WO2009027293A1 - Composés - Google Patents

Composés Download PDF

Info

Publication number
WO2009027293A1
WO2009027293A1 PCT/EP2008/060911 EP2008060911W WO2009027293A1 WO 2009027293 A1 WO2009027293 A1 WO 2009027293A1 EP 2008060911 W EP2008060911 W EP 2008060911W WO 2009027293 A1 WO2009027293 A1 WO 2009027293A1
Authority
WO
WIPO (PCT)
Prior art keywords
disorder
dichlorophenyl
compounds
compound
azabicyclo
Prior art date
Application number
PCT/EP2008/060911
Other languages
English (en)
Inventor
Barbara Bertani
Giorgio Bonanomi
Romano Di Fabio
Elettra Fazzolari
Fabrizio Micheli
Luca Tarsi
Original Assignee
Glaxo Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Limited filed Critical Glaxo Group Limited
Publication of WO2009027293A1 publication Critical patent/WO2009027293A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/52Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring condensed with a ring other than six-membered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • the present invention relates to novel compounds, processes for their preparation, intermediates used in these processes, pharmaceutical compositions containing them and their use in therapy, as serotonin (5-HT), dopamine (DA) and norepinephrine (NE), reuptake inhibitors.
  • serotonin 5-HT
  • DA dopamine
  • NE norepinephrine
  • Brain tissue is constituted of neuronal cells which are able to communicate with each other via specific cellular structures named synapses.
  • the exchange of signals between neurons in the synapses happens through neurochemical messengers named neurotransmitters, acting on specific target protein molecules, both post and pre-synaptic, referred to as receptors.
  • Monoamines represent a family of small neurotransmitter molecules sharing common chemical features, and include serotonin (5-HT), dopamine (DA) and norepinephrine (NE).
  • Monoamine neurotransmitters are released into the synaptic cleft between neurons and interact with receptors present on the membrane of the target cells.
  • the switch of the neurochemical signal occurs mainly by removal of the neurotransmitter molecules through other protein molecules referred to as monoamine transporters (SERT for 5-HT, DAT for DA and NET for NE).
  • Transporters are able to bind neurotransmitter molecules and move them into the presynaptic terminals, this cellular mechanism referred to as re-uptake.
  • Pharmacological inhibition of the re-uptake process can cause an increase of monoamine at synaptic level and as a consequence an enhancement of the physiological activity of neurotransmitters.
  • Serotonergic neurotransmission in the brain is mediated by a large family of receptors comprising both the G-protein coupled receptors and ligand-gated ion channels including 14 subtypes, and is involved in a vast variety of physiologic functions.
  • Compounds endowed with inhibitory properties at the SERT are predicted to have the ability to treat in mammals, including humans, a variety of disorders associated with this neural system, for example eating disorders, major depression and mood disorders, obsessive compulsive disorders, panic disorders, alcoholism, pain, memory deficits and anxiety.
  • disorders related to depression such as pseudodementia or Ganser's syndrome, migraine pain, bulimia, obesity, pre-menstrual syndrome or late luteal phase syndrome, tobacco abuse, panic disorder, post-traumatic syndrome, memory loss, dementia of ageing, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, social phobia, attention deficit hyperactivity disorder, chronic fatigue syndrome, premature ejaculation, erectile difficulty, anorexia nervosa, disorders of sleep, autism, mutism or trichotillomania.
  • depression such as pseudodementia or Ganser's syndrome, migraine pain, bulimia, obesity, pre-menstrual syndrome or late luteal phase syndrome, tobacco abuse, panic disorder, post-traumatic syndrome, memory loss, dementia of ageing, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, social phobia, attention deficit hyperactivity disorder, chronic fatigue syndrome, premature ejaculation, erectile difficulty, anorexia nervosa, disorders of sleep, autism,
  • Major depression is an affective disorder, or disorder of mood, characterized by several symptoms including feeling of profound sadness, worthlessness, despair and loss of interest in all pleasures (anhedonia), recurrent thoughts of death, mental slowing, loss of energy, an inability to take decision, often associated with anxiety and agitation. These symptoms are persistent and can range from mild to severe.
  • the pathophysiology of major depression is poorly understood being a multifactorial syndrome and, due to this, several neurotransmitter systems have been implicated.
  • the disorder stems from a decrease in the synaptic concentration of monoamine neurotransmitters, mainly NE and 5-HT, in critical brain areas, leading to the "monoamine theory" of depression.
  • SNRIs selective norepinephrine re-uptake inhibitors
  • a number of such compounds have been synthesized, e.g. Nisoxetine, Maprotiline, Tomoxetine and Reboxetine.
  • many compounds, including old tricyclic antidepressants have a mixed NET and SERT inhibition profile, like lmipramine and Amitriptyline (with SERT potency > NET) and Desipramine, Nortriptyline, and Protriptyline (NET potency > SERT).
  • the pharmacological manipulation of the DAT can in principle have the ability to elevate DA levels in the mesolimbic system, reversing the anhedonia that is a core symptom of major depression.
  • a DAT inhibition component in combination with a blockade of SERT and NET, can also have the ability to improve the lack of motivation and attention and enhance cognitive deficits seen in depressed patients.
  • blockade of DAT has to be carefully managed in order to avoid potential reinforcing effects and abuse liability.
  • compounds with DAT inhibition in their pharmacology such as Dexmethylphenidate, Methylphenidate and Bupropion, have been successfully marketed.
  • the compounds of the present invention are considered useful for the treatment of Parkinsonism, depression, obesity, narcolepsy, drug addiction or misuse, including cocaine abuse, attention-deficit hyperactivity disorders, Gilles de Ia Tourettes disease and senile dementia.
  • Dopamine re-uptake inhibitors enhance indirectly via the dopamine neurones the release of acetylcholine and are therefore also useful for the treatment of memory deficits, e.g. in Alzheimers disease, presenile dementia, memory dysfunction in ageing, and chronic fatigue syndrome.
  • Noradrenaline re-uptake inhibitors are considered useful for enhancing attention, alertness, arousal, vigilance and for treating depression.
  • One object of the present invention is to provide novel pharmaceutical compositions comprising compounds which are serotonin (5-HT), dopamine (DA) and norepinephrine (NE) re-uptake inhibitors. Furthermore, the object of the present invention is to provide novel compounds which are serotonin (5-HT), dopamine (DA) and norepinephrine (NE) re-uptake inhibitors.
