WO2011006327A1 - 时分复用与波分复用共存的无源光网络系统及传输方法 - Google Patents

时分复用与波分复用共存的无源光网络系统及传输方法 Download PDF

Info

Publication number
WO2011006327A1
WO2011006327A1 PCT/CN2009/075207 CN2009075207W WO2011006327A1 WO 2011006327 A1 WO2011006327 A1 WO 2011006327A1 CN 2009075207 W CN2009075207 W CN 2009075207W WO 2011006327 A1 WO2011006327 A1 WO 2011006327A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wavelength division
wavelength
optical signal
signal
Prior art date
Application number
PCT/CN2009/075207
Other languages
English (en)
French (fr)
Inventor
苏婕
何子安
朱松林
贝劲松
马润斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011006327A1 publication Critical patent/WO2011006327A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the present invention relates to the field of optical access networks, and in particular, to a passive optical network system and a transmission method in which time division multiplexing and wavelength division multiplexing coexist. Background technique
  • FTTX Fiber Access
  • PON Passive Optical Network
  • FTTX technology refers to a series of optical access technologies such as fiber-to-the-home, fiber-to-the-building, and fiber-to-the-road.
  • PON technology has the advantages of low cost, multi-user access, ultra-long-distance transmission, high transmission bandwidth, etc., and has gradually replaced the existing wired access network with copper wire as the transmission medium, and is bound to guide the mainstream of future access network technology.
  • the current PON is mainly based on Time Division Multiplexing-Passive Optical Network (TDM-PON).
  • TDM-PON uses a single wavelength for both uplink and downlink, and the utilization of wavelength bandwidth is very low.
  • WDM-PON Wavelength Division Multiplexing-Passive Optical Network
  • WDM-PON is a new type of PON based on multi-wavelength single fiber transmission.
  • the working principle of the WDM-PON system is as follows: Each end user occupies one wavelength channel separately, and multiple wavelength channels are transmitted in the same trunk fiber through wavelength division multiplexing. Therefore, WDM-PON is characterized by each end user.
  • a mobile base station signal is also transmitted between a central mobile base station (referred to as a central base station) and a remote mobile base station (referred to as a remote base station) in mobile communication, and a mobile base station signal transmitted in the optical fiber is referred to as a base station optical signal.
  • the base station optical signal uses a single wavelength.
  • the construction of mobile base stations faces difficulties in location selection, costly, and difficult maintenance, which hinders the development and application of mobile communication technologies to a certain extent. If the line resources of the existing TDM-PON can be used to realize the transmission of the base station optical signal between the central base station and the remote base station, the difficulties faced by the above-mentioned mobile base station construction can be avoided to a certain extent, and the operator is significantly reduced. The cost of network construction and the further development of mobile communication technologies.
  • the current TDM-PON is only used to transmit wired broadband optical signals, and its specialized communication protocols and interfaces are completely different from the communication protocols and interfaces between mobile base stations, and therefore cannot be used in existing passive optical networks.
  • the base station optical signal is directly transmitted. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a passive optical network system in which time division multiplexing and wavelength division multiplexing coexist in a simple and easy manner, and fully utilizing the line resources of the existing PON network. And reduce the construction cost of the base station network.
  • a passive optical network (PON) system in which time division multiplexing and wavelength division multiplexing coexist including: a wavelength division multiplexing based passive optical network (WDM-PON) central office, a WDM-PON user terminal, based on time division multiplexing Passive Optical Network (TDM-PON) central office, TDM-PON user terminal, coexisting wavelength division multiplexer, backbone optical fiber and optical distribution network (ODN);
  • WDM-PON wavelength division multiplexing based passive optical network
  • TDM-PON user terminal based on time division multiplexing Passive Optical Network (TDM-PON) central office
  • TDM-PON user terminal coexisting wavelength division multiplexer
  • ODN optical distribution network
  • the coexisting wavelength division multiplexer for wavelength division multiplexing from a WDM-PON central office The (WDM) signal and the time division multiplexing (TDM) signal from the TDM-PON central office are wavelength-multiplexed and then input into the trunk fiber for composite transmission, and the wavelength demultiplexing of the WDM signal and the TDM signal in the backbone fiber respectively Output to the WDM-PON Central Office and the TDM-PON Central Office;
  • the ODN is configured to output a WDM signal and a TDM signal in a trunk optical fiber to a WDM-PON user terminal and a TDM-PON user terminal, and a WDM signal from the WDM-PON user terminal and a TDM-PON user terminal.
  • the TDM signal is input to the trunk fiber for composite transmission.
  • the operating wavelength of the WDM signal is different from the operating wavelength of the TDM signal and falls within the allowable wavelength range of the single mode fiber.
  • the operating wavelength of the WDM signal is taken as: ⁇ + ⁇ , ⁇ l ⁇ 1480 « - ⁇ 2 or ⁇ 500nm + A 3 ⁇ l620nm , where , ⁇ 2 and ⁇ 3 are wavelength intervals.
  • the working wavelength of the WDM signal is: ⁇ + ⁇ , ⁇ l ⁇ 1480 « — ⁇ 2 , ⁇ 500nm + A 4 ⁇ A ⁇ l570nm-A 5 , ⁇ 5S0nm + A 6 ⁇ A ⁇ 620nm , Wherein ⁇ , ⁇ 2 , ⁇ 4 , ⁇ 5 and ⁇ 6 are wavelength intervals.
  • the WDM-PON central office is a central base station, the WDM-PON user terminal is at least one remote base station, the TDM-PON central office is an optical line terminal, and the TDM-PON user terminal is an optical network unit.
  • the coexisting wavelength division multiplexer is a first coexisting wavelength division multiplexer
  • the WDM signal is a base station wavelength division multiplexed optical signal
  • the TDM signal is a wired broadband optical signal
  • the central base station and the remote base station each include a wavelength conversion module, configured to perform wavelength conversion on the mobile base station signal carrying the mobile base station service, convert the signal into a corresponding base station wavelength division multiplexed optical signal, and perform wavelength division multiplexed optical signal on the base station.
  • a wavelength conversion module configured to perform wavelength conversion on the mobile base station signal carrying the mobile base station service, convert the signal into a corresponding base station wavelength division multiplexed optical signal, and perform wavelength division multiplexed optical signal on the base station.
  • the first coexisting wavelength division multiplexer is specifically configured to perform wavelength re-establishment on the base station wavelength division multiplexed optical signal from the central base station and the wired broadband optical signal from the optical line terminal Enter the trunk together after use
  • the optical fiber is compositely transmitted, and the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber are wavelength-demultiplexed and output to the central base station and the optical line terminal respectively;
  • the ODN is specifically configured to output a base station wavelength division multiplexed optical signal and a wired broadband optical signal in a backbone optical fiber to at least one remote base station and an ONU, respectively, and a wavelength division multiplexed optical signal of the base station from the at least one remote base station.
  • the wired broadband optical signal from the ONU is input to the trunk fiber for composite transmission.
  • the ODN includes a first optical splitter, and the remote base station further includes a filter;
  • the first optical splitter is configured to perform optical power distribution on the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, respectively, and output to the remote base station and the ONU, and to perform wavelength division multiplexing on the base station from the remote base station.
  • the optical signal and the wired broadband optical signal from the ONU are combined by optical power and then input into the trunk optical fiber for composite transmission;
  • the remote base station inputs and outputs a corresponding base station wavelength division multiplexed optical signal through the filter.
  • the PON system further includes a second coexisting wavelength division multiplexer corresponding to each remote base station, where the ODN includes a second optical splitter;
  • the second optical splitter is configured to perform optical power distribution on the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, and output the same to the second coexisting wavelength division multiplexer and the ONU, and
  • the base station wavelength division multiplexed optical signal and the wired broadband optical signal of the second coexisting wavelength division multiplexer are combined by optical power and input into the trunk optical fiber for composite transmission;
  • the second coexisting wavelength division multiplexer is configured to perform wavelength demultiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal, and output to the corresponding remote base station and the ONU respectively; and base station wave from the remote base station
  • the divided multiplexed optical signal and the wired broadband optical signal from the ONU are wavelength multiplexed and input to the second optical splitter.
  • the ODN includes a third coexisting wavelength division multiplexer, a third optical splitter, and a third wavelength division multiplexing/demultiplexing device;
  • the third coexisting wavelength division multiplexer is configured to perform wavelength demultiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, and then input the third wavelength division multiplexing/demultiplexing respectively.
  • the third beam splitter is configured to perform optical power distribution on the wired broadband optical signal, output to the ONU, and combine optical power of the wired broadband optical signal from the ONU into the third coexisting wavelength division multiplexer. ;
  • the third wavelength division multiplexing/demultiplexing device is configured to perform wavelength demultiplexing on the base station wavelength division multiplexed optical signal, and then output to the corresponding remote base station, and the base station wavelength division multiplexing light corresponding to the remote base station.
  • the signal is wavelength-multiplexed and input to the third coexisting wavelength division multiplexer.
  • a passive optical network transmission method in which time division multiplexing and wavelength division multiplexing coexist comprising: wavelength-multiplexing a WDM signal from a WDM-PON central office and a TDM signal from a TDM-PON central office, and inputting a trunk optical fiber together Performing composite transmission, and wavelength demultiplexing the WDM signal and the TDM signal in the backbone fiber, respectively, and outputting to the WDM-PON central office and the TDM-PON central office respectively;
  • the WDM signal in the backbone fiber is transmitted between the WDM-PON central office and the WDM-PON user terminal through the ODN, and the TDM signal is transmitted between the TDM-PON central office and the TDM-PON user terminal.
  • the WDM-PON central office is a central base station, the WDM-PON user terminal is at least one remote base station, the TDM-PON central office is an office end where the optical line terminal is located, and the TDM-PON user terminal is an ONU.
