WO2009021451A1 - Procédés et systèmes de commande de polarisation pour une pluralité de modulateurs mz - Google Patents

Procédés et systèmes de commande de polarisation pour une pluralité de modulateurs mz Download PDF

Info

Publication number
WO2009021451A1
WO2009021451A1 PCT/CN2008/071945 CN2008071945W WO2009021451A1 WO 2009021451 A1 WO2009021451 A1 WO 2009021451A1 CN 2008071945 W CN2008071945 W CN 2008071945W WO 2009021451 A1 WO2009021451 A1 WO 2009021451A1
Authority
WO
WIPO (PCT)
Prior art keywords
low frequency
frequency disturbance
signal
modulators
control
Prior art date
Application number
PCT/CN2008/071945
Other languages
English (en)
French (fr)
Inventor
Guozhong Wang
Xiaoyan Fan
Ding Tian
Ye Wen
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009021451A1 publication Critical patent/WO2009021451A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof

Definitions

  • the present invention relates to the field of optical transmission networks, and in particular, to a method and system for controlling a bias of a plurality of MZ modulators in an optical transmission network.
  • electro-optic conversion has a variety of modulation methods, and can also generate a variety of modulation patterns.
  • EA Electrode-optic conversion modulator
  • the characteristic curve of the MZ type modulator is shown in Fig. 1.
  • V represents the bias voltage of the modulator
  • Power Out represents the output optical power, that is, the intensity of the output optical signal; here, Vpi is defined as modulation.
  • the bias voltage can operate at MAX, MIN, and two Quad (quadrant) points of the modulator characteristic, respectively.
  • the bias voltage of the MZ modulator has different optimum operating points.
  • Zero, non-return to zero) Modulation code is an example.
  • the input RF signal is NRZ code. This sets the DC bias voltage of the MZ modulator to two Quad points.
  • the output optical signal has the best performance and the least distortion.
  • the system also has the lowest bit error rate.
  • the DC bias voltage deviates from the Quad point, the performance of the output signal gradually deteriorates whether it is larger or smaller than the Quad point. The farther the deviation is, the more serious the deterioration is. Therefore, it is necessary to stabilize the DC bias voltage at the Quad point, that is, Vpi/. 2 on.
  • the modulation curve of the MZ modulator will shift with the turn of the day due to temperature, mechanical factors, etc., MAX, MIN and the two Quad points will also move accordingly, so it is necessary to continuously DC offset of the MZ modulator.
  • the drift of the voltage is compensated so that it is always locked at the Quad point, or at the MAX, MIN points. This is called offset control.
  • the bias control of the MZ modulator is generally implemented by using an amplitude modulation bias control method, specifically, a low frequency sinusoidal electrical signal (ie, a low frequency periodic disturbance signal, the low frequency sinusoidal electrical signal). Belongs to the low frequency disturbance signal) Amplitude modulation of the high frequency data signal.
  • the modulation depth of the low-frequency periodic disturbance signal is generally between 1% and 10% of the modulation amplitude of the high-frequency data signal, and the offset voltage error values obtained by different modulation depths are different. When the modulation depth is lower, the error value is larger, and even cannot be detected correctly.
  • the amplitude selection of the low-frequency periodic disturbance signal must balance the effects of these two aspects, and the modulation amplitude can be minimized as long as the bias voltage can be properly controlled.
  • FIG. 7 is a block diagram showing the implementation of the bias control of two existing MZ modulators.
  • two MZ modulators each have a different frequency of the disturbance frequency generator;
  • the optical splitter from the main optical path ie, the main service
  • the optical signal also referred to as the service optical signal, is proportionally separated from the optical signal, for example, the optical signal is separated by 5%;
  • the photodetector turns the optical signal into an electrical signal, and divides it into two and then inputs To two bandpass filters, wherein the center frequency of the filter 1 corresponds to the disturbance frequency fl, the center frequency of the filter 2 corresponds to the disturbance frequency f2, and the bandwidth of the filter should be smaller than the difference between the filter 1 and the filter 2.
  • the electrical signal output by the filter 1 is processed by the control processing center to obtain a corresponding feedback value to control the bias voltage 1 of the MZ modulator 1; the electrical signal output by the filter 2 is controlled After processing by the processing center, a corresponding feedback value is obtained to control the bias voltage 2 of the MZ modulator 2.
  • the inventors have found that: since two low frequency periodic disturbance signals are simultaneously applied to the main service optical signal (ie, the main optical path), the intensity disturbance of the main service optical signal is caused. The amplitude increases, which affects the quality of the main service optical signal, resulting in a system power penalty. Moreover, after bias control of more MZ modulators, the impact on the quality of the main service optical signal will be more serious, and the power penalty will be more serious.
  • the technical problem to be solved by the embodiments of the present invention is to provide a bias control method and system for multiple MZ modulators in an optical transmission network, which can reduce the influence on the main service optical signals in the optical path and reduce the system power cost.
  • the embodiments of the present invention are implemented by the following technical solutions:
  • a bias control method for a plurality of MZ modulators comprising:
  • An embodiment of the present invention further provides a bias control system for multiple MZ modulators, including:
  • Disturbance frequency generator for generating low frequency disturbance signals
  • a multiplexing control device for loading only one low frequency disturbance signal onto the main service optical signal at the same time
  • An embodiment of the present invention further provides a control processing center, including:
  • the multiplexing control device wherein the multiplexing control device loads only one of the plurality of low frequency disturbance signals to the main service optical signal at the same time under the control of the control processing center.
  • Embodiments of the present invention further provide a multiplexing control apparatus, wherein the multiplexing control apparatus is respectively connected to a disturbance frequency generator, and the multiplexing control apparatus receives a plurality of low frequency disturbance signals generated by a disturbance frequency generator, and Only one of the plurality of low frequency disturbance signals is loaded onto the main service optical signal at the same time.
  • An embodiment of the present invention further provides a bias control method for multiple MZ modulators, including:
  • the MZ modulator corresponding to the low frequency disturbance signal is bias controlled according to the low frequency disturbance signal loaded onto the main service optical signal.
  • FIG. 1 is a schematic diagram showing a characteristic curve of an MZ type modulator in the prior art
  • FIG. 2 is a block diagram showing an implementation of bias control of two MZ modulators in the prior art
  • 3 is a flowchart of a method according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of split multiplexing of two low frequency disturbance signals in an example of Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control processing center according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing a first implementation of bias control of two MZ modulators in a specific example of an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a second implementation of bias control of two MZ modulators in a specific example of an embodiment of the present invention.
  • Figure 9 is a block diagram showing a third implementation of bias control of two MZ modulators in a specific example of an embodiment of the present invention.