  • the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt or a solvate thereof:
  • R 1 is hydrogen or C 1-4 alkyl
  • R 2 is a group A or W
  • A is: wherein p is 0, 1 , 2, 3, 4 or 5 and R 4 is halogen;
  • W is an ⁇ or ⁇ naphthyl group, optionally substituted by 1 to 7 groups R 15 , each independently selected from the group consisting of hydrogen, cyano and Ci -4 alkyl;
  • R 3 is a group P:
  • R 5 is selected from the group consisting of hydrogen, C 1-4 alkyl, haloC ⁇ 4alkyl, C 3 - 6 cycloalkyl and Cs- ⁇ cycloalkylCi-salkyl, and n is 1 or 2.
  • C 1-4 alkyl refers to an alkyl group having from one to four carbon atoms, in all isomeric forms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert- butyl.
  • C 1-3 alkyl refers to an alkyl group having from one to three carbon atoms, in all isomeric forms, ie methyl, ethyl, propyl and isopropyl.
  • Cs-ecycloalkyl as used herein means a non aromatic monocyclic hydrocarbon ring of 3 to 6 carbon atom, which may be saturated or unsaturated.
  • saturated cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; while unsaturated cycloalkyls include cyclopentenyl and cyclohexenyl, and the like.
  • C 3 - 6 cycloalkylC 1-3 alkyr as used herein means an alkyl having from one to three carbon atoms wherein one hydrogen atom is replaced with a C 3 _ 6 cycloalkyl group as defined above, for example methylcyclopropane.
  • C 1-4 alkoxy refers to a linear chain or branched chain alkoxy (or “alkyloxy”) group having from one to four carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy.
  • haloC 1-4 alkyl as used herein means an alkyl group having one or more carbon atoms and wherein at least one hydrogen atom is replaced with halogen, preferably fluorine, such as for example a trifluoromethyl group and the like.
  • halogen and its abbreviation “halo” refer to fluorine (F), chlorine (Cl), bromine (Br) or iodine (I). Where the term “halo” is used before another group, it indicates that the group is substituted by one or more halogen atoms.
  • R 1 is hydrogen
  • R 1 is C 1-4 alkyl.
  • R 2 is:
  • R 2 is phenyl substituted by one, two or three halogens.
  • R 2 is phenyl substituted by two halogens.
  • R 2 is dichlorophenyl. In one embodiment, R 2 is 3,4-dichlorophenyl.
  • R 2 is an ⁇ or ⁇ naphthyl group, optionally substituted by 1 to 7 groups R 15 , each independently selected from the group consisting of hydrogen, cyano and C 1- 4 alkyl.
  • R 3 is a group:
  • n is 2.
  • R 5 is selected from the group consisting of C 1-4 alkyl, haloC 1-4 alkyl, C 3 - 6 cycloalkyl and Cs-ecycloalkylC ⁇ alkyl. In one embodiment, R 5 is selected from the group consisting of C 3 - 6 cycloalkyl and Cs-ecycloalkylmethyl.
  • R 5 is selected from the group consisting of methyl, ethyl, cyclobutyl, isopropyl, sec-butyl, CH 2 CF 3 and cyclopropylmethyl.
  • compounds of formula (I') which correspond to the compounds of formula (I), or pharmaceutically acceptable salts, solvates or prodrugs thereof, having "cis" disposition, represented by the bold highlight of the two bonds near the cyclopropyl moiety:
  • R 1 , R 2 and R 3 are defined as above for compounds of formula (I).
  • compounds of formula (I') may have relative exo or endo stereochemistry generated by the relative disposition in the space of the group R 2 and the two hydrogen atoms on the cis junction.
  • the structures below show the relative exo/endo stereochemistry for compounds of formula endo- (V) and exo- (V):
  • salt refers to any salt of a compound according to the present invention prepared from an inorganic or organic acid or base, quaternary ammonium salts and internally formed salts and also includes pharmaceutically acceptable salts.
  • salts are particularly suitable for medical applications because of their greater aqueous solubility relative to the parent compounds. Such salts must clearly have a pharmaceutically acceptable anion or cation.
  • Certain of the compounds of the invention may form acid or base addition salts with less than one, or one or more, equivalents of the acid or of the base.
  • the present invention includes within its scope all possible stoichiometric and non-stoichiometric forms.
  • Pharmaceutically acceptable salts may also be prepared from other salts, including other pharmaceutically acceptable salts, of the compound of formula (I) using conventional methods.
  • Suitably pharmaceutically acceptable salts of the compounds of the present invention include acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, hydroiodic, phosphoric, metaphosphoric, nitric and sulfuric acids, and with organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, naphtoic, formic, propionic, glycolic, gluconic, maleic, succinic, camphorsulfuric, isothionic, mucic, gentisic, isonicotinic, saccharic, glucuronic, furoic, glutamic, ascorbic, anthranilic, salicylic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, pantothenic, stearic, sulfinilic, alginic, galacturonic and arylsulfonic, for example
  • prodrugs are also included within the context of this invention.
  • prodrug means a compound which is converted within the body, e.g. by hydrolysis in the blood, into its active form that has medical effects.
  • Pharmaceutically acceptable prodrugs are described in T. Higuchi and V. Stella, Prodrugs as Novel Delivery
  • Prodrugs are generally prepared by modifying functional groups in a way such that the modification is cleaved, either by routine manipulation or in vivo, yielding the parent compound.
  • Prodrugs include, for example, compounds of this invention wherein hydroxy, amine or sulfhydryl groups are bonded to any group that, when administered to a patient, cleaves to form the hydroxy, amine or sulfhydryl groups.
  • representative examples of prodrugs include (but are not limited to) acetate, formate and benzoate derivatives of alcohol, sulfhydryl and amine functional groups of the compounds of structure (I).
  • esters may be employed, such as methyl esters, ethyl esters, and the like. Esters may be active in their own right and /or be hydrolysable under in vivo conditions in the human body. Suitable pharmaceutically acceptable in vivo hydrolysable ester groups include those which break down readily in the human body to leave the parent acid or its salt.
  • crystalline forms of the compounds of the present invention may exist as polymorphs, which are included in the present invention.
  • Suitable protecting groups for use according to the present invention are well known to those skilled in the art and may be used in a conventional manner. See, for example, "Protective groups in organic synthesis” by T. W. Greene and P. G. M. Wuts (John Wiley & sons 1991 ) or "Protecting Groups” by PJ. Kocienski (Georg Thieme Verlag 1994).
  • suitable amino protecting groups include acyl type protecting groups (e.g.
  • aromatic urethane type protecting groups e.g. benzyloxycarbonyl (Cbz) and substituted Cbz
  • aliphatic urethane protecting groups e.g. 9-fluorenylmethoxycarbonyl (Fmoc), t- butyloxycarbonyl (Boc), isopropyloxycarbonyl, cyclohexyloxycarbonyl
  • alkyl type protecting groups e.g. benzyl, trityl, chlorotrityl.
