口输出波长转 换的调制光信号。 该半导体全光波长转换器为现有技术, 已在"一种半导体全 光波长转换器"(申请号 200510019270 )中详细描述。 也可釆用其它形式的光 波长转换单元, 如基于半导体光放大器交叉相位调制以及四波混频效应的光 波长转换、基于光纤非线性效应的光波长转换以及基于"光-电 -光"的光波长转 换等。 当需要保持接入网络的"无源"特性时, 用户端全光波长转换单元中的 光波长转换器还可以釆用远程泵浦 (远程输送探测光)方式。
本发明所述全光波长转换单元中的 2n+l端口波分复用器可以釆用 1 χ2η 端口的阵列波导光栅, 其中 2η端口中选择 η个端口作为解复用输出端口、 η 个端口作为复用输入端口。
从图 1所示基于波长转换的混合波分时分复用无源光网络, 图 2所示局 端全光波长转换单元以及图 3所示的终端全光波长转换单元可以看出, 本发 明不需要改变无源光网络用户端 ONU设备波长, 有利于实现光线路终端 ( OLT ) 与无色用户终端设备光网络单元(ONU ) 的光链接, 使基于全光波 长转换器的波分复用无源光网络(AOWC-WDM-PON ) 的光网络单元 ONU 安装, 维护以及库存大大降低。 并且当用户端釆用远程泵浦 (远程输送探测 光)光波长转换器时, 可以保持接入网络的"无源"特征。
图 4是本发明所述的一种基于远程泵浦波长转换的波分时分混合复用无 源光网络系统的应用示例。 n个 OLT侧的特定发送波长光模块连接至一局端 WDM (此处简称 WDMC ) , 该 WDMC与一用户端 AOWC单元(此处简称 AOWC )通过传输光纤相连接, 该 AOWC下连 n个 POC, 每个 POC下均连 接多个 ONU。
实际应用时, POC可以连接一个或多个 ONU , AOWC也可以连接一 个或多个 POC , 局端 WDM也可以连接一个或多个特定发送波长光模块。
其中, 每个光模块包括一光发送模块(如, TX1 ) 、 一光接收模块(如, RX1 )和一波分复用器(如, WDM-1 ) 。
其中如图 4中所示, 光模块具有如图 1所示的结构, 在此不再赘述。 其 中用户端全光波长转换单元的结构同图 3中描述的一样, 在此也不再赘述。
基于远程泵浦波长转换的波分时分混合复用无源光网络的具体实现为: ( 1 )首先确定波分复用的波长的数量, 波分复用的标称波长以及带宽。
( 2 )OLT侧的特定发送波长光模块使用波分复用的标称波长的光接收模 块和光发送模块以及泵谱光源。 无色 ONU釆用 PON系统统一的标准波长的 光收发模块。
( 3 )在下行方向, OLT侧的 n个 PON单元的光模块中的特定发送波长 的光发送模块( ΤΧ1~ΤΧη )发送规定的波分复用波长 λ D1~ λ Dn的光信号。 波 分复用波长 λ D1~ λ Dn的光信号通过 WDMC进行合波,然后在单一光纤下行传 输。
( 4 )单一光纤上传输的波分复用波长通过 AO WC转换为不同的标称波 长 A D1~ A Dn, 并经由 POC传送给各个 ONU的光接收模块。
( 5 )在上行方向, 各个 ONU在规定的时隙发送上行标称波长 λ υ的光 信号, 通过 POC合成完整的上行帧信号。
( 6 )上行标称波长 λ υ的光信号通过 AOWC转换成为规定的波分复用波 长入 υ广 λ υη的光信号, 并进行合波, 然后在单一光纤上行传输, 再由 WDMC 进行分波,将规定的波分复用波长 λ m~ λ Un的光信号传送给对应的 OLT侧的 光模块的光接收模块 ( RXl~RXn ) 。
( 7 )在局端设置探测 (泵浦)光源, 通过光纤连接 AOWC, 实现远程 泵浦 (远程输送探测光) 。
另外,探测光源可以集成在局端的 OLT中。 即, n个光模块、局端 WDM 以及探测光源可以集成在一个 OLT中。 当探测光源设置在局端时, 用户端的 AOWC釆用无源波长转换介质。
通过釆用远程泵浦波长转换的波分时分混合复用无源光网络, 可以不改 变无源光网络用户端 ONU设备波长, 有利于实现光线路终端(OLT )与无色 用户终端设备光网络单元( ONU ) 的光链接, 使基于全光波长转换器的波分 复用无源光网络( AOWC-WDM-PON ) 的光网络单元 ONU安装, 维护以及 库存大大降低。
如图 1和图 4中所示的混合波分时分复用无源光网络系统中, 本发明还 提供了两种光线路终端, 一种光线路终端如图 1 中所示, 包括至少两个光模 块(实际应用时, 只包括一个也行)和一个局端全光波长转换 AOWC单元, 所述光模块在下行方向产生相同波长的光信号, 将所述光信号发送至所述局 端 AOWC单元, 所述局端 AOWC单元将所述光信号转换为不同波长的光信 号, 并将所述不同波长的光信号进行复用; 在上行方向, 所述局端 AOWC单 元将不同波长的光信号进行解复用后发送给所述光模块。 并且在该光线路终 端中还包括一个探测光源, 以提供探测光给用户端 AOWC单元。 另一种光线 路终端, 如图 4中所示包括: 包括至少两个特定发送波长光模块(实际应用 时, 只包括一个也行)和一个局端波分复用器 WDM, 所述光模块在下行方 向产生不同波长的光信号, 将所述光信号发送至所述局端 WDM, 所述局端 WDM对所述光信号进行复用; 在上行方向, 所述局端 WDM将不同波长的 光信号进行解复用并发送给所述光模块, 还包括一个探测光源, 以提供探测 光给用户端 AOWC单元。