  • An embodiment of the present invention provides a bias control method and system for multiple MZ modulators in an optical transmission network.
  • a low frequency disturbance signal By controlling a low frequency disturbance signal, only one low frequency disturbance signal is loaded into the main service optical signal in the same engraving. Up, to achieve bias control of only one MZ modulator at the same time. Since only one low frequency disturbance signal is loaded on the main business optical signal, the same bias voltage control can effectively reduce the influence of the main service optical signal in the optical path and reduce the system power cost.
  • Embodiment 1 is a method for performing bias control on a plurality of MZ modulators, as shown in FIG. 3 is a flowchart of the method according to the embodiment, and the figure includes:
  • Step 11 Load the low frequency disturbance signal.
  • the disturbance frequency generator By controlling the disturbance frequency generator, only one low frequency disturbance signal is loaded onto the main service optical signal at the same time.
  • the present embodiment controls a plurality of low frequency disturbance signals in a split multiplexing manner. Only one low frequency disturbance signal is loaded onto the corresponding MZ modulator, so that only one low frequency disturbance signal is loaded onto the main service optical signal for the same moment.
  • FIG. 4 is a schematic diagram of the division and multiplexing of two low-frequency disturbance signals, in which: two low-frequency disturbance signals with frequencies f and f2 alternately appear, Only one of the same moments is loaded onto its corresponding MZ modulator, and the alternate turns T1 and T2 can be equal, or The unequal, and the low frequency perturbation signal can vary from time to time, as long as only one low frequency disturbance signal is loaded into the corresponding MZ modulator at the same time.
  • multiple low frequency disturbance signals can be branched and loaded onto the corresponding MZ modulator according to the above division multiplexing method, achieving the same engraving Only one low frequency disturbance signal is loaded onto the main service optical signal.
  • Step 12 Perform bias control on the corresponding MZ modulator. After operating in accordance with step 11 above, only one MZ modulator is loaded with a low frequency disturbance signal at the same time, so that the MZ modulator can be biased.
  • the low frequency disturbance signal is loaded into the corresponding MZ modulator, that is, after being loaded into the main service optical signal, the main service optical signal including the low frequency disturbance signal is output from the corresponding MZ modulator; Outputting part of the optical signal to the photodetector, for example, 5% of the optical signal can be separated; the photodetector turns the optical signal into an electrical signal and delivers the electrical signal to the filter; the electrical signal passes through the filter It is sent to the control processing center for analysis and processing; after the control processing center analyzes and processes the electrical signal, the bias voltage of the MZ modulator is obtained, and the bias voltage of the MZ modulator is adjusted or maintained according to the obtained situation. .
  • the above is a method of bias control of an MZ modulator.
  • the bias control of multiple MZ modulators can be achieved by the bias control method described above. Since the bias point drift of the MZ modulator is a slowly changing process, the bias branching control of each MZ modulator can meet the bias control requirements.
  • the main service optical signal containing the low frequency disturbance signal is from the corresponding MZ modulator 1 output; then splitting part of the optical signal to the photodetector, for example, 5% of the optical signal can be separated; the photodetector turns the optical signal into an electrical signal, and delivers the electrical signal to the filter 1; After passing through the filter 1, the signal is sent to the control processing center for analysis and processing; after the control processing center analyzes and processes the electrical signal, the bias voltage of the MZ modulator 1 is obtained, and the MZ modulator is adjusted according to the obtained situation.
  • the bias voltage of 1 remains unchanged, and the bias voltage of the ⁇ MZ modulator 2 remains unchanged.
  • the frequency disturbance loading is loaded into the MZ modulator 2, and the main service optical signal including the low frequency disturbance signal is output from the corresponding MZ modulator 2; the partial optical signal is further separated to the photodetector; the photodetector turns the optical signal into
  • the electrical signal is sent to the filter 2; the electrical signal is sent to the control processing center for analysis after passing through the filter 2; the control processing center obtains the MZ modulation after analyzing and processing the electrical signal.
  • the bias voltage of the device 2, and the bias voltage of the MZ modulator 2 is adjusted or maintained according to the obtained condition, and the bias voltage of the ⁇ MZ modulator 1 remains unchanged.
  • the beneficial effect of the first embodiment is that since only one low frequency disturbance signal is loaded on the main service optical signal for the same engraving, the main service light in the optical path can be effectively reduced while implementing the bias voltage control.
  • the effect of the signal reduces the power penalty of the system.
  • Embodiment 2 This embodiment differs from Embodiment 1 in that instead of controlling the loading of a plurality of low frequency disturbance signals by means of split multiplexing, a controllable switch is used to control a plurality of low frequency disturbances. The signals are alternately loaded onto their respective MZ adjusters to achieve the same engraving. Only one low frequency disturbance signal is loaded onto the main service optical signal.
  • controllable switch is used to turn on only one low-frequency disturbance signal channel at the same time, and the other low-frequency disturbance signal channels are in the off state, so that the low-frequency disturbance signal can be alternately loaded into the main service light.
  • the controllable switch can load the low frequency disturbance signal of frequency f 1 onto the MZ modulator 1 and the low frequency disturbance signal of frequency f2 into the MZ modulator. 2, but in the same moment, only one can be selected, that is, one low-frequency disturbance signal channel is turned on, and the other low-frequency disturbance signal channel is turned off, and the controllable switch controls their alternate conduction. Thereby, two low frequency disturbance signals are alternately loaded to the main service optical signal; then the corresponding MZ modulator loaded with the low frequency disturbance signal is bias controlled according to the method of bias control of the single MZ modulator.
  • the beneficial effect of the second embodiment is that since only one low frequency disturbance signal is loaded on the main service optical signal, the same in the implementation of the bias voltage control, the main light in the optical path can be effectively reduced.
  • the impact of business optical signals reduces system power costs.
  • the embodiment of the present invention further provides a bias control system for multiple MZ modulators, as shown in FIG. 5 is a schematic structural diagram of the system, which includes a disturbance frequency generator, a multiplexing control device, and a control. a processing center, wherein the disturbance frequency generator is used to generate a low frequency disturbance signal for implementing bias control of the MZ modulator, and a plurality of MZ modulators corresponding to the plurality of disturbance frequency generators, for example Three MZ modulators have three perturbed frequency generators.
  • the multiplexing control device is configured to control the low frequency disturbance signal to be loaded onto the main service optical signal at the same time, and the plurality of disturbance frequency generators generate multiple low frequency disturbance signals, and the multiplexing control