  • oxygen protecting groups may include for example alky silyl groups, such as trimethylsilyl or tert- butyldimethylsilyl; alkyl ethers such as tetrahydropyranyl or tert-butyl; or esters such as acetate.
  • alky silyl groups such as trimethylsilyl or tert- butyldimethylsilyl
  • alkyl ethers such as tetrahydropyranyl or tert-butyl
  • esters such as acetate.
  • the present invention also includes isotopically-labelled compounds, which are identical to those recited in formula (I) and following, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes that can be incorporated into compounds of the invention and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulphur, fluorine, iodine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 17 O, 18 0, 31 P, 32 P, 35 S, 18 F, 36 CI, 123 I and 125 I.
  • Isotopically-labelled compounds of the present invention for example those into which radioactive isotopes such as 3 H, 14 C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., 3 H, and carbon-14, i.e., 14 C, isotopes are particularly preferred for their ease of preparation and detectability.
  • 11 C and 18 F isotopes are particularly useful in PET (positron emission tomography), and 125 I isotopes are particularly useful in SPECT (single photon emission computerized tomography), all useful in brain imaging.
  • substitution with heavier isotopes such as deuterium, i.e., 2 H can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances, lsotopically labelled compounds of the present invention and non-pharmaceutically acceptable salts thereof can generally be prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples below, by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.
  • the compound of the invention is selected from the list consisting of:
  • the compound of the invention is selected from the list consisting of the hydrochloride salt of:
  • the present invention also provides a process for preparing a compound of the present invention.
  • the compounds of the invention may be prepared according to the following synthetic schemes.
  • compounds of formula (Ib), as above defined may be obtained according to Scheme 2, starting from compounds of formula (Ic), as above defined, and previously protected at the nitrogen with an appropriate protecting group (such as BOC), through standard alkylation procedures, for example using a R 5 X alkylating agent (wherein X is a a leaving group such as an halogen atom) and R 5 is as defined for formula (I), in the presence of a strong base (such as NaH), in an aprotic solvent (such as DMF), at a temperature between 0 0 C and room temperature. Subsequent removal of the N-BOC can be accomplished using standard conditions, such as trifluoroacetic acid in dichloromethane at room temperature.
  • an appropriate protecting group such as BOC
  • Compounds of formula (Ie) may be obtained from compounds of formula (If) that are compounds of formula (I) wherein R 1 is hydrogen and R 3 is a group P wherein R 5 is hydrogen and n is 2, according to Scheme 7_through standard alkylation procedures, using for example R 5 X alkylating agent (wherein X is a a leaving group such as an halogen atom), in the presence of a strong base (such as NaH), in an aprotic solvent, (such as DMF), at temperature comprised between 0 0 C and room temperature.
  • R 5 X alkylating agent wherein X is a a leaving group such as an halogen atom
  • a strong base such as NaH
  • an aprotic solvent such as DMF
  • Compounds of formula (If) may be obtained from compounds of formula (V), according to Scheme 8, by hydroboration of the alkene with borane-THF complex in THF at a temperature between 0 0 C and room temperature followed by oxidation with hydrogen peroxide and NaOH 3.0M at 0 0 C.
  • Compounds of formula (Vl) may be obtained from compounds of formula (Ig), that are compounds of formula (I) wherein R 2 is a group A or W, R 3 is CH 2 OH and Pg is a suitable N-protecting group (typically BOC), according to Scheme 10, by oxidation with Dess- Martin periodinane in DCM at a temperature between 0 0 C and room temperature.
  • R 2 is a group A or W
  • R 3 is CH 2 OH
  • Pg is a suitable N-protecting group (typically BOC)
  • Compounds of formula (Ig) may be obtained from compounds of formula (Ic), that are compounds of formula (I) wherein R 1 is hydrogen and R 3 is a group P wherein R 5 is hydrogen and n is 1 , according to Scheme 11 , through a suitable protecting agent, such as reaction with BOC anhydride, in DCM at a temperature between 0 0 C and room temperature.
  • a suitable protecting agent such as reaction with BOC anhydride
  • Compounds of formula (V), that are compounds of formula (I) wherein R 2 is a group A or W, R 3 is a P group wherein n is 2 and R 5 is Ci -4 alkyl, C 3-6 cycloalkyl or C 3-6 cycloalkylCi. 3 alkyl, may be obtained according to Scheme 12, starting from compound of formula (VII), through an exhaustive reduction procedure using borane-THF complex, in an aprotic solvent (such as THF), at reflux temperature for the appropriate time, typically between 2 and 4 hours.
  • an aprotic solvent such as THF
  • Compounds of formula (VII) may be obtained, according to Scheme 13, by oxidation of compounds of formula (VIII) with manganese dioxide to give in situ the corresponding diazo-derivatives in an aprotic organic solvent (such as 1 ,4-dioxane) and then reacting them with maleimide in an aprotic organic solvent (such as 1 ,4-dioxane) heating at reflux temperature for between 1 to 3 hours.
  • an aprotic organic solvent such as 1 ,4-dioxane
  • Specific enantiomers or diastereoisomers of the compounds of the present invention may be obtained from the corresponding enantiomeric or diastereoisomeric mixture using chiral chromatographic methods such as for example chiral HPLC. Alternatively, specific enantiomers or diastereoisomers of the compounds may be obtained from the corresponding enantiomeric or diastereoisomeric mixture using chiral crystallization methods such as precipitation with chiral acids. Specific enantiomers or diastereoisomers of a compound of the invention may also be synthesised from the appropriate optically active intermediate using any of the general processes described herein.
  • a specific enantiomer or diastereoisomer of a compound the invention may be synthesised from the appropriate stereochemical ⁇ enriched intermediate using any of the general processes described herein and by combining it with any of the conventional resolution methods above described.
  • Optically active intermediates or stereochemical ⁇ enriched intermediates may be generated by resolution of a corresponding enantiomeric or diastereosiomeric mixtures using conventional methods or by performance of stereoselective reactions or by combining different resolution techniques. Also specific enantiomers or diastereoisomers of the compounds may be obtained by combining conventional methods above described.
  • the compounds of the present invention are useful in the treatment of a disorder or a disease responsive to the monoamine neurotransmitter re-uptake inhibiting activity of the compounds.
  • This activity of the compounds of the invention may make them useful in the treatment of Parkinsonism, depression, eating disorders, sleep disorders, substance related disorders, attention-deficit hyperactivity disorders, anxiety disorders, cognition impairment, sexual dysfunctions, obsessive compulsive spectrum disorders, Gilles de Ia Tourettes disease and senile dementia, as well as other disorders sensitive to the monoamine neurotransmitter re-uptake-inhibiting activity of the compounds.
