WO2009024253A1 - Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks - Google Patents

Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks Download PDF

Info

Publication number
WO2009024253A1
WO2009024253A1 PCT/EP2008/006333 EP2008006333W WO2009024253A1 WO 2009024253 A1 WO2009024253 A1 WO 2009024253A1 EP 2008006333 W EP2008006333 W EP 2008006333W WO 2009024253 A1 WO2009024253 A1 WO 2009024253A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet unit
workpiece
coil
magnetic field
superconducting coil
Prior art date
Application number
PCT/EP2008/006333
Other languages
English (en)
French (fr)
Inventor
Carsten BÜHRER
Jens Müller
Original Assignee
Zenergy Power Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenergy Power Gmbh filed Critical Zenergy Power Gmbh
Priority to CN200880103773A priority Critical patent/CN101785359A/zh
Priority to EP08785274A priority patent/EP2191691B1/de
Priority to AT08785274T priority patent/ATE525888T1/de
Priority to JP2010521335A priority patent/JP2010537376A/ja
Publication of WO2009024253A1 publication Critical patent/WO2009024253A1/de
Priority to US12/709,663 priority patent/US20100147833A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/102Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces the metal pieces being rotated while induction heated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/104Structural association with clutches, brakes, gears, pulleys or mechanical starters with eddy-current brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to a method for rotating a first magnet unit with at least one superconducting (SL-), e.g. a high-temperature superconducting (HTSC) coil around an inductively heated metallic workpiece and a corresponding device.
  • SL- superconducting
  • HTSC high-temperature superconducting
  • EP-B-1 582 091 Such a method and apparatus are known from EP-B-1 582 091.
  • a magnetic field is generated by means of a HTSC coil into which the workpiece is introduced.
  • the workpiece and the magnetic field generating DC-flowed HTSC coil are rotated relative to each other, so that on the
  • HTSC for example, there are various rare earth copper superconductors such as YBa 2 Cu 3 O 7 -X (YBCO).
  • YBCO rare earth copper superconductors
  • HTSL have a SL transition temperature above 77K.
  • the invention has for its object to simplify the induction heating of workpieces with a SL coil.
  • an external magnetic field is generated with a second magnet unit, which interacts with a magnetic field generated by the first magnet unit in such a way that the first magnet unit is rotated about the workpiece to be inductively heated.
  • An embodiment of the invention can also be described as an electric motor having a rotor which has a receptacle concentric to the rotation axis of the rotor and carries an SL coil.
  • the rotor corresponds to the first magnet unit.
  • the second magnet unit corresponds to the stator of the electric motor and generates a circulating magnetic field for driving the rotor.
  • the magnetic field generated by the second magnet unit is rotated about the rotation axis of the first magnet unit. This results in a high degree of effectiveness.
  • the second magnet unit may have coils arranged around the first magnet unit, which are supplied with an alternating current which generates a magnetic field rotating, for example, about the axis of rotation of the first magnet unit.
  • permanent magnets and / or DC-current-carrying coils of the second magnet unit can be rotated about the axis of rotation of the first magnet unit.
  • an electric motor with a mechanism for driving the permanent magnets or the coils through which current flows is required, however, the method has opposite to a drive of the first magnet unit
  • the prior art has the advantage that the first magnet unit and thus the SL coil is not rigidly connected via a transmission or the like. is coupled to the electric motor, so that a heat input into the SL winding over the necessary according to the prior art drive mechanism deleted.
  • the SL coil is supplied with direct current, in particular by a constant current source.
  • a constant current source for example, the required cooling capacity can be reduced compared to an AC supply of the SL coil.
  • the coil can also be short-circuited after initial energization. Essentially, the current through the SL coil then remains constant.
  • An apparatus for carrying out the method has a first magnet unit, which is rotatable about a metallic workpiece clamped in a workpiece holder.
  • the first magnet unit has at least one SL coil, typically of a band-shaped HTSL, wherein a magnetic field generated by the first magnet unit passes through the workpiece.
  • the device For the rotary drive of the first magnet unit, the device has a second magnet unit which generates a magnetic field rotating about the axis of rotation of the first magnet unit.
  • the SL coil is connected to a constant current source.
  • the first magnet unit has a concentric with its axis of rotation recess into which the workpiece to be heated is introduced. This makes it possible to arrange the poles of a plurality of SL coils belonging to the first magnet unit around the recess and thus to arrange a workpiece introduced therein, thus producing a correspondingly large magnetic flux density in the workpiece.
  • the second magnet unit has at least two, preferably three or more, coils fixed relative to the workpiece holder and acted upon by an alternating electric field.
