WO2009019366A2 - Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal - Google Patents

Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal Download PDF

Info

Publication number
WO2009019366A2
WO2009019366A2 PCT/FR2008/051290 FR2008051290W WO2009019366A2 WO 2009019366 A2 WO2009019366 A2 WO 2009019366A2 FR 2008051290 W FR2008051290 W FR 2008051290W WO 2009019366 A2 WO2009019366 A2 WO 2009019366A2
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
colorectal cancer
protein
patients
serum
Prior art date
Application number
PCT/FR2008/051290
Other languages
English (en)
Other versions
WO2009019366A3 (fr
Inventor
Jean-Philippe Charrier
Geneviève CHOQUET-KASTYLEVSKY
Dominique Rolland
Original Assignee
bioMérieux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by bioMérieux filed Critical bioMérieux
Priority to AU2008285555A priority Critical patent/AU2008285555B2/en
Priority to ES08827058T priority patent/ES2570609T3/es
Priority to US12/452,048 priority patent/US8367362B2/en
Priority to CA2693090A priority patent/CA2693090A1/fr
Priority to CN200880025245.2A priority patent/CN102124343B/zh
Priority to EP08827058.2A priority patent/EP2167970B1/fr
Priority to JP2010516548A priority patent/JP5559050B2/ja
Publication of WO2009019366A2 publication Critical patent/WO2009019366A2/fr
Publication of WO2009019366A3 publication Critical patent/WO2009019366A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/978Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • G01N2333/98Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)

Definitions

  • the present invention relates to the field of oncology. More particularly, the subject of the present invention is a method for in vitro diagnosis of colorectal cancer in a human patient by determining the presence of Aminoacylase 1 in a biological sample derived from this patient, said method being able to be used both in diagnosis early, screening, therapeutic follow-up, prognosis, as in the diagnosis of relapses in the context of colorectal cancer.
  • CRC Colorectal cancer
  • the test is also not very specific.
  • the appearance of blood in the stool can be related to a non-tumoral condition: recto-colic haemorrhage, haemorrhoids, fistulas, ...
  • a colonoscopy investigation must be performed with the disadvantages described below.
  • Hemoccult® are delicate to interpret, so they must be read in specialized centers by qualified and competent personnel.
  • InSure TM marketed by Enterix Inc., can detect 87% of patients with CRC and 47% of those with precancerous polyps. It is a test for the detection of human hemoglobin in the stool, and more particularly of the globin portion of this molecule.
  • a second screening strategy is the systemic realization of a colonoscopy after 50 years, which in theory makes it possible to reduce colorectal cancer mortality. But the acceptability of this test in healthy subjects is too low for a screening policy using endoscopy to reduce mortality (there is a compliance around 2% for colonoscopy in European countries having implemented this screening strategy). There is a significant risk (1% c) of perforation and hemorrhage of the colon and death (1/10 000), as well as a high cost for public health. In addition, colonoscopy requires a very demanding pre-colonic preparation, which largely explains the poor compliance.
  • Immunoassay-measurable tumor markers have been described for a long time in colorectal cancer. These include carcinoembryonic antigen (CEA) and CA19-9.
  • CEA carcinoembryonic antigen
  • CA19-9 CA19-9.
  • ACE is used for monitoring. It can not be used for screening or early diagnosis of colorectal cancer because its sensitivity and specificity are insufficient. Indeed, this marker is expressed by other types of cancer, and in benign pathologies. Nevertheless, it is possible to gain in sensitivity without losing specificity by associating with the ACE another tumor marker such as CA19-9 or CA72-4.
  • CA 19-9 The causes of physiological variations of CA 19-9 are rare but others Benign (hepatobiliary, pancreatic) or malignant diseases can induce elevation of CA19-9. This marker, taken in isolation, is therefore not of interest for diagnosis. Nevertheless, its serum concentration being correlated with the size of the tumor and the presence of metastases, it can also allow therapeutic monitoring or early detection of recurrence.
  • Colopath® / ColorectAlert MD marketed by Ambrilia, is a rapid screening test and minimally invasive to the CCR.
  • Colopath® detects a plasmalogen (complex lipid class part of phospholipids) in rectal mucus individuals with colorectal pathology
  • ColorectAlert MD detects T-antigen, a complex sugar in the rectal mucus.
  • the Colopath® / ColorectAlert MD involves rectal mucus application on a test strip and the positive or negative result is based on a Schiff reaction.
  • Ambrilia has studied 1787 subjects and demonstrated that Colopath® / ColorectAlert MD detects 54% of cases of early stage colorectal cancer and 49% of all stages.
  • COLARIS marketed by Myriad Genetics, is a blood test for mutations in the MLH1 and MSH2 genes for screening non-polyposis hereditary colon cancers (HNPCC syndrome).
  • HNPCC syndrome non-polyposis hereditary colon cancers
  • DR-70® marketed by AMDL, is a screening test for various types of cancers (lung, colon, breast, liver, stomach, ). It is therefore not specific to the JRC. Its principle is based on the double sandwich ELISA technique (DR-70 antigen assay). The revelation is by enzymatic reaction (antibodies coupled with biotin and streptavidin). A color reaction indicates the presence of cancer.
  • the present invention firstly relates to a method for in vitro diagnosis of colorectal cancer by determining the presence of Aminoacylase 1 in biological samples from patients suspected of having colorectal cancer, and preferably distant tumors.
  • the method of the invention thus makes it possible to specifically and early diagnosis of colorectal cancer by a simple test consisting in finding the presence of Aminoacylase 1 in a biological sample taken from a patient, preferably remote from the potential tumor.
  • a simple test consisting in finding the presence of Aminoacylase 1 in a biological sample taken from a patient, preferably remote from the potential tumor.
  • the Applicants have unexpectedly shown that colonic tumors not only specifically secreted Aminoacylase 1 but especially released out of the cancerous tissue, as will be demonstrated in more detail below, and that its concentration in the biological sample in which the method of the invention is carried out was increased compared to the reference values determined for healthy patients.
  • the determination of the presence of Aminoacylase 1 in a biological sample, remote or otherwise from the tumor then makes it possible to conclude that the pathology is sought.
  • One of the advantages of the method of the invention therefore lies in the possibility of using a sample remote from the potential tumor as a diagnostic sample, which allows a simple and non-invasive diagnosis whereas a tissue diagnosis requires a biopsy taken invasively.
  • tissue markers for example on a tissue section (immunohistochemistry)
  • the Aminoacylase 1 (Swiss Prot Q03154 N 0 , also known as EC 3.5.1.14, N-Acyl-L-Amino-Acid Amidohydrolase or ACY-I) marker is part of the Aminoacylase family. These are enzymes that catalyze the hydrolysis of acylated amino acids to fatty acids and amino acids 3 .
  • An immunochemical assay of the enzymatic activity Aminoacylase was developed as early as 1975 by K. Lorentz et al. 4 and has been used to assay different tissues and serums 5 . The study showed an increase in Aminoacylase activity in cases of liver diseases but not in cases of colon cancer.
  • the Aminoacylase 1 gene has been identified on the chromosome 3p21.1 6 .
  • the 3p21.1 region is reduced to homozygosity in small cell lung cancer, and in this case the expression of Aminoacylase is repressed or undetectable 7 .
  • S. Balabanov et al. 8 showed that the expression of Aminoacylase was repressed in case of kidney cancer.
  • Aminoacylase 1 has never been described as being useful as a marker in the context of colorectal cancer and especially as being able to be assayed in a biological sample remote from the tumor.
  • determining the presence of the tumor marker is meant the determination of the presence of the protein, its messenger RNA, or the detection of modification on its gene in the coding or non-coding sequences, such as methylations.
  • Release by colonic tumors means the active or passive secretion or the release, whatever the mechanism, of the tumor marker by the tumor cells themselves or by neighboring non-tumor cells following lesions or modifications. of cellular phenotype resulting from tumor development.
  • biological sample in which the method of the invention is implemented is meant any biological sample capable of containing the tumor marker of interest.
  • a biological sample that is not distant from the tumor mention may be made of solid samples such as tissue originating from the tumor, biopsies of this tumor, lymph nodes, metastases of the patient, and cells that have been purified from these solid samples.
  • biological samples remote from the tumor include biological fluids such as whole blood or its derivatives, for example serum or plasma, urine, saliva and effusions, bone marrow and stool , and the cells purified from these liquid samples. Blood or its derivatives as well as stool, effusions and purified cells are preferred from these liquid samples.
  • the method of the invention can be improved by detecting, in addition to Aminoacylase 1, at least one other tumor marker, where appropriate also released by colonic tumors out of the cancerous tissues.
  • the combination of at least two markers makes it possible to improve the specificity and the sensitivity of the diagnostic test for colorectal cancer.
  • another object of the invention also consists in determining the presence of at least one other tumor marker chosen from the following two groups of markers, considered alone or in combination:
  • Group A Leukocyte Elastase Inhibitor, Ezrin, Liver Fatty Acid-Binding Protein, Intestinal Fatty Acid-Binding Protein, Apolipoprotein AI,
  • Apolipoprotein AII and Plastin-I are new markers identified by the Applicant.
  • Group B markers with additional diagnostic interest, namely: Beta 2 Microglobulin, Proteasome 2OS, Galectin-3, L-Lactate Dehydrogenase Chain B, Calreticulin, Regenerating Islet-Derived Protein 3
  • Defensin-A5 detection of DNA fragments in blood with specific alterations of their methylation profile, such as for example the methylated DNA of the AXL4 gene (Aristaless-like Homeobox-4 Gene Methylation) or the methylated DNA of the Septin-9 gene, the detection of specific alterations of DNA fragments in the stool as specific mutations in the stool DNA or specific alterations of the DNA methylation pattern in the stool, the detection of human hemoglobin in the stool.
  • the method of the invention can therefore be improved by detecting at least two markers, one being Aminoacylase 1, the other being another tumor marker selected from Group A, namely: Leucocyte Elastase Inhibitor, Ezrine, Liver Fatty Acid-Binding Protein, Intestinal Fatty Acid-Binding Protein, Apolipoprotein AI, Apolipoprotein AII and Plastin-I.
  • tumor marker protein, messenger RNA or specific modifications of the corresponding gene, such as mutations or methylations.
  • the Leucocyte Elastase Inhibitor tumor marker (N 0 Swiss Prot P30740, also called LEI, Serpin Bl, Monocyte / neutrophil elastase inhibitor, M / NEI or EI) was sequenced in 1992 9 .
  • LEI specifically inhibits proteases having Elastase or Chymotrypsin-like properties by formation of non-dissociable complexes under the action of SDS 10 .
  • LEI inhibits three major proteases produced by neutrophils: leukocyte elastase, proteinase-3 and cathepsin G. These proteases allow the immune system to defend the body by proteolysis of extracellular or phagocytic substrates.
  • this protein is a good marker in biological samples from a patient with colorectal cancer, said samples being remote or not from the tumor.
  • the Ezrin marker (N 0 Swiss Prot P15311, also called p81, Cytovillin or Villin-2) is a protein providing the link between the cell membrane and the Actin filaments of the cytoskeleton of the cell, in particular in the microvilli of intestinal epithelial cells. 11 . WG Jiang and S. Hiscox 12 have shown that interleukins IL-2, IL-8, IL-10, ... could inhibit the expression of Ezrin in the human colorectal cancer cell line, HT29. The same authors 13 have shown that inhibition of Ezrin expression in colorectal cancer cell lines, HT1 and HRT18, reduced cell adhesion and increased cell mobility and invasive behavior.
  • Ezrin regulates cell / cell and cell / matrix adhesions by interacting with cellular adhesion molecules, E-cadherin and beta-catenin. They suggested that Ezrin could play an important role in controlling the invasive potential of cancer cells.
  • T. Xiao et al. 14 used an ELISA assay to quantify plasma Ezrin in patients with lung cancer. However, they did not observe any differences from control subjects. The Applicant has surprisingly shown that this protein is a good marker in biological samples from a patient with colorectal cancer, said samples being remote or not from the tumor.
  • Liver Fatty Acid-Binding Protein (N 0 Swiss Prot P07148, also known as L-FABP, FABPL, FABPL, Z protein or sterol transporter protein) belongs to the FABP family comprises nine isoforms. Each isoform is named after the tissue in which it was first detected. These isoforms have a functional community, similar three-dimensional structures but their sequence homology is not high. L-FABP was sequenced in 1985 15 . It is a small 15 kDa protein, abundant in the cytosol, with the ability to bind to free fatty acids as well as bilirubin. Some recent studies suggest that alterations in the expression of the L-FABP protein may induce a process of tumorigenesis.
  • L-FABP protein is a prognostic liver resection marker in patients with colorectal cancer having metastasized to the liver 18.
  • the Applicant has surprisingly shown that this protein is a good marker in biological samples from a patient with colorectal cancer, said samples being distant from the tumor.
  • the Intestinal Fatty Acid-Binding Protein marker (N 0 Swiss Prot P12104, also called I-FABP, FABP-2 or FABPI) was sequenced in 1987 19 . It is a small 15 kDa protein, abundant in the cytosol, with the ability to bind to free fatty acids as well as bilirubin.
  • the I-FABP protein is expressed in enterocytes of the small intestine and can constitute about 2% of the protein content of this cell type. At the tissue level, the duodenum and jejunum contain significantly higher amounts of I-FABP than the colon (jejunum: 4.8 ⁇ g / g, colon: 0.25 ⁇ g / g) 20 . I-FABP could not be detected in plasma samples from healthy subjects.
  • Apolipoproteins are a family of proteins consisting of polar amino acids allowing the transport of lipids in the blood by formation of a hydrophilic macromolecular complex called lipoprotein.
  • lipoprotein hydrophilic macromolecular complex
  • the plasma concentration of Apolipoproteins is not negligible, of the order of mg / ml 23 .
  • the Apolipoprotein AI marker (N 0 NCBI 490098, also called Apo AI, Apo AI and Apo Al) is a protein of 243 amino acids and 28 kDa. It is essentially synthesized by the liver and intestine. This protein has been shown to be sub-abundant in the sera of patients with colorectal cancer compared to healthy subjects by SELDI-TOF 24 . However, it is stated in this article that the discrimination of patients with CRC compared to healthy subjects is achieved by combining Apo AI with other protein markers. In addition, this article specifies that the turbidimetric immunoassay assay of Apo AI performed by another team does not confirm the sub-abundance of this protein in the sera of patients with CCR 25 .
  • the Apolipoprotein AII marker (Swiss Prot P02652 N 0 , also called ApoA II, Apo-AII, and Apo A2) is a 17380 Da protein composed of two polypeptide chains of 77 amino acids each connected by a disulfide bridge. Like Apolipoprotein AI, Apolipoprotein AII is essentially synthesized by the liver and intestine. Hachem et al. In Apo AI, Apo AII was also assayed in sera from patients with liver cancer following metastatic colorectal cancer. However, the results are not significant and do not allow a conclusion as to the pathology sought. The Applicant has surprisingly shown that the decrease in the concentration of this protein in patients with colorectal cancer makes them a good marker in biological samples from a patient with colorectal cancer, said samples being distant from the tumor.
  • Plastine-I (N 0 Swiss Prot Q14651, also called I-plastin, Intestine- specifies plastin or Plastin 1) belongs to the family of human Plastins, three representatives of which are known: -Plastin-I, -Plastin-L and -Plastine-T. Some authors call the Plastines "Fimbrines", other authors still reserve the name of Fimbrine to -Plastine-I.
  • Plastins are proteins that bind to Actin to form the cytoskeleton (cellular skeleton). These are 70 kDa proteins relatively well preserved throughout the evolution of eukaryotes. They have a high tissue specificity, only one isoform at a time is present in normal tissues 27 .
  • the concentration of the tumor marker chosen in Group A will, depending on the marker in question, be increased or decreased in the biological sample in which the method of the invention is carried out with respect to the reference values determined for healthy patients.
  • the method of the invention can also be improved by combining the detection of Aminoacylase 1 and another tumor marker selected from Group B, namely: Beta 2 Microglobulin, Proteasome 2OS, Galectin-3, L-type markers.
  • Lactate Dehydrogenase Chain B Calreticulin, Regenerating Islet-Derived Protein 3 Alpha, Tumor-Associated Calcium Signal Transducer 1, Keratin Type II Cytoskeletal 8, Keratin Type I Cytoskeletal 18, Keratin Type I Cytoskeletal 19, Epithelial-Cadherin, ACE, Villine, CA 19-9, CA 242, CA 50, CA 72-2, Testosterone, TIMP-I, Cripto-1, Intelectin-1, Protein Disulfide Isomerase, Cytokeratin 20, Translationally-Controlled Tumor Protein, (Pro) Defensin-A5, detection of DNA fragments in the blood having specific alterations in their methylation profile, such as, for example, the methylated DNA of the AXL4 gene (Arist
  • Beta 2 Microglobulin (Swiss Prot P61769 N 0 , also called ⁇ 2 Microglobulin, ⁇ 2M) is a low molecular weight protein (11 to 12 kDa) found on the surface of most nucleated human cells. The rate of ⁇ 2 Serum microglobulin increases in some cancer patients, without this increase being specific or correlated with the nature of the tumor, its stage or the severity of the disease.
  • ⁇ 2 Microglobulin is filtered by the renal glomeruli and reabsorbed by the proximal convoluted tubes, its blood concentration can be modified in case of renal pathologies.
  • the assay of ⁇ 2 microglobulin is most often reserved for the diagnosis of renal pathologies, or monitoring of infection with the acquired immunodeficiency virus.