  • the WDM signal is a base station wavelength division multiplexed optical signal, and the TDM signal is a wired broadband optical signal; the method includes the following steps:
  • A. Perform wavelength conversion on the mobile base station signal carrying the mobile base station service, and convert it into a corresponding base station wavelength division multiplexed optical signal;
  • B. The base station wavelength division multiplexed optical signal is transmitted between the central base station and the at least one remote base station by using an ODN, and the wired broadband optical signal is transmitted between the optical network terminal and the ONU, where the base station wave division Connected to the optical signal and the wired broadband optical signal by coexistence wavelength division multiplexing to
  • the step B is specifically: performing wavelength multiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal, and inputting the trunk optical fiber for composite transmission. And using the ODN to output the base station wavelength division multiplexed optical signal to the corresponding remote base station;
  • the step B is specifically: using the ODN to input the wired broadband signal and the base station wavelength division multiplexed optical signal corresponding to the remote base station into the trunk optical fiber for composite transmission. And converting the base station wavelength division multiplexed optical signal into the central base station by wavelength demultiplexing.
  • the wavelength division multiplexing of the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the step B is performed, and then inputting the trunk optical fiber for composite transmission includes: Performing, for the first time wavelength multiplexing on the wavelength division multiplexed optical signal of the base station, performing second wavelength multiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal, and inputting into the trunk optical fiber for composite transmission;
  • the wavelength division multiplexed optical signal input to the central base station by wavelength demultiplexing in step B includes: first, the base station in the backbone optical fiber The wavelength division multiplexed optical signal and the wired broadband optical signal are subjected to the first wavelength demultiplexing, and the base station wavelength division multiplexed optical signal is input to the central base station and then subjected to the second wavelength demultiplexing.
  • the base station wavelength division multiplexed optical signal is output to the corresponding far by optical power allocation and/or wavelength demultiplexing.
  • the base station wavelength division multiplexed optical signal corresponding to the remote base station is input to the trunk optical fiber for composite transmission by optical power combining and/or wavelength multiplexing.
  • the mobile base station signal and the wired broadband optical signal can be realized
  • the common transmission in the ODN is simple and easy, making full use of the existing line resources of the PON and various advantages of the PON technology, and realizing the effective integration of the wired network and the wireless network. To a certain extent, it avoids the problems faced by the current base station construction, and makes it easy for operators to realize the sharing and unified management of multiple network resources, and provides users with more convenient and efficient communication services.
  • the base station wavelength division multiplexed optical signal and the wired broadband signal are bidirectionally transmitted in the ODN in various flexible and simple manners, so that the number and distribution of access users in the original TDM-PON are completely independent.
  • the impact significantly improves the utilization of ODN and the transmission efficiency of mobile base station signals.
  • the WDM-PON and the WDM-PON are coexisted on the same ODN by means of wavelength division multiplexing, which greatly improves the resource utilization rate of the ODN and reduces the construction cost of the base station network.
  • FIG. 1 is a schematic structural diagram of a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention
  • FIG. 2 is a schematic structural diagram of a coexistence wavelength division multiplexer according to the present invention
  • FIG. 3 is a schematic structural diagram of a first specific implementation manner of transmitting a mobile base station signal by a PON system in which a time division multiplexing and a wavelength division multiplexing coexist in the present invention
  • FIG. 4 is a schematic structural diagram of a second specific implementation manner of transmitting a mobile base station signal by a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention
  • FIG. 5 is a PON system for transmitting mobile base station signals in which time division multiplexing and wavelength division multiplexing coexist in the present invention Schematic diagram of the third embodiment of the number;
  • Figure 6 is a block diagram showing the structure of a filter for transmitting a signal of a mobile base station in a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention.
  • Figure 7 is a flow chart showing the transmission of a mobile base station signal by a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention. detailed description
  • the PON system provided by the present invention is a system for time division multiplexing and wavelength division multiplexing coexistence, including TDM-PON and WDM-PON.
  • TDM-PON is used for transmitting wired broadband optical signals
  • WDM-PON can be used.
  • WDM-PON can transmit both wired broadband optical signals and wireless optical signals for wireless communication.
  • the structure of the PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention is as shown in FIG. 1, and includes: WDM-PON central office, WDM-PON user terminal, TDM-PON central office, TDM-PON user terminal, coexistence Wavelength division multiplexer, backbone fiber and ODN.
  • the coexisting wavelength division multiplexer is configured to perform wavelength multiplexing on the WDM signal from the WDM-PON central office and the TDM signal from the TDM-PON central office, and jointly input the trunk optical fiber for composite transmission, and composite transmission in the backbone optical fiber.
  • the WDM signal and the TDM signal are wavelength-demultiplexed and output to the WDM-PON central office and the TDM-PON central office respectively;
  • the ODN is used to output the WDM signal and the TDM signal in the backbone optical fiber to the WDM-PON user terminal and the TDM, respectively.
  • a PON user terminal, and a WDM signal from the WDM-PON user terminal and a TDM signal from the TDM-PON user terminal are input to the trunk fiber for composite transmission.
  • the PON system of the present invention can simultaneously transmit the WDM signal and the TDM signal, and the working wavelength of the WDM signal is different from the operating wavelength of the TDM signal, but both fall within the allowable wavelength range of the single mode fiber, by coexisting wavelength division multiplexing Connect to the same ODN to WDM Signal and TDM signals are transmitted.
  • the technical solution provided by the invention realizes multi-service coexistence in the PON, maximizes the utilization of the resources of the PON, and reduces the operation and maintenance cost of the network.
  • Single-mode fibers typically have a wavelength range of 1260 to 1620 legs.
  • the upstream and downstream wavelength ranges occupied by the TDM signal are J260 ⁇ J 360 and J to ⁇ 1500, respectively.
  • J3 ⁇ 4 can set the working wavelength of WDM signal/1, the value is 1360« ⁇ l ⁇ 1480 «w or 1500 « ⁇ l ⁇ 1620 « .
  • the operating wavelength of the WDM signal is: 1360nm + A 1 ⁇ 1480 « — ⁇ 2 or 1500 « + A 3 ⁇ 1620 « .
  • the standard of the next-generation TDM-PON stipulates that the downlink wavelength of the wired broadband optical signal is changed to 1570 ⁇ 1580 legs.
  • the working wavelength /1 of the WDM signal can be set accordingly: UeOnrn ⁇ 1480/TO, ⁇ 500nm ⁇ 15 ⁇ Onm or 1580 «m ⁇ ⁇ 620nm.
  • a certain wavelength interval should be set as the protection bandwidth.
  • the operating wavelength of the WDM signal is: 1360nm + A 1 ⁇ 1480nm-A 2 , 1500nm + ⁇ 4 ⁇ ⁇ 510nm - ⁇ 5 or 1580 « + A 6 ⁇ i ⁇ 1620 « .
  • ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , and ⁇ 6 are all wavelength intervals.
  • a preferred embodiment is to leave a wavelength interval of 10 nm between the operating wavelength range of the TDM signal and the WDM signal, that is, the operating wavelength of the WDM signal/1 ranges from 1370 « ⁇ l ⁇ 1470« , 1510 flat ⁇ 1 ⁇ 1560 flat or 1590 flat ⁇ 1 ⁇ 1620 flat.
  • the structure of the above coexisting wavelength division multiplexer is as shown in FIG. 2, including three ports, one for
  • TDM-PON port used to connect TDM-PON central office, can make J 260 ⁇ 1360 picture, 1480 ⁇ 1500 1500, 1570 ⁇ 1580 leg wavelength range of light pass through; one is WDM-PON port, used to connect WDM-
  • the PON central office can make 1370« ⁇ l ⁇ 1470«, ⁇ 5 ⁇ 0nm ⁇ 1560 brain or 1590 painting ⁇ 1620 wavelengths of light pass in both directions; one is a common port for connecting ODN, which enables ⁇ 1620nm wavelength range of light passes in both directions.
  • 3 is a schematic structural diagram of a specific implementation manner of a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention. As shown in FIG.
  • FIG. 3 a PON system using time division multiplexing and wavelength division multiplexing coexistence in the embodiment is shown in FIG.
  • Transmitting the mobile base station signal enables the third generation mobile communication (3G) / second generation mobile communication (2G) / microwave access global Internet (WiMAX) access network to utilize the line resources already deployed by the existing PON, thereby reducing the base station network Construction costs.
  • the transmission of the base station wavelength division multiplexed optical signal and the wired broadband optical signal through the same ODN is implemented.
  • the PON system includes a central base station 10, a first wavelength division multiplexing/demultiplexing device (Mux/Dmux) 20, and a TDM-PON OLT (TDM-Passive Optical Network Optical Line Terminal) 30, A coexisting wavelength division multiplexer 40, an ODN 50, a remote base station (RAU) 60, an optical network unit (ONU) 70, and a backbone fiber.
  • the first wavelength division multiplexing/demultiplexing unit 20 may be directly disposed in the central base station 10 or may be separately disposed from the central base station 10.
  • the present embodiment is used for transmitting mobile base station signals. Therefore, compared with FIG. 1, the central base station 10 in FIG. 3 is a WDM-PON central office, and the remote base station 60 is a WDM-PON user terminal, and the first coexisting wavelength division multiplexing
  • the device 40 is a coexisting wavelength division multiplexer, and the base station wavelength division multiplexed optical signal is a WDM signal.
  • the TDM-PON OLT 30 is located at the TDM-PON central office, and the ONU 70 is the TDM-PON user terminal.
  • a broadband optical signal is a TDM signal.
  • the ODN 50 is typically used to transmit wired broadband optical signals between the TDM-PON OLT 30 and the ONU 70 of a PON system.
  • the operating wavelength of the wavelength division multiplexed optical signal of the base station is different from the working wavelength of the wired broadband optical signal, but all fall within the allowable mode of the single mode fiber.