  • the magnetic field rotating about the axis of rotation of the first magnet unit can be generated in a simple manner.
  • the second magnet unit has permanent magnets and / or DC-fed coils, for example HTSC coils, which are rotationally driven about the axis of rotation of the first magnet unit, for example by an electric motor.
  • permanent magnets and / or DC-fed coils for example HTSC coils, which are rotationally driven about the axis of rotation of the first magnet unit, for example by an electric motor.
  • the first magnet unit may have rotatably connected permanent magnets with the SL coil, which are preferably arranged between the SL coil and the second magnet unit.
  • the permanent magnets interact with the external magnetic field generated by the second magnet unit, the SL coil essentially serving to generate the magnetic field passing through the workpiece.
  • the first magnetic unit can also have one or more coils.
  • the coils can be DC-powered, then the rotary drive is based on the principle of a synchronous motor, the coils are metallic and short-circuited, the rotary drive is based on the principle of an asynchronous motor.
  • the first magnet unit may have a plurality of SL coils, for example two or four, which are preferably arranged equidistantly around a recess of the first magnet unit for receiving the workpiece to be heated.
  • the magnetic flux passing through the workpiece and thus the heating power can be increased.
  • a thermal insulation Between the SL coil and the second magnet unit is preferably a thermal insulation. This reduces the necessary cooling capacity for the SL coil.
  • Permanent magnets may be arranged on the outer circumference of the insulation whose magnetic field, as described above, interacts with the external magnetic field of the second magnet unit in order to rotate the first magnet unit about the workpiece to be heated.
  • the insulation can be achieved for example by a vacuum-sealed cavity between the first and the second magnet unit.
  • SL coil or SL coils on the workpiece side, e.g. through a vacuumed cavity.
  • the workpiece holder can perform a movement, in particular parallel to the axis of rotation of the first magnet unit.
  • a linear actuator With a linear actuator, the direction of the current induced in the workpiece can be varied by an additional relative movement between the workpiece and the first magnet unit, which allows a more uniform heating of the workpiece and a greater power input.
  • FIG. 2 is a view of a magnet system according to FIG. 1, FIG.
  • FIG. 3 shows a section through the magnet system according to FIG. 1, FIG.
  • FIG. 5 is a view of another magnet system according to FIG. 1,
  • Fig. 6 is a cross section of the magnet system of Fig. 4 and
  • the device in Fig. 1 has a displaceable in the direction of the double arrows workpiece holder with two receptacles Ia, Ib for fixing a workpiece to be heated 2.
  • Zwi- the recordings Ia, Ib is a magnet system 10 with a recess for the workpiece 2 to produce a non-constant magnetic flux through the workpiece 2, whereby a current in the workpiece 2 is induced.
  • FIG. 2 to 4 show an embodiment of a magnet system 10.
  • a workpiece 2 which is square in cross section.
  • a first magnet unit 20 Concentrically around the workpiece is a first magnet unit 20 rotatable about the workpiece 2 with a first annular insulation 21 whose free interior is at the same time the recess for the workpiece 2.
  • Four iron cores 22 are arranged equidistantly around the first insulation 21, wherein the longitudinal axes of the iron cores (not shown) intersect at a point with the longitudinal axis (not shown) of the first insulation 21.
  • HTSL Coil 23 On each iron core 22 sits a HTSL Coil 23.
  • the HTS coils 23 are DC powered (not shown).
  • Around the coils 23 is an annular second insulation 24 into which the iron cores 22 dip (FIG. 4).
  • the first magnet unit 20 is concentrically surrounded by a second magnet unit 30.
  • the second magnet unit 30 has nine electromagnets 31 each of a coil 32 on a pole piece 33.
  • the electromagnets 31 are individually controllable and have an annular magnetic return 34.
  • a circumferential control of the electromagnets 31 is a relative to the workpiece 2 rotating Magnetic field generated, which cooperates with the magnetic field of the DC-powered HTS coils 23 of the first magnetic unit 20 and the first magnet unit 20 rotates about the workpiece.
  • the magnetic flux generated by the HTS coils 23 changes through the workpiece 2, whereby a current is induced in the workpiece 2.
  • FIG. 5 to 7 show a further embodiment of a magnet system 10.
  • the basic structure of the magnet system 10 is similar to that previously described with reference to FIG. 2, FIG. 3 and FIG. 4, therefore identical reference numerals are used for the same parts and only the sub - described differences.
  • the iron cores 22 'of the HTS coils 23' do not dip into the second annular insulation 24 '(see also FIGS. Thereby, the thermal insulation of the HTS coils 23 'can be improved.
  • the rotary drive of the first unit takes place as in the imple mentation form of FIG. 2 by applying an alternating current to the coils 32 of the second magnet unit 30.
  • the magnetic field of the coils 32 here substantially together with the magnetic field of the permanent magnets 29 'together, whereby the first Magnet unit 20 'is rotationally driven.
  • an unillustrated magnetic return e.g. be in the form of an iron ring.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Furnace Details (AREA)