  • the method for controlling the loading of a plurality of low frequency disturbance signals by the device is as described in the above embodiments 1 and 2; of course, the multiplexing control device can also be implemented by other control methods, for example, the multiplexing control device can be used in the embodiments 1 and 2
  • the method combines to control a plurality of low frequency disturbance signals, or other methods for controlling the bifurcation loading of a plurality of low frequency disturbance signals, and the multiplexing control device only needs to ensure that only one low frequency disturbance signal is loaded into the main service light at the same time. The signal can meet the requirements.
  • the control processing center is configured to perform bias control on the corresponding MZ modulator according to the low frequency disturbance signal loaded on the main service optical signal, and the specific bias control operation performed by the control processing center includes: After the relevant analysis and processing of the transmitted main service optical signal loaded with the low frequency disturbance signal, the center obtains the bias voltage condition of the corresponding MZ modulator, and adjusts the bias of the corresponding MZ modulator according to the obtained situation. Set the voltage or leave it unchanged.
  • the multiplexing control device may include at least one of the following modules: a split multiplexing control module and a controllable switch control module, where the split multiplexing control module is configured to control multiple low frequencies.
  • the disturbance signals are loaded into respective MZ modulators by means of split multiplexing;
  • the controllable switch control module is configured to control the multiple low frequency disturbance signals to be alternately loaded onto the respective MZ adjusters by the controllable switch, using the above
  • One or a combination of the two modules allows only one low frequency disturbance signal to be loaded onto the main service optical signal at the same time.
  • the embodiment of the present invention further provides a control processing center, as shown in FIG. 6 is a schematic structural diagram of the control processing center shown in the figure.
  • the control processing center in the figure includes a multiplexing control device, and the multiplexing is performed.
  • the control device causes a plurality of low frequency disturbance signals to be loaded onto the main service optical signal at the same time, and the multiplexing control device controls the loading of the plurality of low frequency disturbance signals as described above.
  • the multiplexing control device includes at least one of the following modules: a split multiplexing control module and a controllable switch control module.
  • the split-multiplexing control module is configured to control a plurality of low-frequency disturbance signals to be loaded into respective MZ modulators in a split-multiplex manner, so that only one low-frequency disturbance signal is loaded onto the main service optical signal.
  • the controllable switch control module is configured to control the plurality of low frequency disturbance signals to be alternately loaded to the respective MZ adjusters through the controllable switch, so that only one low frequency disturbance signal is loaded onto the main service optical signal.
  • FIG. 7 is a block diagram showing the implementation of bias control for two MZ modulators, including laser, MZ modulator, and MZ modulator. 2.
  • a splitter a photodetector, a disturbance frequency fl generator, a disturbance frequency f2 generator, a filter 1, a filter 2, a control processing center, and a multiplexing controller.
  • the laser outputs a continuous optical signal to the MZ modulator 1, and the MZ modulator 1 outputs an optical signal containing the traffic modulated signal to the MZ modulator 2 driven by the service RF (radio frequency) signal; the MZ modulator 2 is in the chirp clock RF
  • the main service optical signal is chopped under the driving of the signal, and corresponding optical signals are output according to the clock speed and the bias point of the MZ modulator 2;
  • the optical splitter is used to separate the optical signal output from the MZ modulator 2 Part of the optical signal is given to the photodetector, for example, 5% of the optical signal;
  • the photodetector converts the separated optical signal into an electrical signal, and supplies the electrical signal to the filter 1 and/or the filter 2;
  • the signal After passing through the filter 1 and/or the filter 2, the signal is sent to the control processing center for analysis and processing; after the control processing center analyzes and processes the electrical signal, the bias voltage of the MZ modulator 1 and/or the MZ modulator 2 is
  • the multiplexing controller is the multiplexing control device described in the embodiment of the present invention, which respectively connects and controls the disturbance frequency fl generator and the disturbance frequency f2 generator; the two disturbance frequency generators respectively output their respective low
  • the frequency disturbance signal is applied to the MZ modulator 1 and the MZ modulator 2.
  • the multiplexing controller here includes a split multiplexing control module, which can control the low frequency disturbance signals output by the two disturbance frequency generators to be loaded into the respective MZ modulators in a split multiplexing manner, that is, the same At the moment, only one low frequency disturbance signal is loaded onto the main service optical signal, and the two low frequency disturbance signals loaded alternately appear, and the periods may be equal or unequal. This is equivalent to loading only one low frequency disturbance signal on the main service optical signal for the same moment, thus minimizing the impact on the optical service signal.
  • the specific bias control process is as follows: When the low frequency disturbance signal with the frequency fl is loaded on the MZ modulator 1, the electrical signal output by the filter 1 is processed by the control processing center, and the corresponding feedback value is obtained to control the MZ.
  • the bias voltage of the modulator 1, the ⁇ filter 2 has no output, and the bias voltage of the corresponding MZ modulator 2 remains unchanged; when the low frequency disturbance signal of frequency f2 is loaded on the MZ modulator 2, the filter 2
  • the output electrical signal is processed by the control processing center, and the corresponding feedback value is obtained to control the bias voltage of the MZ modulator 2.
  • the ⁇ filter 1 has no output, and the bias voltage of the corresponding MZ modulator 1 remains unchanged. .
  • the implementation block diagram is shown in Figure 8.
  • the multiplex controller in the figure contains The controllable switch control module can load the low frequency disturbance signal of the frequency f of the disturbance frequency fl generator to the MZ modulator 1 or load the low frequency disturbance signal of the frequency f2 of the disturbance frequency f2 generator to the MZ.
  • the modulator 2 but in the same moment, only one of them can be selected, and when one channel is turned on, the other channel is turned off. In this way, under the control of the multiplex controller, two conduction states can be alternately implemented, and finally the purpose of alternately loading the low frequency disturbance signal onto the main service optical signal is realized.
  • the function of the multiplexing controller in this embodiment can also be integrated into the control processing center, and the block diagram of the implementation is shown in FIG. 9.
  • the control processing center in FIG. 9 performs data processing and partial processing in addition to In addition to the control, an output low frequency disturbance signal that alternates between the disturbance frequency fl generator and the disturbance frequency f2 generator is controlled to ensure that only one low frequency disturbance signal is loaded onto the main service optical signal at the same time.
  • the embodiment of the present invention can only reduce the main service light in the optical path by implementing the bias voltage control in the same time because only one low frequency disturbance signal is loaded on the main service optical signal. The effect of the signal reduces the power penalty of the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