  • this marker is known as a tumor marker, including colon cancer.
  • the marker 2OS proteasome (also known Prosome) is the central structure of the proteasome which is itself responsible for the intracellular degradation of the molecular complex 29 ubiquitinated proteins.
  • the Proteasome is a 700 kDa molecular complex consisting of 28 subunits associated in 4 rings of 7 subunits. In humans, 7 alpha units ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 and ⁇ 1) and 10 beta units ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 1, ⁇ 2i and ⁇ 5i) are known. .
  • the Proteasome plays a central role in the mechanisms of cell proliferation, growth, regulation and apoptosis and therefore in the cancer pathways.
  • Inhibition of Proteasome by Bortezomib (Velcade) is a recognized treatment for multiple myeloma.
  • Phase II or III therapeutic trials are in progress for hematological cancers or tumors.
  • T Lavabre-Bertrand et al. 30 have shown that the serum proteasome level can rise on the occasion of certain pathologies, especially in cases of cancer (myeloma, lymphoma and solid tumors).
  • the galectin-3 marker (N 0 Swiss Prot P17931, also called Gal-3 galactose-specific lectin 3, MAC-2 antigen, IgE-binding protein, 35 kDa lectin, Carbohydrate binding protein 35, CBP 35, Laminin-binding protein Lectin L-29, L-31, Galactoside-binding protein or GALBP), is a lectin capable of binding to beta-galactosidic structures of N-acetyllactosamine type. It is a protein to multiple functions involved in various biological functions, including tumor cell adhesion, proliferation, differentiation, angiogenesis, apoptosis, metastatic cancer progression 31 .
  • Gal-3 can complex with many molecules: ACE, IgE, Laminin, Mucin, Mac-2BP, LAMP1, LAMP2, Fibronectin, etc.
  • a serum Gal-3 assay was described by I. Iurisci et al. 32 .
  • Gal-3 was captured on microplates coated with Mac-2 binding protein (a Gal-3 binding protein) and then revealed with anti-Gal-3 rat antibody. This study showed a serum elevation of Gal-3 in gastrointestinal cancers, breast, lung, ovary, melanoma and non-Hodgkin's lymphoma.
  • L-lactate dehydrogenase B chain (N 0 Swiss Prot P07195, also known as LDH-B, LDH Heart Unit or LDH-H) is a protein capable of complexing as homotetramers. This protein may also be complexed with the protein L-lactate dehydrogenase chain A (N 0 Swiss Prot P00338, also known as LDH-A, LDH muscle unit or LDH-M) in the form of straight tetramers.
  • LDH serum dose and / or serum enzyme activity of tetrameric complexes, termed LDH, increases in the bloodstream in proportion to the tumor mass for many solid tumors.
  • LDH is considered a marker of interest for the prognosis of lymphoma, leukemia and colon cancer 33 .
  • the marker calreticulin (N 0 Swiss Prot P27797, also known as CRP55, Calregulin, HACBP, ERp60 or grp60) is a multifunctional protein. It is a lectin capable of interacting transiently with almost all the monoglycosylated proteins of the endoplasmic reticulum. This is how DJ. McCool et al. 34 showed that Calreticulin was involved in the maturation of colonic mucin MUC2. A method of diagnosing CRC using a Calreticulin assay in a tissue, stool or body fluid is described in WO03 / 065003.
  • P16422 also called Major gastrointestinal tumor-associated protein GA733-2, Epithelial cell surface antigen, EpCAM, Epithelial glycoprotein, EGP, Adenocarcinoma-associated antigen, KSA, KS 1/4 antigen, Cell surface glycoprotein Trop-1 or CD326 antigen
  • GA733-2 Major gastrointestinal tumor-associated protein
  • EpCAM Epithelial cell surface antigen
  • EGP Epithelial glycoprotein
  • KSA EpCAM
  • KS 1/4 antigen Cell surface glycoprotein Trop-1 or CD326 antigen
  • Cytokeratins are among the proteins that make up the intermediate filaments of the cytoskeleton of epithelial cells. Currently, more than 20 human cytokeratins have been identified. Cytokeratin 8 (N 0 Swiss Prot P05787, also called Cytokeratin-8, CK-8, Keratin-8 or K8), 18 (Swiss Prot P05783 N 0 , also called Cytokeratin-18, CK-18, Keratin-18 or K18 ), and 19 (Swiss Prot P08727 N 0 , also called Cytokeratin-19, CK-19, Keratin-19 or K19) are the most abundant in the epithelial cells and are useful tools for the diagnosis of cancerous pathologies 41 .
  • TPA Tissue Polypeptide Antigen
  • TPS Tissue Specific Antigen
  • CYFRA 21-1 CYFRA 21-1
  • TPA, TPS or CYFRA-21-1 have been used for the therapeutic monitoring of colorectal, breast, lung, bladder, ovarian, pancreatic, prostate and certain ENT cancers.
  • the blood test of the soluble fragments of cytokeratin has indeed a clinical value to detect recurrences or to evaluate the response to the committed therapy (radiotherapy, chemotherapy, hormonal treatment).
  • a regular dosage makes it possible in particular to evaluate the progression of the tumor mass.
  • the dose of soluble blood cytokeratin also has a prognostic aspect with respect to tumor stage and metastasis formation.
  • cytokeratin blood test is CYFRA 21-1. It is highly recommended for monitoring patients with non-small cell lung cancer.
  • TPA AB Sangtec Medical Co., Byk-Roland
  • GST IDL Biotech AB, BEKI Diagnostics
  • CYFRA-21-1 Roche Diagnostics, CIS Bio-International, Fujirebio diagnostics
  • H. Kim et al. 42 have shown that stool assay of cytokeratin 19 (DiNonA Inc.) may be useful for screening for digestive diseases in conjunction with a fecal occult blood test.
  • Cytokeratin 20 (Swiss Prot P35900 N 0 , also called Keratin, type I cytoskeletal 20, CK-20, Keratin-20, K20, or Protein IT) as a marker in colorectal cancer is described in US2002 / 0160382 patent application.
  • the Epithelial-Cadherin (Swiss Prot P12830 N 0 marker, also called E- Cadherin, Uvomorulin, Cadherin-1, CAM 120/80 or CD324 antigen) is a transmembrane protein mediating calcium-dependent cell adhesion. It is specifically expressed in epithelial cells, where it is involved in maintaining their phenotype.
  • the cytoplasmic domain of E-Cadherin binds to ⁇ -catenin, which is itself linked to the actin filament arrays of the cytoskeleton. This binding of E-cadherin / ⁇ -catenin plays a critical role in stabilizing cell / cell adhesions of epithelial tissue.
  • E-Cadherin can therefore reduce cell adhesion and increase the invasiveness of cancer cells.
  • a reduction in the expression of E-cadherin or of ⁇ -catenin is generally associated with a dedifferentiation and a greater aggressiveness of the tumor, in particular for digestive cancers. This is how F. Roca et al. 43 showed that patients with colorectal cancer and under-expressing E-Cadherin had a worse prognosis than patients with normal expression levels.
  • Damsky et al. 44 showed that a soluble form of E-Cadherin could be released by the MCF-7 breast cancer cell line. This soluble form corresponds to the cleavage of the extracellular portion of E-cadherin.
  • the assay of ACE Carcino-Embryonic Antigen
  • ACE Carcino-Embryonic Antigen
  • a blood test of this marker has a poor sensitivity for the diagnosis of colorectal cancer. at an early stage.
  • the serum ACE assay is especially recommended for assessing the risk of liver metastases 48 and for therapeutic monitoring.
  • it is a marker of colorectal cancer, it can indeed be increased in many other cancers (lung, breast ).
  • the dosage of ACE in the stool appears to be more sensitive and specific than the serum ACE assay or blood stool assay 49 . This dosage is not yet proposed routinely.
  • CA19-9 Carbohydrate antigen 19.9
  • the CA 19-9 blood test is more specific than that of ACE.
  • the blood CA 19-9 level increases in case of colorectal cancer, pancreas and liver (cholangiocarcinoma), but also in cases of non-cancerous diseases (cholangitis ). Its use in association with the ACE is recommended both at the time of the diagnosis of a cancer and for the follow-up of the pathology.
  • CA 50 antigen is defined by its ability to be recognized by a specific monoclonal antibody.
  • CA 72 marker TL Klug et al. 52 showed that the serum dose of CA 72 antigen was increased in case of colorectal cancer.
  • the CA 72 antigen is defined by its ability to be recognized by a specific monoclonal antibody.
  • CA 242 antigen is defined by its ability to be recognized by a specific monoclonal antibody.
  • patent application US 2007/0020707 describes in particular the determination of TIMP-I for the diagnosis of colorectal cancer using a dosage in a body fluid.
  • MP Ebert et al. 56 showed that the ALX4 gene, or Aristaless-like homeobox-4, was more often methylated in the sera of patients with colorectal cancer than in the control serum (P ⁇ 0.0001). Using a threshold value of 41.4 ⁇ g / mL, they obtained a sensitivity of 83.3% and a specificity of 70%.
  • Intelectin-1 (Swiss Prot Q8WWA0 N 0 , also called Intestinal lactoferrin receptor, Galactofuranose-binding lectin, Endothelial lectin HL-I or Omentin) for the diagnosis of colorectal cancer has been described in US2003 / 0082533.
  • defensin means the precursor, namely Prodisputedfensine before cleavage, the propeptide, namely the N-terminal half after cleavage of Prodisputedfensine, and the mature protein, namely Defensine, corresponding to half C -terminal after cleavage.
  • the concentration of the tumor marker chosen in Group B will, depending on the marker considered, be increased or decreased in the biological sample in which the method of the invention is carried out with respect to the reference values determined for healthy patients.
  • the group B tumor marker (s) are chosen from: the markers: Beta 2 Microglobulin, Proteasome 2OS, Galectin-3, L-Lactate
  • Dehydrogenase Chain B Calreticulin, Regenerating Islet-Derived Protein 3 Alpha
  • Tumor- Associated Calcium Signal Transducer 1 Epithelial-Cadherin, ACE, CA 19-9,
  • Testosterone TIMP-I, Intelectin-1, Protein Disulfide Isomerase, Cytokeratin 20,
  • the method of the invention may also include the detection of any other marker of colorectal cancer known to those skilled in the art.
  • the tumor marker (s) of interest are detected either in the form of a protein, or in the form of messenger RNA, or by alteration of the corresponding DNA (mutation or modification of the methylations).
  • the determination of the presence, in the biological sample, of the tumor marker of "protein" interest can be implemented by any method for determining the presence of a protein in a sample, known to those skilled in the art, as for example by a biochemical test, including an immunoassay, or by mass spectrometry.
  • the biochemical test may be any test widely known to those skilled in the art involving molecular interactions, namely reactions between said tumor marker and one or more specific binding partner (s) of said tumor marker.
  • the biochemical test is an immunoassay known to those skilled in the art involving immunological reactions between the tumor marker which is the antigen and one or more specific binding partner (s) which are the antibodies directed against this antigen.
  • immunoassay known to those skilled in the art involving immunological reactions between the tumor marker which is the antigen and one or more specific binding partner (s) which are the antibodies directed against this antigen.
  • the specific or non-specific binding partners of the tumor marker (s) sought in the method of the invention are any partner capable of binding to this or these markers. They are said to be specific when they are able to bind to these markers with a high specificity, even a specificity of 100%. They are said to be nonspecific when their binding specificity to these markers is low and they are then able to bind to other ligands, such as proteins. By way of example, mention may be made of antibodies, antibody fractions, receptors and any other molecule capable of binding to this marker.
  • the binding partner antibodies are, for example, either polyclonal antibodies or monoclonal antibodies.
  • the polyclonal antibodies can be obtained by immunizing an animal with the tumor marker in question, followed by the recovery of the desired antibodies in purified form, by taking the serum of said animal, and separating said antibodies from the other constituents of the serum, in particular by chromatography. 'affinity on a column on which is fixed an antigen specifically recognized by the antibodies, in particular said marker.
  • the monoclonal antibodies can be obtained by the hybridoma technique, the general principle of which is recalled below. Firstly, an animal, usually a mouse, is immunized with the tumor marker of interest, the B lymphocytes of which are then capable of producing antibodies against said antigen. These antibody-producing lymphocytes are then fused with "immortal" myeloma cells (murine in the example) to give rise to hybridomas. From the heterogeneous mixture of cells thus obtained, the cells capable of producing a particular antibody and of multiplying indefinitely are then selected.
  • Each hybridoma is multiplied in the form of a clone, each leading to the production of a monoclonal antibody whose recognition properties with respect to said tumor marker can be tested for example by ELISA, by immunoblotting (Western blot) in one or two-dimensional, in immunofluorescence, or with a biosensor.
  • the monoclonal antibodies thus selected are subsequently purified, in particular according to the affinity chromatography technique described above.
  • the monoclonal antibodies can also be recombinant antibodies obtained by genetic engineering, by techniques well known to those skilled in the art. Examples of anti-Leukocyte Elastase Inhibitor antibodies are known and are available in particular in the Abcam catalog, anti-LEI rabbit polyclonal antibody, Cat. No. Ab47731. An anti-LEI monoclonal antibody Clone ELA-I has been described in the article by Yasumatsu et al. 58 .
  • anti-Ezrin antibodies are known and are available in particular in the catalog Abcam, monoclonal anti-Ezrin Clone 3C12 antibody, Cat. No. Ab4069 and rabbit anti-Ezrin polyclonal antibody, Cat. No. Ab47418.
  • anti-Aminoacylase 1 antibodies are known and are available in particular in the catalog Abnova, anti-Aminoacylase 1 monoclonal antibody Clone 4F1-B7, Cat. No. H00000095-M01, and in the Abcam catalog, anti-Aminoacylase hen polyclonal antibody 1, Cat. No. Ab26173.
  • anti-Liver Fatty Acid-Binding Protein antibodies are known and are available in particular in the Abcam catalog, anti-L-FABP Clone 6B6 monoclonal antibody, Cat. No. Abl0059 and anti-L-FABP rabbit polyclonal antibody, Cat. No. Ab7807.
  • anti-Intestinal Fatty Acid-Binding Protein antibodies are known and are available in particular in the catalog R & D Systems, anti-I-FABP monoclonal antibody Clone 323701, Cat. No. MAB3078, and in the Abcam catalog, rabbit anti-I-FABP polyclonal antibody, Cat. No. Ab7805.
  • anti-Apolipoprotein AI antibodies are known and are available in particular in the Biodesign catalog Meridian Life Sciences, anti-Apo AI monoclonal antibody Clone 4A90, Cat. No. H45402M and goat anti-Apo AI polyclonal antibody, Cat. No. K45252P.
  • anti-Apolipoprotein AII antibodies are known and are available in particular in the US Biological catalog, anti-Apo AII monoclonal antibody Clone 1402, Cat. No. A2299-31C and in the Biodesign catalog Meridian Life Sciences polyclonal anti-Apo AII goat antibody, Cat. No. K74001P.
  • polyclonal anti-Plastin-I antibodies are known and are available in particular in the Santa Cruz Biotechnology catalog. Rabbit polyclonal antibody H-300 (Cat No. sc-28531) reacts with Plastin-I, L and T. The Applicant has developed monoclonal antibodies directed against Plastin-I. Examples of anti-Beta2 Microglobulin, anti-ACE, anti-CA19-9 and anti-Testosterone antibodies are known and are especially used in the assay kits of the Applicant, respectively Vidas® 2 Microglobulin, Vidas® ACE, Vidas® CA19-9 TM and Vidas® Testosterone.
  • anti-Proteasome 2OS antibodies are known and are available in particular in the catalog of Affinitiy Research Products.
  • Chain B Anti-Calreticulin, Anti-Tumor-Associated Calcium Signal Transducer 1, Anti-Keratin Type II Cytoskeletal 8, Anti-Keratin Type I Cytoskeletal 18, Anti-Keratin Type I Cytoskeletal 19, Anti-Epithelial-Cadherin, Anti-Villin and anti-TIMP-1 are known and are available in particular in the Abcam catalog.
  • Anti-Regenerating Islet-Derived Protein 3 Alpha antibodies are known and are especially used in Dynabio assay kits (La Gaude, France).
  • anti-CA 242, anti-CA 50, anti-CA 72-4 antibodies are known and are available in particular in the Fujirebio catalog.
  • anti-Intelectin-1 antibodies are known and are available in particular in the Alexis Biochemicals catalog, anti-Intelectin-1 Clone SaIy-I monoclonal antibody, Cat. No. ALX-804-850-C100 and anti-Intelectin-1 rabbit polyclonal antibody, Cat. No. ALX-210-941.
  • anti-Protein Disulfide Isomerase antibodies are known and are available in particular in the Abcam catalog, monoclonal anti-PDI Clone RL77 antibody, Cat. No. Ab5484 and anti-PDI rabbit polyclonal antibody, Cat. No. Ab3672.
  • anti-Cytokeratin 20 antibodies are known and are available in particular in the Abcam catalog, monoclonal antibody against Cytokeratin Clone Ks20.8, Cat. No. Ab962 and polyclonal rabbit anti-Cytokeratin 20, Cat. No. Ab36756.
  • anti-TCTP antibodies examples include anti-TCTP antibodies, and are available in particular in the catalog Abnova, anti-TCTP monoclonal antibody Clone 3C7, Cat. No. 157H00007178-M01 and anti-TCTP polyclonal antibody, Cat. No. 157H00007178-A01.