Abstract

Um eine erste Magneteinheit (20) mit einer supraleitenden Spule um ein metallisches Werkstück (2) zu drehen, damit dieses induktiv erwärmt wird, kann mit einer zweiten Magneteinheit (30) ein äußeres, die erste Magneteinheit (20) antreibendes Magnetfeld erzeugt werden.

Description

Verfahren und Vorrichtung zur Induktionserwärmung eines metallischen Werkstücks
Die Erfindung betrifft ein Verfahren zum Drehen einer ers- ten Magneteinheit mit mindestens einer supraleitenden (SL-), z.B. einer hochtemperatursupraleitenden (HTSL-), Spule um ein induktiv zu erwärmendes metallisches Werkstück sowie eine entsprechende Vorrichtung.
Ein solches Verfahren und eine solche Vorrichtung sind aus der EP-B-I 582 091 bekannt. Zur Erwärmung des Werkstückes wird mittels einer HTSL-Spule ein Magnetfeld erzeugt, in das das Werkstück eingebracht wird. Das Werkstück und die das Magnetfeld erzeugende gleichstromdurchflossene HTSL- Spule werden relativ zueinander gedreht, so dass auf das
Werkstück ein zeitlich veränderliches Magnetfeld wirkt. Dadurch wird in dem Werkstück ein Strom induziert. Aufgrund des Ohm1 sehen Widerstandes des metallischen Werkstückes erwärmt der Strom das Werkstück auf eine gewünschte Tempera- tur. Der Drehantrieb erfolgt in der Regel über einen separaten Elektromotor, der mechanisch mit der HTSL-Spule oder dem Werkstück gekoppelt ist. Die in das Werkstück eingebrachte Leistung kann einige 100 kW erreichen, was entsprechend aufwendige und wartungsintensive Konstuktionen erfor- dert.
Als HTSL gibt es zum Beispiel verschiedene Seltenerd-Cu- pratsupraleiter wie YBa2Cu3O7-X (YBCO) . In der Regel haben HTSL eine SL-Sprungtemperatur oberhalb von 77K. Der Erfindung liegt die Aufgabe zugrunde, die Induktionserwärmung von Werkstücken mit einer SL-Spule zu vereinfachen.
Diese Aufgabe ist durch ein Verfahren nach dem Anspruch 1 und durch eine Vorrichtung nach dem Anspruch 5 gelöst.
Bevorzugte Ausführungs formen sind Gegenstand der von diesen abhängigen Ansprüche .
Erfindungsgemäß wird mit einer zweiten Magneteinheit ein äußeres Magnetfeld erzeugt, welches mit einem von der ersten Magneteinheit erzeugten Magnetfeld so wechselwirkt, dass die erste Magneteinheit um das induktiv zu erwärmende Werkstück gedreht wird. Dadurch entfällt der nach dem Stand der Technik notwendige separate Elektromotor sowie die An- triebsmechanik. Damit entfällt auch ein Wärmeeintrag in die SL-Spule über die mechanische Verbindung der SL-Spule mit dem Motor.
Man kann eine Aus führungsform der Erfindung auch als Elek- tromotor mit einem Rotor beschreiben, der eine zur Rota-ti- onsachse des Rotors konzentrische Aufnahme für das Werkstück hat und eine SL-Spule trägt. Der Rotor entspricht der ersten Magneteinheit. Die zweite Magneteinheit entspricht dem Stator des Elektromotors und erzeugt ein umlaufendes Magnetfeld zum Antrieb des Rotors.
Das von der zweiten Magneteinheit erzeugte Magnetfeld wird um die Drehachse der ersten Magneteinheit gedreht. Dies ergibt einen hohen Wirkungsrad.
Beispielsweise kann die zweite Magneteinheit um die erste Magneteinheit angeordnete Spulen haben, die mit einem Wechselstrom beaufschlagt werden der ein beispielsweise um die Drehachse der ersten Magneteinheit rotierendes Magnetfeld erzeugt. Alternativ können zur Erzeugung des die erste Magneteinheit antreibenden Magnetfeldes Permanentmagnete und/oder gleichstromdurchflossene Spulen der zweiten Magneteinheit um die Drehachse der ersten Magneteinheit gedreht werden. Bei ei- nem solchen Verfahren wird zwar, wie bei dem aus dem Stand der Technik bekannten Verfahren, ein Elektromotor mit einer Mechanik zum Antrieb der Permanentmagnete bzw. der gleich- stromdurchflossenen Spulen benötigt, jedoch hat das Verfahren gegenüber einem Antrieb der ersten Magneteinheit nach dem Stand der Technik den Vorteil, dass die erste Magneteinheit und damit die SL-Spule nicht starr über ein Getriebe oder dgl . mit dem Elektromotor gekoppelt ist, so dass ein Wärmeeintrag in die SL-Wicklung über die nach dem Stand der Technik notwendige Antriebsmechanik entfällt.