说明书 多个 MZ调制器的偏置控制方法及系统
[1] 技术领域
[2] 本发明涉及光传输网络领域, 尤其涉及一种光传输网络中多个 MZ调制器的偏 置控制方法及系统。
[3] 发明背景
[4] 在光传输系统中, 电光转换有多种调制方式, 也可以生成多种调制码型, 目前 普遍釆用的电光转换调制器有 EA (Electro
Absorption, 电吸收) 型和 MZ (Mach-Zehnder, 马赫-曾德尔) 型两种。 其中 MZ 型调制器的特性曲线如图 1所示, 图中横轴 V表示调制器的偏置电压, 纵轴 Power Out表示输出光功率, 即表示输出光信号的强度; 这里将 Vpi定义为调制曲线的 输出光功率 MAX (最大) 和 MIN (最小) 点之间的电压差, 如果 MZ调制器的直 流偏置电压设置在合适的位置, 加载的电射频信号就将被转换成相应的光信号 输出。
[5] 偏置电压可以分别工作在调制器特性曲线的 MAX、 MIN和两个 Quad (象限) 点, 而针对不同的调制码型, MZ调制器的偏置电压有不同的最佳工作点。 以 NR Z (No Return
Zero, 非归零) 调制码为例, 输入的电射频信号是 NRZ码, 这吋将 MZ调制器的 直流偏置电压设置在两个 Quad点吋, 输出的光信号性能最好、 失真最小, 系统 的误码率也最低。 而当直流偏置电压偏离 Quad点吋, 无论大于还是小于 Quad点 , 输出信号的性能都逐渐恶化, 偏离越远恶化越严重, 所以就要尽量把直流偏 置电压稳定在 Quad点, 即 Vpi/2上。 在实际情况中, MZ调制器的调制曲线会因为 温度、 机械等因素随着吋间漂移, MAX、 MIN和两个 Quad点也就会相应的移动 , 因此就需要不断对 MZ调制器的直流偏置电压的漂移进行补偿, 使它始终锁定 在 Quad点, 或 MAX、 MIN点上, 这就是所谓的偏置控制。
[6] 目前对 MZ调制器的偏置控制一般是釆用幅度调制偏置控制法来实现, 具体来 说, 就是釆用低频正弦电信号 (即低频周期性扰动信号, 所述低频正弦电信号 属于低频扰动信号) 对高频数据信号进行幅度调制。 低频周期性扰动信号的调 制深度一般在高频数据信号调制幅度的 1%〜10%之间, 不同调制深度得到的偏 置电压误差数值是不同的。 当调制深度越低吋, 误差数值越大, 甚至无法正确 检测; 而当调制深度加大吋, 就会直接影响高频数据信号的性能, 造成信号质 量恶化, 产生系统功率代价。 因此, 低频周期性扰动信号的幅度选择必须权衡 这两方面的影响, 在能够正确控制偏置电压的情况下, 尽可能减小调制幅度。
[7] 目前在对两个或两个以上的 MZ调制器, 即多个 MZ调制器进行偏置控制吋, 每 个 MZ调制器都会有一个偏置控制系统来保证调制器工作在正确的偏置电压范围 内。 如图 2所示为现有两个 MZ调制器偏置控制的实现方框示意图, 图中: 两个 M Z调制器各自有一个不同频率的扰动频率发生器; 分光器从主光路 (即主业务光 信号, 也可称为业务光信号) 上按比例分出部分的光信号, 例如按 5%比例分出 光信号; 光电检测器再将光信号变成电信号, 并将其分成两份后输入到两个带 通滤波器中, 其中滤波器 1的中心频率对应于扰动频率 fl, 滤波器 2的中心频率对 应于扰动频率 f2, 且滤波器的带宽应该小于滤波器 1和滤波器 2之差的二分之一; 然后, 由滤波器 1输出的电信号经过控制处理中心处理后, 得到相应的反馈值进 而控制 MZ调制器 1的偏置电压 1; 由滤波器 2输出的电信号经过控制处理中心处 理后, 得到相应的反馈值进而控制 MZ调制器 2的偏置电压 2。 通过以上方案, 就 可以实现对两个 MZ调制器的偏置电压控制, 进而就可以推广到更多个 MZ调制 器的偏置电压控制。
[8] 在实现本发明过程中, 发明人发现: 由于两个低频周期性扰动信号是同吋作用 在主业务光信号 (即主光路) 上的, 因此, 造成了主业务光信号的强度扰动幅 度增大, 从而影响了主业务光信号质量, 产生了系统功率代价。 而且, 在对更 多个 MZ调制器进行偏置控制吋, 对主业务光信号质量的影响将更严重, 产生的 功率代价也将更为严重。
[9] 发明内容
[10] 本发明实施方式所要解决的技术问题在于提供一种光传输网络中多个 MZ调制 器的偏置控制方法及系统, 能够减少对光路中主业务光信号的影响, 降低系统 功率代价。 [11] 本发明实施方式是通过以下技术方案实现的:
[12] 一种多个 MZ调制器的偏置控制方法, 包括:
[13] 在同一吋刻只将一个低频扰动信号加载到主业务光信号上, 实现在同一吋刻只 对一个 MZ调制器进行偏置控制。
[14] 本发明实施方式还提供了一种多个 MZ调制器的偏置控制系统, 包括:
[15] 扰动频率发生器, 用于产生低频扰动信号;
[16] 复用控制装置, 用于在同一吋刻只将一个低频扰动信号加载到主业务光信号上
[17] 控制处理中心, 用于对加载了低频扰动信号的 MZ调制器进行偏置控制。
[18] 本发明实施方式还提供了一种控制处理中心, 包括:
[19] 复用控制装置, 所述的复用控制装置在控制处理中心的控制下, 在同一吋刻只 将多个低频扰动信号中的一个低频扰动信号加载到主业务光信号上。
[20] 本发明实施方式还提供一种复用控制装置, 所述复用控制装置分别与扰动频率 发生器连接, 所述复用控制装置接收扰动频率发生器产生的多个低频扰动信号 , 并在同一吋刻只将所述多个低频扰动信号中的一个低频扰动信号加载到主业 务光信号上。
[21] 本发明实施方式还提供一种多个 MZ调制器的偏置控制方法, 包括:
[22] 接收多个低频扰动信号;
[23] 对所述多个低频扰动信号进行控制, 在同一吋刻只将所述多个低频扰动信号中 的一个低频扰动信号加载到主业务光信号上;
[24] 根据所述加载到主业务光信号上的低频扰动信号对该低频扰动信号对应的 MZ 调制器进行偏置控制。
[25] 由上述所提供的技术方案可以看出, 由于在主业务光信号上同一吋刻只加载了 一个低频扰动信号, 因而在实现偏置电压控制的同吋, 能够有效减少对光路中 主业务光信号的影响, 降低了系统功率代价。
[26] 附图简要说明
[27] 图 1为现有技术中 MZ型调制器的特性曲线示意图;
[28] 图 2为现有技术中对两个 MZ调制器进行偏置控制的实现方框示意图; [29] 图 3为本发明实施例 1所述方法的流程图;
[30] 图 4为本发明实施例 1所举例子中 2个低频扰动信号的吋分复用示意图;
[31] 图 5为本发明实施方式所述系统的结构示意图;
[32] 图 6为本发明实施方式所述控制处理中心的结构示意图;
[33] 图 7为本发明实施方式所举的具体例子中对 2个 MZ调制器进行偏置控制的第一 种实现方框示意图;
[34] 图 8为本发明实施方式所举的具体例子中对 2个 MZ调制器进行偏置控制的第二 种实现方框示意图;