  • depression includes: Depression and mood disorders including Major Depressive Episode, Manic Episode, Mixed Episode and Hypomanic Episode; Depressive Disorders including Major Depressive Disorder, Dysthymic Disorder (300.4), Depressive Disorder Not Otherwise Specified (31 1 ); Other Mood Disorders including Mood Disorder Due to a General Medical Condition (293.83) which includes the subtypes With Depressive Features, With Major Depressive-like Episode, With Manic Features and With Mixed Features), Substance- Induced Mood Disorder (including the subtypes With Depressive Features, With Manic Features and With Mixed Features) and Mood Disorder Not Otherwise Specified (296.90): Bipolar Disorders including Bipolar I Disorder, Bipolar Il Disorder (Recurrent Major Depressive Episodes with Hypomanic Episodes) (296.89), Cyclothymic Disorder (301.13) and Bipolar Disorder Not Otherwise Specified (296.80);
  • anxiety disorders includes:
  • subject related disorder includes:
  • Substance-related disorders including Substance Use Disorders such as Substance Dependence, Substance Craving and Substance Abuse; Substance-Induced Disorders such as Substance Intoxication, Substance Withdrawal, Substance-Induced Delirium, Substance-Induced Persisting Dementia, Substance-Induced Persisting Amnestic Disorder, Substance-Induced Psychotic Disorder, Substance-Induced Mood Disorder, Substance-Induced Anxiety Disorder, Substance-Induced sexual Dysfunction, Substance- Induced Sleep Disorder and Hallucinogen Persisting Perception Disorder (Flashbacks); Alcohol-Related Disorders such as Alcohol Dependence (303.90), Alcohol Abuse (305.00), Alcohol Intoxication (303.00), Alcohol Withdrawal (291.81 ), Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol- Induced Persisting Amnestic Disorder, Alcohol-Induced Psychotic Disorder,
  • Sleep disorder includes:
  • Sleep disorders including primary sleep disorders such as Dyssomnias such as Primary Insomnia (307.42), Primary Hypersomnia (307.44), Narcolepsy (347), Breathing-Related Sleep Disorders (780.59), Circadian Rhythm Sleep Disorder (307.45) and Dyssomnia Not Otherwise Specified (307.47); primary sleep disorders such as Parasomnias such as Nightmare Disorder (307.47), Sleep Terror Disorder (307.46), Sleepwalking Disorder (307.46) and Parasomnia Not Otherwise Specified (307.47); Sleep Disorders Related to Another Mental Disorder such as Insomnia Related to Another Mental Disorder (307.42) and Hypersomnia Related to Another Mental Disorder (307.44); Sleep Disorder Due to a General Medical Condition; and Substance-Induced Sleep Disorder including the subtypes Insomnia Type, Hypersomnia Type, Parasomnia Type and Mixed Type;
  • treating disorder includes:
  • Eating disorders such as Anorexia Nervosa (307.1 ) including the subtypes Restricting Type and Binge-Eating/Purging Type; Bulimia Nervosa (307.51 ) including the subtypes Purging Type and Nonpurging Type; Obesity; Compulsive Eating Disorder; Binge Eating Disorder; and Eating Disorder Not Otherwise Specified (307.50):
  • Attention-Deficit/Hyperactivity Disorder includes:
  • Attention-Deficit/Hyperactivity Disorder including the subtypes Attention-Deficit /Hyperactivity Disorder Combined Type (314.01 ), Attention-Deficit /Hyperactivity Disorder Predominantly Inattentive Type (314.00), Attention-Deficit /Hyperactivity Disorder Hyperactive-Impulse Type (314.01 ) and Attention-Deficit /Hyperactivity Disorder Not Otherwise Specified (314.9); Hyperkinetic Disorder; Disruptive Behaviour Disorders such as Conduct Disorder including the subtypes childhood-onset type (321.81 ), Adolescent- Onset Type (312.82) and Unspecified Onset (312.89), Oppositional Defiant Disorder (313.81 ) and Disruptive Behaviour Disorder Not Otherwise Specified; and Tic Disorders such as Tourette's Disorder (307.23);
  • Cognition impairment includes: Cognition impairment including cognition impairment in other diseases such as schizophrenia, bipolar disorder, depression, other psychiatric disorders and psychotic conditions associated with cognitive impairment, e.g. Alzheimer's disease;
  • Sexual dysfunctions including sexual Desire Disorders such as Hypoactive Sexual Desire Disorder (302.71 ), and sexual Aversion Disorder (302.79); sexual arousal disorders such as Female sexual Arousal Disorder (302.72) and Male Erectile Disorder (302.72); orgasmic disorders such as Female Orgasmic Disorder (302.73), Male Orgasmic Disorder (302.74) and Premature Ejaculation (302.75); sexual pain disorder such as Dyspareunia (302.76) and Vaginismus (306.51 ); Sexual Dysfunction Not Otherwise Specified (302.70); paraphilias such as Exhibitionism (302.4), Fetishism (302.81 ), Frotteurism (302.89), Pedophilia (302.2), Sexual Masochism (302.83), sexual Sadism (302.84), Transvestic Fetishism (302.3), Voyeurism (302.82) and Paraphilia Not Otherwise Specified (302.9); gender identity disorders such as Gender Identity Disorder in Children (302.6) and Gender Identity Disorder in Adolescents or Adults (302.85); and
  • Obsessive compulsive spectrum disorder includes:
  • Obsessive compulsive spectrum disorder including Obsessive compulsive disorders (300.3), somatoform disorders including body dysmorphic disorder (300.7) and hyperchondriasis (300.7), bulimia nervosa (307.51 ), anorexia nervosa (307.1 ), eating disorders not elsewhere classified (307.50) such as binge eating, impulse control disorders not elsewhere classified (including intermitted explosive disorder (312.34), compulsive buying or shopping, repetitive self-mutilation, onychophagia, psychogenic excoriation, kleptomania (312.32), pathological gambling (312.31 ), trichotillomania (312.39) and internet addiction), paraphilia (302.70) and nonparaphilic sexual addictions, Sydeham's chorea, torticollis, autistic disorders (299.0), compulsive hoarding, and movement disorders, including Tourette's syndrome (307.23).
  • somatoform disorders including body dysmorphic disorder (300.7) and hyperchondriasis (300.7
  • compounds of the invention may be useful as analgesics.
  • they may be useful in the treatment of chronic inflammatory pain (e.g. pain associated with rheumatoid arthritis, osteoarthritis, rheumatoid spondylitis, gouty arthritis and juvenile arthritis); musculoskeletal pain; lower back and neck pain; sprains and strains; neuropathic pain; sympathetically maintained pain; myositis; pain associated with cancer and fibromyalgia; pain associated with migraine; pain associated with influenza or other viral infections, such as the common cold; rheumatic fever; pain associated with functional bowel disorders such as non-ulcer dyspepsia, non-cardiac chest pain and irritable bowel syndrome; pain associated with myocardial ischemia; post operative pain; headache; toothache; and dysmenorrhea.