  • anti-Defensin-A5 antibodies are known and are available in particular in the catalog Santa Cruz Biotechnology, anti-Defensin-A5 monoclonal antibody Clone 8C8, Cat. No. sc-53997, and in the Alpha Diagnostic International Inc. catalog, anti-Defensin-A5 polyclonal rabbit antibody, Cat. No. HDEFA51-A.
  • the specific or non-specific binding partners of the tumor marker (s) sought in the method of the invention may be used as a capture reagent, as a detection reagent or as capture and detection reagents.
  • Visualization of immunological reactions may be performed by any means of detection, such as direct or indirect means.
  • direct detection that is to say without the intermediary of labeling
  • the immunological reactions are observed for example by surface plasmon resonance or by cyclic voltammetry on an electrode bearing a conductive polymer.
  • indirect detection is done by means of a labeling, either of the binding partner, said revealing reagent, or of the tumor marker of interest itself. In the latter case, we speak of a competition method.
  • labeling is meant the attachment of a marker reagent capable of directly or indirectly generating a detectable signal.
  • a nonlimiting list of these marker reagents consists of:
  • Enzymes that produce a detectable signal for example by colorimetry, fluorescence, luminescence, such as horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, glucose-6-phosphate dehydrogenase,
  • Chromophores such as fluorescent compounds, luminescent compounds, dyes, radioactive molecules such as 32 P, 35 S or 125 I, and
  • Fluorescent molecules such as Alexa or phycocyanins.
  • Indirect detection systems can also be used, such as, for example, ligands capable of reacting with an anti-ligand.
  • the ligand / anti-ligand pairs are well known to those skilled in the art, which is the case, for example, of the following pairs: biotin / streptavidin, hapten / antibody, antigen / antibody, peptide / antibody, sugar / lectin, polynucleotide / complementary polynucleotide. In this case, it is the ligand that carries the binding partner.
  • the anti-ligand can be detectable directly by the labeling reagents described in the preceding paragraph or be itself detectable by a ligand / antiligand.
  • the biological sample previously treated or not is passed through a mass spectrometer and the spectrum obtained is compared with that of the tumor markers sought in the method of the invention.
  • An example of pre-treatment of the sample consists in passing it on an immunocapture support, comprising one of the binding partners of the tumor marker or markers sought in the method of the invention, for example an antibody directed against the tumor markers sought in the method of the invention.
  • Another example of pre-treatment of the sample may be the pre-fractionation of the biological sample in order to separate the proteins from the sample. In techniques well known to those skilled in the art, one can for example first of all deplete the majority proteins of the sample.
  • the determination of the presence, in the biological sample, of the tumor marker of interest "mRNA" can be implemented by any determination method the presence of mRNA in a sample, namely either the direct detection of the mRNA, or the indirect detection of the mRNA, or any other method of determining the presence of an RNA in a sample, known from the skilled person.
  • direct detection of the mRNA is meant the detection of the mRNA itself in the biological sample.
  • the direct detection of the mRNA in the biological sample may be carried out by any means known to those skilled in the art, such as, for example, by hybridization with a specific binding partner of the mRNA, where appropriate after amplification by the PCR or NASBA technique.
  • hybridization is meant the process in which, under appropriate conditions, two nucleotide fragments bind with stable and specific hydrogen bonds to form a double-stranded complex. These hydrogen bonds are formed between the complementary bases Adenine (A) and Thymine (T) (or Uracil (U)) (we speak of A-T bond) or between the complementary bases Guanine (G) and Cytosine (C) (on talk about GC link).
  • the hybridization of two nucleotide fragments can be complete (it is called nucleotide fragments or complementary sequences), that is to say that the double-stranded complex obtained during this hybridization comprises only AT bonds and bonds. CG.
  • This hybridization can be partial (we then speak of nucleotide fragments or sufficiently complementary sequences), that is to say that the double-stranded complex obtained comprises AT bonds and CG bonds making it possible to form the double-stranded complex, but also bases not related to a complementary base.
  • Hybridization between two nucleotide fragments depends on the operating conditions that are used, and in particular on stringency.
  • the stringency is defined in particular according to the base composition of the two nucleotide fragments, as well as by the degree of mismatch between two nucleotide fragments.
  • the stringency may also be a function of the parameters of the reaction, such as the concentration and type of ionic species present in the hybridization solution, the nature and the concentration of denaturing agents and / or the hybridization temperature. All these data are well known and the appropriate conditions can be determined by those skilled in the art.
  • the hybridization temperature is between about 20 and 70 ° C., in particular between 35 and 65 ° C. in a saline solution at a concentration of about 0.5 to 1 M.
  • the binding partners, specific or not, of the mRNA are any partner that can bind to this mRNA. By way of example, mention may be made of nucleic probes, amplification primers, and any other molecule capable of binding to this mRNA.
  • Hybridization probe is understood to mean a nucleotide fragment comprising from 5 to 100 nucleic motifs, in particular from 10 to 35 nucleic motifs, having hybridization specificity under determined conditions to form a hybridization complex with the specific material of the gene. target of interest.
  • the hybridization probe may comprise a marker for its detection.
  • amplification primer is intended to mean a nucleotide fragment comprising from 5 to 100 nucleic units, preferably from 15 to 30 nucleic units, allowing the initiation of an enzymatic polymerization, such as in particular a reaction of enzymatic amplification.
  • enzymatic amplification reaction is meant a process generating multiple copies of a nucleotide fragment by the action of at least one enzyme.
  • Such amplification reactions are well known to those skilled in the art and may be mentioned in particular the following techniques:
  • TMA Transcription Mediated Amplification
  • detection is meant either a physical method or a chemical method with intercalating coloring agent such as SYBR® Green I or ethidium bromide, or a method of detection using a marker.
  • intercalating coloring agent such as SYBR® Green I or ethidium bromide
  • the appropriate markers are as defined above.
  • the hybridization probe may be a so-called detection probe.
  • the so-called detection probe is labeled by means of a marker as defined above. Thanks to the presence of this marker, we can detecting the presence of a hybridization reaction between a given detection probe and the transcript to be detected.
  • the detection probe may in particular be a "molecular beacon” detection probe 63 .
  • These "molecular beacons” become fluorescent during hybridization. They have a stem-loop structure and contain a fluorophore and a quencher group. Attachment of the specific loop sequence with its target nucleic acid complement sequence causes stem unwinding and fluorescent signal emission upon excitation at the appropriate wavelength.
  • the hybridization probe may also be a so-called capture probe. In this case, the so-called capture probe is immobilized or immobilizable on a solid support by any appropriate means, that is to say directly or indirectly, for example by covalence or adsorption.
  • Suitable solid supports are known to those skilled in the art and examples are synthetic materials or natural materials, latices, magnetic particles, metal derivatives, gels, and the like.
  • the solid support may be in the form of a microtiter plate, a membrane as described in application WO-A-94/12670, of a particle. It is also possible to immobilize on the support several different capture probes, each being specific for a target transcript. In particular, it is possible to use as support a biochip on which a large number of probes can be immobilized.
  • the immobilization of the probes on the support is also known to those skilled in the art and there may be mentioned a deposit of probes by direct transfer, micro-deposition, in situ synthesis and photolithography.
  • the detection, in the biological sample, of the modifications or abnormalities of DNA in the gene coding for the tumor marker of interest can be carried out by any method for determining the alterations of the DNA in a sample, namely either the direct detection of mutations, or the detection of alterations in the methylation profile of the loci of interest, or any other method for determining alterations of the DNA in a sample, known to those skilled in the art .
  • Mutations may include point substitutions of one nucleotide per another, deletions of one or more nucleotides and insertions of one or more nucleotides.
  • the mutations may be located in the coding portion of the tumor marker gene of interest, or in the 5 'and 3' non-coding portions such as the promoter region or the transcription terminator region.
  • Mutational demonstration strategies are based on molecular biology techniques and include DNA extraction, PCR amplification or other amplification, hybridization and / or sequencing techniques.
  • DNA markers used are the BAT-26 deletion, which is a marker of microsatellite instability, and the highly amplifiable DNA called long DNA (L-DNA), which is not a specific marker but seems to reflect disordered apoptosis of exfoliated tumor cells in colonic lumen 65 . These markers are satisfactory neither in relation to their sensitivity nor in relation to their specificity.
  • the alterations in the DNA may also correspond to a modification of the methylation profile of the gene corresponding to the tumor marker of interest.
  • the modification of the methylation profile may correspond to hypomethylation (decrease in the number of methylations) or to hypermethylation (increase in the number of methylations).
  • the altered motifs may be located in the coding portion of the gene of the tumor marker of interest, or in the 5 'and 3' non-coding portions such as the promoter region or the transcription terminator region.
  • DNA methylation analysis can be performed using techniques based on qualitative and / or quantitative PCR such as MSP (methylation-specified PCR), bisulfite sequencing, enzyme digestion methylation-sensitive restriction coupled with PCR, combined bisulfite restriction analysis (COBRA) and Ms-SNuPE (methylation-sensitive single nucleotide primer extension). All these techniques have been reviewed in detail and compared in a manner methodology 66 article. In the literature, several hypermethylated genes in case of colorectal cancer have been reported.
  • MSP methylation-specified PCR
  • COBRA combined bisulfite restriction analysis
  • Ms-SNuPE methylation-sensitive single nucleotide primer extension
  • At least two markers are detected, they can be detected separately, for example by means of different immunoassay assays, or simultaneously, in multiplex assay.
  • two markers of different nature are detected, for example a protein marker and an mRNA marker
  • two different detection methods can be used, chosen from those described above. They can also be detected simultaneously, in the same detection medium and under the same reaction conditions, as described in the patent application.
  • WO03 / 104490 The steps of the detection method described in this patent application, which consists in simultaneously detecting hybridization and immunological reactions in a sample that may contain target analytes consisting of at least one nucleic acid and at least one other ligand. different in nature, consist of:
  • the biological sample may require a particular treatment because it may contain the tumor marker (s) sought in the process of the invention as such, or it may contain circulating tumor cells which contain the markers sought in the method of the invention. invention and / or tumor cells circulating which are capable of secreting the marker or markers sought in the method of the invention.
  • the biological sample is pretreated to isolate the circulating tumor cells contained in said fluid.
  • Treatment of the biological sample to isolate circulating tumor cells can be performed by cell sorting in a flow cytometer, by Ficoll enrichment, by enrichment with magnetic beads coated with specific antibodies, or by any other specific enrichment method. known to those skilled in the art.
  • circulating tumor cells can be isolated by a Ficoll cell separation technique associated with depletion of blood cells using anti-CD45 antibodies coupled to magnetic beads (Dynal Biotech ASA). , Norway).
  • Detection of the tumor marker (s) sought in the method of the invention may then be carried out directly from circulating tumor cells isolated from the biological sample, for example by immunocytochemical labeling of these cells with an anti-marker antibody (s).
  • tumor (s) sought (s) in the method of the invention after depositing the tumor cells circulating on a slide by cytospin.
  • Detection of the tumor marker (s) sought in the method of the invention may also be carried out directly in circulating tumor cells by using the flow cytometry method as described in Mciezeau et al. 69 .
  • said circulating cells can be treated under conditions allowing the blocking of the tumor marker (s) sought in the method of the invention within said cells.
  • Such treatment is described by Mathieu at al. 70 .
  • the detection of the tumor marker (s) sought in the method of the invention is then made after making the cell membrane permeable to to return the specific binding partners of the marker or markers sought in the method of the invention.
  • the direct detection of the tumor marker (s) used in the method of the invention from the circulating cells may also be carried out using an ELISPOT method, for example using the method described in WO03 patent application. / 076942 filed by the Applicant.
  • This method is a method for detecting and / or quantifying circulating tumor cells of a biological sample, which are capable of releasing or secreting in vitro one or more tumor markers, comprising the steps of: (i) depositing an amount of said cells at the bottom of a culture surface to which at least one specific binding partner of said one or more tumor markers is attached,
  • the direct detection of the tumor marker (s) used in the method of the invention in the tumor cells may also be carried out in the culture medium of said cells after having cultured them under conditions such that they secrete tumor marker (s) used in the process of the invention.
  • the culture conditions for the release or the expression of the tumor markers are conventional conditions such as 37 ° C. in a humid atmosphere and 5% CO 2 .
  • the presence of the tumor marker (s) can also be shown in vivo, in situ in the tumors.
  • any imaging method known to those skilled in the art can be used.
  • the binding partners By coupling the binding partners to an imaging tracer, we mean the fixing a tracer capable of being detected by any imaging method known to those skilled in the art, and of directly or indirectly generating a detectable signal.
  • the tracer may be a radioactive tracer such as technetium-99.
  • the organ with primary cancer or metastases will fix the tumor marker and its tracer.
  • the radiation emitted by the organ can be filmed by a special camera, for example a gamma camera. The device collects the scintillations generated by the radioactive substance and thus makes it possible to visualize the organ.
  • the tracer may comprise a radioactive body emitting positrons (Fluor 18).
  • the images will then be acquired by a Positron Emission Tomography system.
  • the partner of the tumor marker (s) may be coupled to nanoparticles.
  • it may be supramagnetic nanoparticles.
  • anionic magnetic nanoparticles for application to direct cell labeling and detection in vivo by nuclear magnetic resonance imaging. It can also be gold nanoparticles.
  • the methods of the invention allowing the detection of the tumor marker in vivo, it will be possible to visualize the areas of the organism where the binding partner of the tumor marker has been fixed, the cancers producing the tumor marker, and in particular the colorectal cancer, as well as the locations of their distant metastases and ganglionic lesions.
  • the method of the invention can be used both for the early diagnosis, for the screening, the therapeutic monitoring, the prognosis and the diagnosis of relapses in the context of colorectal cancer since only the cancerous cells secrete Aminoacylase 1 and that this production is a function of the cancer grade, which constitutes another object of the invention.
  • FIG. 1 is a graph relating to the ELISA assay LEI, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-)
  • FIG. 2 is a graph relating to the ELISA ELISA assay, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-)
  • FIG. 3 is a graph relating to the ELISA assay of Aminoacylase 1, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and of healthy patients (CCR-),
  • FIG. 4 is a graph relating to the ELISA assay of L-FABP, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 5 is a graph relating to the ELISA assay of I-FABP, in ⁇ g / ml, in the serum of patients with colorectal cancer (CCR +) and in healthy patients (CCR-)
  • FIG. 6 is a graph. relating to the assay by ELISA of Apolipoprotein AI, in ⁇ g / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-), either in microplate ELISA (FIG. 6A), or with the kit Lincoplex ( Figure 6B),
  • FIG. 7 is a graph relating to the Linco multiplex kit assay of Apolipoprotein AII, in ⁇ g / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 8 is a graph relating to the ELISA assay of Plastine-I, in RFV (Relative Fluorescence Value), in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-), -
  • FIG. 9 is a graph relating to the ELISA assay of beta2 microglobulin, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 10 is a graph relating to the ELISA assay of ACE, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 11 is a relative graph. in the ELISA assay of CA 19-9, in U / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 12 is a graph relating to the ELISA assay of Testosterone, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-)
  • FIG. 13 is a graph relating to the ELISA assay of E-cadherin, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-)
  • FIG. 14 is a graph relating to the ELISA assay of PAP1, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 15 is a graph relating to the ELISA assay of Galectin-3, in RFV, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 16 is a graph relating to the ELISA assay of LDH, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 17 is a graph relating to the ELISA assay of Proteasome 2OS, in ng / ml, in the serum of patients with colorectal cancer (CCR +) and healthy patients (CCR-),
  • FIG. 18 is a graph relating to the ELISA assay of Aminoacylase 1, in ng / ml, in the stools of patients with colorectal cancer (CCR +) and of healthy patients.
  • FIG. 19 is a graph relating to the ELISA assay of Galectin-3, in RFV, in the stools of patients with colorectal cancer (CCR +) and in healthy patients (CCR-)
  • FIG. 20 is a graph relating to 2OS Proteasome ELISA, in RFV, in the stools of patients with colorectal cancer (CCR +) and healthy patients (CCR-)
  • CCR + colorectal cancer
  • CCR- healthy patients
  • FIG. 21 is a graphical representation of an ELISPOT assay of LEI, Ezrin and Galectin-3, in number of spots per 10 6 cancer cells of the Caco-2, HT-29 and HT29-B6 lines.
  • the Caco-2 colorectal cancer line is cultured in DMEM medium containing 2 mM L-Glutamine, without FCS (fetal calf serum) (all Gibco).
  • the messenger RNAs were extracted from a pellet of 10 8 Caco-2 cells using the Invitrogen FastTrack 2.0 Kit (Cat No. 45-0019). ), following the protocol provided by the manufacturer.
  • the reverse transcription and PCR steps are performed in one run from 450 ng Caco-2 mRNA, with the Superscript III One Step RT-PCR System Kit (Invitrogen Cat # 12574-018) using the Platinum enzyme Taq DNA polymerase following the protocol provided by the manufacturer.
  • the PCR primers used for gene amplification are given in Table 1.
  • OL215 (SEQ ID NO : 1) 5 '- ATGG AGC AGCTG AGCTC AGC AA AC-3' OL216 (SEQ ID NO: 2) 5 '-CTAAGGGGAAGAAAATCTCCCCAA-3' L-FABP
  • OL217 (SEQ ID NO: 5) 5'-ATGGCAGACAATTTTTCGCTCC-S '
  • OL218 (SEQ ID NO: 6) 5'-TTATATCATGGTATATGAAGCACTGG-S '
  • RNAs were extracted from a pellet of 10 8 Caco-2 cells using the Qiagen Easy Mini RNA kit, following the protocol provided by the manufacturer. Reverse transcription is performed from 10 ng of Caco-2 RNA, with the enzyme Superscript II (Invitrogen) following the protocol provided by the manufacturer.