[35] 图 9为本发明实施方式所举的具体例子中对 2个 MZ调制器进行偏置控制的第三 种实现方框示意图。
[36] 实施本发明的方式
[37] 本发明实施方式提供了一种光传输网络中多个 MZ调制器的偏置控制方法及系 统, 通过控制低频扰动信号, 使同一吋刻只有一个低频扰动信号被加载到主业 务光信号上, 来实现在同一吋刻只对一个 MZ调制器进行偏置控制。 由于在主业 务光信号上同一吋刻只加载了一个低频扰动信号, 因而在实现偏置电压控制的 同吋, 能够有效减少对光路中主业务光信号的影响, 降低系统功率代价。
[38] 为更好的描述本发明实施方式所述方法, 现结合附图对本发明的具体实施例进 行说明如下:
[39] 实施例 1为对多个 MZ调制器进行偏置控制的方法, 如图 3所示为本实施例所述 方法的流程图, 图中包括:
[40] 步骤 11 : 加载低频扰动信号。 通过控制扰动频率发生器, 使得在同一吋刻只有 一个低频扰动信号被加载到主业务光信号上, 具体来说, 本实施例以吋分复用 的方式控制多个低频扰动信号, 在同一吋刻只有一个低频扰动信号被加载到相 应的 MZ调制器上, 从而实现同一吋刻只有一个低频扰动信号被加载到主业务光 信号上。
[41] 以 2个低频扰动信号的吋分复用为例, 图 4为 2个低频扰动信号的吋分复用示意 图, 图中: 频率为 fl和 f2的两个低频扰动信号交替的出现, 在同一吋刻只有一个 被加载到与其对应的 MZ调制器上, 其交替出现的吋间 T1和 T2可以相等, 也可以 不相等, 且低频扰动信号每次出现的吋间也是可变化, 只要保证在同一吋刻只 有一个低频扰动信号被加载到对应的 MZ调制器就可以满足要求。
[42] 这样, 对于多个 MZ调制器的偏置控制来说, 按照以上的吋分复用方式就可以 将多个低频扰动信号分吋加载到相应的 MZ调制器上, 实现在同一吋刻只有一个 低频扰动信号被加载到主业务光信号上。
[43] 步骤 12: 对相应的 MZ调制器进行偏置控制。 在按照以上步骤 11进行操作后, 在同一吋刻就只有一个 MZ调制器上加载有低频扰动信号, 这样就可以对所述的 这个 MZ调制器进行偏置控制了。
[44] 具体来说, 就是当低频扰动信号加载到相应的 MZ调制器, 也就是被加载到主 业务光信号后, 包含低频扰动信号的主业务光信号从相应的 MZ调制器输出; 再 分出部分的光信号到光电检测器, 例如可以分出光信号的 5%; 光电检测器把光 信号变成电信号, 并把电信号输送到滤波器中; 所述的电信号在经过滤波器后 被送给控制处理中心进行分析处理; 控制处理中心在对电信号进行分析处理后 , 得到 MZ调制器的偏置电压情况, 并根据所得到的情况调整 MZ调制器的偏置 电压或者维持不变。
[45] 以上是对一个 MZ调制器进行偏置控制的方法, 当有多个 MZ调制器吋, 由于在 同一吋刻只有一个低频扰动信号被加载到相应的 MZ调制器上, 也就是说, 在同 一吋刻只需要对一个 MZ调制器进行偏置控制, 所以只要按照以上所述的偏置控 制方法就可以实现对多个 MZ调制器的偏置控制。 由于 MZ调制器的偏置点漂游 是一个缓慢变化过程, 所以对各个 MZ调制器的偏置分吋控制是可以满足偏置控 制要求的。
[46] 以 2个 MZ调制器的偏置控制为例来说, 当频率为 fl的低频扰动信号被加载到 M Z调制器 1吋, 包含低频扰动信号的主业务光信号从相应的 MZ调制器 1输出; 再 分出部分的光信号到光电检测器, 例如可以分出光信号的 5%; 光电检测器把光 信号变成电信号, 并把电信号输送到滤波器 1中; 所述的电信号在经过滤波器 1 后被送给控制处理中心进行分析处理; 控制处理中心在对电信号进行分析处理 后, 得到 MZ调制器 1的偏置电压情况, 并根据所得到的情况调整 MZ调制器 1的 偏置电压或者维持不变, 此吋 MZ调制器 2的偏置电压维持不动。 当频率为 f2的低 频扰动加载被加载到 MZ调制器 2吋, 包含低频扰动信号的主业务光信号从相应 的 MZ调制器 2输出; 再分出部分的光信号到光电检测器; 光电检测器把光信号 变成电信号, 并把电信号输送到滤波器 2中; 所述的电信号在经过滤波器 2后被 送给控制处理中心进行分析处理; 控制处理中心在对电信号进行分析处理后, 得到 MZ调制器 2的偏置电压情况, 并根据所得到的情况调整 MZ调制器 2的偏置 电压或者维持不变, 此吋 MZ调制器 1的偏置电压维持不动。 利用这种方法循环 往复, 就可以实现对两个 MZ调制器的偏置控制, 进而就可以推广到多个 MZ调 制器的偏置控制。
[47] 本实施例 1的有益效果在于, 由于在主业务光信号上同一吋刻只加载了一个低 频扰动信号, 因而在实现偏置电压控制的同吋, 能够有效减少对光路中主业务 光信号的影响, 降低系统功率代价。
[48] 实施例 2: 本实施例与实施例 1的不同点在于, 并不是通过吋分复用的方式来控 制多个低频扰动信号的加载, 而是利用可控开关来控制多个低频扰动信号交替 的加载到各自相应的 MZ调整器上, 实现同一吋刻只有一个低频扰动信号被加载 到主业务光信号上。
[49] 具体来说, 就是利用可控开关在同一吋刻只导通一个低频扰动信号的通道, 其 他的低频扰动信号通道则处于关闭状态, 这样就能够实现低频扰动信号交替加 载到主业务光信号的目的; 然后再利用实施例 1步骤 12所述的偏置控制方式来对 多个 MZ调制器进行偏置控制。
[50] 以 2个 MZ调制器的偏置控制来说, 可控开关可以把频率为 f 1的低频扰动信号加 载到 MZ调制器 1上, 把频率为 f2的低频扰动信号加载到 MZ调制器 2上, 但在同一 吋刻两者只能选一个, 也就是说一个低频扰动信号通道导通吋, 另一个低频扰 动信号通道则处于关闭状态, 由可控开关来控制它们交替的导通, 从而实现 2个 低频扰动信号交替加载到主业务光信号; 然后再按照对单个 MZ调制器进行偏置 控制的方法来对相应的加载了低频扰动信号的 MZ调制器进行偏置控制。
[51] 另外, 除按照以上 2个实施例所述的方法来控制多个低频扰动信号的加载外, 还可以釆用其他的实施方式来实现, 例如可以将吋分复用和可控开关结合起来 对多个低频扰动信号进行控制, 或者其他可以控制多个低频扰动信号分吋加载 的方法, 只要保证在同一吋刻只有一个低频扰动信号被加载到主业务光信号就 可以满足要求。
[52] 同样的, 本实施例 2的有益效果在于由于在主业务光信号上同一吋刻只加载了 一个低频扰动信号, 因而在实现偏置电压控制的同吋, 能够有效减少对光路中 主业务光信号的影响, 降低系统功率代价。
[53] 本发明实施方式还提供了一种多个 MZ调制器的偏置控制系统, 如图 5所示为所 述系统的结构示意图, 图中包括扰动频率发生器、 复用控制装置和控制处理中 心, 其中的扰动频率发生器用于产生低频扰动信号, 该低频扰动信号用于实现 对 MZ调制器进行偏置控制, 有多个 MZ调制器吋就对应有多个扰动频率发生器 , 例如有 3个 MZ调制器吋就对应有 3个扰动频率发生器。