下面介绍应用于本发明混合波分时分复用无源光网络系统的信号传输方 法, 应用于图 1所示基于波长转换的混合波分时分复用无源光网络系统的信 号传输方法包括: 在局端光线路终端 (OLT )侧将初始的至少两个相同波长 的光信号分别转换成不同波长的光信号, 进行复用并经光纤传输, 发送到用 户端, 由用户端进行解复用并将不同波长的光信号分别传送至每一个指定的 (即与输出相应波长端口相连的)光分配器(POC ) , 由 POC分配给对应的 (即所连接的)光网络单元(ONU ) ; 该过程描述了信号传输的下行方向; 不同波长的光信号, 进行复用并经光纤传输, 发送到局端, 由局端进行解复 用, 从而接收各个不同波长的光信号。
应用于图 4所示的基于远程泵浦波长转换的波分时分混合复用无源光网 络的信号传输方法, 包括: 在局端光线路终端 (OLT )侧将初始的至少两个 不同波长的光信号进行复用, 经光纤传输发送到用户端, 由用户端 AOWC单 元进行解复用, 并将不同波长的光信号分别传送至每一个指定的 (即与输出 相应波长端口相连的 )光分配器 POC, 由 POC分配给对应的 (即所连接的 ) ONU; 该过程描述了在下行方向时信号传输的方法; 而在上行方向时, 在用 的光信号, 进行复用并经光纤传输, 发送到局端, 由局端光线路终端进行解 复用, 从而接收各个不同波长的光信号。
在本发明信号传输方法描述的上行方向和下行方向信号传输之前, 本发 明还首先确定波分复用的波长的数量, 波分复用的标称波长以及带宽。 OLT 侧的光模块使用波分复用的标称波长的光接收模块和光发送模块以及泵谱光 源。 无色 ONU釆用 PON系统统一的标准波长的光收发模块。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当 理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技 术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。
工业实用性
本发明不需要改变现有时分无源光网络结构, 有利于充分利用现有接入 网资源, 保证时分复用无源光网络向下一代光接入网络的平滑过渡。 在 OLT 和 ONU之间通过多波长和高分支比实现单一光纤的传输,大大提高光纤的利 用率, 降低铺设光纤的成本。

Claims

权 利 要 求 书
1、 一种混合波分时分复用无源光网络系统, 其特征在于, 包括: 光线路 终端侧的若干个光模块连接至一个局端全光波长转换单元, 所述局端全光波 长转换单元与一用户端全光波长转换单元通过光纤相连接, 所述用户端全光 波长转换单元连接若干个光分配器, 每个光分配器分别连接若干个光网络单 元; 其中,
所述局端全光波长转换单元在下行方向将所述光模块发出的相同波长的 光信号转换成不同波长的光信号, 复用并发送到所述用户端全光波长转换单 元; 在上行方向将来自所述用户端全光波长转换单元的不同波长的光信号进 行解复用, 并发送给所述光线路终端侧的光模块接收;
所述用户端全光波长转换单元在下行方向将所述局端全光波长转换单元 发送的不同波长的光信号进行解复用, 将不同波长的光信号分别传送至相应 的光分配器, 由光分配器分配给所连接的光网络单元; 在上行方向接收由所 述分配器汇聚的来自所述光网络单元的相同波长的光信号, 将所述相同波长 的光信号转换成不同波长的光信号, 复用并发送到所述局端全光波长转换单 元。
2、 根据权利要求 1所述的混合波分时分复用无源光网络系统,其特征在 于, 所述局端全光波长转换单元所连接的光模块至少为两个;
所述局端全光波长转换单元包括至少两个局端三端口波分复用器、 至少 两个局端光波长转换器以及一个局端波分复用器, 每个局端三端口波分复用 器的上行复用端口分别与所述局端波分复用器的一个上行解复用端口相连, 每个局端三端口波分复用器的下行解复用端口分别与所述局端光波长转换器 的一个输入端口相连, 每个所述局端光波长转换器的输出端口分别与所述局 端波分复用器的一个下行复用端口相连, 每个局端三端口波分复用器的第三 个端口各连接一个光模块; 其中,
所述局端三端口波分复用器将上、下行不同波长的光信号分别进行复用、 解复用 , 所述局端光波长转换器分别将所述局端三端口波分复用器发送过来 的由所述光模块发出的下行相同波长的光信号转换为不同波长的光信号, 并 发送给所述局端波分复用器进行复用。
3、 根据权利要求 1或 2所述的混合波分时分复用无源光网络系统,其特 征在于, 所述用户端全光波长转换单元所连接的光分配器至少为两个;