  • the reverse transcription primer is an oligo (dT).
  • the cDNA from this reaction was used as a template in a PCR reaction using the AccuPrime Pfx Kit (Invitrogen Cat No. 12344-024) following the protocol provided by the manufacturer.
  • the PCR primers are: ACY-I Fwd2 (SEQ ID NO: 7: 5 '-GCGAATTCTTTAAGAAGGAGATATACATATGACGAGCAAAGGTCCGGAA GAGGAGCACCCATCG-3') and ACY-I Rev (SEQ ID No. 8: 5'-GCAAGCTTCAGCTGTCACTGGGCAGGGC-3 ')
  • SEQ ID No. 9 The following DNA fragment (SEQ ID No. 9) containing the I-FABP open reading frame was obtained by chemical synthesis, carried out by Geneart. SEQ ID No. 9:
  • the genes encoding LEI and Galectin-3 were subcloned into the prokaryotic expression vector pMR78 71 and the L-FABP gene into the pET3d vector
  • the PCR enzyme is Promega Pfu DNA polymerase, the PCR reaction was performed according to the manufacturer's instructions with the primers given in Table 2.
  • OL230 (SEQ ID NO : 14) 5'-ATGGGAATTCAGGCAGACAATTTTTCGCTCC-S 'OL231 (SEQ ID NO : 15) 5' -CGATAAGCTTATATCATGGTATATGAAGCACTGG-S '
  • PCR products containing the open reading frames encoding LEI or Galectin-3 were digested with Eco RI and Hind III restriction enzymes. The fragments were introduced into the vector pMR78 restricted by the same enzymes (plasmids pMR-LEI and pMR-Gal-3).
  • the vector pMR78 contains a 6-histidine sequence in phase with the protein to be expressed which allows the purification by metal-chelate affinity chromatography.
  • the L-FABP PCR product was cloned into the pET3d vector at the Nco I and Bam HI restriction sites.
  • the TOPO cloning vector was digested directly with Eco RI and Hind III restriction enzymes to generate a 1.3 kb fragment containing the acyl open reading frame, which was introduced into the vector.
  • pStabyl Eurogentec
  • the recombinant plasmid is called pStabyl-ACY.
  • the cloning vector provided by Geneart was digested with restriction enzymes Eco RI and SaI I to generate a fragment of about 400 bp containing the coding sequence that was introduced into the vector pMRCH79 (derived pMR78 vector, bioMérieux).
  • the recombinant plasmid is called pMRCH-IFABP.
  • the expression plasmids making it possible to produce the recombinant tumor markers are introduced into E. coli BL21 and derived bacteria (Stratagene).
  • the cultures are carried out at room temperature with stirring.
  • the precise culture conditions for each protein are summarized in Table 3.
  • the IPTG is isopropyl beta-D-1-thiogalactosidase.
  • the bacterial pellets are taken up in 2X PBS buffer (phosphate buffered saline) and passed into a 1.5 kbar (Constant System) cell disintegrator.
  • the lysates are centrifuged at 3000 g for 30 min at 40 ° C.
  • the supernatant contains the soluble proteins.
  • the pellet contains the inclusion bodies.
  • Body solubilization buffer of inclusion depends on the protein.
  • the purification is from the soluble fraction, on a column containing 5 ml of Ni-NTA-Sepharose resin (Qiagen) and the protein is eluted with 2X PBS containing 450 mM imidazole, pH 7 5.
  • the inclusion bodies are solubilized in 2X PBS, 1M urea, passed on 5 ml of Ni-NTA-Sepharose resin (Qiagen) and the Gal-3 protein is eluted with 2X PBS containing 450 mM Imidazole, 1 M urea pH 7.5.
  • the purification is from the soluble fraction, using the Macherey-Nagel Ni-IDA kit.
  • GST-Ezrin purification is carried out from the inclusion bodies solubilized in 100 mM Tris buffer, 8M urea, 10 mM DTT by GST affinity chromatography. A column containing 5 ml of Glutathione Sepharose 4 fast flow gel (Amersham) is used. The equilibration and washing buffer is 2x PBS, 0.05% Tween 20. The elution buffer is 50 mM Tris-HCl, 20 mM reduced glutathione, pH 8.
  • the soluble fraction of the culture is passed through an Amersham HiTrap Q FF column and the ACY-I protein eluted with 0.3M NaCl at pH 7.5. As several other proteins were co-eluted under these conditions, the purification was continued on a hydrophobic interaction column (HIC Phenyl
  • the ACY-I protein was eluted with 0.5M NaCl at pH 7.
  • the recombinant GST-Plastin-I protein was provided by Institut Curie in purified form.
  • the recombinant protein Calreticulin was produced by Proteus Services for Industry (Dijon, France).
  • the coding sequence for Calreticulin was obtained by chemical synthesis.
  • the tumor markers were produced in the form of recombinant proteins produced according to the procedures described in Example 1.
  • the LDH protein obtained from SciPac (Cat No. 103-133). These proteins were mixed volume for volume with Freund's adjuvant (Sigma), prepared as a water-in-oil emulsion and which is known to have good immunogenicity.
  • 3 mice were immunized. The mice received 3 successive doses of 10 ⁇ g of the immunogens at 0, 2 and 4 weeks. All injections were done subcutaneously.
  • the first injection is made in admixture with the complete Freund's adjuvant, the next two are mixed with the incomplete Freund's adjuvant.
  • the humoral responses were restimulated with an intravenous injection of 100 ⁇ g of the recombinant protein. 3.
  • Monitoring of the appearance of the humoral response In order to follow the appearance of the antibodies, blood samples are regularly taken from the mice. The presence of anti-tumor marker antibodies is tested using an ELISA.
  • the protein of interest is used in capture (1 ⁇ g / well), after saturation, the antigen is reacted with different dilutions of the sera to be tested (incubation at 37 ° C., for 1 h).
  • Galectin-3 12F8A12 and 14A5G1 Galectin-3 12F8A12 and 14A5G1
  • the cell culture extracts of Caco-2 and HT-29 lines are prepared by directly lysing the cell pellet with 600 ⁇ l of a 8.3M urea water solution, 2M thiourea, 3- [3- 4% cholamidopropyl) -dimethylammonio] -1-propane (CHAPS), 10mM DTT, 4-9 Servaly (Serva, Heidelberg, Germany) 2%, 0.1g / l Orange G, then treated according to the sample preparation protocol NuPAGE Novex gels (Invitrogen).
  • the tumor and mucosal biopsies of the GHBD001, GHBD004 and CLSP109 patients were dissociated scalpel, then underwent 10 cycles of extraction in the Medimachine system (Becton Dickinson) using Medicons 50 microns with 1 ml of PBS buffer, 2.5 mM EDTA, protease inhibitors (Roche pellets). These 10 ml of cell suspension are pooled, supplemented to 25 ml and then centrifuged for 15 min at 600 g. The supernatant corresponds to the tissue extract that is processed according to NuPAGE Novex Gel Sample Preparation Protocol. Reduced samples were used at a final total protein concentration of 0.4 mg / ml.
  • the deposition volume is 20 ⁇ l per well, on a NuPAGE Novex Bis-Tris 4-12% gel, MOPS migration buffer. After migration (under 200V, for 1 hour) and transfer on PVDF membrane (under 400 mA, for 45 min), the quality of the transfer is appreciated by amidoblack staining.
  • the membranes are saturated with 5% skim milk (Régilait) in a TNT solution (15 mM Tris, 0.14 M NaCl, 0.5% Tween 20 pH8) at room temperature for 1 hour. After saturation, the membranes are incubated for 1 hour with the various antibodies to be tested diluted to 10 ⁇ g / ml in the saturation solution. After rinsing with TNT, the membranes are incubated for 1 hour at room temperature with an anti-mouse-horseradish peroxidase conjugate diluted 1: 5000, (Cat No. 115-035-062, Jackson Immunoresearch) in the saturation solution. After rinsing, revelation is performed with the West Dura Extended Supersignal Substrate Kit (Cat No.
  • the chemiluminescence signal on the membranes was measured with the Biorad VersaDoc imaging system. From the image of the Western blot, the volumes of the bands corresponding to the different tumor markers were evaluated with the QuantityOne software (Bio-Rad). The volume corresponds to the intensity of the chemiluminescence signal multiplied by the surface of the band. 5.2. Results
  • the 8C8C5 antibody does not light or very weakly the band that corresponds to Plastin-I.
  • the presence of Plastin-I in these samples can be demonstrated using, for example, the 8G2D2 antibody which has a better affinity for Plastin-I in blot.
  • Plastin-I is a member of a family of proteins comprising 2 other isoforms (Plastin L and T) with which it has more than 70% homology
  • the collection of blood samples is carried out at the level of a network of 8 clinical centers distributed throughout France, within the framework of 2 protocols Huriet law.
  • the blood sample is taken on a dry tube.
  • the blood sample is taken on an EDTA tube. After coagulation, the tube is centrifuged for 10 min at 1000 g, the serum is removed, aliquoted and stored at -80 ° C. The plasma tube is directly centrifuged for 10 min at 1000 g, the plasma is removed, aliquoted and stored at - 8O 0 C. Samples are well documented for the clinical history of patients. 2. Serum Assay of LEI Tumor Marker
  • the LEI protein was assayed using the antibodies described in Example 2 and an ELISA test using the Vidas® automaton (bioMérieux). To do this, the ELISA test was constructed using the reagents of the Vidas® HBs Ag Ultra kit (bioMérieux, Cat.
  • the cones were sensitized with 10E1H1 capture antibody at a concentration of 10 ⁇ g / ml.
  • HBs Ag Ultra buffer with goat serum and 1 g / l sodium azide. 4. The ELISA reaction was performed using the Vidas® controller and the HBs Ag Ultra kit protocol.
  • a standard curve was established by assaying a range of concentrations of the tumor marker as a recombinant protein.
  • the standard curve was plotted by plotting the concentration of the tumor marker on the abscissa and the signal read by Vidas® (RFV or Relative Fluorescence Value).
  • the concentration of tumor marker present in the body fluid to be assayed was calculated by reporting the concentration corresponding to the Vidas® read RFV signal.
  • the doses obtained for the patients analyzed are shown in Figure 1. It can be noted in this figure that 3 sera of patients with stage colorectal cancer
  • Ezrin protein was assayed using the antibodies described in Example 2 and an ELISA test using the Vidas® automaton (bioMérieux). To do this, the ELISA test was constructed using the reagents of the Vidas® HBs Ag Ultra Kit (bioMérieux, Cat No. 30315). The reagents were used as described in the corresponding leaflet (ref 11728 D - FR - 2005/05), with the following modifications: 1. The cones were sensitized with the capture antibody 4A9H5 at a concentration of 30 ⁇ g / ml.
  • Serum, plasma or stool samples (50 ⁇ l) have been diluted directly into the second well of the HBs Ag Ultra cartridge.
  • the ELISA reaction was carried out using the Vidas® automaton and the HBS AG ULTRA protocol whose incubation step of the sample with the capture and revelation antibodies had been increased to 100 cycles. 5. The results were obtained as raw values after subtraction of the background noise (reading of the substrate before reaction).
  • the concentration of the tumor marker present in the body fluid to be assayed was calculated according to the procedure described in paragraph 2 concerning the LEI assay.
  • the doses obtained for the patients analyzed are shown in Figure 2. It can be noted in this figure that 3 sera of patients with stage IV colorectal cancer show a clear increase in their dose of serum Ezrin. 4. Serum assay of tumor marker Aminoacylase 1
  • the Aminoacylase 1 protein was assayed using the antibodies described in Example 2 and an ELISA test using the Vidas® automaton (bioMérieux). To do this, the ELISA test was built using the reagents of the Vidas® HBs Ag Ultra kit.
  • the cones were sensitized with the capture antibody 2A7F6 at a concentration of 20 ⁇ g / ml.
  • HBS AG ULTRA whose incubation step of the sample with the capture and revelation antibodies had been increased to 100 cycles. 5. The results were obtained as raw values after subtraction of the background noise (reading of the substrate before reaction). The concentration of the tumor marker present in the body fluid to be assayed (blood, serum, plasma, stool) was calculated according to the procedure described in paragraph 2 concerning the LEI assay.
  • CCR + patients with colorectal cancer / CCR-: healthy subjects
  • TNM stage of tissue invasion (T), lymph node (lymph nodes, N) and at a distance
  • Serum Assay of L-FABP Tumor Marker We used an ELISA kit marketed by Hycult biotechnology to assay human L-FABP protein (Cat No. HK404). This kit makes it possible to quantify the L-FABP protein in cell culture supernatants, in serum, plasma or urine, in order to determine the presence of lesions in the liver. We followed the procedure recommended by the manufacturer with 2 modifications: the incubations were carried out at 37 ° C. and not at room temperature, the sera were diluted 1/10 before the assay. The assay of the L-FABP protein can be performed by alternative techniques, well known to those skilled in the art.
  • Figure 4 shows the results of this assay.
  • 41 out of 141 patients with colorectal cancer had a serum L-FABP concentration greater than 17 ng / ml, whereas in the control group no subject exceeded this value.
  • the mean serum L-FABP concentration observed for 141 patients with colorectal cancer is of 16.6 ⁇ 1.3 ng / ml.
  • the mean value is 6.6 ⁇ 0.2 ng / ml for 112 healthy individuals (negative controls). This difference is statistically significant (P ⁇ 0.0001, unilateral M with welch correction for unequal variances).
  • Serum Assay of the I-FABP Tumor Marker We used an ELISA kit marketed by Hycult biotechnology to assay the human I-FABP protein (Cat No. HK406). This kit makes it possible to quantify the I-FABP protein in cell culture supernatants, in serum, plasma or urine, in order to determine the presence of ischemic lesions in the small intestine. We followed the procedure recommended by the manufacturer. The assay of the I-FABP protein can be performed by alternative techniques, well known to those skilled in the art.
  • Figure 5 shows the results of this assay.
  • 15 of 40 patients with colorectal cancer had a serum I-FABP concentration greater than 40 pg / ml, whereas in the control group only 2 of 24 subjects exceeded this value.
  • 3 sera of patients with stage I colorectal cancer, 2 sera of patients with stage III colorectal cancer and 1 serum of patients with stage IV colorectal cancer have a serum I-FABP concentration greater than 100. pg / ml. No concentration above this value was found in the CCR- control group. 7.
  • Serum Apolipoprotein AI assay was performed by two different immunoassay techniques. First, we used a microplate sandwich ELISA. The 96-well plates were coated with the anti-Apo AI Clone 1404 monoclonal antibody (Biodesign Cat No. H45404) at 1 ⁇ g per well. After 3 washes PBS-Tween 20 0.05% (PBS-T), the plates are saturated with 10% milk in PBS-T for Ih at 37 ° C. Three more times are washed in PBS-T, on the plates 100 ⁇ l of the dilutions of the standard range or 100 ⁇ l of the 1/100 000 dilution of the serum samples to be tested, and incubated for 2 hours at 37 ° C.
  • the standard range is carried out by diluting the Apo AI protein ( Biodesign Cat No. A50620H) in PBS-T, 1% BSA (1.6-100 ng / ml). After 3 washes PBS-T, the polyclonal detection antibody coupled to horseradish peroxidase (Biodesign Cat No. K45452P) is added at 0.1 ⁇ g per well and incubated for 2 hours at 37 ° C. A further 3 washes PBS-T are carried out before adding the OPT EIA (BD) substrate, 100 ⁇ l / well. After 20 min, when color development occurs, the reaction is quenched with 2N sulfuric acid and the absorbance is measured at 450 nm. Figure 6A shows the results of this assay.
  • BD OPT EIA
  • the second assay technique that has been used is a multiplex assay marketed by the company Linco which makes it possible to assay several Apolipoproteins including AI and AII simultaneously, in the same sample (Cat No. APO-62K). The procedure recommended by the manufacturer has been applied.
  • Figure 6B shows the results of this assay.
  • This second technique confirms the decrease in the serum Apo AI concentration in patients with CRC.
  • the mean concentration of Apo AI in 34 subjects with a stage I to IV CRC is 768 ⁇ 30 ⁇ g / ml whereas it is much higher in 17 healthy subjects (controls): 1194 + 51 ⁇ g / ml. This difference is statistically very significant (P ⁇ 0.0001, one-sided t-test). 8.
  • Serum Apolipoprotein AII assay was performed with the Linco Multiplex Kit.
  • Figure 7 shows the results of this assay.
  • the mean concentration of Apo AII in 34 subjects with a stage I to IV CRC is 170 + 11 ⁇ g / ml whereas it is much higher in 17 healthy subjects (controls): 277 + 16 ⁇ g / ml. This difference is statistically very significant (P ⁇ 0.0001, one-tailed test).
  • the Plastine-I protein was assayed using the antibodies described in Example 2 and an ELISA test using the Vidas® automaton (bioMérieux). To do this, the ELISA test was built using the reagents of the Vidas® HBs Ag Ultra kit (bioMérieux,
  • Serum, plasma or stool samples (100 ⁇ l) were diluted directly into the second well of the HBs Ag Ultra Cartridge.
  • the ELISA reaction was performed using the Vidas® controller and the HBS AG ULTRA protocol.
  • the tumor markers Beta2 Microglobulin, ACE, CA 19-9 and Testosterone were assayed using the assay kits of the Applicant, Vidas® Beta2 Microglobulin, Vidas® ACE, Vidas® CA 19-9 TM and Vidas® Testosterone respectively. , following the operating protocol specific to each kit.