[54] 复用控制装置用于控制所述的低频扰动信号在同一吋刻只有一个被加载到主业 务光信号上, 有多个扰动频率发生器就会产生多个低频扰动信号, 复用控制装 置控制多个低频扰动信号加载的方法如上述实施例 1和 2所述; 当然, 复用控制 装置也可以釆用其他的控制方法来实现, 例如复用控制装置可以将实施例 1和 2 所述方法结合起来对多个低频扰动信号进行控制, 或者是其他可以控制多个低 频扰动信号分吋加载的方法, 复用控制装置只要保证在同一吋刻只有一个低频 扰动信号被加载到主业务光信号就可以满足要求。
[55] 控制处理中心用于根据所述被加载到主业务光信号上的低频扰动信号, 对相应 的 MZ调制器进行偏置控制, 控制处理中心执行的具体的偏置控制操作包括: 控 制处理中心对传送来的经过相关处理的加载有低频扰动信号的主业务光信号进 行相关的分析处理后, 得到相应 MZ调制器的偏置电压情况, 并根据所得到的情 况调整相应 MZ调制器的偏置电压或者维持不变。
[56] 另外, 所述的复用控制装置中可以至少包括以下模块中的一种: 吋分复用控制 模块和可控开关控制模块, 这里的吋分复用控制模块用于控制多个低频扰动信 号以吋分复用的方式加载到各自相应的 MZ调制器上; 可控开关控制模块用于通 过可控开关控制多个低频扰动信号交替的加载到各自相应的 MZ调整器上, 利用 以上两种模块之一或组合, 就可以实现在同一吋刻只有一个低频扰动信号被加 载到主业务光信号上。 [57] 本发明实施方式还提供了一种控制处理中心, 如图 6所示为所示控制处理中心 的结构示意图, 图中的控制处理中心中包括有复用控制装置, 所述的复用控制 装置在控制处理中心的控制下, 使多个低频扰动信号在同一吋刻只有一个被加 载到主业务光信号上, 复用控制装置控制多个低频扰动信号加载的方法如上所 述。
[58] 另外, 所述的复用控制装置中至少包括以下模块中的一种: 吋分复用控制模块 和可控开关控制模块。 其中的吋分复用控制模块用于控制多个低频扰动信号以 吋分复用的方式加载到各自相应的 MZ调制器上, 实现同一吋刻只有一个低频扰 动信号被加载到主业务光信号上; 可控开关控制模块, 用于通过可控开关控制 多个低频扰动信号交替的加载到各自相应的 MZ调整器上, 实现同一吋刻只有一 个低频扰动信号被加载到主业务光信号上。
[59] 为更加清楚的描述本发明实施方式, 现结合具体的例子对本发明实施方式作进 一步说明:
[60] 还是以对 2个 MZ调制器进行偏置控制为例, 图 7为对 2个 MZ调制器进行偏置控 制的实现方框示意图, 图中包含激光器、 MZ调制器 1、 MZ调制器 2、 分光器、 光电检测器、 扰动频率 fl发生器、 扰动频率 f2发生器、 滤波器 1、 滤波器 2、 控制 处理中心、 以及复用控制器。
[61] 激光器输出连续光信号给 MZ调制器 1, MZ调制器 1在业务 RF (射频) 信号的驱 动下输出包含业务调制信号的光信号给 MZ调制器 2; MZ调制器 2在吋钟 RF信号 的驱动下对主业务光信号进行斩波, 根据吋钟速率和 MZ调制器 2偏置点的不同 输出相应的各种光信号; 分光器用来从 MZ调制器 2输出的光信号中分出部分光 信号给光电检测器, 例如分出光信号的 5%; 光电检测器将分出的光信号变成电 信号, 并将电信号输送给滤波器 1和 /或滤波器 2; 所述的电信号经过滤波器 1和 / 或滤波器 2后, 传送给控制处理中心进行分析处理; 控制处理中心在对电信号进 行分析处理后, 得到 MZ调制器 1和 /或 MZ调制器 2的偏置电压情况, 并根据所得 到的情况调整相应 MZ调制器的偏置电压或者维持不变。
[62] 复用控制器就是本发明实施方式中所述的复用控制装置, 它分别连接并控制着 扰动频率 fl发生器和扰动频率 f2发生器; 两个扰动频率发生器分别输出各自的低 频扰动信号到 MZ调制器 1和 MZ调制器 2上。
[63] 这里的复用控制器中包含着吋分复用控制模块, 可以控制 2个扰动频率发生器 输出的低频扰动信号以吋分复用的方式加载到各自的 MZ调制器上, 即同一吋刻 只有一个低频扰动信号加载到主业务光信号上, 所加载的两个低频扰动信号交 替出现, 周期可以相等, 也可以不相等。 这样就相当于在主业务光信号上同一 吋刻只加载了一个低频扰动信号, 因而对光业务信号的影响最小。
[64] 具体的偏置控制过程为: 当频率为 fl的低频扰动信号加载在 MZ调制器 1上吋, 滤波器 1输出的电信号经过控制处理中心处理后, 得到相应的反馈值进而控制 M Z调制器 1的偏置电压, 此吋滤波器 2没有输出, 相应的 MZ调制器 2的偏置电压则 维持不动; 当频率为 f2的低频扰动信号加载在 MZ调制器 2上吋, 滤波器 2输出的 电信号经过控制处理中心处理后, 得到相应的反馈值进而控制 MZ调制器 2的偏 置电压, 此吋滤波器 1没有输出, 相应的 MZ调制器 1的偏置电压则维持不动。 利 用上述方法循环往复, 就可以实现对两个 MZ调制器的偏置电压控制, 进而可以 推广到多个 MZ调制器的偏置电压控制。
[65] 从以上技术方案可以看出, 由于在主业务光信号上同一吋刻只加载了一个低频 扰动信号, 因而在实现偏置电压控制的同吋, 能够有效减少对光路中主业务光 信号的影响, 降低系统功率代价。
[66] 另外, 若复用控制器中不是包含吋分复用控制模块, 而是包含可控开关控制模 块, 那么其实现方框示意图如图 8所示, 图中的复用控制器中包含着可控开关控 制模块, 可以将扰动频率 fl发生器输出的频率为 fl的低频扰动信号加载到 MZ调 制器 1上, 或者将扰动频率 f2发生器输出的频率为 f2的低频扰动信号加载到 MZ调 制器 2上, 但在同一吋刻二者只能选一, 一个通道导通则另一通道就处于关闭状 态。 这样在复用控制器的控制下, 就可以交替实现两种导通状态, 最终实现将 低频扰动信号交替加载到主业务光信号上的目的。
[67] 另外, 在本具体实施例中的复用控制器的功能也可以集成到控制处理中心内, 其实现方框图示意图如图 9所示, 图 9中的控制处理中心除了完成数据处理和偏 置控制之外, 还控制实现扰动频率 fl发生器和扰动频率 f2发生器交替的输出低频 扰动信号, 保证同一吋刻只有一个低频扰动信号加载到主业务光信号上。 [68] 综上所述, 本发明实施方式由于在主业务光信号上同一吋刻只加载了一个低频 扰动信号, 因而在实现偏置电压控制的同吋, 能够有效减少对光路中主业务光 信号的影响, 降低系统功率代价。
[69] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内, 可轻易想 到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应该以权利要求的保护范围为准。