Vorzugsweise wird die SL-Spule mit Gleichstrom, insbesondere durch eine Konstantstromquelle, gespeist. Dadurch kann im Vergleich zu einer Wechselstromspeisung der SL-Spule die notwendige Kühlleistung reduziert werden. Die Spule kann nach einer initialen Bestromung auch kurzgeschlossen werden. Im Wesentlichen bleibt dann der Strom durch die SL- Spule konstant.
Eine Vorrichtung zur Durchführung des Verfahrens hat eine erste Magneteinheit , die um ein in einen Werkstückhalter eingespanntes metallisches Werkstück drehbar ist. Die erste Magneteinheit hat mindestens eine SL-Spule, typischerweise aus einem bandförmigen HTSL, wobei ein von der ersten Magneteinheit erzeugtes Magnetfeld das Werkstück durchsetzt. Zum Drehantrieb der ersten Magneteinheit hat die Vorrichtung eine zweite Magneteinheit , die ein um die Drehachse der ersten Magneteinheit rotierendes Magnetfeld erzeugt.
Vorzugsweise ist die SL-Spule an eine Konstantstromquelle angeschlossen. Bevorzugt hat die erste Magneteinheit eine zu ihrer Drehachse konzentrische Ausnehmung, in die das zu erwärmende Werkstück einbringbar ist. Dies ermöglicht die Pole mehrerer zur ersten Magneteinheit gehöriger SL-Spulen um die Ausnehmung und somit um ein in diese eingebrachtes Werkstück anzuordnen und so eine entsprechend große magnetische Flussdichte im Werkstück zu erzeugen.
In einer bevorzugten Ausführungsform hat die zweite Magnet- einheit mindestens zwei, vorzugsweise drei oder mehr relativ zum Werkstückhalter ortsfeste und mit einem elektrischen Wechselfeld beaufschlagte Spulen. Dadurch lässt sich auf einfache Weise das um die Drehachse der ersten Magneteinheit rotierende Magnetfeld erzeugen.
In einer weiteren Ausführungsform hat die zweite Magneteinheit Permanentmagneten und/oder gleichstromgespeiste Spulen, beispielsweise HTSL-Spulen, die um die Drehachse der ersten Magneteinheit drehangetrieben sind, beispiels- weise durch einen Elektromotor.
Die erste Magneteinheit kann mit der SL-Spule drehfest verbundene Permanentmagneten haben, die vorzugsweise zwischen der SL-Spule und der zweiten Magneteinheit angeordnet sind. Bei einer solchen Magneteinheit wechselwirken die Permanentmagnete mit dem durch die zweite Magneteinheit erzeugten äußeren Magnetfeld, wobei die SL-Spule im Wesentlichen zur Erzeugung des das Werkstück durchsetzenden Magnetfeldes dient. Anstelle der Permanentmagneten kann die erste Ma- gneteinheit auch eine oder mehrere Spulen haben. Die Spulen können gleichstromgespeist sein, dann erfolgt der Drehantrieb nach dem Prinzip eines Synchronmotors, sind die Spulen metallisch und kurzgeschlossen, erfolgt der Drehantrieb nach dem Prinzip eines Asynchronmotors . Selbstverständlich kann die erste Magneteinheit mehrere SL- Spulen haben, beispielsweise zwei oder vier, die vorzugsweise äquidistant um eine Ausnehmung der ersten Magneteinheit zur Aufnahme des zu erwärmenden Werkstücks angeordnet sind. Dadurch kann der das Werkstück durchsetzende magnetische Fluss und damit die Heizleistung erhöht werden.
Zwischen der SL-Spule und der zweiten Magneteinheit ist vorzugsweise eine thermische Isolierung. Dadurch wird die notwendige Kühlleistung für die SL-Spule reduziert. Am äußeren Umfang der Isolierung können Permanentmagnete angeordnet sein, deren Magnetfeld, wie schon zuvor beschrieben, mit dem äußeren Magnetfeld der zweiten Magneteinheit wechselwirkt, um die erste Magneteinheit um das zu erwärmende Werkstück zu drehen.
Die Isolierung kann beispielsweise durch einen vakuumierten Hohlraum zwischen der ersten und der zweiten Magneteinheit erreicht werden.
Zusätzlich oder alternativ ist es sinnvoll, die SL-Spule bzw. SL-Spulen auch werkstückseitig zu isolieren, z.B. durch einen vakuumierten Hohlraum.
Der Werkstückhalter kann eine Bewegung, insbesondere parallel zur Drehachse der ersten Magneteinheit, ausführen. Mit einem Schubantrieb kann durch eine zusätzliche Relativbewegung zwischen dem Werkstück und der ersten Magneteinheit die Richtung des in dem Werkstück induzierten Stromes vari- iert werden, was eine gleichmäßigere Erwärmung des Werkstücks und einen größeren Leistungseintrag ermöglicht.