  • chronic inflammatory pain e.g. pain associated with rheumatoid arthritis, osteoarthritis, rheumatoid
  • Neuropathic pain syndromes can develop following neuronal injury and the resulting pain may persist for months or years, even after the original injury has healed.
  • Neuronal injury may occur in the peripheral nerves, dorsal roots, spinal cord or certain regions in the brain.
  • Neuropathic pain syndromes are traditionally classified according to the disease or event that precipitated them.
  • Neuropathic pain syndromes include: diabetic neuropathy; sciatica; non-specific lower back pain; multiple sclerosis pain; fibromyalgia; HIV-related neuropathy; post-herpetic neuralgia; trigeminal neuralgia; and pain resulting from physical trauma, amputation, cancer, toxins or chronic inflammatory conditions.
  • neuropathic pain are incredibly heterogeneous and are often described as spontaneous shooting and lancinating pain, or ongoing, burning pain.
  • pain associated with normally non-painful sensations such as "pins and needles" (paraesthesias and dysesthesias), increased sensitivity to touch (hyperesthesia), painful sensation following innocuous stimulation (dynamic, static or thermal allodynia), increased sensitivity to noxious stimuli (thermal, cold, mechanical hyperalgesia), continuing pain sensation after removal of the stimulation (hyperpathia) or an absence of or deficit in selective sensory pathways (hypoalgesia).
  • Compounds of the invention may also be useful in the amelioration of inflammatory disorders, for example in the treatment of skin conditions (e.g. sunburn, burns, eczema, dermatitis, psoriasis); ophthalmic diseases such as glaucoma, retinitis, retinopathies, uveitis and of acute injury to the eye tissue (e.g. conjunctivitis); lung disorders (e.g. asthma, bronchitis, emphysema, allergic rhinitis, respiratory distress syndrome, pigeon fancier's disease, farmer's lung, chronic obstructive pulmonary disease, (COPD); gastrointestinal tract disorders (e.g.
  • aphthous ulcer Crohn's disease, atopic gastritis, gastritis varialoforme, ulcerative colitis, coeliac disease, regional ileitis, irritable bowel syndrome, inflammatory bowel disease, gastroesophageal reflux disease); other conditions with an inflammatory component such as migraine, multiple sclerosis, myocardial ischemia.
  • compounds of the invention are useful in the treatment of depression and anxiety disorders.
  • compounds of the invention are useful in the treatment of depression.
  • Treatment includes prophylaxis, where this is appropriate for the relevant condition(s).
  • the present invention provides a compound of the present invention for use in therapy.
  • the present invention also provides a compound of the present invention for use in the treatment of a disorder or a disease responsive to the monoamine neurotransmitter reuptake inhibiting activity of the compounds.
  • the present invention also provides a compound of the present invention for use in the treatment of a condition for which inhibition of serotonin (5-HT), dopamine (DA) and norepinephrine (NE), is beneficial.
  • 5-HT serotonin
  • DA dopamine
  • NE norepinephrine
  • the present invention also provides a compound of the present invention for use in the treatment of depression or a mood disorder.
  • the present invention also provides a method of treating a disorder or a disease responsive to monoamine neurotransmitter re-uptake inhibiting activity, which comprises administering to a mammal (e.g. human) in need thereof an effective amount of a compound of the present invention.
  • a mammal e.g. human
  • the present invention also provides a method of treating a condition for which inhibition of serotonin (5-HT), dopamine (DA) and norepinephrine (NE), is beneficial, which comprises administering to a mammal (e.g. human) in need thereof an effective amount of a compound of the present invention.
  • a mammal e.g. human
  • the present invention also provides a method of treating depression or a mood disorder, which comprises administering to a mammal (e.g. human) in need thereof an effective amount of a compound of the present invention.
  • a mammal e.g. human
  • the present invention also provides use of a compound of the present invention in the manufacture of a medicament for the treatment of a disorder or a disease responsive to monoamine neurotransmitter re-uptake inhibiting activity of the compound.
  • the present invention also provides use of a compound of the present invention in the manufacture of a medicament for the treatment of a condition in a mammal for which inhibition of serotonin (5-HT), dopamine (DA) and norepinephrine (NE) is beneficial.
  • 5-HT serotonin
  • DA dopamine
  • NE norepinephrine
  • the present invention also provides use of a compound of the present invention in the manufacture of a medicament for the treatment of depression or a mood disorder.
  • the compounds of the invention may also be used in combination with other therapeutic agents.
  • the invention thus provides, in a further aspect, a combination comprising a compound of the invention together with a further therapeutic agent.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent psychotic disorders: i) antipsychotics; ii) drugs for extrapyramidal side effects, for example anticholinergics (such as benztropine, biperiden, procyclidine and trihexyphenidyl), antihistamines (such as diphenhydramine) and dopaminergics (such as amantadine); iii) antidepressants; iv) anxiolytics; and v) cognitive enhancers for example cholinesterase inhibitors (such as tacrine, donepezil, rivastigmine and galantamine).
  • anticholinergics such as benztropine, biperiden, procyclidine and trihexyphenidyl
  • antihistamines such as diphenhydramine
  • dopaminergics such as amantadine
  • antidepressants such as amantadine
  • iv) anxiolytics such as anxio
  • the compounds of the invention may be used in combination with antidepressants to treat or prevent depression and mood disorders.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent bipolar disease: i) mood stabilisers; ii) antipsychotics; and iii) antidepressants.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent anxiety disorders: i) anxiolytics; and ii) antidepressants.
  • the compounds of the invention may be used in combination with the following agents to improve nicotine withdrawal and reduce nicotine craving: i) nicotine replacement therapy for example a sublingual formulation of nicotine beta-cyclodextrin and nicotine patches; and ii) bupropion.
  • the compounds of the invention may be used in combination with the following agents to improve alcohol withdrawal and reduce alcohol craving: i) NMDA receptor antagonists for example acamprosate; ii) GABA receptor agonists for example tetrabamate; and iii) Opioid receptor antagonists for example naltrexone.
  • NMDA receptor antagonists for example acamprosate
  • GABA receptor agonists for example tetrabamate
  • Opioid receptor antagonists for example naltrexone.
  • the compounds of the invention may be used in combination with the following agents to improve opiate withdrawal and reduce opiate craving: i) opioid mu receptor agonist/opioid kappa receptor antagonist for example buprenorphine; ii) opioid receptor antagonists for example naltrexone; and iii) vasodilatory antihypertensives for example lofexidine.