Claims

权利要求书
[1] 一种多个 MZ调制器的偏置控制方法, 其特征在于, 包括:
在同一吋刻只将一个低频扰动信号加载到主业务光信号上, 实现在同一吋 刻只对一个 MZ调制器进行偏置控制。
[2] 如权利要求 1所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述在 同一吋刻只将一个低频扰动信号加载到主业务光信号上, 具体包括: 以吋分复用的方式控制多个低频扰动信号交替地加载到各自相应的 MZ调制 器上。
[3] 如权利要求 2所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述的 多个低频扰动信号交替地加载到各自相应的 MZ调制器上的周期相等。
[4] 如权利要求 1所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述在 同一吋刻只将一个低频扰动信号加载到主业务光信号上, 具体包括: 通过可控开关控制多个低频扰动信号交替地加载到各自相应的 MZ调整器上 , 所述的可控开关控制在同一吋刻只有一个低频扰动信号通道是导通的, 其他的低频扰动信号通道处于关闭状态。
[5] 如权利要求 1所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述方 法还包括: 在对一个 MZ调制器进行偏置控制吋, 其他 MZ调制器的偏置电 压维持不变。
[6] 一种多个 MZ调制器的偏置控制系统, 其特征在于, 包括:
扰动频率发生器, 用于产生低频扰动信号;
复用控制装置, 用于在同一吋刻只将一个低频扰动信号加载到主业务光信 号上;
控制处理中心, 用于对加载了低频扰动信号的 MZ调制器进行偏置控制。
[7] 如权利要求 6所述的多个 MZ调制器的偏置控制系统, 其特征在于, 所述的 复用控制装置中至少包括下述模块中的一种:
吋分复用控制模块, 用于以吋分复用的方式控制多个低频扰动信号交替地 加载到各自相应的 MZ调制器上;
可控开关控制模块, 用于通过可控开关控制多个低频扰动信号交替的加载 到各自相应的 MZ调整器上, 所述的可控开关控制在同一吋刻只有一个低频 扰动信号通道是导通的, 其他的低频扰动信号通道处于关闭状态。
[8] —种控制处理中心, 其特征在于, 包括:
复用控制装置, 所述的复用控制装置在控制处理中心的控制下, 在同一吋 刻只将多个低频扰动信号中的一个低频扰动信号加载到主业务光信号上。
[9] 如权利要求 8所述的控制处理中心, 其特征在于, 所述的复用控制装置至少 包括以下模块中的一种:
吋分复用控制模块, 用于以吋分复用的方式控制多个低频扰动信号交替地 加载到各自相应的 MZ调制器上;
可控开关控制模块, 用于通过可控开关控制多个低频扰动信号交替地加载 到各自相应的 MZ调整器上, 所述的可控开关控制在同一吋刻只有一个低频 扰动信号通道是导通的, 其他的低频扰动信号通道处于关闭状态。
[10] 一种复用控制装置, 其特征在于, 所述复用控制装置分别与扰动频率发生 器连接, 所述复用控制装置接收扰动频率发生器产生的多个低频扰动信号 , 并在同一吋刻只将所述多个低频扰动信号中的一个低频扰动信号加载到 主业务光信号上。
[11] 如权利要求 10所述的复用控制装置, 其特征在于, 所述的复用控制装置至 少包括以下模块中的一种:
吋分复用控制模块, 用于以吋分复用的方式控制扰动频率发生器产生的多 个低频扰动信号交替地加载到各自相应的 MZ调制器上;
可控开关控制模块, 用于通过可控开关控制扰动频率发生器产生的多个低 频扰动信号交替地加载到各自相应的 MZ调整器上, 所述的可控开关控制在 同一吋刻只有一个低频扰动信号通道是导通的, 其他的低频扰动信号通道 处于关闭状态。
[12] 一种多个 MZ调制器的偏置控制方法, 其特征在于, 包括:
接收多个低频扰动信号;
对所述多个低频扰动信号进行控制, 在同一吋刻只将所述多个低频扰动信 号中的一个低频扰动信号加载到主业务光信号上; 根据所述加载到主业务光信号上的低频扰动信号对该低频扰动信号对应的 MZ调制器进行偏置控制。
[13] 如权利要求 12所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述对 所述多个低频扰动信号进行控制, 在同一吋刻只将所述多个低频扰动信号 中的一个低频扰动信号加载到主业务光信号上具体包括下述至少一个步骤 以吋分复用的方式控制多个低频扰动信号交替地加载到各自相应的 MZ调制 器上;
通过可控开关控制多个低频扰动信号交替地加载到各自相应的 MZ调整器上 , 所述的可控开关控制在同一吋刻只有一个低频扰动信号通道是导通的, 其他的低频扰动信号通道处于关闭状态。
[14] 如权利要求 12所述的多个 MZ调制器的偏置控制方法, 其特征在于, 所述方 法还包括: 在对一个 MZ调制器进行偏置控制吋, 其他 MZ调制器的偏置电 压维持不变。
PCT/CN2008/071945 2007-08-10 2008-08-11 Procédés et systèmes de commande de polarisation pour une pluralité de modulateurs mz WO2009021451A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710120172.2 2007-08-10
CNA2007101201722A CN101364841A (zh) 2007-08-10 2007-08-10 多个mz调制器的偏置控制方法及系统