Anhand der Zeichnung wird die Erfindung schematisch vereinfacht und beispielhaft erläutert. Es zeigt: Fig. 1 eine Vorrichtung zur Induktionserwärmung,
Fig. 2 eine Ansicht eines Magnetsystems gemäß Fig. 1,
Fig. 3 einen Schnitt durch das Magnetsystem gemäß Fig. 1,
Fig. 4 die Einzelheit c aus Fig. 3,
Fig. 5 eine Ansicht eines weiteren Magnetsystems gemäß Fig. 1,
Fig. 6 eine Querschnitt des Magnetsystems aus Fig. 4 und
Fig. 7 die Einzelheit c aus Fig. 6.
Die Vorrichtung in Fig. 1 hat einen in Richtung der Doppelpfeile verschiebbare Werkstückhalter mit zwei Aufnahmen Ia, Ib zur Fixierung eines zu erwärmenden Werkstücks 2. Zwi- sehen den Aufnahmen Ia, Ib ist ein Magnetsystem 10 mit einer Ausnehmung für das Werkstück 2 zur Erzeugung eines zeitlich nicht konstanten magnetischen Flusses durch das Werkstück 2, wodurch ein Strom in dem Werkstück 2 induziert wird.
Die Fig. 2 bis 4 zeigen eine Ausführungsform eines Magnetsystems 10. Im Zentrum des Magnetsystems 10 befindet sich ein im Querschnitt quadratisches Werkstück 2. Konzentrisch um das Werkstück ist eine erste, um das Werkstück 2 drehba- re Magneteinheit 20 mit einer ersten ringförmigen Isolierung 21, deren freier Innenraum zugleich die Ausnehmung für das Werkstück 2 ist. Um die erste Isolierung 21 sind vier Eisenkerne 22 äquidistant angeordnet, wobei die Längsachsen der Eisenkerne (nicht eingezeichnet) sich in einem Punkt mit der Längsachse (nicht eingezeichnet) der ersten Isolierung 21 schneiden. Auf jedem Eisenkern 22 sitzt eine HTSL- Spule 23. Die HTSL-Spulen 23 sind gleichstromgespeist (nicht dargestellt) . Um die Spulen 23 ist eine ringförmige zweite Isolierung 24, in welche die Eisenkerne 22 eintauchen (Fig. 4) .
Die erste Magneteinheit 20 ist konzentrisch von einer zweiten Magneteinheit 30 umgeben. Die zweite Magneteinheit 30 hat neun Elektromagnete 31 aus jeweils einer Spule 32 auf einem Polschuh 33. Die Elektromagnete 31 sind einzeln an- steuerbar und haben einen ringförmigen magnetischen Rück- schluss 34. Durch eine umlaufende Ansteuerung der Elektromagnete 31 wird ein relativ zum Werkstück 2 rotierendes Magnetfeld erzeugt, welches mit dem Magnetfeld der gleichstromgespeisten HTSL-Spulen 23 der ersten Magneteinheit 20 zusammenwirkt und die erste Magneteinheit 20 um das Werkstück dreht. Dadurch ändert sich der von den HTSL-Spulen 23 erzeugte magnetische Fluss durch das Werkstück 2 wodurch in dem Werkstück 2 ein Strom induziert wird.
Weil die Eisenkerne 22 in die zweite Isolierung 24 bis kurz vor deren äußeren Rand eintauchen, ergibt sich eine gute magnetische Kopplung der ersten Magneteinheit 20 mit der zweiten Magneteinheit 30 und somit ein hoher Wirkungsgrad.
Die Fig. 5 bis 7 zeigen eine weitere Ausführungsform eines Magnetsystems 10. Der grundsätzliche Aufbau des Magnetsystems 10 ist ähnlich dem zuvor anhand Fig. 2, Fig. 3 und Fig. 4 beschriebenen, daher werden für gleiche Teile identische Bezugszeichen verwendet und lediglich die Unter- schiede beschrieben. Im Unterschied zu dem Magnetsystem nach Fig. 2 tauchen die Eisenkerne 22' der HTSL-Spulen 23' nicht in die zweite ringförmige Isolierung 24' ein (vgl. auch Fig. 6 und Fig. 7) . Dadurch kann die thermische Isolation der HTSL-Spulen 23 ' verbessert werden. Zur magneti- sehen Kopplung der ersten Magneteinheit 20' mit der zweiten Magneteinheit 30 sind auf der Mantelfläche der Isolierung 24' Permanentmagnete 29' befestigt. Der Drehantrieb der ersten Einheit erfolgt wie bei der Aus führungsform nach Fig. 2 über Anlegen eines Wechselstromes an die Spulen 32 der zweiten Magneteinheit 30. Jedoch wirkt das Magnetfeld der Spulen 32 hier im Wesentlichen mit dem Magnetfeld der Permanentmagnete 29' zusammen, wodurch die erste Magneteinheit 20' drehangetrieben wird.
Zwischen der Isolierung 24 ' und dem Eisenkern 22 ' kann ein nicht dargestellter magnetischer Rückschluss, z.B. in Form eines Eisenrings sein.