  • the wired broadband optical signal in the TDM-PON and the WDM optical signal in the base station can be transmitted through the same ODN.
  • the central base station 10 and the remote base station 60 both include a wavelength conversion module, configured to perform wavelength conversion on the mobile base station signal carrying the mobile base station service, and convert the signal into a corresponding base station wavelength division multiplexing.
  • the optical signal, and the wavelength division multiplexing optical signal of the base station are wavelength-converted and converted back to the corresponding mobile base station signal.
  • a mobile base station signal transmitted by the wavelength conversion module and transmitted in the PON system of the present invention is referred to as a base station wavelength division multiplexed optical signal.
  • the first coexisting wavelength division multiplexer 40 is configured to perform wavelength multiplexing on the base station wavelength division multiplexed optical signal from the central base station 10 and the wired broadband optical signal from the TDM-PON OLT 30, and input the trunk optical fiber for composite transmission, and
  • the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber are wavelength-demultiplexed and output to the central base station 10 and the TDM-PON OLT 30, respectively.
  • the ODN 50 is configured to output a base station wavelength division multiplexed optical signal and a wired broadband optical signal in the backbone optical fiber to the at least one remote base station 60 and the ONU 70, and to wavelength-multiplex the optical signal from the base station from the at least one remote base station 60 and The wired broadband optical signal of the ONU 70 is input to the trunk fiber for composite transmission.
  • the central base station 10 converts the mobile base station signal into a base station wavelength division multiplexed optical signal having different working wavelengths through the wavelength conversion module 11, and inputs it into the first wavelength division multiplexing/
  • the demultiplexer 20 performs the first optical multiplexing; the first coexisting wavelength division multiplexer 40 performs the second wavelength division multiplexed optical signal from the base station 10 and the wired broadband optical signal from the TDM-PON OLT 30.
  • the input trunk fiber is input for composite transmission; usually, the transmission distance of the backbone fiber does not exceed 20Km; when the optical signal reaches the ODN 50, the first splitter (Splitter) 51 in the ODN 50 performs the optical signal in the main kilo-fiber.
  • the optical power is distributed and output to the remote base station 60 and the ONU 70 indiscriminately using the branch fiber.
  • the ONU 70 filters through the built-in filter to select its own receiving wavelength.
  • Each remote base station 60 outputs a base station wavelength division multiplexed optical signal having a certain operating wavelength through a filter 62, and converts the base station wavelength division multiplexed optical signal into a corresponding mobile base station signal through the wavelength conversion module 61.
  • the different remote base stations 60 convert the mobile base station signals into base station wavelength division multiplexed optical signals having different working wavelengths through the wavelength conversion module 61, and input them into the filter 62; ODN
  • the first splitter 51 in 50 is from the remote base station 60
  • the base station wavelength division multiplexed optical signal and the wired broadband optical signal from the ONU 70 are combined by optical power and input to the trunk optical fiber for composite transmission; when the optical signal reaches the 40th end of the first coexisting wavelength division multiplexer, the first coexisting wavelength division
  • the multiplexer 40 performs wavelength demultiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, and outputs the base station wavelength division multiplexed optical signal to the first wavelength division multiplexing/demultiplexing device 20 And outputting the wired broadband optical signal to the TDM-PON OLT 30; the first wavelength division multiplexing/demultiplexing device 20 performs wavelength demultiplexing
  • the base station wavelength division multiplexed optical signals transmitted between the different remote base stations and the central base station are required to have different working wavelengths 1, for example, 4, ... However, they all belong to a large wavelength range and fall within the allowable wavelength range of single-mode fibers.
  • the embodiment can transmit the mobile base station signal by using the PON technology, which avoids various problems faced by the current base station construction to a certain extent, and reduces the construction cost of the base station network.
  • the invention realizes the common transmission of the mobile base station signal and the wired broadband optical signal in the ODN, which is simple and easy, fully utilizes the existing line resources of the PON and various advantages of the PON technology, and realizes the effective of the wired network and the wireless network. Convergence; Moreover, it is easy for operators to share and manage multiple network resources, and provide users with more convenient and efficient communication services.
  • FIG. 4 is a schematic structural diagram of a second specific implementation manner of transmitting a mobile base station signal by a PON system in which a time division multiplexing and a wavelength division multiplexing coexist in the present invention.
  • the embodiment is similar to FIG. 3 except that The specific structure of the ODN 50 and the remote base station 60.
  • the ODN 50 includes a second splitter 52, and each remote base station 60 corresponds to a second coexisting wavelength division multiplexer 80.
  • the second optical splitter 52 performs optical power distribution on the optical signal in the trunk optical fiber and outputs the same to the second coexisting wavelength division multiplexing through the branch optical fiber.
  • the 80th and the ONU 70, the second coexisting wavelength division multiplexer 80 performs wavelength demultiplexing on the wired broadband optical signal and the base station wavelength division multiplexed optical signal, and outputs the same to the corresponding ONU 70, and outputs the base station wavelength division multiplexed optical signal.
  • the remote base station 60 filters out the base station wavelength division multiplexed optical signal of the corresponding wavelength by the filter shown in FIG.
  • each second coexistence wavelength division multiplexer 80 performs wavelength multiplexing on the base station wavelength division multiplexed optical signal from the remote base station 60 and the wired broadband optical signal from the ONU 70.
  • the second beam splitter 52 is input; the second beam splitter 52 combines the optical power of the base station wavelength division multiplexed optical signal, the wired broadband optical signal, and the wired broadband optical signal from the ONU 70 from the second coexisting wavelength division multiplexer 80. Enter the backbone fiber for composite transmission.
  • the technical solution provided in this embodiment is more flexible, and the operator can select a specific transmission mode according to actual needs, and realize the simultaneous access of one branch fiber to the wired terminal and the wireless terminal, and the number of access users in the original TDM-PON. And the distribution status is completely unaffected, thus further improving the utilization of OND.
  • FIG. 5 is a schematic structural diagram of a third specific implementation manner of transmitting a mobile base station signal by a PON system in which a time division multiplexing and a wavelength division multiplexing coexist in the present invention.
  • the embodiment is similar to FIG. 3, and the difference is that
  • the ODN 50 in the present embodiment includes a third coexisting wavelength division multiplexer 53, a third beam splitter 54, and a third wavelength division multiplexing/demultiplexing unit 55.
  • the third coexisting wavelength division multiplexer 53 performs wavelength demultiplexing on the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, and then inputs the first through the branch optical fiber.
  • a three-wavelength division multiplexing/demultiplexer 55 and a third beam splitter 54 the third wavelength division multiplexing/demultiplexing unit 55 performs wavelength demultiplexing on the base station wavelength division multiplexing optical signals having different working wavelengths, respectively
  • the output is output to the corresponding remote base station 60; the third optical splitter 54 is configured to perform optical power distribution on the wired broadband optical signal and output to the respective ONUs 70.
  • the third wavelength division multiplexing/demultiplexing unit 55 performs wavelength multiplexing on the base station wavelength division multiplexed optical signals from different remote base stations 60 and having different working wavelengths 1 a third coexisting wavelength division multiplexer 53; the third optical splitter 54 has a pair of different ONUs 70
  • the line broadband optical signal is combined with the optical power and input to the third coexisting wavelength division multiplexer 53.
  • the third coexisting wavelength division multiplexer 53 wavelength-multiplexes the base station wavelength division multiplexed optical signal and the wired broadband optical signal, and then inputs the main fiber. Perform a composite transmission.
  • the transmission of the wavelength division multiplexed optical signal of the base station does not pass through the third optical splitter 54, thereby avoiding the influence of the insertion loss of the third optical splitter 54 on the wavelength division multiplexed optical signal of the base station, thereby effectively reducing
  • the cross-segment loss of the WDM optical signal of the base station significantly improves its transmission efficiency.
  • FIG. 6 is a schematic structural diagram of a filter in the embodiment shown in FIG. 3 and FIG. 4, wherein the common port is separated from the first optical splitter 51 (the embodiment shown in FIG. 3) or the second coexisting wavelength division by the branch optical fiber.
  • the device 80 (the embodiment shown in FIG.
  • the base station wavelength division multiplexed optical signal output port is used for outputting the base station wavelength division multiplexed optical signal corresponding to the remote base station 60 to the wavelength conversion module 61;
  • the base station wavelength division multiplexed optical signal input port is used for inputting The base station corresponding to the remote base station 60 wavelength division multiplexed optical signal, and the common port outputs the base station wavelength division multiplexed optical signal to the first optical splitter 51 or the second coexisting wavelength division multiplexer 80.
  • the first coexisting wavelength division multiplexer 40, the second coexisting wavelength division multiplexer 80, and the third coexisting wavelength division multiplexer 53 in the above-described embodiments all have the structure shown in FIG. 2, and the working principle thereof
  • the invention discloses wavelength multiplexing of a base station wavelength division multiplexed optical signal and a wired broadband optical signal having different wavelength ranges, performing composite transmission on one optical fiber, and wavelength demultiplexing optical signals on one optical fiber.
  • the base station wavelength division multiplexed optical signal and the wired broadband optical signal having different wavelength ranges after the decomposition are respectively transmitted.
  • the common port of the coexisting wavelength division multiplexer is connected to the trunk fiber or the optical splitter for inputting or outputting the base station wavelength division multiplexed optical signal and the wired broadband optical signal, and the wavelength range is o ⁇ 1620 ⁇ ;
  • the TDM-PON port is used for input.
  • output wired broadband optical signal the wavelength range is J 260 ⁇ 1360 wake up, 1480 ⁇ 1500 wake up or 570 ⁇ 1580 wake up;
  • WDM-PON port is used for input or output base station wavelength division multiplexing optical signal, wavelength range is 370 ⁇ ⁇ 7 ⁇ , 1510 - 1560nm 1590 ⁇ 1620nm.