  • opioid mu receptor agonist/opioid kappa receptor antagonist for example buprenorphine
  • opioid receptor antagonists for example naltrexone
  • vasodilatory antihypertensives for example lofexidine.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent sleeping disorders: i) benzodiazepines for example temazepam, lormetazepam, estazolam and triazolam; ii) non-benzodiazepine hypnotics for example Zolpidem, zopiclone, zaleplon and indiplon; iii) barbiturates for example aprobarbital, butabarbital, pentobarbital, secobarbita and phenobarbital; iv) antidepressants; v) other sedative-hypnotics for example chloral hydrate and chlormethiazole.
  • benzodiazepines for example temazepam, lormetazepam, estazolam and triazolam
  • non-benzodiazepine hypnotics for example Zolpidem, zopiclone, zaleplon and indiplon
  • barbiturates for example
  • the compounds of the invention may be used in combination with the following agents to treat anorexia: i) appetite stimulants for example cyproheptidine; ii) antidepressants; iii) antipsychotics; iv) zinc; and v) premenstral agents for example pyridoxine and progesterones.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent bulimia: i) antidepressants; ii) opioid receptor antagonists; iii) antiemetics for example ondansetron; iv) testosterone receptor antagonists for example flutamide; v) mood stabilisers; vi) zinc; and vii) premenstral agents.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent autism: i) antipsychotics; ii) antidepressants; iii) anxiolytics; and iv) stimulants for example methylphenidate, amphetamine formulations and pemoline.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent ADHD: i) stimulants for example methylphenidate, amphetamine formulations and pemoline; and ii) non-stimulants for example norepinephrine reuptake inhibitors (such as atomoxetine), alpha 2 adrenoceptor agonists (such as clonidine), antidepressants, modafinil, and cholinesterase inhibitors (such as galantamine and donezepil).
  • stimulants for example methylphenidate, amphetamine formulations and pemoline
  • non-stimulants for example norepinephrine reuptake inhibitors (such as atomoxetine), alpha 2 adrenoceptor agonists (such as clonidine), antidepressants, modafinil, and cholinesterase inhibitors (such as galantamine and donezepil).
  • the compounds of the invention may be used in combination with the following agents to treat personality disorders: i) antipsychotics; ii) antidepressants; iii) mood stabilisers; and iv) anxiolytics.
  • the compounds of the invention may be used in combination with the following agents to treat or prevent male sexual dysfunction: i) phosphodiesterase V inhibitors, for example vardenafil and sildenafil; ii) dopamine agonists/dopamine transport inhibitors for example apomorphine and buproprion; iii) alpha adrenoceptor antagonists for example phentolamine; iv) prostaglandin agonists for example alprostadil; v) testosterone agonists such as testosterone; vi) serotonin transport inhibitors for example serotonin reuptake inhibitors; v) noradrenaline transport inhibitors for example reboxetine and vii) 5-HT1A agonists, for example flibanserine.
  • phosphodiesterase V inhibitors for example vardenafil and sildenafil
  • dopamine agonists/dopamine transport inhibitors for example apomorphine and buproprion
  • alpha adrenoceptor antagonists
  • the compounds of the invention may be used in combination with the same agents specified for male sexual dysfunction to treat or prevent female sexual dysfunction, and in addition an estrogen agonist such as estradiol.
  • Antipsychotic drugs include Typical Antipsychotics (for example chlorpromazine, thioridazine, mesoridazine, fluphenazine, perphenazine, prochlorperazine, trifluoperazine, thiothixine, haloperidol, molindone and loxapine); and Atypical Antipsychotics (for example clozapine, olanzapine, risperidone, quetiapine, aripirazole, ziprasidone and amisulpride).
  • Typical Antipsychotics for example chlorpromazine, thioridazine, mesoridazine, fluphenazine, perphenazine, prochlorperazine, trifluoperazine, thiothixine, haloperidol, molindone and loxapine
  • Atypical Antipsychotics for example clozapine, olanzapine, risperidone, quetiapine,
  • Antidepressant drugs include serotonin reuptake inhibitors (such as citalopram, escitalopram, fluoxetine, paroxetine and sertraline); dual serotonin/noradrenaline reuptake inhibitors (such as venlafaxine, duloxetine and milnacipran); Noradrenaline reuptake inhibitors (such as reboxetine); tricyclic antidepressants (such as amitriptyline, clomipramine, imipramine, maprotiline, nortriptyline and trimipramine); monoamine oxidase inhibitors (such as isocarboxazide, moclobemide, phenelzine and tranylcypromine); and others (such as bupropion, mianserin, mirtazapine, nefazodone and trazodone).
  • serotonin reuptake inhibitors such as citalopram, escitalopram, fluoxetine, parox
  • Mood stabiliser drugs include lithium, sodium valproate/valproic acid/divalproex, carbamazepine, lamotrigine, gabapentin, topiramate and tiagabine.
  • Anxiolytics include benzodiazepines such as alprazolam and lorazepam.
  • the compounds of the present invention are usually administered as a standard pharmaceutical composition.
  • the present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of the invention and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition can be for use in the treatment of any of the conditions described herein.
  • a pharmaceutical composition comprising a compound of the present invention and a pharmaceutically acceptable carrier is provided.
  • the compounds of the invention may be administered by any convenient method, for example by oral, parenteral (e.g. intravenous), buccal, sublingual, nasal, rectal or transdermal administration and the pharmaceutical compositions adapted accordingly.
  • the compounds of the invention which are active when given orally can be formulated as liquids or solids, for example syrups, suspensions or emulsions, tablets, capsules and lozenges.
  • a liquid formulation will generally consist of a suspension or solution of the compound or salt in a suitable liquid carrier(s) for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil.
  • a suitable liquid carrier for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil.
  • the formulation may also contain a suspending agent, preservative, flavouring or colouring agent.
  • a composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations. Examples of such carriers include magnesium stearate, starch, lactose, sucrose and cellulose.
  • a composition in the form of a capsule can be prepared using routine encapsulation procedures.
  • pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule.
  • Typical parenteral compositions consist of a solution or suspension of the compound or salt in a sterile aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil.
  • a sterile aqueous carrier or parenterally acceptable oil for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil.
  • the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration.
  • compositions for nasal administration may conveniently be formulated as aerosols, drops, gels and powders.
  • Aerosol formulations typically comprise a solution or fine suspension of the active substance in a pharmaceutically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device.
  • the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve which is intended for disposal once the contents of the container have been exhausted.
  • the dosage form comprises an aerosol dispenser
  • a propellant which can be a compressed gas such as compressed air or an organic propellant such as a fluorochloro- hydrocarbon.
  • the aerosol dosage forms can also take the form of a pump-atomiser.
  • compositions suitable for buccal or sublingual administration include tablets, lozenges and pastilles, wherein the active ingredient is formulated with a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.