所述用户端全光波长转换单元包括一个用户端波分复用器、 至少两个用 户端光波长转换器和至少两个用户端三端口波分复用器, 每个用户端三端口 波分复用器的下行复用端口分别与所述用户端波分复用器的一个下行解复用 端口相连, 每个用户端三端口波分复用器的上行解复用端口分别与所述用户 端光波长转换器的一个输入端口相连, 每个所述用户端光波长转换器的输出 端口分别与所述用户端波分复用器的一个上行复用端口相联, 每个用户端三 端口波分复用器的第三个端口各连接一个光分配器; 其中,
所述用户端三端口波分复用器将上、 下行不同波长的光信号分别进行解 复用、 复用, 所述用户端光波长转换器分别将所述用户端三端口波分复用器 信号, 并发送给所述用户端波分复用器进行复用。
4、 根据权利要求 3所述的混合波分时分复用无源光网络系统,其特征在 于, 所述用户端光波长转换器釆用无源波长转换介质, 其探测光源放置在光 线路终端侧, 通过光纤实现远程输送探测光; 或者所述用户端光波长转换器 釆用有源波长转换介质。
5、 一种混合波分时分复用无源光网络系统, 其特征在于, 包括: 光线路 终端的若干个特定发送波长光模块连接至一局端波分复用器, 所述局端波分 复用器与一用户端全光波长转换单元通过光纤相连接, 所述用户端全光波长 转换单元下连若干个光分配器, 每个光分配器下均连接若干个光网络单元; 其中,
所述局端波分复用器将所述特定发送波长光模块发送的不同波长的光信 号在下行方向进行复用, 发送到所述用户端全光波长转换单元; 在上行方向 将来自所述用户端全光波长转换单元的不同波长的光信号进行解复用, 并发 送给所述光线路终端侧的光模块接收;
所述用户端全光波长转换单元在下行方向将来自所述局端波分复用器的 不同波长的光信号进行解复用, 将不同波长的光信号分别传送至相应的光分 配器, 由光分配器分配给所连接的光网络单元; 在上行方向, 接收由所述光 分配器汇聚的来自所述光网络单元的相同波长的光信号, 将所述相同波长的 光信号转换成不同波长的光信号, 复用并发送到所述局端波分复用器。
6、 根据权利要求 5所述的混合波分时分复用无源光网络系统,其特征在 于, 所述用户端全光波长转换单元所连接的光分配器至少为两个;
所述用户端全光波长转换单元包括一个用户端波分复用器、 至少两个用 户端光波长转换器和至少两个用户端三端口波分复用器, 每个用户端三端口 波分复用器的下行复用端口分别与所述用户端波分复用器的一个下行解复用 端口相连, 每个用户端三端口波分复用器的上行解复用端口分别与所述用户 端光波长转换器的一个输入端口相连, 每个所述用户端光波长转换器的输出 端口分别与所述用户端波分复用器的一个上行复用端口相联, 每个用户端三 端口波分复用器的第三个端口各连接一个光分配器; 其中,
所述用户端三端口波分复用器将上、 下行不同波长的光信号分别进行解 复用、 复用, 所述用户端光波长转换器分别将所述用户端三端口波分复用器 信号, 并发送给所述用户端波分复用器进行复用。
7、 根据权利要求 6所述的混合波分时分复用无源光网络系统,其特征在 于, 所述用户端光波长转换器釆用无源波长转换介质, 其探测光源放置在光 线路终端侧, 通过光纤实现远程输送探测光; 或者所述用户端光波长转换器 釆用有源波长转换介质。
8、 一种光线路终端,其特征在于, 包括若干个光模块和一个局端全光波 长转换单元, 所述光模块用于在下行方向产生相同波长的光信号, 将所述光 信号发送至所述局端全光波长转换单元;
所述局端全光波长转换单元用于在下行方向将所述光信号转换为不同波 长的光信号, 并将所述不同波长的光信号进行复用; 在上行方向将不同波长 的光信号进行解复用后发送给所述光线路终端侧的光模块接收。
9、 根据权利要求 8所述的光线路终端,其特征在于,还包括一个探测光 源, 用于提供探测光给用户端全光波长转换单元。
10、 一种光线路终端, 包括至少两个特定发送波长光模块和一个局端波 分复用器,所述特定发送波长光模块用于在下行方向产生不同波长的光信号, 将所述光信号发送至所述局端波分复用器;
所述局端波分复用器用于在下行方向对所述光信号进行复用; 在上行方 向将不同波长的光信号进行解复用并发送给所述光模块;
其特征在于, 还包括一个探测光源, 用于提供探测光给用户端全光波长 转换单元。
11、 一种信号传输方法, 其特征在于, 包括:
在局端光线路终端将初始的若干个相同波长的光信号分别转换成不同波 长的光信号, 进行复用并经光纤传输, 发送到用户端, 由用户端全光波长转 换单元进行解复用并将不同波长的光信号分别传送至相应的光分配器, 由光 分配器分配给所连接的光网络单元。
12、 根据权利要求 11所述的信号传输方法, 其特征在于, 还包括: 用户端全光波长转换单元将若干个光网络单元发出的相同波长的光信号 转换成不同波长的光信号, 进行复用并经光纤传输, 发送到局端, 由局端光 线路终端进行解复用, 从而接收各个不同波长的光信号。
13、 一种信号传输方法, 其特征在于, 包括:
在局端光线路终端将初始的若干个不同波长的光信号进行复用, 经光纤 传输发送到用户端, 由用户端进行解复用, 并将不同波长的光信号分别传送 至相应的光分配器, 由光分配器分配给所连接的光网络单元。
14、 根据权利要求 13所述的信号传输方法, 其特征在于, 还包括: 在用户端全光波长转换单元将若干个发出的相同波长的光信号转换成不 同波长的光信号, 进行复用并经光纤传输, 发送到局端, 由局端光线路终端 进行解复用, 从而接收各个不同波长的光信号。
PCT/CN2008/072282 2007-09-05 2008-09-05 Système de réseau optique passif à mélange de multiplexages par répartition en longueur d'onde et par répartition temporelle, terminal et procédé de transmission de signal WO2009033415A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/676,588 US8554079B2 (en) 2007-09-05 2008-09-05 Wavelength division and time division multiplex mixing passive optical network system, terminal and signal transmission method
EP08800794A EP2192712A4 (en) 2007-09-05 2008-09-05 MIXING PASSIVE OPTICAL WAVELENGTH MULTIPLEX AND TIME MULTIPLEX NETWORK SYSTEM, TERMINAL AND SIGNAL TRANSMISSION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710053129.9 2007-09-05
CN2007100531299A CN101114885B (zh) 2007-09-05 2007-09-05 混合波分时分复用无源光网络系统、终端及信号传输方法

Publications (1)

Publication Number Publication Date
WO2009033415A1 true WO2009033415A1 (fr) 2009-03-19

Family

ID=39023031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072282 WO2009033415A1 (fr) 2007-09-05 2008-09-05 Système de réseau optique passif à mélange de multiplexages par répartition en longueur d'onde et par répartition temporelle, terminal et procédé de transmission de signal

Country Status (4)

Country Link
US (1) US8554079B2 (zh)
EP (1) EP2192712A4 (zh)
CN (1) CN101114885B (zh)
WO (1) WO2009033415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241282A (zh) * 2023-11-13 2023-12-15 深圳市佳贤通信科技股份有限公司 基于GPon网络的4G和5G信号传输装置及其工作方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114885B (zh) * 2007-09-05 2011-07-27 华中科技大学 混合波分时分复用无源光网络系统、终端及信号传输方法
CN101237293B (zh) * 2008-03-03 2012-02-01 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
EP2109242A1 (en) * 2008-04-07 2009-10-14 Nokia Siemens Networks Oy Upgradeable passive optical Network
CA2724394C (en) * 2008-05-21 2014-12-02 Fabio Cavaliere Optical network
CN101630979B (zh) * 2008-07-16 2015-05-06 华为技术有限公司 一种延长器、数据传输方法及无源光网络系统