  • the first wavelength division multiplexing/demultiplexing unit 20 and the third wavelength division multiplexing/demultiplexing unit 55 in the above-described embodiments are all used for wavelength division multiplexing light of base stations having different operating wavelengths.
  • the signal is wavelength multiplexed to perform composite transmission on one optical fiber, and wavelength demultiplexing of the base station wavelength division multiplexed optical signal on one optical fiber is decomposed into base station wavelength divisions having different working wavelengths 1
  • the multiplexed optical signals are separately transmitted, and both of them can be a coarse wavelength division multiplexer (CWDM, Coarse Wavelength Division Multiplexing) or a dense wavelength division multiplexer (DWDM, Dense Wavelength Division Multiplexing).
  • CWDM coarse wavelength division multiplexer
  • DWDM Dense Wavelength Division Multiplexing
  • the invention also provides a PON transmission method for time division multiplexing and wavelength division multiplexing coexistence, that is, transmitting a WDM signal and a TDM signal through a PON system, and connecting to an ODN for transmission by coexisting wavelength division multiplexing, that is, from WDM-
  • the WDM signal of the PON central office and the TDM signal from the TDM-PON central office are wavelength-multiplexed and then input into the trunk fiber for composite transmission, and the WDM signal and the TDM signal in the backbone fiber are wavelength-demultiplexed and output to the WDM respectively.
  • WDM signals in the backbone fiber are transmitted between the WDM-PON central office and the WDM-PON user terminal through the ODN, and the TDM signal is in the TDM-PON central office and TDM- Transmission between PON user terminals.
  • FIG. 7 is a schematic flow chart of transmitting a mobile base station signal by a PON system in which time division multiplexing and wavelength division multiplexing coexist in the present invention, and the embodiment proposes to transmit a mobile base station signal by using a PON system in which a TDM-PON and a WDM-PON coexist, as shown in FIG. 7. As shown, the following steps are included:
  • S100 Perform wavelength conversion on the mobile base station signal carrying the mobile base station service, and convert the signal into a corresponding base station wavelength division multiplexed optical signal.
  • This step is implemented by a wavelength conversion module provided at a central base station or a remote base station.
  • the base station wavelength division multiplexed optical signals transmitted between the different remote base stations and the central base station are required to have different working wavelengths 1, for example, ⁇ , ⁇ , across ⁇ ⁇ , but all belong to a large wavelength range, all falling within the allowable wavelength range of single-mode fibers.
  • the base station wavelength division multiplexed optical signal is transmitted between the central base station and the at least one remote base station by using an ODN
  • the wired broadband optical signal is transmitted between the TDM-PON OLT and the ONU
  • the base station wavelength division multiplexing The optical signal and the wired broadband optical signal are connected to the ODN for transmission by coexisting wavelength division multiplexing, that is, the PON system coexisting with the TDM-PON and the WDM-PON of the present invention enables the base station wavelength division multiplexed optical signal to be at the central base station and the remote base station.
  • the transmission process is as follows:
  • the base station wavelength division multiplexed optical signal and the wired broadband optical signal are wavelength-multiplexed and then input into the backbone optical fiber for composite transmission;
  • the working wavelength 1 of the multiplexed optical signal is different, and the wired broadband signal and the base station wavelength division multiplexed optical signal with different working wavelengths can be input into the trunk optical fiber only by one wavelength multiplexing, or the working wavelength of the central base station can be different first.
  • the base station wavelength division multiplexed optical signal is subjected to the first wavelength multiplexing, and then the baseband wavelength division multiplexed optical signal and the wired broadband optical signal are subjected to the second wavelength multiplexing and then input to the trunk optical fiber for composite transmission; the composite transmitted light
  • the base station wavelength division multiplexed optical signal can be output to the corresponding remote base station through the branch fiber through optical power allocation and/or wavelength demultiplexing.
  • the wired broadband optical signal and the remote base station are corresponding to each other by optical power combining and/or wavelength multiplexing in the ODN.