  • a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.
  • compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base such as cocoa butter.
  • compositions suitable for transdermal administration include ointments, gels and patches.
  • the composition is in unit dose form such as a tablet, capsule or ampoule.
  • Each dosage unit for oral administration contains for example from 0.5 to 250 mg (and for parenteral administration contains for example from 0.05 to 25 mg) of a compound of the invention calculated as the free base.
  • the compounds will be administered for a period of continuous therapy, for example for a week or more.
  • a compound of the invention or a pharmaceutically acceptable derivative thereof When a compound of the invention or a pharmaceutically acceptable derivative thereof is used in combination with a second therapeutic agent active against the same disease state the dose of each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art. It will be appreciated that the amount of a compound of the invention required for use in treatment will vary with the nature of the condition being treated and the age and the condition of the patient and will be ultimately at the discretion of the attendant physician or veterinarian.
  • compositions comprising a combination as defined above together with a pharmaceutically acceptable carrier or excipient comprise a further aspect of the invention.
  • the individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations by any convenient route.
  • the invention is also directed to a novel kit-of-parts that is suitable for use in the treatment of disorders as above defined comprising a first dosage form comprising a compound of the invention and a second dosage form comprising another therapeutic agent, for simultaneous, separate or sequential administration.
  • either the compound of the invention or the second therapeutic agent may be administered first.
  • the combination may be administered either in the same or different pharmaceutical composition.
  • the two compounds When combined in the same formulation it will be appreciated that the two compounds must be stable and compatible with each other and the other components of the formulation. When formulated separately they may be provided in any convenient formulation, conveniently in such manner as are known for such compounds in the art.
  • Membranes for the SPA-binding assays are produced by HEK-293F cell infection with BacMam viruses generated for each single human SERT, NET, and DAT transporter.
  • hSERT and hDAT are cloned into pFBMRfA vector whereas hNET is cloned into pFASTBacMami vector.
  • the generation and use of BacMam viruses is described in Condreay JP et al, Proc. Natl. Acad. Sci. USA, 1999, 96:127-132 and Hassan NJ et al, Protein Expression and Purification, 47(2): 591-598, 2006.
  • affinities of the compounds of the invention for the human serotonin transporter (SERT), human norepinephrine transporter (NET) and for the human dopamine transporter (DAT) may be determined by one of the assays described below. Such affinity is typically calculated from the IC 50 obtained in competition experiments as the concentration of a compound necessary to displace 50% of the radiolabeled ligand from the transporter, and is reported as a "K,” value calculated by the following equation: ⁇ _ IC 50
  • the HEK-293F suspension cell line (Invitrogen) is routinely grown in 293_Freestyle Expression media (Invitrogen) in shake flask suspension culture.
  • the culture is transduced with the appropriate transporter BacMam at a MOI (multiplicity of infection) of 100 virus particles per cell and incubated for 48hrs at 37 0 C, 5% CO 2 in air, shaken at 90rpm in a humidified shaker incubator.
  • the culture is then harvested by centrifugation at 1000g, 4 0 C, for 10 minutes and the cell pellet stored at -8O 0 C until required.
  • Transduced cell pellets are re-suspended to 10x volume with buffer-A (5OmM HEPES, 1 mM EDTA, 1 mM leupeptin, 25ug/ml_ bacitracin, 1 mM phenylmethylsulfonylfluoride, PMSF, 2 ⁇ M pepstatin A, pH 7.7) and homogenised with 2x 15 second bursts in a glass Waring blender. The homogenate is then centrifuged for 20 minutes at 50Og. Following this, the supernatant is pooled and centrifuged at 13,00Og for 30 minutes.
  • buffer-A 5OmM HEPES, 1 mM EDTA, 1 mM leupeptin, 25ug/ml_ bacitracin, 1 mM phenylmethylsulfonylfluoride, PMSF, 2 ⁇ M pepstatin A, pH 7.7
  • the homogenate is then centrifuged for 20 minutes at 50O
  • the protocol for hSERT binding SPA is based on Trilux beta-counter (Wallac, Perkin- Elmer). Briefly, 0.5 ⁇ l_ of test compound in neat DMSO (or 1 ⁇ M fluoxetine as positive control) is added by 50 ⁇ l_ of the SPA mixture, containing 2mg/ml_ SPA beads (Amersham RPNQ0001 ), 4 ⁇ g/ml_ hSERT Bacmam membranes, 0.01% pluronic F-127, 2.5nM [ 3 H]citalopram in the assay buffer (2OmM HEPES, 145mM NaCI, 5mM KCI, pH 7.3). Incubation are performed at room temperature for at least 2 hours. Counts are stable and could be read up to 3 days.
  • hDAT hNET and hSERT SPA-binding assays are performed by using a Viewlux beta-counter (Wallac, Perkin-Elmer) with imaging PS-WGA beads (Amersham RPNQ0260) in a final assay volume of 30 ⁇ l_ and in a 384-well plate format (Greiner 781075).
  • Viewlux beta-counter Wallac, Perkin-Elmer
  • PS-WGA beads Amersham RPNQ0260
  • NMR Nuclear Magnetic Resonance
  • Mass spectra are typically taken on a 4 Il triple quadrupole Mass Spectrometer (Micromass UK) or on a Agilent MSD 1 100 Mass Spectrometer, operating in ES (+) and ES (-) ionization mode or on an Agilent LC/MSD 1100 Mass Spectrometer, operating in ES (+) and ES (-) ionization mode coupled with HPLC instrument Agilent 1100 Series. In the mass spectra only one peak in the molecular ion cluster is reported.
  • Flash silica gel chromatography was carried out on silica gel 230-400 mesh (supplied by Merck AG Darmstadt, Germany) or over Varian Mega Be-Si pre-packed cartridges or over pre-packed Biotage silica cartridges. In a number of preparations, purification was performed using either Biotage manual flash chromatography (Flash+) or automatic flash chromatography (Horizon or SP1 ) systems. All these instruments work with Biotage Silica cartridges.
  • a Personal Chemistry EmrysTM Optimizer may be used for reactions involving microwave irradiation.
  • HgSC>4 (44.3 mg) was added to a solution of 3-(3,4- dichlorophenyl)-2-propyn-1-ol (300 mg) in 25 mL of isopropanol.
  • the reaction mixture was exposed to microwave irradiation according to the following specifications: temperature 150 0 C, time 1200 sec, fixed hold time on, sample absorption high.