WO2011053200A1 (en) * 2009-10-26 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Improvements in optical communications networks
CN101827286B (zh) * 2010-01-21 2012-10-31 上海大学 波分复用无源光网络实现容量增倍的系统和方法
CN102238438B (zh) * 2010-05-01 2016-01-20 中兴通讯股份有限公司 一种长距盒及其对上下行光的处理方法
CN101827288A (zh) * 2010-05-24 2010-09-08 烽火通信科技股份有限公司 一种基于波长可变的混合光接入系统
CN102143411B (zh) * 2010-07-14 2013-12-04 华为技术有限公司 信号处理方法、设备及系统
US8588571B1 (en) 2010-11-08 2013-11-19 Google Inc. Installation of fiber-to-the-premise using optical demarcation devices
CN101986718B (zh) * 2010-11-16 2014-06-11 中兴通讯股份有限公司 无源光网络系统及系统中的光线路终端和波长路由单元
US8655167B1 (en) 2011-01-05 2014-02-18 Google Inc. Fiber diagnosis system for point-to-point optical access networks
US8781322B2 (en) 2011-08-08 2014-07-15 Google Inc. Migratable wavelength division multiplexing passive optical network
KR101477169B1 (ko) 2011-09-26 2014-12-29 주식회사 에치에프알 클라우드 기반 네트워크를 위한 광 선로 공유 방법과 그를 위한 시스템 및 장치
US20130094806A1 (en) * 2011-10-12 2013-04-18 Telefonaktiebolaget L M Ericsson (Publ) Optical signal conversion method and apparatus
US8320760B1 (en) * 2011-11-03 2012-11-27 Google Inc. Passive optical network with asymmetric modulation scheme
US8692984B2 (en) * 2012-01-31 2014-04-08 Fluke Corporation Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
US9136968B2 (en) * 2012-11-28 2015-09-15 Electronics And Telecommunications Research Institute Time and wavelength division multiplexing—passive optical network (TWDM-PON) system and communication link method thereof
CN104244116A (zh) * 2013-06-14 2014-12-24 中兴通讯股份有限公司 一种共享光模块的方法、装置和系统
US9432140B2 (en) * 2013-11-13 2016-08-30 Futurewei Technologies, Inc. Flexible grid TWDM-PON architecture and intelligent set-up for TWDM-PON
CN104902353A (zh) * 2015-06-17 2015-09-09 武汉长光科技有限公司 一种基于全光波长转换的超密集波分接入方法及其系统
EP3197096B1 (en) * 2016-01-22 2020-08-05 ADTRAN GmbH Utilizing interfaces of a network access device
JP6809534B2 (ja) * 2016-11-28 2021-01-06 日本電気株式会社 光通信装置および光増幅用の励起光を供給する装置
CN108462550B (zh) * 2018-03-06 2023-10-13 武汉驿路通科技股份有限公司 一种波分复用系统拼接结构
CN109672475B (zh) * 2019-01-09 2024-08-09 杭州芯耘光电科技有限公司 一种可远程调节波长的双向传输光模块
CN110247706A (zh) * 2019-07-10 2019-09-17 易锐光电科技(安徽)有限公司 有源光纤倍增器及系统