  • the E-Cadherin protein was assayed using the kit E-Cadherin EIA kit (Takara Biochemicals, Tokyo, Japan) following the operating procedure of the kit.
  • the Galectin-3 and LDH proteins were assayed using the antibodies described in Example 2.
  • Proteasome S was assayed using the antibodies described in Patent EP0434670.
  • the ELISA tests were built using the Vidas® controller (bioMérieux) and the reagents of the Vidas® HBs Ag Ultra kit (bioMérieux, Cat No. 30315). The reagents were used as described in the corresponding leaflet (ref 11728 D - FR - 2005/05), with the following modifications:
  • the cones were sensitized with the capture antibody at a concentration between 5 and 30 ⁇ g / ml.
  • Serum, plasma or stool specimens were diluted directly into the second well of the HBs Ag Ultra Cartridge after, if necessary, buffer dilution of the second well.
  • the ELISA reaction was performed using the Vidas® controller and the HBS Ag Ultra protocol.
  • the step of incubating the sample with the capture and revelation antibodies was between 14 and 100 cycles.
  • the concentration of the tumor marker present in the body fluid to be assayed was calculated according to the procedure described in paragraph 2 concerning the LEI assay.
  • the assay conditions for different tumor markers were summarized in Table 7. Table 7
  • the doses obtained for the patients analyzed with the tumor markers Beta2 Microglobulin, ACE, CA 19-9, Testosterone, E-Cadherin, Regenerating Islet-derived Protein 3 alpha, Galectin-3, LDH and Proteasome 20S were respectively reported in the figures. 9 to 17.
  • Example 3 abnormally high or abnormally decreased doses of tumor markers could be observed in the bloodstream of certain patients with colorectal cancer. Surprisingly, the increase or decrease in the blood dose of two given markers is not systematically observed in the same patients. As a result, the combination of several tumor markers makes it possible to increase the number of patients identified as having colorectal cancer.
  • patient A may have an increase or decrease in one or more tumor markers (group X), said group X markers may be normal in patient B; in this same patient B one or more other tumor markers (group Y) may be elevated or decreased, the so-called group Y markers may be normal in patient A.
  • a threshold value has been set for each tumor marker.
  • the blood dose obtained for a given patient was divided by its threshold value.
  • the blood dose obtained for a given patient was reversed and then multiplied by its threshold value.
  • the patient is diagnosed as having colorectal cancer when total score is increased compared to a threshold score.
  • the total scores for a selection of 2, 4 and 8 markers comprising Aminoacylase-1 are given in Table 8.
  • the combination of Aminoacylase 1 and Proteasome 2OS tumor markers thus makes it possible to obtain, for the same group of 22 patients, total scores "2" increased in 9 patients with colorectal cancer whereas the single dose of Aminoacylase 1 or Proteasome 2OS was increased respectively in 4 and 7 patients only.
  • Proteasome 2OS and CA 19-9 thus makes it possible to obtain, for the same group of 22 patients, a total score "4" increased in 13 patients with colorectal cancer whereas the single dose of Aminoacylase 1, Beta-2 Microglobulin, Proteasome 20S or CA19-9 was increased respectively in 4, 3, 7 and 8 patients only.
  • the stool extraction is done from a heavy piece approximately Ig, to which is added 10 ml of 100 mM sodium phosphate buffer, pH 7.2 containing 1 g / l of azide. Homogenized on a Vortex for 1 min. The sample then undergoes 4 ultrasound cycles of 7s on the ice. The unsolubilized fraction is removed by centrifugation at 2000 g for 10 min at 40 ° C. The supernatant is stored at -30 ° C. until the assay.
  • the ELISA assays described in Example 3 were used to look for tumor markers in the stool after, if necessary, a suitable stool dilution in the first well buffer of the HBs Ag Ultra cartridge.
  • the LnCAP prostate cancer line is cultured in RPMI 1640 medium supplemented with 2 mM L-Glutamine, 10 mM HEPES, 1 mM sodium pyruvate and 10% FCS (all Gibco). These cells are used as a negative control.
  • the Caco-2 colorectal cancer line is cultured in DMEM medium containing 2 mM L-Glutamine, without FBS (all Gibco).
  • the HT-29 colorectal cancer line is cultured in MEM medium containing 2 mM L-Glutamine and 10% FCS (all Gibco).
  • the HT-29 / B6 colorectal cancer line is cultured in DMEM medium containing 4 mM L-Glutamine, without FCS (all Gibco). The cells are maintained at 37 ° C., in an oven with 5% CO 2 .
  • IP mouse monoclonal antibody anti-tumor marker
  • 10 ⁇ g / ml capture antibody, see Table 9 below which gives the antibodies used in ELISPOT
  • 100 ⁇ l per well in PBS.
  • sterile on the night at +4 0 C.
  • Plates are then washed with PBS and saturated with culture medium containing 10% FCS.
  • the cells are trypsinized, counted and then diluted to 10 5 cells / ml. 200 .mu.l of this cell suspension are dispensed per well, as well as cascade dilutions of this stock solution. The plates are then incubated for 20 h at 37 ° C.
  • the number of Caco-2, HT-29 and HT-29 B 6 cells secreting the tumor marker of interest by 1 million incubated cells is presented in FIG. 21.
  • the ELISPOT technique makes it possible to confirm the release or secretion of the markers. tumors by colon cancer lines. It will be possible to perform a search for circulating tumor cells in patients using this technique, according to the method of the patent application WO03 / 076942 filed by the Applicant.
  • the tissue-micro-array slides are deparaffinized. For this, they are incubated successively in the following baths for 10 minutes: methycyclohexane (2 times), 100% ethanol, 95% ethanol, 70% ethanol and water. The slides are then rinsed with TBS 0.1% Tween 20 (TBS-T), for 10 min, with stirring. The antigens are reactivated in 10 mM citrate buffer pH6, by heating to 90 ° C. for 40 min, and then allowing to cool to ambient temperature for 30 min. Endogenous peroxidases are inhibited by incubation in TBS-T containing 3% H 2 O 2 for 5 min. The slides are then saturated with 3% BSA in TBS-T for 1 h at 37 ° C. in a humid chamber.
  • TBS-T TBS 0.1% Tween 20
  • the slides are incubated for 2 hours with the primary anti-Leucocyte Elastase Inhibitor antibody (clone 3D9C2), anti-Ezrin (clone 5G2D12), anti-Aminoacylase 1 clone 8A8A10 or anti-Plastin-I clone 8D6A3 diluted to 10 ⁇ g / ml in TBS-T containing 3% BSA (incubation at 37 ° C. in a humid chamber). After 3 washes for 10 min in TBS-T, the slides are incubated for 2 h at 37 ° C. in a humid chamber with the horseradish peroxidase-coupled anti-mouse secondary antibody (Cat No.
  • Antibodies used for immunohistochemistry labeling were specifically selected for this application regardless of their ELISA or Western blot reactivity.
  • Tissue-micro-array slides were used to screen a large number of samples. It is colonic tissue spotted on slides. Patient characteristics (characteristics of colonic tissue spots present on the colorectal cancer tissue-micro-array), as well as the results of immunolabeling with the anti-Leukocyte Elastase Inhibitor antibody, are summarized in Table 10. Table 10
  • Tissue-micro-array slides were used to screen a large number of samples. It is colonic tissue spotted on slides. For each patient with colon adenocarcinoma, 3 samples at the center of the tumor, 3 samples at the level of the invasion front and 3 samples in the healthy tissue were made. The
  • Table 11 presents the results of the immunolabelings with the anti-Ezrin antibody, the level of labeling indicated is the maximum of intensity on the 3 samples analyzed.
  • 21 have overexpression of Aminoacylase at the tumor level (tumor center or invasion front) relative to adjacent healthy tissue.
  • Tissue-micro-array slides were used to screen a large number of samples. These are colonic and rectal tissues spotted on slides. Patient characteristics (characteristics of colonic tissue spots present on the tissue-micro-array colorectal cancer), as well as the results of immunolabeling with anti-Plastin-I antibody, are summarized in Table 13.
  • the marking is weak in 8 samples (+) and 2 samples are in ++. Labeling is also low to + in colonic adenoma (1/1). The labeling is positive strong ++ in the cells epithelial colonic adenocarcinoma (++ in 6/9 patients and 3 weak + colonic adenocarcinoma coli). There is no marking in the stroma.
  • the labeling is present at the level of the surface epithelium nonspecifically (3/4) and ++ in a sample.
  • the labeling is strongly positive at ++ in rectal adenomas (5/9) or discrete at + (4/9).
  • the labeling is also strong ++ in epithelial cells of rectal adenocarcinoma (++ in 3/4 patients, 1 weak +). There is no marking in the stroma.
  • the development was carried out on spike samples by adding the recombinant proteins ACY, Ezrin, L-FABP, PDI or Plastin I in a pool of control serum, at a concentration of 10-250 ng / ml.
  • Apolipoproteins A1 and A2 are naturally present in the serum.
  • the outwitted serum samples are denatured in a 6M urea solution buffered with 10 mM Tris pH 8 and containing 30 mM dithiothreitol, for 40 minutes at 40 ° C., and then alkylated with 50 mM iodoacetamide, at room temperature. for 40 minutes in the dark. They are diluted 6 times in water, then the trypsic digestion is carried out at 37 ° C., overnight, using a substrate enzyme ratio of 1:30 (Promega). The digestion is stopped by adding formic acid to a final concentration of 0.5%.
  • the digested samples are desalted by Solid Phase Extraction (SPE) using Oasis HLB 3cc reverse phase cartridges (60 mg) (Waters). After application of the sample, the cartridges are washed with 1 ml of 0.1% formic acid, then the elution was carried out with a methanol / water mixture (80/20 v / v) containing 0.1% of formic acid. The eluates are dried under vacuum.
  • SPE Solid Phase Extraction
  • the dry samples are taken up in 1 ml of acetate buffer and loaded onto the mixed cartridges (hydrophobic and cation exchange).
  • Oasis MCX mixed cation exchange 60 mg (Waters) pre-equilibrated in acetate and methanol buffer.
  • the cartridges are washed with 1 ml of acetate buffer and 1 ml of methanol.
  • the peptides of interest (Table 14) are eluted with 1 ml of a methanol / acetate buffer mixture (50/50 v / v).
  • the pH of the acetate buffer is chosen according to the isoelectric point of the peptide of interest.
  • the eluates are dried under vacuum, dissolved in 200 .mu.l of a solution of acetonitrile / water (3/97 v / v) containing 0.1% of formic acid. A 50 ⁇ l aliquot was injected into the LC coupled to an MS-MS system.
  • LC-MS analysis was carried out on an HP 1100 series HPLC HPLC with binary pump and injector (Agilent Technologies) coupled to a mass spectrometer, either a Sciex API 2000 triple quadrupole or a Sciex API 4000 Qtrap (MS hybrid triple quadrupole - ion trap) (MDS Sciex) for better sensitivity.
  • LC separation was performed on a C 18 Symmetry (Waters) column at an elution rate of 300 ⁇ l / min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La présente invention concerne un procédé de diagnostic in vitro du cancer colorectal par détermination de la présence du marqueur tumoral Aminoacylase 1 dans un échantillon biologique issu d'un patient suspecté d'être atteint du cancer colorectal, ledit procédé pouvant être utilisé tant dans le diagnostic précoce, le dépistage, le suivi thérapeutique, le pronostic, que dans le diagnostic des rechutes dans le cadre du cancer colorectal.

Description

Procédé de dosage de l'Aminoacylase 1 pour le diagnostic in vitro du cancer colorectal
La présente invention concerne le domaine de la cancérologie. Plus particulièrement, la présente invention a pour objet un procédé de diagnostic in vitro du cancer colorectal chez un patient humain par détermination de la présence de l'Aminoacylase 1 dans un échantillon biologique issu de ce patient, ledit procédé pouvant être utilisé tant dans le diagnostic précoce, le dépistage, le suivi thérapeutique, le pronostic, que dans le diagnostic des rechutes dans le cadre du cancer colorectal.
Le cancer colorectal (CCR) est un problème majeur de santé publique. Son incidence mondiale a été estimée à 875000 nouveaux cas en 19961. Tous sexes confondus, c'est le cancer qui survient le plus fréquemment dans les pays occidentaux où il est généralement classé parmi les 3 premières causes de décès par cancer. Le taux de survie à 5 ans tout stade confondu est voisin de 60%.
Seul un diagnostic précoce offre l'espoir d'un traitement curatif. Or, à l'heure actuelle, il n'existe aucun test sérologique de dépistage, ni de diagnostic spécifique qui soit précoce.
Le dépistage du cancer colorectal est réalisé actuellement en Europe avec deux approches distinctes : premièrement à l'aide d'un test paraclinique qui consiste à rechercher la présence de sang dans les selles (Faecal Occult Blood test, FOBT, commercialisé par exemple sous le nom d'Hémoccult®). Cette technique a démontré son utilité clinique. Lorsqu'elle est utilisée tous les 2 ans chez les personnes âgées de 50 à 74 ans, elle peut réduire de 15 à 20% la mortalité par cancer colorectal . Pour cela, il faut que plus de la moitié de la population concernée participe régulièrement au dépistage et qu'une colonoscopie soit faite en cas de test positif, suivie éventuellement d'un traitement adapté.
Néanmoins, cette technique de dépistage souffre d'un certain nombre de handicaps :
• L'inconvénient majeur de ce test est sa sensibilité médiocre, tout spécialement pour les adénomes (lésion dysplasique pré-cancéreuse), qui s'ils sont de grande taille conduiront dans 1 cas sur 10 au développement d'un cancer.
• Le test est également peu spécifique. L'apparition de sang dans les selles peut être liée à une affection non tumorale : hémorragies recto-coliques, hémorroïdes, fistules, ... Dans ce cas, une investigation par colonoscopie doit être réalisée avec les inconvénients décrits ci-après.
• Enfin les Hémoccult® sont délicats à interpréter, ils doivent donc être lus dans des centres spécialisés, par un personnel qualifié et compétent.
Des tests immunologiques spécifiques de l'hémoglobine humaine (Feca EIA®, Heme Select®, ...) ont également été décrits. Ils constituent probablement un progrès par rapport à l'Hémoccult® mais ils présentent par essence les mêmes problèmes. C'est ainsi que InSure™, commercialisé par Enterix Inc., permet de détecter 87% des patients atteints de CCR et 47% de ceux ayant des polypes précancéreux. Il s'agit d'un test de détection de l'hémoglobine humaine dans les selles, et plus particulièrement de la portion de globine de cette molécule.
Une deuxième stratégie de dépistage est la réalisation systémique d'une colonoscopie après 50 ans, qui permet en théorie de réduire la mortalité par cancer colorectal. Mais l'acceptabilité de cet examen chez des sujets en bonne santé est trop faible pour qu'une politique de dépistage utilisant l'endoscopie diminue la mortalité (il y a une compliance aux alentours de 2% pour la colonoscopie dans les pays d'Europe ayant mis en place cette stratégie de dépistage). Il existe un risque non négligeable (1 %c) de perforation et hémorragie du côlon et de décès (1/10 000), ainsi qu'un coût élevé pour la santé publique. De plus, la colonoscopie nécessite une préparation colique préalable très contraignante, qui explique en grande partie la mauvaise compliance.
Des marqueurs tumoraux dosables par immunoessais ont été décrits de longue date dans le cadre du cancer colorectal. Il s'agit notamment de l'antigène carcinoembryonnaire (ACE) et du CA19-9. L'ACE est utilisé pour le suivi. Il ne peut pas être utilisé pour le dépistage ni pour le diagnostic précoce du cancer colorectal car sa sensibilité et sa spécificité sont insuffisantes. En effet, ce marqueur est exprimé par d'autres types de cancers, et dans des pathologies bénignes. Malgré tout, il est possible de gagner en sensibilité sans perdre en spécificité en associant à l'ACE un autre marqueur tumoral tel que le CA19-9 ou le CA72-4.
Les causes de variations physiologiques du CA 19-9 sont rares mais d'autres affections bénignes (hépatobiliaires, pancréatiques), ou malignes peuvent induire une élévation du CA19-9. Ce marqueur pris isolément ne présente donc pas non plus d'intérêt pour le diagnostic. Néanmoins, sa concentration sérique étant corrélée à la taille de la tumeur et à la présence de métastases, il peut permettre également un suivi thérapeutique ou la mise en évidence précoce de récidives.
Des tests commerciaux ont par ailleurs été proposés tels que :
> Colopath®/ColorectAlertMD, commercialisé par Ambrilia, est un test de dépistage rapide et peu invasif pour le CCR. Colopath® détecte un plasmalogène (classe de lipides complexes faisant partie des phospholipides) dans le mucus rectal des individus avec une pathologie colorectale, tandis que le ColorectAlertMD détecte l'antigène-T, un sucre complexe dans le mucus rectal. Le test Colopath®/ColorectAlertMD implique l'application de mucus rectal sur une bande de test et le résultat positif ou négatif est basé sur une réaction de Schiff. Ambrilia a étudié 1 787 sujets et démontré que le Colopath®/ColorectAlertMD détecte 54% des cas de cancer colorectal de stade précoce et 49% de tous stades confondus.
> COLARIS, commercialisé par Myriad Genetics, est un test de détection dans le sang de mutations dans les gènes MLHl et MSH2 pour le dépistage des cancers héréditaires du côlon non polyposiques (syndrome HNPCC). Le résultat du test est disponible en 3 semaines. Myriad utilise les techniques de séquençage les plus sensibles et les plus spécifiques existantes à l'heure actuelle. Le coût du test est élevé.