  • the base station wavelength division multiplexed optical signal is input into the trunk optical fiber for composite transmission; when the composite transmitted optical signal arrives at the central base station, the base station wavelength division multiplexed optical signal is input to the central base station by wavelength demultiplexing; Decomposing the wired broadband signal and the base station wavelength division multiplexed optical signal with different working wavelengths ;; firstly, performing the first wavelength demultiplexing of the base station wavelength division multiplexed optical signal and the wired broadband optical signal in the backbone optical fiber, The second wavelength demultiplexing of the base station wavelength division multiplexed optical signal is further performed in the central base station to obtain a base station wavelength division multiplexed optical signal having different working wavelengths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

时分复用与波分复用共存的无源光网络系统及传输方法 技术领域
本发明涉及光接入网领域, 尤其涉及一种时分复用与波分复用共存的 无源光网络系统及传输方法。 背景技术
随着近几年无源光网络(PON, Passive Optical Network )技术的发展 和成熟, 光纤接入(FTTX, Fiber-to-The-X )技术开始在全球领域得到广泛 应用。 FTTX技术指光纤到户、光纤到楼、光纤到路边等一系列光接入技术。 PON技术具有低成本、 多用户接入、 超长距离传输、 高传输带宽等优势, 已经逐渐取代现有的以铜线为传输介质的有线接入网络, 且势必引导未来 接入网技术的主流发展方向。
目前的 PON 主要是基于时分复用的无源光网络(TDM-PON, Time Division Multiplexing-Passive Optical Network )。 TDM-PON上下行均釆用单 一波长, 对波长带宽的利用率非常低。 随着人们对带宽需求的不断提高, 这种基于单一波长的 TDM-PON接入网形式将不可避免地遇到瓶颈。 基于 波分 复用 的 无 源 光 网 络 ( WDM-PON , Wavelength Division Multiplexing-Passive Optical Network )是近来被提出的一种基于多波长单纤 传输的新型 PON。 WDM-PON系统的工作原理为: 每个终端用户单独占用 一个波长通道, 多个波长通道通过波分复用的方式在同一根干线光纤中传 输, 因此, WDM-PON的特点是每个终端用户都能独享一个波长带宽资源。 这不仅使提供给个体用户的带宽大为提高, 而且充分利用了光纤的波长带 宽资源, 极大地拓展了 PON系统的总带宽。 因此, WDM-PON系统必将成 为未来 PON系统架构的一个优选方案。 由于 TDM-PON 系统目前已经在世界范围内大规模部署, 在今后相当 长一段时间内 , WDM-PON系统都不可能完全替代 TDM-PON系统。 因此, 如何使 TDM-PON 和 WDM-PON 在同一光分配网络 ( ODN , Optical Distribution Network )上实现共存, 成为一个很有实用价值的问题。
此外, 移动通信中的中心移动基站(简称中心基站)和远程移动基站 (简称远程基站)之间也采用光纤来传输移动基站信号, 在光纤中传输的 移动基站信号称为基站光信号。 一般情况下, 基站光信号均釆用单一波长。
目前, 移动基站的建设面临着选址困难、 耗资巨大、 不易维护等问题, 从一定程度上阻碍了移动通讯技术的发展和应用。 如果能够利用现有 TDM-PON的线路资源实现中心基站与远程基站之间的基站光信号的传输, 就能从一定程度上避免以上所述的移动基站建设所面临的种种困难, 显著 降低运营商的网络建设成本, 并促进移动通信技术的进一步发展。 然而, 目前的 TDM-PON只用于传输有线宽带光信号, 其具备的专门的通信协议 和接口与移动基站之间通信的通信协议和接口完全不同, 因此, 无法在现 有的无源光网络上直接传输基站光信号。 发明内容
本发明所要解决的技术问题是, 克服现有技术的不足, 提供一种简单 易行的时分复用与波分复用共存的无源光网络系统, 充分利用了现有的 PON网络的线路资源、 且降低了基站网络的建设成本。
为了解决上述技术问题, 本发明的技术方案是这样实现的:
一种时分复用与波分复用共存的无源光网络(PON ) 系统, 包括: 基 于波分复用的无源光网络( WDM-PON ) 中心局、 WDM-PON用户终端、 基于时分复用的无源光网络( TDM-PON ) 中心局、 TDM-PON用户终端、 共存波分复用器、 主干光纤和光分配网络(ODN );
所述共存波分复用器, 用于对来自 WDM-PON 中心局的波分复用 ( WDM )信号和来自 TDM-PON中心局的时分复用( TDM )信号进行波长 复用后共同输入主干光纤进行复合传输, 以及对主干光纤中的 WDM信号 和 TDM信号进行波长解复用后分别输出至 WDM-PON中心局和 TDM-PON 中心局;
所述 ODN, 用于将主干光纤中的 WDM信号和 TDM信号分别输出至 WDM-PON用户终端和 TDM-PON用户终端, 以及将来自 WDM-PON用户 终端的 WDM信号和来自 TDM-PON用户终端的 TDM信号输入主干光纤进 行复合传输。
所述 WDM信号的工作波长与所述 TDM信号的工作波长不同,均落在 单模光纤允许的波长范围以内。
所述 WDM信号的工作波长 的取值为: ΒόθΜ^ + Δ, < l<1480« —八2或 \500nm + A3 < <l620nm , 其中, 、 八2和八3为波长间隔。
所述 WDM信号的工作波长 的取值为: ΒόθΜ^ + Δ, < l<1480« — Δ2、 \500nm + A4 <A<l570nm-A5 ,\5S0nm + A6<A<\620nm , 其中, Δ、 Δ2、 Δ4、 Δ5 和八6为波长间隔。
所述 WDM-PON中心局为中心基站、所述 WDM-PON用户终端为至少 一个远程基站、 所述 TDM-PON 中心局为光线路终端所在局端、 所述 TDM-PON用户终端为光网络单元(ONU)、 所述共存波分复用器为第一共 存波分复用器, 所述 WDM信号为基站波分复用光信号, 所述 TDM信号为 有线宽带光信号;
所述中心基站和远程基站均包括波长转换模块, 用于对承载移动基站 业务的移动基站信号进行波长转换, 转换为对应的基站波分复用光信号, 以及对基站波分复用光信号进行波长转换, 转换回对应的移动基站信号; 所述第一共存波分复用器, 具体用于对来自中心基站的基站波分复用 光信号和来自光线路终端的有线宽带光信号进行波长复用后共同输入主干 光纤进行复合传输, 以及对主干光纤中的基站波分复用光信号和有线宽带 光信号进行波长解复用后分别输出至中心基站和光线路终端;
所述 ODN, 具体用于将主干光纤中的基站波分复用光信号和有线宽带 光信号分别输出至至少一个远程基站和 ONU, 以及将来自至少一个远程基 站的基站波分复用光信号和来自 ONU 的有线宽带光信号输入主干光纤进 行复合传输。
所述 ODN包括第一分光器, 所述远程基站还包括滤波器;
所述第一分光器, 用于对主干光纤中的基站波分复用光信号和有线宽 带光信号进行光功率分配后分别输出至远程基站和 ONU, 以及对来自远程 基站的基站波分复用光信号和来自 ONU 的有线宽带光信号进行光功率合 并后输入主干光纤进行复合传输;
所述远程基站通过所述滤波器输入和输出对应的基站波分复用光信 号。
所述 PON系统还包括每个远程基站所对应的第二共存波分复用器, 所 述 ODN包括第二分光器;
所述第二分光器, 用于对主干光纤中的基站波分复用光信号和有线宽 带光信号进行光功率分配后输出至所述第二共存波分复用器和 ONU, 以及 对来自所述第二共存波分复用器的基站波分复用光信号和有线宽带光信号 进行光功率合并后输入主干光纤进行复合传输;
所述第二共存波分复用器, 用于对基站波分复用光信号和有线宽带光 信号进行波长解复用后分别输出至对应的远程基站和 ONU; 以及对来自远 程基站的基站波分复用光信号和来自 ONU 的有线宽带光信号进行波长复 用后输入所述第二分光器。
所述 ODN 包括第三共存波分复用器、 第三分光器和第三波分复用 /解 复用器; 所述第三共存波分复用器, 用于对主干光纤中的基站波分复用光信号 和有线宽带光信号进行波长解复用后分别输入所述第三波分复用 /解复用器 和第三分光器, 以及对来自所述第三波分复用 /解复用器的基站波分复用光 信号和来自第三分光器的有线宽带光信号进行波长复用后输入主干光纤进 行复合传输;
所述第三分光器, 用于对有线宽带光信号进行光功率分配后输出至所 述 ONU, 以及对来自 ONU的有线宽带光信号进行光功率合并后输入所述 第三共存波分复用器;
所述第三波分复用 /解复用器, 用于对基站波分复用光信号进行波长解 复用后分别输出至对应的远程基站, 以及对远程基站对应的基站波分复用 光信号进行波长复用后输入所述第三共存波分复用器。
一种时分复用与波分复用共存的无源光网络传输方法, 包括: 对来自 WDM-PON中心局的 WDM信号和来自 TDM-PON中心局的 TDM信号进行波长复用后共同输入主干光纤进行复合传输, 以及对主干光 纤中的 WDM信号和 TDM信号进行波长解复用后分别输出至 WDM-PON 中心局和 TDM-PON中心局;
通过 ODN 使主干光纤中的 WDM 信号在 WDM-PON 中心局和 WDM-PON用户终端之间进行传输, 并使 TDM信号在 TDM-PON中心局 和 TDM-PON用户终端之间进行传输。
所述 WDM-PON中心局为中心基站、所述 WDM-PON用户终端为至少 一个远程基站、 所述 TDM-PON 中心局为光线路终端所在局端、 所述 TDM-PON用户终端为 ONU, 所述 WDM信号为基站波分复用光信号, 所 述 TDM信号为有线宽带光信号; 本方法包括以下步骤:
A、对承载移动基站业务的移动基站信号进行波长转换, 转换为对应的 基站波分复用光信号; B、 通过 ODN使所述基站波分复用光信号在中心基站和至少一个远程 基站之间进行传输,并使有线宽带光信号在光网络终端和 ONU之间进行传 输, 所述基站波分复用光信号和有线宽带光信号通过共存波分复用连接至
ODN进行传输;
C、对所述基站波分复用光信号进行波长转换, 转换回对应的移动基站 信号。
基站波分复用光信号从中心基站至远程基站的下行传输中,所述步骤 B 具体为: 对基站波分复用光信号和有线宽带光信号进行波长复用后输入主 干光纤进行复合传输,并利用 ODN将所述基站波分复用光信号输出至对应 的远程基站;
基站波分复用光信号从远程基站至中心基站的上行传输中,所述步骤 B 具体为: 利用 ODN将有线宽带信号和远程基站所对应的基站波分复用光信 号输入主干光纤进行复合传输, 并通过波长解复用将所述基站波分复用光 信号输入中心基站。
基站波分复用光信号从中心基站至远程基站的下行传输中, 步骤 B中 所述对基站波分复用光信号和有线宽带光信号进行波长复用后输入主干光 纤进行复合传输包括: 首先对所述基站波分复用光信号进行第一次波长复 用, 再对所述基站波分复用光信号和有线宽带光信号进行第二次波长复用 后输入主干光纤进行复合传输;
基站波分复用光信号从远程基站至中心基站的上行传输中, 步骤 B中 所述通过波长解复用将所述基站波分复用光信号输入中心基站包括: 首先 对主干光纤中的基站波分复用光信号和有线宽带光信号进行第一次波长解 复用, 基站波分复用光信号输入中心基站后再进行第二次波长解复用。