US11218222B1 (en) * 2020-07-31 2022-01-04 At&T Intellectual Property I, L.P. Method and an apparatus for transitioning between optical networks
CN112260794A (zh) * 2020-10-29 2021-01-22 南京捷澳德信息科技有限公司 一种5g前传半有源wdm业务监控系统及其监控方法
CN112671502A (zh) * 2020-12-28 2021-04-16 武汉光迅科技股份有限公司 一种光线路终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547335A (zh) * 2003-12-12 2004-11-17 武汉华工飞腾光子科技有限公司 基于波分多址的以太网无源光网络及其传输数据的方法
WO2007074297A1 (fr) * 2005-12-21 2007-07-05 France Telecom Transmission optique entre un terminal central et une pluralite de terminaux clients via un reseau optique
CN101009530A (zh) * 2006-01-23 2007-08-01 华为技术有限公司 支持组播类业务的无源光网络、复用/解复用器及方法
CN101114885A (zh) * 2007-09-05 2008-01-30 华中科技大学 混合波分时分复用无源光网络系统、终端及信号传输方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261697A (ja) 2001-03-05 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム及び波長変換装置
US20020171896A1 (en) * 2001-05-21 2002-11-21 Lightpointe Communications, Inc. Free-space optical communication system employing wavelength conversion
US6753993B1 (en) * 2003-05-30 2004-06-22 Lucent Technologies Inc. Passive optical wavelength converter
US7627246B2 (en) * 2005-07-22 2009-12-01 Novera Optics, Inc. Wavelength division multiplexing passive optical networks to transport access platforms
CN103095375B (zh) * 2005-12-09 2016-08-17 古河电气工业株式会社 光中继装置和光传送系统
CN1859810B (zh) * 2005-12-31 2010-04-14 华为技术有限公司 多种光接入网共享光纤分配网的无源光网络及实现方法
CN1874197A (zh) * 2006-05-08 2006-12-06 沈红 多路xdsl信号波分复用光纤接入方法
CN1980098B (zh) * 2006-11-01 2010-08-18 华为技术有限公司 一种波分复用光接入系统及其数据收发方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547335A (zh) * 2003-12-12 2004-11-17 武汉华工飞腾光子科技有限公司 基于波分多址的以太网无源光网络及其传输数据的方法
WO2007074297A1 (fr) * 2005-12-21 2007-07-05 France Telecom Transmission optique entre un terminal central et une pluralite de terminaux clients via un reseau optique
CN101009530A (zh) * 2006-01-23 2007-08-01 华为技术有限公司 支持组播类业务的无源光网络、复用/解复用器及方法
CN101114885A (zh) * 2007-09-05 2008-01-30 华中科技大学 混合波分时分复用无源光网络系统、终端及信号传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2192712A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117241282A (zh) * 2023-11-13 2023-12-15 深圳市佳贤通信科技股份有限公司 基于GPon网络的4G和5G信号传输装置及其工作方法