> DR-70®, commercialisé par AMDL, est un test de dépistage de différents types de cancers (poumon, côlon, sein, foie, estomac, ...). Il n'est donc pas spécifique du CCR. Son principe est basé sur la technique ELISA double sandwich (dosage de l'antigène DR-70). La révélation se fait par réaction enzymatique (anticorps couplés à la biotine et à la streptavidine). Une réaction colorée indique la présence de cancer.
Les Demanderesses ont maintenant mis en évidence de façon surprenante un nouveau marqueur tumoral, lequel est relargué par les tumeurs coliques hors des tissus cancéreux et est caractéristique de ces tumeurs, de sorte qu'il peut être détecté tant dans les échantillons biologiques distants des tumeurs, que dans les tumeurs elles-même. Ainsi, la présente invention a pour premier objet un procédé de diagnostic in vitro du cancer colorectal par détermination de la présence d'Aminoacylase 1 dans des échantillons biologiques issus de patients suspectés d'être atteints du cancer colorectal, et de préférence distants des tumeurs.
Elle concerne également l'utilisation de ce procédé tant dans le diagnostic précoce, le dépistage, le suivi thérapeutique, le pronostic, que dans le diagnostic des rechutes dans le cadre du cancer colorectal.
Le procédé de l'invention permet donc de diagnostiquer de façon spécifique et précoce le cancer colorectal par un test simple consistant à rechercher la présence de l'Aminoacylase 1 dans un échantillon biologique prélevé chez un patient, de préférence distant de la tumeur potentielle. En effet, les Demanderesses ont montré de façon inattendue que les tumeurs coliques non seulement sécrétaient spécifiquement de l'Aminoacylase 1 mais surtout le relarguaient hors du tissu cancéreux, comme cela sera mis en évidence de façon plus détaillée ci-après, et que sa concentration dans l'échantillon biologique dans lequel on met en œuvre le procédé de l'invention était augmentée par rapport aux valeurs de référence déterminées pour les patients sains. La détermination de la présence d'Aminoacylase 1 dans un échantillon biologique distant ou non de la tumeur permet alors de conclure à la pathologie recherchée. Un des avantages du procédé de l'invention réside donc en la possibilité d'utiliser un échantillon distant de la tumeur potentielle à titre d'échantillon de diagnostic, ce qui permet un diagnostic simple et non invasif alors qu'un diagnostic tissulaire nécessite une biopsie prélevée de façon invasive. En effet, l'étude de marqueurs tissulaires, par exemple sur coupe de tissu (immunohistochimie), peut présenter un intérêt pronostique mais n'a aucun intérêt pour le dépistage ou le diagnostic du cancer colorectal.
Le marqueur Aminoacylase 1 (N0 Swiss Prot Q03154, également appelé EC 3.5.1.14, N-Acyl-L-Amino-Acid Amidohydrolase ou ACY-I) fait partie de la famille des Aminoacylases. Ce sont des enzymes qui catalysent l'hydrolyse des acides aminés acylés pour donner des acides gras et des acides aminés3. Un dosage immunochimique de l'activité enzymatique Aminoacylase a été développé dès 1975 par K. Lorentz et al.4 et a été utilisé pour doser différents tissus et sérums5. L'étude a montré une augmentation de l'activité Aminoacylase en cas de pathologies hépatiques mais non en cas de cancer du côlon. Par ailleurs, le gène de l'Aminoacylase 1 a été identifié sur le chromosome 3p21.16. La région 3p21.1 est réduite à l'homozygotie lors d'un cancer du poumon à petite cellule, et dans ce cas, l'expression de l'Aminoacylase est réprimée ou indétectable7. De même S. Balabanov et al.8 ont montré que l'expression de l'Aminoacylase était réprimée en cas de cancer du rein. Toutefois, l'Aminoacylase 1 n'a jamais été décrite comme pouvant être utile comme marqueur dans le cadre du cancer colorectal et notamment, comme pouvant être dosé dans un échantillon biologique distant de la tumeur.
Par la détermination de la présence du marqueur tumoral, on entend la détermination de la présence de la protéine, de son ARN messager, ou de la détection de modification sur son gène dans les séquences codantes ou non codantes, comme des méthylations.
Par relarguage par les tumeurs coliques, on entend la sécrétion active ou passive ou la libération, quel qu'en soit le mécanisme, du marqueur tumoral par les cellules tumorales elles-mêmes ou par les cellules non tumorales voisines suite à des lésions ou des modifications de phénotype cellulaire résultant du développement tumoral.
Par échantillon biologique dans lequel on met en œuvre le procédé de l'invention, on entend tout échantillon biologique susceptible de contenir le marqueur tumoral d'intérêt. A titre d'exemple d'échantillon biologique non distant de la tumeur, on peut citer les échantillons solides tels que le tissu provenant de la tumeur, de biopsies de cette tumeur, de ganglions lymphatiques, des métastases du patient, et les cellules purifiées à partir de ces échantillons solides. A titre d'exemple d'échantillon biologique distant de la tumeur, on peut citer les fluides biologiques tels que le sang total ou ses dérivés, par exemple sérum ou plasma, les urines, la salive et les épanchements, la moelle osseuse et les selles, et les cellules purifiées à partir de ces échantillons liquides. On préfère le sang ou ses dérivés ainsi que les selles, les épanchements et les cellules purifiées à partir de ces échantillons liquides.
Le procédé de l'invention peut être amélioré en détectant, outre l'Aminoacylase 1, au moins un autre marqueur tumoral, le cas échéant également relargué par les tumeurs coliques hors des tissus cancéreux. Ainsi, la combinaison d'au moins deux marqueurs permet d'améliorer la spécificité et la sensibilité du test de diagnostic du cancer colorectal. Ainsi, un autre objet de l'invention consiste également à déterminer la présence d'au moins un autre marqueur tumoral choisi parmi les deux groupes de marqueurs suivants, considérés seuls ou en association :
Groupe A : Leucocyte Elastase Inhibitor, Ezrine, Liver Fatty Acid-Binding Protein, Intestinal Fatty Acid-Binding Protein, Apolipoprotéine AI,
Apolipoprotéine AII et Plastine-I, certains de ces marqueurs étant de nouveaux marqueurs identifiés par la Demanderesse,
Groupe B : marqueurs ayant un intérêt diagnostic supplémentaire, à savoir : Beta 2 Microglobuline, Protéasome 2OS, Galectine-3, L-Lactate Deshydrogénase Chaîne B, Calréticuline, Regenerating Islet-Derived Protein 3
Alpha, Tumor- Associated Calcium Signal Transducer 1, Kératine type II Cytoskeletal 8, Kératine type I Cytoskeletal 18, Kératine type I Cytoskeletal 19, Epithelial-Cadhérine, ACE, Villine, CA 19-9, CA 242, CA 50, CA 72-2, Testostérone, TIMP-I, Cripto-1, Intélectine-1, Protéine Disulfide Isomérase, Cytokératine 20, Translationally-Controlled Tumor Protein, (Pro)défensine-A5, la détection de fragments d'ADN dans le sang ayant des altérations spécifiques de leur profil de méthylation, comme par exemple l'ADN méthylé du gène AXL4 (Aristaless-like Homeobox-4 Gène Méthylation) ou l'ADN méthylé du gène Septin-9, la détection d'altérations spécifiques de fragments d'ADN dans les selles comme des mutations spécifiques de l'ADN dans les selles ou des altérations spécifiques du profil de méthylation de l'ADN dans les selles, la détection d'hémoglobine humaine dans les selles.
Le procédé de l'invention peut donc être amélioré en détectant au moins deux marqueurs, l'un étant l'Aminoacylase 1, l'autre étant un autre marqueur tumoral choisi dans le Groupe A, à savoir : Leucocyte Elastase Inhibitor, Ezrine, Liver Fatty Acid- Binding Protein, Intestinal Fatty Acid-Binding Protein, Apolipoprotéine AI, Apolipoprotéine AII et Plastine-I.
Par marqueur tumoral nouvellement décrit, on entend la protéine, l'ARN messager ou des modifications spécifiques du gène correspondant, comme des mutations ou des méthylations.
Le marqueur tumoral Leucocyte Elastase Inhibitor (N0 Swiss Prot P30740, également appelé LEI, Serpin Bl, Monocyte/neutrophil elastase inhibitor, M/NEI ou EI) a été séquence en 19929. Le LEI inhibe spécifiquement les protéases ayant des propriétés de type Elastase ou Chymotrypsine par formation de complexe non dissociable sous l'action du SDS10. C'est ainsi que le LEI inhibe trois des protéases majeures produites par les neutrophiles : la Leucocyte Elastase, la proteinase-3 et la Cathepsine G. Ces protéases permettent au système immunitaire de défendre l'organisme par protéolyse de substrats extracellulaires ou phagocytés. Mais lorsque ces protéases sont en excès, elles sont responsables de réactions inflammatoires. Le LEI pourrait donc avoir un rôle de régulation et de limitation de l'action inflammatoire induite par les protéases cellulaires. La Demanderesse a montré quant à elle de façon surprenante que cette protéine est un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants ou non de la tumeur.
Le marqueur Ezrine (N0 Swiss Prot P15311, également appelé p81, Cytovillin ou Villin-2) est une protéine assurant la liaison entre la membrane cellulaire et les filaments d'Actine du cytosquelette de la cellule, notamment dans les microvillosités des cellules épithéliales intestinales11. W.G. Jiang et S. Hiscox12 ont montré que les Interleukines IL-2, IL-8, IL-IO, ... pouvaient inhiber l'expression d'Ezrine dans la lignée cellulaire de cancer colorectal humaine, HT29. Les mêmes auteurs13 ont montré que l'inhibition de l'expression d'Ezrine dans les lignées cellulaires de cancer colorectal, HTl 15 et HRT18, réduisait l'adhésion entre cellules et augmentait la mobilité et le comportement invasif des cellules. Ils ont conclu que l' Ezrine régulait les adhésions cellule/cellule et cellule/matrice, en interagissant avec les molécules d'adhésion cellulaires, E-Cadhérine et beta-Caténine. Ils ont suggéré que l'Ezrine pouvait jouer un rôle important dans le contrôle du potentiel invasif des cellules cancéreuses. Par ailleurs, T. Xiao et al.14 ont utilisé un dosage ELISA pour quantifier l'Ezrine plasmatique de patients atteints d'un cancer du poumon. Toutefois, ils n'ont pas observé de différences par rapport à des sujets contrôles. La Demanderesse a montré quant à elle de façon surprenante que cette protéine est un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants ou non de la tumeur. Le marqueur Liver Fatty Acid-Binding Protein (N0 Swiss Prot P07148, également appelé L-FABP, FABPl, FABPL, protéine Z ou protéine transporteur de stérol) appartient à la famille des FABP qui comprend neuf isoformes. Chaque isoforme est dénommée d'après le tissu dans lequel elle a été détectée la première fois. Ces isoformes possèdent une communauté de fonction, des structures tridimensionnelles ressemblantes mais leur homologie de séquence n'est pas élevée. La L-FABP a été séquencée en 198515. C'est une petite protéine de 15 kDa, abondante dans le cytosol, possédant la capacité de se fixer aux acides gras libres ainsi qu'à la bilirubine. Quelques études récentes semblent indiquer que les altérations de l'expression de la protéine L-FABP pourraient induire un processus de tumorigenèse. Pour le cancer de la prostate, le niveau d'expression des ARNm du L-FABP dans les biopsies de tissu tumoral était 10 fois plus élevé que dans le tissu normal16. Pour le cancer du côlon, plusieurs équipes ont identifié une diminution de l'expression de la protéine L-FABP au niveau du tissu tumoral comparée à la muqueuse colique normale, en utilisant des techniques d'électrophorèse en 2 dimensions17. Ce résultat a aussi été confirmé par des techniques d'immunohistochimie. De plus, la protéine L-FABP est un marqueur pronostic de résection hépatique chez les patients atteints de cancer colorectal ayant métastasé dans le foie18. La Demanderesse a montré quant à elle de façon surprenante que cette protéine est un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants de la tumeur.
Le marqueur Intestinal Fatty Acid-Binding Protein (N0 Swiss Prot P12104, également appelé I-FABP, FABP-2 ou FABPI) a été séquence en 198719. C'est une petite protéine de 15 kDa, abondante dans le cytosol, possédant la capacité de se fixer aux acides gras libres ainsi qu'à la bilirubine. La protéine I-FABP est exprimée au niveau des entérocytes de l'intestin grêle et peut constituer environ 2% du contenu protéique de ce type cellulaire. Au niveau tissulaire, le duodénum et le jéjunum contiennent des quantités significativement plus élevées de I-FABP que le côlon (jéjunum : 4,8 μg/g, côlon : 0,25 μg/g)20. La I-FABP n'a pas pu être détectée dans les échantillons de plasma de sujets sains. Par contre, dans certains contextes pathologiques comme l'ischémie intestinale, la maladie de Crohn ou la cirrhose biliaire primitive, il est possible de mettre en évidence une augmentation de la concentration de I-FABP plasmatique chez certains sujets20. Pour le cancer de la prostate, il a été montré que le niveau d'expression des ARNm du I-FABP dans les biopsies de tissu tumoral était 7 fois plus élevé que dans le tissu normal16. Dans le modèle d'induction de tumeur colorectal par l'azoxyméthane chez le rat, le niveau d'expression des ARNm de la I- FABP est diminué de 2,92 à 3,97 fois lorsque les animaux ont une alimentation qui réduit l'incidence de cancer (protéines du soja ou hydrolysat de petit lait)21. La Demanderesse a montré quant à elle de façon surprenante que cette protéine est un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants de la tumeur.
Les Apolipoprotéines sont une famille de protéines constituées d'acides aminés polaires permettant le transport des lipides dans le sang par formation d'un complexe macromoléculaire hydrophile appelé lipoprotéine. Pour chacune des Apolipoprotéines plasmatiques humaines existent des isoformes issues de polymorphisme génétique et/ou de modifications post-traductionnelles dont la présence dans le sang peut être associée à certaines pathologies22. La concentration plasmatique des Apolipoprotéines est non négligeable, de l'ordre du mg/ml23.
Le marqueur Apolipoprotéine AI (N0 NCBI 490098, également appelé Apo A-I, Apo AI et Apo Al) est une protéine de 243 acides aminés et de 28 kDa. Il est essentiellement synthétisé par le foie et l'intestin. Cette protéine a été montrée sous- abondante dans les sérums de patients souffrant d'un cancer colorectal par rapport aux sujets sains par SELDI-TOF24. Cependant, il est précisé dans cet article que la discrimination des patients atteints de CCR par rapport aux sujets sains est réalisée en combinant l'Apo AI à d'autres marqueurs protéiques. Par ailleurs, cet article précise que le dosage par immunoessai turbidimétrique de l'Apo AI réalisé par une autre équipe ne confirme pas la sous-abondance de cette protéine dans les sérums de patients atteints de CCR25. Hachem et al.26 ont quant à eux dosé l'Apo AI dans des sérums de patients ayant eu le cancer du foie suite à des métastases du cancer colorectal. La Demanderesse a montré quant à elle de façon surprenante qu'un dosage par immunoessai permet de mettre en évidence la diminution de la concentration de cette protéine chez les patients atteints d'un cancer colorectal, contrairement à ce qui était avancé par Engwegen et al.24 qui ont pu mettre en évidence cette diminution uniquement en mettant en œuvre la technique SELDI-TOF. Le dosage par immunoessai de l'Apo AI dans les échantillons biologiques est un bon procédé de diagnostic du cancer colorectal, lesdits échantillons étant distants de la tumeur, dans la mesure où le dosage par immunoessai mis en oeuvre n'est pas la turbidimétrie comme utilisée par l'équipe de Zhang et al.25.
Le marqueur Apolipoprotéine AII, (N0 Swiss Prot P02652, également appelé ApoA II, Apo-AII, et Apo A2) est une protéine de 17380 Da composée de deux chaînes polypeptidiques de 77 acides aminés chacune reliées par un pont disulfure. Comme l' Apolipoprotéine AI, l' Apolipoprotéine AII est essentiellement synthétisée par le foie et l'intestin. Hachem et al.26 ont également dosé, outre l'Apo AI, l'Apo AII dans des sérums de patients ayant eu le cancer du foie suite à des métastases du cancer colorectal. Toutefois, les résultats ne sont pas significatifs et ne permettent pas une conclusion quant à la pathologie recherchée. La Demanderesse a montré quant à elle de façon surprenante que la diminution de la concentration de cette protéine chez les patients atteints d'un cancer colorectal en fait un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants de la tumeur.
Le marqueur Plastine-I (N0 Swiss Prot Q14651, également appelé I-plastin, Intestine- spécifie plastin ou Plastin 1) appartient à la famille des Plastines humaines dont trois représentants sont connus : la -Plastine-I, la -Plastine-L et la -Plastine-T. Certains auteurs appellent les Plastines « Fimbrines », d'autres auteurs encore réservent le nom de Fimbrine à la -Plastine-I. Les Plastines sont des protéines se liant à l'Actine pour former le cytosquelette (squelette cellulaire). Ce sont des protéines de 70 kDa relativement bien conservées tout au long de l'évolution des Eucaryotes. Elles présentent une forte spécificité tissulaire, seulement une isoforme à la fois est présente dans les tissus normaux27. L'utilisation des Plastines vis-à-vis du cancer a déjà été décrite dans le brevet US-A-5,360,715, qui propose une méthode pour déterminer si une cellule est hématopoïétique ou néoplasique, c'est-à-dire cancéreuse. Cette méthode revendique le dosage de la -Plastine-L et de la -Plastine-T au niveau cellulaire, et plus particulièrement le dosage de leurs ARNm. Toutefois, malgré ces propriétés, aucun travail antérieur n'a été réalisé pour évaluer l'intérêt des Plastines dans le cadre du diagnostic du cancer colorectal à partir d'un prélèvement de sérum ou de selles. De plus la -Plastine-I n'a même jamais été envisagée comme un marqueur potentiel du cancer28. La Demanderesse a montré quant à elle de façon surprenante que cette protéine est un bon marqueur dans les échantillons biologiques issus d'un patient atteint d'un cancer colorectal, lesdits échantillons étant distants ou non de la tumeur.