基站波分复用光信号从中心基站至远程基站的下行传输中, 通过光功 率分配和 /或波长解复用的方式将所述基站波分复用光信号输出至对应的远 程基站;
基站波分复用光信号从远程基站至中心基站的上行传输中, 通过光功 率合并和 /或波长复用的方式将远程基站所对应的基站波分复用光信号输入 主干光纤进行复合传输。
根据本发明提供的方案, 能够实现移动基站信号和有线宽带光信号在
ODN中的共同传输, 简单易行, 充分利用了现有的 PON 已经布设的线路 资源以及 PON技术的各种优势, 实现了有线网络与无线网络的有效融合。 从一定程度上, 避免了目前基站建设所面临的种种问题, 而且使运营商易 于实现多种网络资源的共享和统一管理, 并为用户提供了更加便利、 高效 的通信服务。
本发明方案中还通过各种灵活简便的方式在 ODN 中对基站波分复用 光信号和有线宽带信号进行双向传输, 使原有的 TDM-PON中的接入用户 数目和分布状况完全不受影响,显著提高了 ODN的利用率和移动基站信号 的传输效率。
本发明方案中通过合理的波长规划,利用波分复用的方式使 TDM-PON 和 WDM-PON在同一 ODN上实现共存, 大幅提高了 ODN的资源利用率, 降低了基站网络的建设成本。 附图说明
图 1为本发明中时分复用和波分复用共存的 PON系统的结构示意图; 图 2为本发明中共存波分复用器的结构示意图;
图 3为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的第一种具体实施方式结构示意图;
图 4为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的第二种具体实施方式结构示意图;
图 5为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的第三种具体实施方式结构示意图;
图 6为本发明中时分复用和波分复用共存的 PON系统中用于传输移动 基站信号的滤波器的结构示意图。
图 7为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的流程示意图。 具体实施方式
以下结合附图对本发明的具体实施方式进行说明, 但并不限于以下实 施方式。
本发明中提供的 PON系统是一种时分复用和波分复用共存的系统, 包 括 TDM-PON和 WDM-PON两部分, TDM-PON用于传输有线宽带光信号, WDM-PON则可以用于传输多种业务信号 , 例如 , WDM-PON既可以传输 有线宽带光信号, 也可以传输无线通信的无线光信号。
本发明中的时分复用与波分复用共存的 PON系统结构如图 1所示, 包 括: WDM-PON中心局、 WDM-PON用户终端、 TDM-PON中心局、 TDM-PON 用户终端、 共存波分复用器、 主干光纤和 ODN。
其中, 共存波分复用器用于对来自 WDM-PON中心局的 WDM信号和 来自 TDM-PON中心局的 TDM信号进行波长复用后共同输入主干光纤进行 复合传输,以及对主干光纤中复合传输的 WDM信号和 TDM信号进行波长 解复用后,分别输出至 WDM-PON中心局和 TDM-PON中心局; ODN用于 将主干光纤中的 WDM信号和 TDM信号分别输出至 WDM-PON用户终端 和 TDM-PON用户终端, 以及将来自 WDM-PON用户终端的 WDM信号和 来自 TDM-PON用户终端的 TDM信号输入主干光纤进行复合传输。
因此, 本发明中的 PON系统能够同时传输 WDM信号和 TDM信号, WDM信号的工作波长与 TDM信号的工作波长不同, 但均落在单模光纤允 许的波长范围以内, 通过将共存波分复用器连接到同一 ODN, 以对 WDM 信号和 TDM信号进行传输。 本发明提供的技术方案实现了 PON中的多业 务共存,最大限度地利用了 PON的资源,且降低了网络的运营和维护成本。
单模光纤允许的波长范围通常为 1260〜 1620腿。 目前, TDM信号占用 的上下行波长范围分别为 J260〜 J 360画和 J備〜 1500醒 , 因 J¾可设置 WDM 信号的工作波长 /1的取值为 1360« < l<1480«w或 1500« < l<1620« 。 考虑到 在 TDM-PON工作波段和 WDM-PON工作波段之间 , 应设置一定的波长间 隔保护 带 宽 , 因 此 , WDM 信号 的 工作 波长 取值为 : 1360nm + A1 < < 1480« — Δ2或 1500« + A3 < < 1620« 。
下一代 TDM-PON 的标准规定有线宽带光信号下行波长改到 1570 ~ 1580腿 , 鉴于这一点, 可相应设置 WDM信号的工作波长 /1取值为: UeOnrn <λ< 1480/TO 、 \500nm <λ< 15Ί Onm或 1580«m <λ< \620nm 。 考虑到在 TDM-PON工作波段和 WDM-PON工作波段之间 , 应设置一定的波长间隔 作为保护带宽, 因此, 针对下一代 TDM-PON的标准, WDM信号的工作波 长 取 : 1360nm + A1 < <1480nm-A2 、 1500nm + Α4 <Λ< \510nm - Δ5 或 1580« + A6 < i<1620« 。
以上所述 、 Δ2、 Δ3、 Δ4、 Δ5、 八6均为波长间隔。 一种优选的实施方 式是在 TDM信号和 WDM信号的工作波长的取值范围之间留取 10nm的波 长间隔, 即 WDM信号的工作波长 /1的取值范围为: 1370« < l<1470« 、 1510扁 < 1< 1560扁或 1590扁 < 1< 1620扁。
上述共存波分复用器的结构如图 2 所示, 包括三个端口, 一个为
TDM-PON 端口, 用于连接 TDM-PON 中心局, 能够使 J 260〜 1360画 、 1480〜 1500丽、 1570〜 1580腿波长范围的光双向通过; 一个为 WDM-PON端 口 , 用 于连接 WDM-PON 中心局, 能够使 1370« < l<1470« 、 \5\0nm <λ< 1560腦或 1590画 <λ< 1620画波长范围的光双向通过;一个为公共 端口, 用于连接 ODN, 能够使 〜 1620nm波长范围的光双向通过。 图 3为本发明中时分复用和波分复用共存的 PON系统的一种具体实施 方式结构示意图, 如图 3 所示, 该实施方式中利用时分复用和波分复用共 存的 PON 系统传输移动基站信号, 能够使第三代移动通信(3G ) /第二代 移动通信( 2G ) /微波接入全球互联网 ( WiMAX )接入网利用现有 PON已 经布设的线路资源, 从而降低基站网络的建设成本。 本实施方式实现了基 站波分复用光信号与有线宽带光信号通过同一 ODN的传输。
该 PON系统包括中心基站 10、 第一波分复用 /解复用器(Mux/Dmux ) 20、 时分复用光线路终端 (TDM-PON OLT, TDM-Passive Optical Network Optical Line Terminal ) 30、 第一共存波分复用器 40、 ODN 50、 远程基站 ( RAU, Remote Access Unit ) 60、光网络单元( ONU, Optical Network Unit ) 70和主干光纤。 其中, 第一波分复用 /解复用器 20可直接设置在中心基站 10中, 也可与中心基站 10分离设置。
本实施方式用于传输移动基站信号, 因此与图 1相比, 图 3中的中心 基站 10即为 WDM-PON中心局, 远程基站 60即为 WDM-PON用户终端, 第一共存波分复用器 40即为共存波分复用器, 基站波分复用光信号即一种 WDM信号, TDM-PON OLT 30所在局端为 TDM-PON中心局, ONU 70即 为 TDM-PON用户终端, 有线宽带光信号即一种 TDM信号。
目前, ODN 50通常用于在 PON系统的 TDM-PON OLT 30和 ONU 70 之间传输有线宽带光信号。 本实施方式中, 通过合理地规划基站波分复用 光信号的工作波长 ,使基站波分复用光信号的工作波长 与有线宽带光信 号的工作波长不同, 但均落在单模光纤允许的波长范围以内, 这样, TDM-PON 中的有线宽带光信号与基站波分复用光信号便能够通过同一 ODN进行传输。
其中, 中心基站 10和远程基站 60都包括波长转换模块, 用于对承载 移动基站业务的移动基站信号进行波长转换, 转换为对应的基站波分复用 光信号, 以及对基站波分复用光信号进行波长转换, 转换回对应的移动基 站信号。 本发明中将通过波长转换模块的转换、 在本发明的 PON系统中进 行传输的移动基站信号称为基站波分复用光信号。
第一共存波分复用器 40用于对来自中心基站 10的基站波分复用光信 号和来自 TDM-PON OLT 30的有线宽带光信号进行波长复用后输入主干光 纤进行复合传输, 以及对主干光纤中的基站波分复用光信号和有线宽带光 信号进行波长解复用后分别输出至中心基站 10和 TDM-PON OLT 30。
ODN 50 用于将主干光纤中的基站波分复用光信号和有线宽带光信号 输出至至少一个远程基站 60和 ONU 70, 以及将来自至少一个远程基站 60 的基站波分复用光信号和来自 ONU 70的有线宽带光信号输入主干光纤进 行复合传输。
基站波分复用光信号的下行传输中, 中心基站 10通过波长转换模块 11 将移动基站信号转换成具有不同工作波长 的基站波分复用光信号,并将其 输入第一波分复用 /解复用器 20进行第一次光波复用;第一共存波分复用器 40对来自中心基站 10的基站波分复用光信号和来自 TDM-PON OLT 30的 有线宽带光信号进行第二次波长复用后输入主干光纤进行复合传输; 通常 主干光纤的传输距离不超过 20Km; 光信号到达 ODN 50时, ODN 50中的 第一分光器(Splitter ) 51 对主千光纤中的光信号进行光功率分配, 并利用 分支光纤将其不加区分地输出至远程基站 60和 ONU 70, ONU 70通过内置 的滤波器进行滤波, 选择自己的接收波长。各个远程基站 60通过滤波器 62 输出具有一定工作波长 的基站波分复用光信号, 并通过波长转换模块 61 将基站波分复用光信号转换成对应的移动基站信号。
基站波分复用光信号的上行传输中, 不同的远程基站 60通过波长转换 模块 61 将移动基站信号转换成具有不同工作波长 的基站波分复用光信 号, 并将其输入滤波器 62; ODN 50中的第一分光器 51对来自远程基站 60 的基站波分复用光信号和来自 ONU 70的有线宽带光信号进行光功率合并 后输入主干光纤进行复合传输;光信号到达第一共存波分复用器 40—端时, 第一共存波分复用器 40对主干光纤中的基站波分复用光信号和有线宽带光 信号进行波长解复用, 并将基站波分复用光信号输出至第一波分复用 /解复 用器 20, 将有线宽带光信号输出至 TDM-PON OLT 30; 第一波分复用 /解复 用器 20对基站波分复用光信号进行波长解复用后分解成具有不同工作波长 的基站波分复用光信号, 并将其输入中心基站 10, 中心基站 10通过波长 转换模块 11分别将基站波分复用光信号转换成对应的移动基站信号。
为了实现波长复用的传输方式, 需设置所述不同的远程基站与中心基 站之间传输的基站波分复用光信号具有各不相同的工作波长 1 , 例如 4、 ... ... A, 但均属于一个大的波长范围, 均落在单模光纤允许的波长范围 以内。
本实施方式能够通过 PON技术传输承载移动基站信号, 从一定程度上 避免了目前基站建设所面临的种种问题, 降低了基站网络的建设成本。 本 发明使移动基站信号与有线宽带光信号在 ODN 中实现共同传输, 简单易 行, 充分利用了现有 PON已经布设的线路资源以及 PON技术的各种优势, 实现了有线网络和无线网络的有效融合; 而且使运营商易于实现多种网络 资源的共享和统一管理, 并且为用户提供了更加便利、 高效的通信服务。
图 4为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的第二种具体实施方式结构示意图, 如图 4所示, 该实施方式与图 3类 似,不同之处在于 ODN 50和远程基站 60的具体结构。本实施方式中, ODN 50中包括第二分光器 52, 每个远程基站 60都对应一个第二共存波分复用 器 80。