Claims

P a t e n t a n s p r ü c h e :
1. Verfahren zum induktiven Erwärmen eines Werkstücks durch Drehen einer ersten Magneteinheit mit mindes- tens einer supraleitenden Spule um das Werkstück, dadurch gekennzeichnet, dass mit einer zweiten Magneteinheit ein sich um die Drehachse der ersten Magneteinheit drehendes und die erste Magneteinheit antreibendes Magnetfeld erzeugt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung des Magnetfeldes um die erste Magneteinheit angeordnete Spulen der zweiten Magneteinheit mit einem Wechselstrom beaufschlagt werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung des Magnetfeldes Permanentmagneten und/oder mindestens eine gleichstromdurchflosse- ne Spule der zweiten Magneteinheit um die Drehachse der ersten Magneteinheit gedreht werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die supraleitende Spule mit
Gleichstrom gespeist wird.
5. Vorrichtung zur induktiven Erwärmung eines in einen Werkstückhalter eingespannten Werkstückes (2) mit einer ersten Magneteinheit (20, 20'), die mindestens eine supraleitende Spule (23, 23') hat und um das
Werkstück (2) drehbar ist, wobei das von der supraleitende Spule (23, 23') erzeugte Magnetfeld das induktiv zu erwärmende Werkstück (2) durchsetzt, dadurch gekennzeichnet, dass die Vorrichtung eine zweite Magneteinheit (30) hat, die ein um die Dreh- achse der ersten Magneteinheit (20, 20') rotierendes Magnetfeld erzeugt, um die erste Magneteinheit um das Werkstück zu drehen.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die supraleitende Spule (23, 23') an eine Kon- stantstromquelle angeschlossen ist.
7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die erste Magneteinheit (20, 20') eine Ausnehmung hat, in die das Werk- stück (2) einbringbar ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die erste Magneteinheit (20,20') mindestens zwei supraleitende Spulen (23, 23') hat, die zumindest etwa äquidistant um die Ausnehmung angeordnet sind.
9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die zweite Magneteinheit (30) mindestens zwei relativ zum Werkstückhalter ortsfeste, mit einem Wechselstrom beaufschlagte Spulen hat.
10. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die zweite Magneteinheit Permanentmagneten und/oder mindestens eine gleichstromgespeiste Spule hat, die um die Drehachse der ersten Magneteinheit drehangetrieben sind bzw. ist.
11. Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß die erste Magneteinheit (20') drehfest mit der supraleitende Spule (23') verbundene Permanentmagneten (29') hat, wo- bei die Permanentmagneten (29') zwischen der supra- leitenden Spule (23 ') und der zweiten Magneteinheit (30) angeordnet sind.
12. Vorrichtung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, dass zwischen der supraleiten- den Spule (23, 23') und der zweiten Magneteinheit (30) eine Vorrichtung zur thermischen Isolation (24, 24') ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Vorrichtung zur thermischen Isolation (24, 24') zwischen der supraleitenden Spule (23, 23') und der zweiten Magneteinheit (30) einen va- kuumierten Hohlraum hat .
14. Vorrichtung nach einem der Ansprüche 5 bis 13, gekennzeichnet durch einen parallel zur Drehachse der ersten Magneteinheit (20, 20') schubangetriebenen Werkstückhalter .
PCT/EP2008/006333 2007-08-23 2008-07-31 Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks WO2009024253A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200880103773A CN101785359A (zh) 2007-08-23 2008-07-31 用于对金属工件感应加热的方法和装置
EP08785274A EP2191691B1 (de) 2007-08-23 2008-07-31 Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks
AT08785274T ATE525888T1 (de) 2007-08-23 2008-07-31 Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks
JP2010521335A JP2010537376A (ja) 2007-08-23 2008-07-31 金属製ビレットの誘導加熱方法及びその装置
US12/709,663 US20100147833A1 (en) 2007-08-23 2010-02-22 Method and Apparatus for Induction Heating of a Metallic Workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007039888A DE102007039888B4 (de) 2007-08-23 2007-08-23 Verfahren und Vorrichtung zur Induktionserwärmung eines metallischen Werkstücks
DE102007039888.5 2007-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/709,663 Continuation US20100147833A1 (en) 2007-08-23 2010-02-22 Method and Apparatus for Induction Heating of a Metallic Workpiece