La concentration du marqueur tumoral choisi dans le Groupe A sera, selon le marqueur considéré, augmentée ou diminuée dans l'échantillon biologique dans lequel on met en œuvre le procédé de l'invention par rapport aux valeurs de référence déterminées pour les patients sains.
Le procédé de l'invention peut également être amélioré en associant la détection de l'Aminoacylase 1 et d'un autre marqueur tumoral choisi dans le Groupe B, à savoir : les marqueurs Beta 2 Microglobuline, Protéasome 2OS, Galectine-3, L-Lactate Deshydrogénase Chaîne B, Calréticuline, Regenerating Islet-Derived Protein 3 Alpha, Tumor-Associated Calcium Signal Transducer 1, Kératine type II Cytoskeletal 8, Kératine type I Cytoskeletal 18, Kératine type I Cytoskeletal 19, Epithelial-Cadhérine, ACE, Villine, CA 19-9, CA 242, CA 50, CA 72-2, Testostérone, TIMP-I, Cripto-1, Intélectine-1, Protéine Disulfide Isomérase, Cytokératine 20, Translationally- Controlled Tumor Protein, (Pro)défensine-A5, la détection de fragments d'ADN dans le sang ayant des altérations spécifiques de leur profil de méthylation, comme par exemple l'ADN méthylé du gène AXL4 (Aristaless-like Homeobox-4 Gène Méthylation) ou l'ADN méthylé du gène Septin-9, la détection d'altérations spécifiques de fragments d'ADN dans les selles comme des mutations spécifiques de l'ADN dans les selles ou des altérations spécifiques du profil de méthylation de l'ADN dans les selles, la détection d'hémoglobine humaine dans les selles. Bien entendu, le procédé de l'invention pourra également mettre en œuvre la détection, dans le même dosage, de l'Aminoacylase 1, d'au moins un marqueur tumoral choisi dans le Groupe B et d'au moins un autre marqueur tumoral choisi dans le Groupe A.
Le marqueur Beta 2 Microglobuline (N0 Swiss Prot P61769, également appelé β2 Microglobuline, β2M) est une protéine de basse masse moléculaire (11 à 12 kDa) trouvée à la surface de la plupart des cellules humaines nucléées. Le taux de β2 Microglobuline sérique augmente chez certains patients atteints de cancer, sans que cette augmentation soit spécifique, ni corrélée avec la nature de la tumeur, son stade ou la sévérité de la maladie. Une augmentation significative est également observée lors d'autres maladies telles que le lupus érythémateux, l'arthrite rhumatoïde, le syndrome de Sjogren, les maladies malignes du système lymphoïde (myélome multiple, lymphome à cellules B), certaines maladies virales (hépatites ou SIDA) et chez les patients hémophiles. La β2 Microglobuline étant filtrée par les glomérules rénaux et réabsorbée par les tubes contournés proximaux, sa concentration sanguine peut être modifiée en cas de pathologies rénales. C'est ainsi que le dosage de la β2 Microglobuline est le plus souvent réservé au diagnostic de pathologies rénales, ou au suivi d'infection par le virus de l'immunodéficience acquise. Toutefois, ce marqueur est connu comme un marqueur tumoral, notamment du cancer du côlon.
Le marqueur Protéasome 2OS (également appelé Prosome) est la structure centrale du protéasome qui est lui-même un complexe moléculaire responsable de la dégradation intracellulaire des protéines ubiquitinylées29. Le Protéasome est un complexe moléculaire de 700 kDa constitué de 28 sous-unités associées en 4 anneaux de 7 sous-unités. Chez l'homme, 7 unités alpha (αl, α2, α3, α4, α5, α6 et al) et 10 unités bêta (βl, β2, β3, β4, β5, β6, β7, βli, β2i et β5i) sont connues. Grâce à ses propriétés catalytiques, le Protéasome joue un rôle central dans les mécanismes de prolifération, de croissance, de régulation et d'apoptose cellulaire et donc dans les voies de cancérisation. L'inhibition du Protéasome par le Bortezomib (Velcade) est un traitement reconnu des myélomes multiples. Des essais thérapeutiques de phase II ou III sont en cours pour des cancers hématologiques ou des tumeurs. T Lavabre-Bertrand et al.30 ont montré que le taux sérique de Protéasome pouvait s'élever à l'occasion de certaines pathologies, notamment en cas de cancers (myélome, lymphome et tumeurs solides).
Le marqueur Galectine-3 (N0 Swiss Prot P17931, également appelé Gal-3, Galactose-specific lectin 3, MAC-2 antigen, IgE-binding protein, 35 kDa lectin, Carbohydrate binding protein 35, CBP 35, Laminin-binding protein, Lectin L-29, L-31,Galactoside-binding protein ou GALBP), est une lectine capable de se lier à des structures beta-galactosidique de type N-acetyllactosamine. C'est une protéine à fonctions multiples impliquée dans diverses fonctions biologiques, incluant l'adhésion des cellules tumorales, la prolifération, la différentiation, l'angiogénèse, l'apoptose, la progression cancéreuse métastasique31. Différents travaux ont montré que Gal-3 pouvait se complexer avec de nombreuses molécules : ACE, IgE, Laminine, Mucine, Mac-2BP, LAMPl, LAMP2, Fibronectine, etc. Un dosage sérique de Gal-3 a été décrit par I. Iurisci et al.32. Gal-3 était capturée sur des microplaques revêtue de Mac-2- binding protein (une protéine liant Gal-3) puis révélée avec un anticorps de rat anti- Gal-3. Cette étude a montré une élévation sérique de Gal-3 en cas de cancers gastrointestinaux, du sein, du poumon, de l'ovaire, de mélanomes et de lymphomes non-Hodgkinien.
Le marqueur L-Lactate Deshydrogénase Chaîne B (N0 Swiss Prot P07195, également appelé LDH-B, LDH Heart Unit ou LDH-H) est une protéine pouvant se complexer sous forme d'homotetramères. Cette protéine peut également se complexer avec la protéine L-Lactate Deshydrogénase Chaîne A (N0 Swiss Prot P00338, également appelé LDH-A, LDH Muscle Unit ou LDH-M) sous forme d' hétéro tetramères. La dose sérique et/ou l'activité enzymatique sérique des complexes tetrameriques, baptisés LDH augmente dans la circulation sanguine proportionnellement à la masse tumorale pour de nombreuses tumeurs solides. Son utilisation est recommandée en association avec la gonadotrophine chorionique humaine (bêta-hCG) et la phosphatase alcaline placentaire pour le suivi des cancers séminaux. La LDH est considérée comme un marqueur d'intérêt pour le pronostic des lymphomes, de la leucémie et du cancer du côlon33.
Le marqueur Calréticuline (N0 Swiss Prot P27797, également appelé CRP55, Caire gulin, HACBP, ERp60 ou grp60) est une protéine multifonctionnelle. C'est une lectine capable d' interagir transitoirement avec la quasi-totalité des protéines monoglycosylées du réticulum endoplasmique. C'est ainsi que DJ. McCool et al.34 ont montré que la Calréticuline était impliquée dans la maturation de la mucine colique MUC2. Une méthode de diagnostic du CCR utilisant un dosage de la Calréticuline dans un tissu, les selles ou un fluide corporel est décrit dans la demande de brevet WO03/065003.
Le marqueur Regenerating Islet-Derived Protein 3 Alpha (N0 Swiss Prot Q06141, également appelé Reg III-alpha, Pancreatitis-associated protein 1 ou Pancreatis Associated Protein I (PAP I)) est une protéine faiblement exprimée dans le pancréas sain. Elle est surexprimée durant les phases aiguës de pancréatite et chez certains patients souffrant de pancréatite chronique. Elle apparaît alors dans le liquide pancréatique et dans la circulation sanguine35. Y. Motoo et al.36 ont montré par dosage ELISA que le taux de PAP 1 sanguine augmentait chez certains patients atteints de cancer du côlon, de l'estomac, du foie ou du pancréas, ainsi qu'en cas d'insuffisance rénale. Ils ont pour ce faire utilisé le test ELISA (PANCEPAP) commercialisé par la société Dynabio (La Gaude, France). Le marqueur Tumor-Associated Calcium Signal Transducer 1 (N0 Swiss Prot
P16422, également appelé Major gastrointestinal tumor-associated protein GA733-2, Epithelial cell surface antigen, EpCAM, Epithelial glycoprotein, EGP, Adenocarcinoma-associated antigen, KSA, KS 1/4 antigen, Cell surface glycoprotein Trop-1 ou CD326 antigen) a été caractérisé en 1979 par sa capacité à être reconnu par un anticorps dirigé contre des cellules de cancer colorectal37. Cette protéine est connue sous différents noms, comme indiqué précédemment, mais l'usage le plus fréquent est de l'appeler EpCAM. C'est une protéine transmembranaire exprimée sur la surface basolatérale des cellules, dans certains épithéliums et de nombreux cancers38. Dès 1982 Herlyn et al.39 ont montré que l'injection d'un anticorps monoclonal anti-EpCAM pouvait inhiber la croissance tumorale de patients atteints de cancer colorectal. Ces résultats ont conduit au développement d'un traitement anti-tumoral à base d'un anticorps anti-EpCAM nommé Edrecolomab. Ce traitement est commercialisé sous le nom de Panorex™. Par ailleurs, H Abe et al.40 ont montré par dosage ELISA qu'une forme soluble d' EpCAM, baptisée MK-I, était augmentée dans la circulation sanguine de 10% chez les patients cancéreux étudiés.
Les cytokératines font partie des protéines qui composent les filaments intermédiaires du cytosquelette des cellules épithéliales. Actuellement, plus de 20 cytokératines humaines ont été identifiées. Les cytokératines 8 (N0 Swiss Prot P05787, également appelé Cytokeratin-8, CK-8, Keratin-8 ou K8), 18 (N0 Swiss Prot P05783, également appelé Cytokeratin-18, CK- 18, Keratin-18 ou K18), et 19 (N0 Swiss Prot P08727, également appelé Cytokeratin-19, CK-19, Keratin-19 ou K19) sont les plus abondantes dans les cellules épithéliales et sont des outils utiles pour le diagnostic de pathologies cancéreuses41. Cet intérêt clinique est lié à la libération de cytokératines par les cellules épithéliales en phase d'apoptose ou de prolifération. En cas d'apoptose, cette libération se fait sous forme de fragments solubles qui semble apparaître sous l'action protéolytique de Caspases. Des formes de cytokératines non dégradées n'ont jamais été décrites dans la circulation sanguine. Les trois dosages de cytokératines les plus utilisés en clinique sont le dosage de l'antigène polypeptidique tissulaire (TPA), de l'antigène polypeptidique tissulaire spécifique (TPS), et CYFRA 21-1. TPA est un test de spectre large qui mesure les cytokératines 8, 18, et 19. Les dosages de TPS et de CYFRA 21-1 sont plus spécifiques et mesurent respectivement des fragments de la cytokératine 18 et de la cytokératine 19. Ces 3 dosages détectent des fragments solubles de cytokératines pouvant être présents isolément ou sous forme de complexes protéiques. TPA, TPS ou CYFRA-21-1 ont été utilisés pour le suivi thérapeutique des cancers colorectaux, du sein, du poumon, de la vessie, de l'ovaire, du pancréas, de la prostate et de certains cancers ORL. Le dosage sanguin des fragments solubles de cytokératines a en effet une valeur clinique pour dépister les récidives ou évaluer la réponse à la thérapie engagée (radiothérapie, chimiothérapie, traitement hormonal). Un dosage régulier permet notamment d'évaluer la progression de la masse tumorale. La dose de cytokératines sanguines solubles a également un aspect pronostique vis-à-vis du stade tumoral et de la formation de métastase. Actuellement le dosage sanguin de cytokératine le plus utilisé est CYFRA 21-1. Il est fortement recommandé pour le suivi de patients atteints de cancer du poumon non à petites cellules. Il existe divers dosages commerciaux pour TPA (AB Sangtec Médical Co., Byk-Roland...), TPS (IDL Biotech AB, BEKI Diagnostics...) et CYFRA-21-1 (Roche Diagnostics, CIS Bio-International, Fujirebio Diagnostics...). Par ailleurs, H. Kim et al.42 ont montré que le dosage dans les selles de cytokératine 19 (DiNonA Inc.) pouvait être utile au dépistage de maladies digestives en association avec un dosage de sang occulte dans les selles. Enfin, l'utilisation de la Cytokératine 20 (N0 Swiss Prot P35900, également appelé Keratin, type I cytoskeletal 20, CK-20, Keratin-20, K20, ou Protein IT) en tant que marqueur dans le cancer colorectal est décrite dans la demande de brevet US2002/0160382.
Le marqueur Epithelial-Cadhérine (N0 Swiss Prot P12830, également appelé E- cadherin, Uvomorulin, Cadherin-1, CAM 120/80 ou CD324 antigen) est une protéine transmembranaire médiatrice de l'adhésion cellulaire calcium dépendante. Elle est spécifiquement exprimée dans les cellules épithéliales, où elle est impliquée dans le maintien de leur phénotype. Le domaine cytoplasmique de l'E-Cadhérine se lie à la β- Caténine, qui est elle-même liée aux réseaux de filaments d'actine du cytosquelette. Cette liaison l'E-Cadhérine/β-Caténine joue un rôle critique pour stabiliser les adhésions cellules/cellules du tissu épithélial. La perte d'E-Cadhérine peut donc réduire l'adhésion cellulaire et augmenter le pouvoir invasif des cellules cancéreuses. Une réduction d'expression d'E-Cadhérine ou de β-Caténine est généralement associée avec une dédifférenciation et une agressivité plus importante de la tumeur, notamment pour les cancers digestifs. C'est ainsi que F. Roca et al.43 ont montré que les patients atteints d'un cancer colorectal et sous-exprimant l'E-Cadhérine avaient un pronostic plus péjoratif que les patients ayant un niveau d'expression normal. Dès 1983, Damsky et al.44 ont montré qu'une forme soluble d'E-Cadhérine pouvait être libérée par la lignée cellulaire du cancer du sein MCF-7. Cette forme soluble correspond au clivage de la partie extracellulaire de l'E-Cadhérine. Plus tard, M. Katayama et al.45 ont montré que la forme soluble de l'E-Cadhérine pouvait être libérée dans la circulation sanguine en cas de cancer et C. Willmanns et al.46 ont montré que l'augmentation de la dose d'E- Cadhérine sanguine était corrélée au stade tumoral pour les cancers colorectaux. Un kit commercial est par ailleurs proposé par la société Takara BioChemicals (Tokyo, Japon).
Le dosage de l'ACE (Antigène Carcino-Embryonnaire) pour le diagnostic du cancer colorectal a été proposé depuis 1965 par P. GoId et S. Freedman47, mais un dosage sanguin de ce marqueur a une sensibilité médiocre pour le diagnostic de cancers colorectaux à un stade peu avancé. C'est ainsi que le dosage de l'ACE sérique est surtout recommandé pour évaluer le risque de métastases hépatiques48 et pour le suivi thérapeutique. En outre, c'est un marqueur peu spécifique du cancer colorectal, il peut en effet être augmenté dans de nombreux autres cancers (poumon, sein...). En revanche, le dosage d'ACE dans les selles semble plus sensible et plus spécifique que le dosage de l'ACE sérique ou que le dosage de sang dans les selles49. Ce dosage n'est toutefois pas encore proposé en routine. Les déterminants antigéniques 1116-NS-19-9 réactifs, plus communément baptisés CA19-9 (Carbohydrate Antigen 19.9), sont portés par des protéines de poids moléculaires élevés50. Le dosage sanguin de CA 19-9 est plus spécifique que celui de l'ACE. Le taux de CA 19-9 sanguin augmente en cas de cancer colorectal, du pancréas et du foie (cholangiocarcinome), mais aussi en cas de pathologies non cancéreuses (cholangites...). Son usage en association avec l'ACE est recommandé tant au moment du diagnostic d'un cancer que pour le suivi de la pathologie.
J. Holmgren et al.51 ont montré que la dose sérique d'antigène CA 50 était augmentée en cas de cancer colorectal. L'antigène CA 50 est défini par sa faculté à être reconnu par un anticorps monoclonal spécifique.
S'agissant du marqueur CA 72, T. L. Klug et al.52 ont montré que la dose sérique d'antigène CA 72 était augmentée en cas de cancer colorectal. L'antigène CA 72 est défini par sa faculté à être reconnu par un anticorps monoclonal spécifique.
De même, P. Kuusela et al.53 ont montré que la dose sérique d'antigène CA 242 était augmentée en cas de cancer colorectal. L'antigène CA 242 est défini par sa faculté à être reconnu par un anticorps monoclonal spécifique.