基站波分复用光信号的下行传输中, 第二分光器 52对主干光纤中的光 信号进行光功率分配后通过分支光纤不加区分地输出至第二共存波分复用 器 80和 ONU 70,第二共存波分复用器 80对有线宽带光信号和基站波分复 用光信号进行波长解复用后输出至对应的 ONU 70 , 将基站波分复用光信 号输出至对应的远程基站 60 ,远程基站 60通过图 6所示的滤波器滤出对应 波长的基站波分复用光信号。
基站波分复用光信号的上行传输中, 每个第二共存波分复用器 80对来 自远程基站 60的基站波分复用光信号和来自 ONU 70的有线宽带光信号进 行波长复用后输入第二分光器 52;第二分光器 52对来自笫二共存波分复用 器 80的基站波分复用光信号、 有线宽带光信号和来自 ONU 70的有线宽带 光信号进行光功率合并后输入主干光纤进行复合传输。 本实施方式提供的 技术方案更加灵活, 运营商可根据实际需要选择具体的传输方式, 实现一 根分支光纤同时接入有线终端和无线终端, 且使原有的 TDM-PON中的接 入用户数量和分布状况完全不受影响, 因此进一步提高了 OND的利用率。
图 5为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的第三种具体实施方式结构示意图, 如图 5所示, 该实施方式与图 3类 似, 不同之处在于本实施方式中 ODN 50包括第三共存波分复用器 53、 第 三分光器 54和笫三波分复用 /解复用器 55。
基站波分复用光信号的下行传输中, 第三共存波分复用器 53对主干光 纤中的基站波分复用光信号和有线宽带光信号进行波长解复用后通过分支 光纤分别输入第三波分复用 /解复用器 55和第三分光器 54, 第三波分复用 / 解复用器 55对具有不同工作波长 的基站波分复用光信号进行波长解复用 后分别输出至对应的远程基站 60;第三分光器 54用于对有线宽带光信号进 行光功率分配后输出至各个 ONU 70。
基站波分复用光信号的上行传输中 ,第三波分复用 /解复用器 55对来自 不同远程基站 60、 具有不同工作波长 1的基站波分复用光信号进行波长复 用后输入第三共存波分复用器 53 ;第三分光器 54对来自不同 ONU 70的有 线宽带光信号进行光功率合并后输入第三共存波分复用器 53; 第三共存波 分复用器 53对基站波分复用光信号和有线宽带光信号进行波长复用后输入 主干光纤进行复合传输。 本实施方式中, 基站波分复用光信号的传输不经 过第三分光器 54, 因此避免了第三分光器 54的插入损耗( insertion loss ) 对基站波分复用光信号的影响, 有效降低了基站波分复用光信号的跨段损 耗, 显著提高了其传输效率。
图 6为图 3、 图 4所示的具体实施方式中滤波器的结构示意图, 公共端 口通过分支光纤与第一分光器 51 (图 3所示的具体实施方式)或第二共存 波分复用器 80 (图 4所示的具体实施方式)相连, 用于输入来自第一分光 器 51或第二共存波分复用器 80的基站波分复用光信号或有线宽带光信号, 波长范围为 1260〜 1620腿; 基站波分复用光信号输出端口用于输出该远程基 站 60所对应的基站波分复用光信号至波长转换模块 61 ;基站波分复用光信 号输入端口用于输入该远程基站 60所对应的基站波分复用光信号, 公共端 口再将该基站波分复用光信号输出至第一分光器 51或第二共存波分复用器 80。
以上所述的具体实施方式中的第一共存波分复用器 40、 第二共存波分 复用器 80和第三共存波分复用器 53都具有图 2所示的结构, 其工作原理 在于对具有不同波长范围的基站波分复用光信号和有线宽带光信号进行波 长复用, 使其在一根光纤上进行复合传输, 以及对一根光纤上的光信号进 行波长解复用, 使分解后具有不同波长范围的基站波分复用光信号和有线 宽带光信号分别进行传输。 共存波分复用器的公共端口与主干光纤或分光 器相连, 用于输入或输出基站波分复用光信号和有线宽带光信号, 波长范 围为 o〜 1620丽; TDM-PON端口用于输入或输出有线宽带光信号, 波长 范围为 J 260〜 1360醒、 1480〜 1500醒或 570〜 1580醒; WDM-PON端口用于输 入或输出基站波分复用光信号, 波长范围为 370〜 ¥7^ 、 1510 - 1560nm 1590〜 1620nm。
以上所述的具体实施方式中的第一波分复用 /解复用器 20 和第三波分 复用 /解复用器 55都用于对具有不同工作波长 Λ的基站波分复用光信号进行 波长复用, 使其在一根光纤上进行复合传输, 以及对一根光纤上的基站波 分复用光信号进行波长解复用,将其分解成具有不同工作波长 1的基站波分 复用光信号分别进行传输, 两者都可为粗波分复用器 (CWDM , Coarse Wavelength Division Multiplexing ) 或密集波分复用器 (DWDM , Dense Wavelength Division Multiplexing )。
本发明中还提供了一种时分复用和波分复用共存的 PON传输方法, 即 通过 PON系统传输 WDM信号和 TDM信号,通过共存波分复用连接至 ODN 进行传输, 即对来自 WDM-PON中心局的 WDM信号和来自 TDM-PON中 心局的 TDM信号进行波长复用后共同输入主干光纤进行复合传输,以及对 主干光纤中的 WDM 信号和 TDM 信号进行波长解复用后分别输出至 WDM-PON中心局和 TDM-PON中心局;通过 ODN使主干光纤中的 WDM 信号在 WDM-PON中心局和 WDM-PON用户终端之间进行传输,并使 TDM 信号在 TDM-PON中心局和 TDM-PON用户终端之间进行传输。
图 7为本发明中时分复用和波分复用共存的 PON系统传输移动基站信 号的流程示意图, 该实施方式提出利用 TDM-PON和 WDM-PON共存的 PON系统传输移动基站信号, 如图 7所示, 包括以下步骤:
S100: 对承载移动基站业务的移动基站信号进行波长转换, 转换成对 应的基站波分复用光信号。
该步骤通过设置在中心基站或远程基站的波长转换模块实现。 为了实 现波长复用的传输方式, 需设置所述不同的远程基站与中心基站之间传输 的基站波分复用光信号具有各不相同的工作波长 1 , 例如 ^、 λ, ... ... λη , 但 均属于一个大的波长范围, 均落在单模光纤允许的波长范围以内。 S200:通过 ODN使所述基站波分复用光信号在中心基站和至少一个远 程基站之间进行传输,并使有线宽带光信号在 TDM-PON OLT和 ONU之间 进行传输, 基站波分复用光信号和有线宽带光信号通过共存波分复用连接 至 ODN进行传输, 即通过本发明的 TDM-PON和 WDM-PON共存的 PON 系统使基站波分复用光信号在中心基站和远程基站之间进行传输, 其具体 实施过程为:
基站波分复用光信号从中心基站至远程基站的下行传输过程中, 对基 站波分复用光信号和有线宽带光信号进行波长复用后输入主干光纤进行复 合传输; 由于不同的基站波分复用光信号的工作波长 1不同, 可只通过一次 波长复用将有线宽带信号和具有不同工作波长 的基站波分复用光信号输 入主干光纤,也可首先对中心基站中具有不同工作波长 A的基站波分复用光 信号进行第一次波长复用, 再对这些基站波分复用光信号和有线宽带光信 号进行第二次波长复用后输入主干光纤进行复合传输; 复合传输的光信号 到达 ODN 时, 可通过光功率分配和 /或波长解复用的方式将基站波分复用 光信号通过分支光纤输出至对应的远程基站。
对应地, 基站波分复用光信号从远程基站 60至中心基站 10的上行传 输过程中, 在 ODN 中通过光功率合并和 /或波长复用的方式将有线宽带光 信号和远程基站所对应的基站波分复用光信号输入主干光纤进行复合传 输; 复合传输的光信号到达中心基站时, 再通过波长解复用将基站波分复 用光信号输入中心基站; 可只通过一次波长解复用对有线宽带信号和具有 不同工作波长 Λ的基站波分复用光信号进行分解;也可首先对主干光纤中的 基站波分复用光信号和有线宽带光信号进行第一次波长解复用, 在中心基 站中再对基站波分复用光信号进行第二次波长解复用得到具有不同工作波 长 的基站波分复用光信号。
S300: 对基站波分复用光信号进行波长转换, 转换回对应的移动基站 信号, 不同的远程基站对应的基站波分复用光信号具有不同的工作波长 A; 该步骤仍然通过设置在中心基站或远程基站的波长转换模块实现。 明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术 领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 一种时分复用与波分复用共存的无源光网络(PON ) 系统, 其特征 在于, 包括:基于波分复用的无源光网络( WDM-PON )中心局、 WDM-PON 用户终端、 基于时分复用的无源光网络 ( TDM-PON ) 中心局、 TDM-PON 用户终端、 共存波分复用器、 主干光纤和光分配网络(ODN );
所述共存波分复用器, 用于对来自 WDM-PON 中心局的波分复用 ( WDM )信号和来自 TDM-PON中心局的时分复用( TDM )信号进行波长 复用后共同输入主干光纤进行复合传输, 以及对主干光纤中的 WDM信号 和 TDM信号进行波长解复用后分别输出至 WDM-PON中心局和 TDM-PON 中心局;
所述 ODN, 用于将主干光纤中的 WDM信号和 TDM信号分别输出至 WDM-PON用户终端和 TDM-PON用户终端, 以及将来自 WDM-PON用户 终端的 WDM信号和来自 TDM-PON用户终端的 TDM信号输入主干光纤进 行复合传输。
2、 根据权利要求 1所述的系统, 其特征在于, 所述 WDM信号的工作 波长与所述 TDM信号的工作波长不同,均落在单模光纤允许的波长范围以 内。
3、 根据权利要求 2所述的系统, 其特征在于, 所述 WDM信号的工作 波长 的取值为: 1360W + A, < l < 1480w — Δ2或 1500w + A3 < l < 1620w , 其中, Δ,、 Δ2和 Δ3为波长间隔。
4、 根据权利要求 2所述的系统, 其特征在于, 所述 WDM信号的工作 波长 的取值为: 1360W + A, < i < 1480w — Δ2、 1500w + A4 < < 1570w — Δ5或 \ 5S0nm + Α6 < λ < \620nm , 其中, Δ,、 Δ2、 Δ4、 八5和八6为波长间隔。
5、根据权利要求 1至 4任一所述的系统,其特征在于,所述 WDM-PON 中心局为中心基站、 所述 WDM-PON用户终端为至少一个远程基站、 所述 TDM-PON中心局为光线路终端所在局端、所述 TDM-PON用户终端为光网 络单元(ONU )、 所述共存波分复用器为第一共存波分复用器, 所述 WDM 信号为基站波分复用光信号, 所述 TDM信号为有线宽带光信号;
所述中心基站和远程基站均包括波长转换模块, 用于对承载移动基站 业务的移动基站信号进行波长转换, 转换为对应的基站波分复用光信号, 以及对基站波分复用光信号进行波长转换, 转换回对应的移动基站信号; 所述第一共存波分复用器, 具体用于对来自中心基站的基站波分复用 光信号和来自光线路终端的有线宽带光信号进行波长复用后共同输入主干 光纤进行复合传输, 以及对主干光纤中的基站波分复用光信号和有线宽带 光信号进行波长解复用后分别输出至中心基站和光线路终端;
所述 ODN, 具体用于将主干光纤中的基站波分复用光信号和有线宽带 光信号分别输出至至少一个远程基站和 ONU, 以及将来自至少一个远程基 站的基站波分复用光信号和来自 ONU 的有线宽带光信号输入主干光纤进 行复合传输。
6、 根据权利要求 5所述的系统, 其特征在于, 所述 ODN包括第一分 光器, 所述远程基站还包括滤波器;
所述第一分光器, 用于对主干光纤中的基站波分复用光信号和有线宽 带光信号进行光功率分配后分别输出至远程基站和 ONU, 以及对来自远程 基站的基站波分复用光信号和来自 ONU 的有线宽带光信号进行光功率合 并后输入主干光纤进行复合传输;
所述远程基站通过所述滤波器输入和输出对应的基站波分复用光信 号。