Publications (1)

Publication Number Publication Date
WO2009024253A1 true WO2009024253A1 (de) 2009-02-26

Family

ID=39865156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006333 WO2009024253A1 (de) 2007-08-23 2008-07-31 Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks

Country Status (7)

Country Link
US (1) US20100147833A1 (de)
EP (1) EP2191691B1 (de)
JP (1) JP2010537376A (de)
CN (1) CN101785359A (de)
AT (1) ATE525888T1 (de)
DE (1) DE102007039888B4 (de)
WO (1) WO2009024253A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415210A (zh) * 2009-03-04 2012-04-11 埃弗马格公司 用于通过感应加热物体的方法、装置和设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122466B (fi) * 2009-08-21 2012-01-31 Hollming Oy Menetelmä työstettävän metallikappaleen kuumentamiseksi ja induktiokuumennustyökalu
JP5637452B2 (ja) * 2011-03-17 2014-12-10 住友電気工業株式会社 誘導加熱装置、及びそれを備える発電システム
WO2013128241A1 (en) * 2012-03-01 2013-09-06 Inova Lab S.R.L. Device for induction heating of a billet
DE102012209905A1 (de) * 2012-06-13 2013-12-19 Krones Ag Verschließer für Behälter
DE102015219831A1 (de) * 2015-10-13 2017-04-13 Forschungszentrum Jülich GmbH Induktionsofen, Strangpressanlage und Verfahren
ITUB20155468A1 (it) * 2015-11-11 2017-05-11 Presezzi Extrusion S P A Forno ad induzione magnetica per riscaldare billette metalliche in materiali non ferrosi da sottoporre a estrusione
KR101922688B1 (ko) * 2017-02-20 2018-11-27 수퍼코일 (주) 초전도 자석 회전형 직류 유도 가열 장치
CN111315054B (zh) * 2020-02-17 2022-02-01 中国科学院电工研究所 基于分裂式铁芯的多工件同时加热的超导感应加热装置
CN111315055B (zh) * 2020-02-17 2022-02-01 中国科学院电工研究所 一种基于分裂式铁芯的混合磁路超导感应加热装置
CN111212490B (zh) * 2020-02-17 2022-02-01 中国科学院电工研究所 一种多工件同时加热的超导感应加热装置
CN113993236A (zh) * 2021-12-24 2022-01-28 国核铀业发展有限责任公司 一种无液氦超导感应加热装置
IT202200017790A1 (it) 2022-08-30 2024-03-01 Presezzi Extrusion S P A Forno ad induzione magnetica ad efficacia riscaldante migliorata