  • Example 7 (1 /?,5S,6s)-6-(3,4-dichlorophenyl)-6- ⁇ [(2,2,2-trifluoroethyl)oxy]methyl ⁇ -3- azabicyclo[3.1.0]hexane hydrochloride (E7)
  • reaction mixture was stirred at r.t. overnight, then quenched with aqueous NH 4 CI sat. solution and then diluted with DCM. The organic layer was separated, dried and concentrated in vacuo. To a solution of the compound thus obtained, in dry DCM, at 0 0 C, TFA (0.112 ml.) was added and then the reaction mixture was stirred at RT for 2h.
  • Method A the title compound was prepared according to the method described in Example 12 in 5 mg yield from 1 ,1-dimethylethyl (1 R,5S,6r)-6-(3,4-dichlorophenyl)-6-(2- hydroxyethyl)-3-azabicyclo[3.1.0]hexane-3-carboxylate (P3, 40 mg) and MeI (0.030 ml_).
  • Method B to a solution of 6-(3,4-dichlorophenyl)-6-[2-(methyloxy)ethyl]-3- azabicyclo[3.1.0]hexane-2,4-dione (P5, 150 mg) in dry THF (1 ml_), at 0 0 C, BH3.THF complex (1.0M in THF, 3.82 ml.) was added and then the reaction mixture was refluxed for 3 hours. The reaction was quenched with MeOH and HCI 1 M in Et 2 O and then it was stirred at RT overnight. The solution was concentrated in vacuo and the residue was purified by SCX cartridge. The methanol/ammonia fractions were concentrated under reduced pressure to obtain the title compound (90 mg).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention porte sur des composés représentés par la formule (I), sur des procédés permettant de les préparer, sur des intermédiaires utilisés dans ces procédés, sur des compositions pharmaceutiques les contenant et sur leur utilisation en thérapie, comme inhibiteurs de réabsorption de la sérotonine (5-HT), de la dopamine (DA) et de la norépinéphrine (NE).
PCT/EP2008/060911 2007-08-24 2008-08-21 Composés WO2009027293A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0716632.5 2007-08-24
GBGB0716632.5A GB0716632D0 (en) 2007-08-24 2007-08-24 Compounds

Publications (1)

Publication Number Publication Date
WO2009027293A1 true WO2009027293A1 (fr) 2009-03-05

Family

ID=38599291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060911 WO2009027293A1 (fr) 2007-08-24 2008-08-21 Composés

Country Status (2)

Country Link
GB (1) GB0716632D0 (fr)
WO (1) WO2009027293A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150281A2 (fr) 2009-06-26 2010-12-29 Panacea Biotec Ltd. Nouveaux azabicyclohexanes
WO2015076310A1 (fr) 2013-11-20 2015-05-28 株式会社 三和化学研究所 Nouveau dérivé 3-azabicyclo[3.1.0]hexane et son utilisation à des fins médicales
US9133116B2 (en) 2010-09-28 2015-09-15 Panacea Biotec Ltd. Bicyclic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039089A1 (fr) * 1998-12-23 2000-07-06 Pfizer Limited Derives 3-azabicyclo[3.1.0] hexane utilises comme ligands de recepteurs d'opiaces
WO2007016155A2 (fr) * 2005-07-27 2007-02-08 Dov Pharmaceutical, Inc. Nouveaux 1-aryl-3-azabicyclo[3.1.0]hexanes : synthèse et emploi dans le traitement des troubles neuropsychiatriques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039089A1 (fr) * 1998-12-23 2000-07-06 Pfizer Limited Derives 3-azabicyclo[3.1.0] hexane utilises comme ligands de recepteurs d'opiaces
WO2007016155A2 (fr) * 2005-07-27 2007-02-08 Dov Pharmaceutical, Inc. Nouveaux 1-aryl-3-azabicyclo[3.1.0]hexanes : synthèse et emploi dans le traitement des troubles neuropsychiatriques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150281A2 (fr) 2009-06-26 2010-12-29 Panacea Biotec Ltd. Nouveaux azabicyclohexanes
US9133116B2 (en) 2010-09-28 2015-09-15 Panacea Biotec Ltd. Bicyclic compounds
WO2015076310A1 (fr) 2013-11-20 2015-05-28 株式会社 三和化学研究所 Nouveau dérivé 3-azabicyclo[3.1.0]hexane et son utilisation à des fins médicales
US9663463B2 (en) 2013-11-20 2017-05-30 Sanwa Kagaku Kenkyusho Co., Ltd. 3-azabicyclo[3.1.0]hexane derivative and use thereof for medical purpose

Also Published As

Publication number Publication date
GB0716632D0 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US7691893B2 (en) Chemical compounds
US7803833B2 (en) Compounds
CA2724219C (fr) 5- [5- [2- (3, 5-bis (trifluoromethyl) phenyl) -2-methylpropanoylmethylamino] -4- (4-fluoro-2-methylphenyl) ] -2-pyridinyl-2-alkyl-prolinamide, antagonistes du recepteur nk1
WO2010007032A1 (fr) Urées à base de pipéridine en tant qu’antagonistes du nk1
EP2061461B1 (fr) Derives du 3-azabicyclyo[4.1.0]heptane pour le traitement de la depression
US20100029740A1 (en) Azabicyclic compounds as serotonin, dopamine and norepinephrine re-uptake inhibitors
WO2009027293A1 (fr) Composés
US8633214B2 (en) Spiro (piperidine-4,2′-pyrrolidine)-1-(3,5-trifluoromethylphenyl) methylcarboxamides as NK1 tachikynin receptor antagonists
WO2009056520A1 (fr) Dérivés d'azabicyclo[3.2.1]octane
WO2009109608A1 (fr) Nouveaux composés
EP2190817A1 (fr) Dérivés de 3-azabicyclo(4.1.0)heptane utiles comme inhibiteurs de la réabsorption de la norépinéphrine, de la sérotonine ou de la dopamine
WO2009027294A1 (fr) Composés azabicyclo [4.1.0] heptanes substitués pour une utilisation en tant qu'inhibiteurs de la réabsorption de monoamine
WO2010130672A1 (fr) Dérivés de l'azabicyclo [4.1.0] heptane et leur utilisation en tant qu'inhibiteurs de recapture de monoamines
WO2010133569A1 (fr) Dérivés d'azabicyclo[4.1.0]heptane
WO2009141412A1 (fr) Dérivés de 3-azabicyclo [3.1.0] hexane 1,6 disubstitués destinés à être utilisés comme triples inhibiteurs de recaptage
WO2010146025A1 (fr) Dérivés d'azabicyclo [4.1.0] heptane tricycliques utilisés comme inhibiteurs du recaptage de la sérotonine, de la dopamine et de la norépinéphrine
WO2010125033A1 (fr) Dérivés d'azabicyclo[4.1.0]heptane
CN101541754A (zh) 作为单胺类重摄取抑制剂的氮杂双环化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08787358

Country of ref document: EP

Kind code of ref document: A1