7、 根据权利要求 5所述的系统, 其特征在于, 所述 PON系统还包括 每个远程基站所对应的第二共存波分复用器, 所述 ODN包括第二分光器; 所述第二分光器, 用于对主干光纤中的基站波分复用光信号和有线宽 带光信号进行光功率分配后输出至所述第二共存波分复用器和 ONU, 以及 对来自所述第二共存波分复用器的基站波分复用光信号和有线宽带光信号 进行光功率合并后输入主干光纤进行复合传输;
所述第二共存波分复用器, 用于对基站波分复用光信号和有线宽带光 信号进行波长解复用后分别输出至对应的远程基站和 ONU; 以及对来自远 程基站的基站波分复用光信号和来自 ONU 的有线宽带光信号进行波长复 用后输入所述第二分光器。
8、 根据权利要求 5所述的系统, 其特征在于, 所述 ODN包括第三共 存波分复用器、 第三分光器和第三波分复用 /解复用器;
所述第三共存波分复用器, 用于对主干光纤中的基站波分复用光信号 和有线宽带光信号进行波长解复用后分别输入所述第三波分复用 /解复用器 和第三分光器, 以及对来自所述第三波分复用 /解复用器的基站波分复用光 信号和来自第三分光器的有线宽带光信号进行波长复用后输入主干光纤进 行复合传输;
所述第三分光器, 用于对有线宽带光信号进行光功率分配后输出至所 述 ONU, 以及对来自 ONU的有线宽带光信号进行光功率合并后输入所述 第三共存波分复用器;
所述第三波分复用 /解复用器, 用于对基站波分复用光信号进行波长解 复用后分别输出至对应的远程基站, 以及对远程基站对应的基站波分复用 光信号进行波长复用后输入所述第三共存波分复用器。
9、一种时分复用与波分复用共存的无源光网络传输方法,其特征在于, 包括:
对来自 WDM-PON中心局的 WDM信号和来自 TDM-PON中心局的
TDM信号进行波长复用后共同输入主干光纤进行复合传输, 以及对主干光 纤中的 WDM信号和 TDM信号进行波长解复用后分别输出至 WDM-PON 中心局和 TDM-PON中心局;
通过 ODN 使主干光纤中的 WDM 信号在 WDM-PON 中心局和 WDM-PON用户终端之间进行传输, 并使 TDM信号在 TDM-PON中心局 和 TDM-PON用户终端之间进行传输。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 WDM-PON中心 局为中心基站、 所述 WDM-PON 用户终端为至少一个远程基站、 所述 TDM-PON 中心局为光线路终端所在局端、 所述 TDM-PON 用户终端为 ONU, 所述 WDM信号为基站波分复用光信号, 所述 TDM信号为有线宽 带光信号; 本方法包括以下步骤:
A、对承载移动基站业务的移动基站信号进行波长转换, 转换为对应的 基站波分复用光信号;
B、 通过 ODN使所述基站波分复用光信号在中心基站和至少一个远程 基站之间进行传输,并使有线宽带光信号在光网络终端和 ONU之间进行传 输, 所述基站波分复用光信号和有线宽带光信号通过共存波分复用连接至 ODN进行传输;
C、对所述基站波分复用光信号进行波长转换, 转换回对应的移动基站 信号。
11、 根据权利要求 10所述的方法, 其特征在于,
基站波分复用光信号从中心基站至远程基站的下行传输中,所述步骤 B 具体为: 对基站波分复用光信号和有线宽带光信号进行波长复用后输入主 干光纤进行复合传输,并利用 ODN将所述基站波分复用光信号输出至对应 的远程基站;
基站波分复用光信号从远程基站至中心基站的上行传输中,所述步骤 B 具体为:利用 ODN将有线宽带信号和远程基站所对应的基站波分复用光信 号输入主干光纤进行复合传输, 并通过波长解复用将所述基站波分复用光 信号输入中心基站。
12、 根据权利要求 11所述的方法, 其特征在于,
基站波分复用光信号从中心基站至远程基站的下行传输中, 步骤 B中 所述对基站波分复用光信号和有线宽带光信号进行波长复用后输入主干光 纤进行复合传输包括: 首先对所述基站波分复用光信号进行第一次波长复 用, 再对所述基站波分复用光信号和有线宽带光信号进行第二次波长复用 后输入主干光纤进行复合传输;
基站波分复用光信号从远程基站至中心基站的上行传输中, 步骤 B中 所述通过波长解复用将所述基站波分复用光信号输入中心基站包括: 首先 对主干光纤中的基站波分复用光信号和有线宽带光信号进行第一次波长解 复用, 基站波分复用光信号输入中心基站后再进行第二次波长解复用。
13、 根据权利要求 11或 12所述的方法, 其特征在于,
基站波分复用光信号从中心基站至远程基站的下行传输中, 通过光功 率分配和 /或波长解复用的方式将所述基站波分复用光信号输出至对应的远 程基站;
基站波分复用光信号从远程基站至中心基站的上行传输中, 通过光功 率合并和 /或波长复用的方式将远程基站所对应的基站波分复用光信号输入 主干光纤进行复合传输。
PCT/CN2009/075207 2009-07-15 2009-11-30 时分复用与波分复用共存的无源光网络系统及传输方法 WO2011006327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101088108A CN101959086A (zh) 2009-07-15 2009-07-15 时分复用与波分复用共存的无源光网络系统及传输方法
CN200910108810.8 2009-07-15

Publications (1)

Publication Number Publication Date
WO2011006327A1 true WO2011006327A1 (zh) 2011-01-20

Family

ID=43448892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075207 WO2011006327A1 (zh) 2009-07-15 2009-11-30 时分复用与波分复用共存的无源光网络系统及传输方法

Country Status (2)

Country Link
CN (1) CN101959086A (zh)
WO (1) WO2011006327A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075281A (zh) * 2011-01-27 2011-05-25 中兴通讯股份有限公司 基站信号的传输方法、中心基站、远程基站及系统
CN102098106B (zh) * 2011-02-22 2014-05-21 深圳市易飞扬通信技术有限公司 波分复用-时分复用无源光纤网络的光线路终端
CN102695101B (zh) * 2011-03-21 2015-11-18 苏州海光芯创光电科技有限公司 一种波分复用上的无源光网络
CN102572619B (zh) * 2011-12-16 2018-03-02 中兴通讯股份有限公司 无源光网络系统、光线路终端和光传输方法
CN112615674A (zh) * 2015-08-20 2021-04-06 中兴通讯股份有限公司 Olt光收发一体模块、处理多种pon的方法及系统
WO2020043318A1 (en) * 2018-08-31 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Time and wavelength division multiplexing
CN117241282B (zh) * 2023-11-13 2024-02-06 深圳市佳贤通信科技股份有限公司 基于GPon网络的4G和5G信号传输装置及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845485A (zh) * 2006-04-23 2006-10-11 沈红 光纤接入混合网络的系统实现方法
CN101098206A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 一种无源光网络系统及其光路处理方法
WO2008036976A2 (en) * 2006-09-22 2008-03-27 Passover, Inc. Wireless over pon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845485A (zh) * 2006-04-23 2006-10-11 沈红 光纤接入混合网络的系统实现方法
CN101098206A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 一种无源光网络系统及其光路处理方法
WO2008036976A2 (en) * 2006-09-22 2008-03-27 Passover, Inc. Wireless over pon

Also Published As

Publication number Publication date
CN101959086A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
TWI625948B (zh) 具有延展範圍及容量之時間波長分割被動網路
US8554079B2 (en) Wavelength division and time division multiplex mixing passive optical network system, terminal and signal transmission method
US8554078B2 (en) Passive optical network with plural optical line terminals
KR101410158B1 (ko) 신호 전송 시스템, 방법 및 관련 장치
WO2015180508A1 (zh) 基于波分pon系统的开放网络架构及信号传输方法
CN109560891B (zh) 实现波分复用光信号分路的方法及装置
CN101197638B (zh) 混合型无源光网络系统
WO2012062119A1 (zh) 无源光网络及其信号的传输方法
CN102695101B (zh) 一种波分复用上的无源光网络
US8953942B1 (en) Hybrid WDM-TDM passive optical network
WO2011006327A1 (zh) 时分复用与波分复用共存的无源光网络系统及传输方法
JP5204024B2 (ja) 光/無線伝送装置
CN101068129B (zh) 一种在wdm-pon中实现组播业务的方法、系统及olt
US8335432B1 (en) Extended broadband passive optical networks
WO2011110005A1 (zh) 无源光网络系统和设备
JP2013506329A (ja) パッシブ光ネットワークの装置および方法
KR100960110B1 (ko) 광대역 무선 서비스를 위한 광 백홀 네트워크
Hsueh et al. SUCCESS-DWA: a highly scalable and cost-effective optical access network
WO2008000164A1 (fr) Procédé et système de renouvellement d&#39;un réseau optique passif
CN202004922U (zh) 一种波分复用上的无源光网络系统
CN113382316A (zh) 光线路终端、光网络单元及光通信系统
EP2637333B1 (en) Optical TDM Backhauling Network
KR20090063834A (ko) 광대역 무선 서비스를 위한 광 네트워크 시스템
KR100949886B1 (ko) Tdm-pon 기반의 원격 중계 장치 및 그 시스템
JP6250820B2 (ja) メトロ網とアクセス網を融合する方法、遠隔ノードおよび光回線終端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847252

Country of ref document: EP

Kind code of ref document: A1