CN117241282B (zh) * 2023-11-13 2024-02-06 深圳市佳贤通信科技股份有限公司 基于GPon网络的4G和5G信号传输装置及其工作方法

Also Published As

Publication number Publication date
EP2192712A1 (en) 2010-06-02
CN101114885B (zh) 2011-07-27
CN101114885A (zh) 2008-01-30
US8554079B2 (en) 2013-10-08
EP2192712A4 (en) 2012-10-17
US20100196011A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2009033415A1 (fr) Système de réseau optique passif à mélange de multiplexages par répartition en longueur d&#39;onde et par répartition temporelle, terminal et procédé de transmission de signal
CN101237293B (zh) 波分时分混合复用无源光网络系统
Song et al. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms
CN102710361B (zh) 一种分布式基站信号传输系统及通信系统
US20130272707A1 (en) Optical network
EP1887724A1 (en) A wavelength division multiplexing passive optical network and its implement method
WO2010105506A1 (zh) 信号传输系统、方法以及相关装置
CN102695101B (zh) 一种波分复用上的无源光网络
WO2015180508A1 (zh) 基于波分pon系统的开放网络架构及信号传输方法
CN102665152B (zh) 一种新型广域覆盖混合波分时分复用无源光网络系统
KR100842290B1 (ko) Wdm 기반의 tdm-pon 시스템에서의 파장 변환장치와 이를 이용한 광전송 장치 및 방법
US20130051802A1 (en) Optical network system, optical line terminal, optical network unit and optical distribution network apparatus
CN101127571A (zh) 一种wdm-pon系统共享的公共光源及光源共享的方法
US8824890B2 (en) Open optical access network system
WO2007143945A1 (fr) Module de routage de longueur d&#39;onde, et système et procédé associés
WO2008080350A1 (fr) Procédé et dispositif pour ajuster une bande passante dans un réseau d&#39;accès optique de façon dynamique et système apparenté
WO2011006327A1 (zh) 时分复用与波分复用共存的无源光网络系统及传输方法
KR20140088438A (ko) 파장 가변 광 모듈 기반 수동형 광 망 거리 확장장치 및 그 방법
US7639949B2 (en) TDM PON and dynamic bandwidth allocation method thereof
TWI513207B (zh) A remote node device, an optical network unit, a system and a communication method thereof
CN104902353A (zh) 一种基于全光波长转换的超密集波分接入方法及其系统
CN101345599A (zh) 时分多址无源光网络的升级方法和无源光网络系统
CN1980098B (zh) 一种波分复用光接入系统及其数据收发方法
KR20070078620A (ko) 복합 수동형 광가입자망
CN202004922U (zh) 一种波分复用上的无源光网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12676588

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008800794

Country of ref document: EP