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258973A2 (de) * 2001-05-15 2002-11-20 General Electric Company Hochtemperatur-supraleitender Läufer mit elektromagnetischer Abschirmung und Verfahren zu dessen Herstellung
WO2004066681A1 (en) * 2003-01-24 2004-08-05 Sintef Energiforskning As An apparatus and a method for induction heating of pieces of electrically conducting and non-magnetic material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021412A (en) * 1958-05-14 1962-02-13 Allis Chalmers Mfg Co Heat treating method and apparatus
US4761527A (en) * 1985-10-04 1988-08-02 Mohr Glenn R Magnetic flux induction heating
JPH0684491A (ja) * 1992-09-04 1994-03-25 Sharp Corp 荷電粒子ビーム電流量測定装置及び荷電粒子ビーム電流量自動補正装置
JP2704352B2 (ja) * 1993-01-22 1998-01-26 信越化学工業株式会社 磁場発生装置
JP4106277B2 (ja) * 2001-05-21 2008-06-25 バルマーク アクチエンゲゼルシヤフト ゴデット
JP2004002945A (ja) * 2002-03-29 2004-01-08 Fuji Electronics Industry Co Ltd 誘導加熱装置及び焼入装置
JP2004072822A (ja) * 2002-08-01 2004-03-04 Fumio Hamaoka 電動機
JP4484030B2 (ja) * 2004-01-20 2010-06-16 株式会社ジェイテクト 電動ポンプユニット
JP2005269868A (ja) * 2004-03-22 2005-09-29 Sumitomo Electric Ind Ltd 超電導モータ装置および該超電導モータ装置を用いた移動体
JP2006236856A (ja) * 2005-02-25 2006-09-07 Tok Engineering Kk 金属製缶の加熱装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258973A2 (de) * 2001-05-15 2002-11-20 General Electric Company Hochtemperatur-supraleitender Läufer mit elektromagnetischer Abschirmung und Verfahren zu dessen Herstellung
WO2004066681A1 (en) * 2003-01-24 2004-08-05 Sintef Energiforskning As An apparatus and a method for induction heating of pieces of electrically conducting and non-magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415210A (zh) * 2009-03-04 2012-04-11 埃弗马格公司 用于通过感应加热物体的方法、装置和设备
JP2012519364A (ja) * 2009-03-04 2012-08-23 エフマグ、オサケユキチュア 誘導によって物体を加熱するための方法、装置、及び構成
US9000337B2 (en) 2009-03-04 2015-04-07 Effmag Oy Method device and arrangement for heating an object by an induction

Also Published As

Publication number Publication date
EP2191691A1 (de) 2010-06-02
US20100147833A1 (en) 2010-06-17
DE102007039888B4 (de) 2010-01-28
JP2010537376A (ja) 2010-12-02
DE102007039888A1 (de) 2009-03-12
EP2191691B1 (de) 2011-09-21
ATE525888T1 (de) 2011-10-15
CN101785359A (zh) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2191691B1 (de) Verfahren und vorrichtung zur induktionserwärmung eines metallischen werkstücks
EP2181563B1 (de) Induktionsheizverfahren
DE69026938T2 (de) Elektromotorische leichtgewichtsvorrichtung von hoher leistung
DE1488515B2 (de) Verfahren zum Verformen einer elektrischen Spule
EP3646438B1 (de) Permanentmagnet-erregter motor mit verdrehbaren magnetstäben
DE102010031908A1 (de) Verfahren und Vorrichtung zum Erwärmen eines Flachmaterials
DE112008000036T5 (de) Supraleitende Synchronmaschine
EP1556179B1 (de) Vorrichtung und verfahren zum umformen von stangenförmigen gütern insbesondere zum durchziehen und durchdrücken
WO2020038909A1 (de) Rotor mit supraleitender wicklung für betrieb im dauerstrommodus
DE102006032344B3 (de) Synchronmaschine
AT511024A2 (de) Dynamoelektrische Maschine und Handstück für dental- oder medizinische Behandlung
DE202017105738U1 (de) MVP Elektromotor
DE102011077456A1 (de) Synchronmaschine mit HTS-Läufer
DE10135876C2 (de) Verfahren und Vorrichtung zum Aufbringen von Druck- und/oder Zugkräften auf im wesentlichen stabförmige Werkstücke aus elektrisch leitfähigem und/oder magnetisierbarem Material
DE102008029377A1 (de) Vorrichtung für eine Wind- oder Wasserkraftanlage zur Erzeugung elektrischer Energie
WO2019091842A1 (de) Rotor und maschine mit p-poliger rotorwicklung
EP3211767A1 (de) Elektrische maschine mit glockenläufer
WO2016116284A1 (de) Mrt-kompatible drehanoden-röntgenröhre
DE2345082A1 (de) Eisenlose elektrische heteropolarmaschine
DE2628123C3 (de) Erregungseinrichtung für einen Innenpol-Synchrongenerator
WO2024074465A1 (de) Verfahren zum herstellen einer cofe-legierung für ein blechpaket
EP4216412A1 (de) Nadelwickelvorrichtung und nadelwickelverfahren zum erzeugen der polwicklungen eines fsm-rotors
DE202007014930U1 (de) Induktionsheizer
DE2355082C3 (de) Umlaufende elektrische Maschine mit einem eine supraleitende Wicklung aufweisenden Rotor
WO2005109955A1 (de) Energieeffiziente erwärmungsanlage für metalle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880103773.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008785274

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010521335

Country of ref document: JP

Kind code of ref document: A