Publications (1)

Publication Number Publication Date
WO2009021451A1 true WO2009021451A1 (fr) 2009-02-19

Family

ID=40350390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071945 WO2009021451A1 (fr) 2007-08-10 2008-08-11 Procédés et systèmes de commande de polarisation pour une pluralité de modulateurs mz

Country Status (2)

Country Link
CN (1) CN101364841A (zh)
WO (1) WO2009021451A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130141772A1 (en) * 2011-12-02 2013-06-06 Futurewei Technologies, Co. Sensitivity Improvement of Mach-Zehnder Modulator Bias Control
CN103873152A (zh) * 2012-12-18 2014-06-18 武汉邮电科学研究院 一种光iq调制器自动偏压控制系统及方法
CN110596918B (zh) * 2019-09-18 2023-05-05 武汉光迅科技股份有限公司 调制器的偏置工作点的控制方法及装置
CN110912613B (zh) * 2019-11-12 2021-04-06 深圳帕格精密系统有限公司 一种基于多路电光调制器的偏置电压控制方法、控制器及系统
WO2021169756A1 (zh) 2020-02-25 2021-09-02 青岛海信宽带多媒体技术有限公司 一种光模块
CN114070413B (zh) * 2020-07-31 2023-03-14 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022037227A1 (zh) * 2020-08-18 2022-02-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN114531203B (zh) * 2020-11-23 2024-02-06 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251815A (ja) * 1990-03-01 1991-11-11 Fujitsu Ltd 光送信器、光変調器の制御回路および光変調方法
CN1764864A (zh) * 2003-03-28 2006-04-26 住友大阪水泥股份有限公司 光调制器的偏置控制方法以及装置
US20060088322A1 (en) * 2004-10-21 2006-04-27 Fujitsu Limited Optical transmitter device
CN101006381A (zh) * 2004-08-13 2007-07-25 波科海姆技术公共有限公司 用于光学调制器的自动偏置控制

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251815A (ja) * 1990-03-01 1991-11-11 Fujitsu Ltd 光送信器、光変調器の制御回路および光変調方法
CN1764864A (zh) * 2003-03-28 2006-04-26 住友大阪水泥股份有限公司 光调制器的偏置控制方法以及装置
CN101006381A (zh) * 2004-08-13 2007-07-25 波科海姆技术公共有限公司 用于光学调制器的自动偏置控制
US20060088322A1 (en) * 2004-10-21 2006-04-27 Fujitsu Limited Optical transmitter device

Also Published As

Publication number Publication date
CN101364841A (zh) 2009-02-11

Similar Documents

Publication Publication Date Title
WO2009021451A1 (fr) Procédés et systèmes de commande de polarisation pour une pluralité de modulateurs mz
US10225017B2 (en) Optical transmitter and method for controlling the same
US9419720B2 (en) Optical signal transmitter
US8116635B2 (en) Polarization multiplexing and transmitting apparatus
US8364038B2 (en) Polarization multiplexed optical transmitter and method for controlling polarization multiplexed optical signal
JP4086912B2 (ja) 光変調器の制御装置
CA2588585C (en) Method and apparatus for bias and alignment control in an optical signal transmitter
JP5186993B2 (ja) 偏波多重光送受信装置
JP2017147622A (ja) 光送信機、及び制御方法
JPH1079705A (ja) 光変調装置及び光変調方法
JP2002023124A (ja) 光送信器および光伝送システム
US20080056727A1 (en) Optical transmitter and drive method of same
JP2007006326A (ja) Qpsk光変調装置
JP2012511875A (ja) 偏光された送信信号を使用した光通信
JP4809270B2 (ja) 光送信装置及び方法
US7024056B2 (en) Electro-optic gating arrangement with improved duty cycle
US7697803B2 (en) Systems and methods for phase control for RZ-DQPSK modulation
CN115698803A (zh) 用于互连收发器的光调制器控制系统
JP4255319B2 (ja) 位相制御装置及び光送信装置
JP3744920B2 (ja) 光位相検知装置及び光位相制御装置
CN111245553A (zh) 形成光子辅助光学串并转换系统及采用其的光通信设备
JP2001326609A (ja) 光rz信号生成装置,光rz信号生成方法,光時分割多重化装置および光時分割多重化方法
JP2004080462A (ja) 時分割多重信号光の分離装置、並びに、それを用いた光受信装置および光伝送システム
CN103297016B (zh) 光发射器和光通信方法
CN101453272A (zh) 多个mz调制器的偏置控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08783938

Country of ref document: EP

Kind code of ref document: A1