Le dosage de la Testostérone pour le diagnostic du cancer colorectal a été proposé chez les hommes par M. Holland et al.54. Ces auteurs ont montré un effondrement du taux de Testostérone sanguine en cas de cancer colorectal. S'agissant du marqueur TIMP-I, ou Tissue Inhibitor of Matrix
Metalloproteinase Type-1, la demande de brevet US 2007/0020707 décrit notamment le dosage de TIMP-I pour le diagnostic du cancer colorectal à l'aide d'un dosage dans un fluide corporel.
F. Model et al.55 ont montré en juillet 2006, lors du congrès World Congress on Gastrointestinal Cancer, qu'il était possible de détecter des formes méthylées du gène de la Septin-9 dans le plasma de patients atteints de cancer colorectal.
M. P. Ebert et al.56 ont montré que le gène ALX4, ou Aristaless-like homeobox- 4, était plus souvent méthylé dans les sérums de patients atteints d'un cancer colorectal que dans les sérum contrôles (P < 0,0001). En utilisant une valeur seuil de 41,4 pg/mL, ils ont obtenu une sensibilité de 83,3% et une spécificité de 70%.
La Villine est décrite en tant que marqueur sanguin pour le diagnostic du cancer colorectal dans la demande de brevet FR2581456.
C. Bianco et al.57 ont montré que la dose sérique de Cripto-1 était augmentée en cas de cancer colorectal.
Le dosage de l'Intélectine-1 (N0 Swiss Prot Q8WWA0, également appelé Intestinal lactoferrin receptor, Galactofuranose-binding lectin, Endothelial lectin HL-I ou Omentin) pour le diagnostic du cancer colorectal a été décrit dans la demande de brevet US2003/0082533.
L'utilisation de la Protéine Disulfide Isomérase (N0 Swiss Prot P07237, également appelé EC 5.3.4.1, PDI, Prolyl 4-hydroxylase subunit beta, Cellular thyroid hormone-binding protein ou p55), de la Translationally-Controlled Tumor Protein (N0
Swiss Prot P13693, également appelé TCTP, p23, Histamine-releasing factor, HRF ou
Fortilin) et de la (Pro)défensine-A5 (N0 Swiss Prot QO 1523) en tant que marqueurs dans le cancer colorectal est décrite respectivement dans les demandes de brevet
EP1724586, US2003/0172388 et US2006/0179496. Par (Pro)défensine, on entend, le précurseur, à savoir la Prodéfensine avant clivage, le propeptide, à savoir la moitié N- terminale après clivage de la Prodéfensine, et la protéine mature, à savoir la Défensine, correspondant à la moitié C-terminale après clivage.
Enfin, le dosage de l'hémoglobine humaine dans les selles est connu et peut être mis en œuvre comme décrit précédemment. La concentration du marqueur tumoral choisi dans le Groupe B sera, selon le marqueur considéré, augmentée ou diminuée dans l'échantillon biologique dans lequel on met en œuvre le procédé de l'invention par rapport aux valeurs de référence déterminées pour les patients sains.
De préférence, le ou les marqueurs tumoraux du groupe B sont choisis parmi : les marqueurs : Beta 2 Microglobuline, Protéasome 2OS, Galectine-3, L-Lactate
Deshydrogénase Chaîne B, Calréticuline, Regenerating Islet-Derived Protein 3 Alpha,
Tumor- Associated Calcium Signal Transducer 1, Epithelial-Cadhérine, ACE, CA 19-9,
Testostérone, TIMP-I, Intélectine-1, Protéine Disulfide Isomérase, Cytokératine 20,
Translationally-Controlled Tumor Protein, (Pro)défensine-A5, détection d'hémoglobine humaine dans les selles.
Bien entendu, le procédé de l'invention peut également inclure la détection de tout autre marqueur du cancer colorectal connu de l'homme du métier.
Comme indiqué précédemment, on détecte le ou les marqueurs tumoraux d'intérêt soit sous forme de protéine, soit sous forme d'ARN messager, soit par altération de l'ADN correspondant (mutation ou modification des méthylations). La détermination de la présence, dans l'échantillon biologique, du marqueur tumoral d'intérêt « protéine » peut être mis en œuvre par tout procédé de détermination de la présence d'une protéine dans un échantillon, connu de l'homme du métier, comme par exemple par un test biochimique, y compris un dosage immunologique, ou par spectrométrie de masse. Le test biochimique peut être tout test largement connu de l'homme du métier impliquant des interactions moléculaires, à savoir des réactions entre ledit marqueur tumoral et un ou des partenaire(s) de liaison spécifique(s) ou non dudit marqueur tumoral.
De préférence, le test biochimique est un dosage immunologique connu de l'homme du métier impliquant des réactions immunologiques entre le marqueur tumoral qui est l'antigène et un ou des partenaire(s) de liaison spécifique(s) que sont les anticorps dirigés contre cet antigène.
Les partenaires de liaison spécifiques ou non du ou des marqueurs tumoraux recherchés dans le procédé de l'invention sont tout partenaire susceptible de se lier à ce ou ces marqueurs. Ils sont dits spécifiques quand ils sont capables de se lier à ces marqueurs avec une spécificité élevée, voire une spécificité de 100%. Ils sont dits non spécifiques lorsque leur spécificité de liaison à ces marqueurs est faible et qu'ils sont alors capables de se lier à d'autres ligands, tels que des protéines. A titre d'exemple, on peut citer les anticorps, les fractions d'anticorps, les récepteurs et toute autre molécule capable de se lier à ce marqueur.
Les anticorps partenaires de liaison sont par exemple soit des anticorps polyclonaux, soit des anticorps monoclonaux.
Les anticorps polyclonaux peuvent être obtenus par immunisation d'un animal avec le marqueur tumoral concerné, suivie de la récupération des anticorps recherchés sous forme purifiée, par prélèvement du sérum dudit animal, et séparation desdits anticorps des autres constituants du sérum, notamment par chromatographie d'affinité sur une colonne sur laquelle est fixé un antigène spécifiquement reconnu par les anticorps, notamment ledit marqueur.
Les anticorps monoclonaux peuvent être obtenus par la technique des hybridomes dont le principe général est rappelé ci-après. Dans un premier temps, on immunise un animal, généralement une souris avec le marqueur tumoral d'intérêt, dont les lymphocytes B sont alors capables de produire des anticorps contre ledit antigène. Ces lymphocytes producteurs d'anticorps sont ensuite fusionnés avec des cellules myélomateuses "immortelles" (murines dans l'exemple) pour donner lieu à des hybridomes. A partir du mélange hétérogène des cellules ainsi obtenu, on effectue alors une sélection des cellules capables de produire un anticorps particulier et de se multiplier indéfiniment. Chaque hybridome est multiplié sous la forme de clone, chacun conduisant à la production d'un anticorps monoclonal dont les propriétés de reconnaissance vis-à-vis dudit marqueur tumoral pourront être testées par exemple en ELISA, par immunotransfert (Western blot) en une ou deux dimensions, en immunofluorescence, ou à l'aide d'un biocapteur. Les anticorps monoclonaux ainsi sélectionnés, sont par la suite purifiés notamment selon la technique de chromatographie d'affinité décrite ci-dessus.
Les anticorps monoclonaux peuvent être également des anticorps recombinants obtenus par génie génétique, par des techniques bien connues de l'homme du métier. Des exemples d'anticorps anti-Leucocyte Elastase Inhibitor sont connus et sont disponibles notamment dans le catalogue Abcam, anticorps polyclonal de lapin anti- LEI, Cat. No. Ab47731. Un anticorps monoclonal anti-LEI Clone ELA-I a été décrit dans l'article de Yasumatsu et al.58.
Des exemples d'anticorps anti-Ezrine sont connus et sont disponibles notamment dans le catalogue Abcam, anticorps monoclonal anti-Ezrine Clone 3C12, Cat. No. Ab4069 et anticorps polyclonal de lapin anti-Ezrine, Cat. No. Ab47418.
Des exemples d'anticorps anti-Aminoacylase 1 sont connus et sont disponibles notamment dans le catalogue Abnova, anticorps monoclonal anti-Aminoacylase 1 Clone 4F1-B7, Cat. No. H00000095-M01, et dans le catalogue Abcam, anticorps polyclonal de poule anti-Aminoacylase 1, Cat. No. Ab26173.
Des exemples d'anticorps anti-Liver Fatty Acid-Binding Protein sont connus et sont disponibles notamment dans le catalogue Abcam, anticorps monoclonal anti-L- FABP Clone 6B6, Cat. No. Abl0059 et anticorps polyclonal de lapin anti-L-FABP, Cat. No. Ab7807.
Des exemples d'anticorps anti-Intestinal Fatty Acid-Binding Protein sont connus et sont disponibles notamment dans le catalogue R&D Systems, anticorps monoclonal anti-I-FABP Clone 323701, Cat. No. MAB3078, et dans le catalogue Abcam, anticorps polyclonal de lapin anti-I-FABP, Cat. No. Ab7805.
Des exemples d'anticorps anti-Apolipoprotéine AI sont connus et sont disponibles notamment dans le catalogue Biodesign Meridian Life Sciences, anticorps monoclonal anti-Apo AI Clone 4A90, Cat. No. H45402M et anticorps polyclonal de chèvre anti-Apo AI, Cat. No. K45252P.
Des exemples d'anticorps anti-Apolipoprotéine AII sont connus et sont disponibles notamment dans le catalogue US Biological, anticorps monoclonal anti- Apo AII Clone 1402, Cat. No. A2299-31C et dans le catalogue Biodesign Meridian Life Sciences anticorps polyclonal de chèvre anti-Apo AII, Cat. No. K74001P.
Des exemples d'anticorps polyclonaux anti-Plastine-I sont connus et sont disponibles notamment dans le catalogue Santa Cruz Biotechnology. L'anticorps polyclonal de lapin H-300 (Cat. No. sc-28531) réagit avec les Plastines-I, L et T. La Demanderesse a mis au point des anticorps monoclonaux dirigés contre la Plastine-I. Des exemples d'anticorps anti- Beta2 Microglobuline, anti-ACE, anti-CA19-9 et anti-Testostérone sont connus et sont notamment utilisés dans les trousses de dosage de la Demanderesse, respectivement Vidas® 2 Microglobulin, Vidas® ACE, Vidas® CA19-9™ et Vidas® Testostérone.
Des exemples d'anticorps anti-Protéasome 2OS sont connus et sont disponibles notamment dans le catalogue d'Affinitiy Research Products.
Des exemples d'anticorps anti-Galectine-3, anti-L-Lactate Deshydrogénase
Chaîne B, anti-Calréticuline, anti-Tumor- Associated Calcium Signal Transducer 1, anti-Keratine type II Cytoskeletal 8, anti-Keratine type I Cytoskeletal 18, anti-Keratine type I Cytoskeletal 19, anti-Epithelial-Cadhérine, anti-Villine et anti-TIMP-1 sont connus et sont disponibles notamment dans le catalogue Abcam.
Des exemples d'anticorps anti-Regenerating Islet-Derived Protein 3 Alpha sont connus et sont notamment utilisés dans les trousses de dosage de Dynabio (La Gaude, France).
Des exemples d'anticorps anti-CA 242, anti-CA 50, anti-CA 72-4 sont connus et sont disponibles notamment dans le catalogue Fujirebio. Des exemples d'anticorps anti-Intélectine- 1 sont connus et sont disponibles notamment dans le catalogue Alexis Biochemicals, anticorps monoclonal anti- Intélectine-1 Clone SaIy-I, Cat. No. ALX-804-850-C100 et anticorps polyclonal de lapin anti-Intélectine- 1, Cat. No. ALX-210-941.
Des exemples d'anticorps anti-Protein Disulfide Isomérase sont connus et sont disponibles notamment dans le catalogue Abcam, anticorps monoclonal anti-PDI Clone RL77, Cat. No. Ab5484 et anticorps polyclonal de lapin anti-PDI, Cat. No. Ab3672.
Des exemples d'anticorps anti-Cytokératine 20 sont connus et sont disponibles notamment dans le catalogue Abcam, anticorps monoclonal anti-Cytokératine 20 Clone Ks20.8, Cat. No. Ab962 et anticorps polyclonal de lapin anti-Cytokératine 20, Cat. No. Ab36756.
Des exemples d'anticorps anti-TCTP sont connus et sont disponibles notamment dans le catalogue Abnova, anticorps monoclonal anti-TCTP Clone 3C7, Cat. No. 157H00007178-M01 et anticorps polyclonal anti-TCTP, Cat. No. 157H00007178-A01. Des exemples d'anticorps anti-Défensine-A5 sont connus et sont disponibles notamment dans le catalogue Santa Cruz Biotechnology, anticorps monoclonal anti- Défensine-A5 Clone 8C8, Cat. No. sc-53997, et dans le catalogue Alpha Diagnostic International Inc., anticorps polyclonal de lapin anti-Défensine-A5, Cat. No. HDEFA51-A. Les partenaires de liaison spécifiques ou non du ou des marqueurs tumoraux recherchés dans le procédé de l'invention peuvent être utilisés comme réactif de capture, comme réactif de détection ou comme réactifs de capture et de détection.
La visualisation des réactions immunologiques, c'est-à-dire de la liaison marqueur tumoral/partenaire de liaison, peut être effectuée par tout moyen de détection, tels que des moyens directs ou indirects. Dans le cas de la détection directe, c'est-à-dire sans l'intermédiaire d'un marquage, on observe les réactions immunologiques par exemple par résonance plasmonique de surface ou par voltamétrie cyclique sur une électrode portant un polymère conducteur. La détection indirecte se fait par l'intermédiaire d'un marquage, soit du partenaire de liaison dit réactif de révélation, soit du marqueur tumoral d'intérêt lui- même. On parle alors dans ce dernier cas de méthode de compétition.
Par marquage, on entend la fixation d'un réactif marqueur capable de générer directement ou indirectement un signal détectable. Une liste non limitative de ces réactifs marqueurs consiste en :
• les enzymes qui produisent un signal détectable par exemple par colorimétrie, fluorescence, luminescence, comme la peroxydase de raifort, la phosphatase alcaline, la β-galactosidase, la glucose-6-phosphate déshydrogénase,
• les chromophores comme les composés fluorescents, luminescents, colorants, • les molécules radioactives comme le 32P, le 35S ou le 125I, et
• les molécules fluorescentes telles que les Alexa ou les phycocyanines.
Des systèmes indirects de détection peuvent être aussi utilisés, comme par exemple des ligands capables de réagir avec un anti-ligand. Les couples ligand/anti- ligand sont bien connus de l'homme du métier, ce qui est le cas par exemple des couples suivants : biotine/streptavidine, haptène/anticorps, antigène/anticorps, peptide/anticorps, sucre/lectine, polynucléotide/complémentaire du polynucléotide. Dans ce cas, c'est le ligand qui porte le partenaire de liaison. L' anti-ligand peut être détectable directement par les réactifs marqueurs décrits au paragraphe précédent ou être lui-même détectable par un ligand/anti-ligand. Ces systèmes indirects de détection peuvent conduire, dans certaines conditions, à une amplification du signal. Cette technique d'amplification du signal est bien connue de l'homme du métier, et l'on pourra se reporter aux demandes de brevet antérieures FR98/10084 ou WO-A-95/08000 de la Demanderesse ou à l'article de Chevalier et al.59. Selon le type de marquage utilisé, l'homme du métier ajoutera des réactifs permettant la visualisation du marquage. A titre d'exemple de tests immunologiques tels que définis ci-dessus, on peut citer les méthodes « sandwich » telles qu'ELISA, IRMA et RIA, les méthodes dites de compétition et les méthodes d'immunodétection directe comme rimmunohistochimie, l'immunocytochimie, le Western-blot et le Dot-blot. La spectrométrie de masse peut également être utilisée pour la détection dans le fluide biologique du ou des marqueurs tumoraux recherchés dans le procédé de l'invention. Le principe de la spectrométrie est largement connu de l'homme du métier et est décrit par exemple dans Patterson, S.60.
Pour ce faire, l'échantillon biologique préalablement traité ou non est passé dans un spectromètre de masse et on compare le spectre obtenu avec celui du ou des marqueurs tumoraux recherchés dans le procédé de l'invention. Un exemple de traitement préalable de l'échantillon consiste à le faire passer sur un support d'immunocapture, comportant un des partenaires de liaison du ou des marqueurs tumoraux recherchés dans le procédé de l'invention, par exemple un anticorps dirigé contre le ou les marqueurs tumoraux recherchés dans le procédé de l'invention. Un autre exemple de traitement préalable de l'échantillon peut être le pré-fractionnement de l'échantillon biologique, afin de séparer entre elles les protéines de l'échantillon. Dans des techniques bien connues de l'homme du métier, on peut par exemple tout d'abord dépléter les protéines majoritaires de l'échantillon. Grâce à des avancées technologiques récentes, il est également devenu possible de quantifier des protéines dans les milieux biologiques complexes en utilisant la spectrométrie de masse en tandem (MS/MS) mise en œuvre en utilisant un analyseur triple quadripôle fonctionnant en mode MRM (multiple reaction monitoring). Ce mode de fonctionnement présente une double sélectivité (deux analyseurs, sélections de l'ion parent et de l'ion produit) et la sensibilité de détection est améliorée par rapport à d'autres modes de balayage. La faisabilité technique de cette approche a été démontrée récemment par Anderson et Hunter61 qui ont réussi à détecter des protéines dont la concentration est de l'ordre de la centaine de ng/ml dans le plasma, après immunodépletion des protéines les plus abondantes. La détermination de la présence, dans l'échantillon biologique, du marqueur tumoral d'intérêt « ARNm » peut être mis en œuvre par tout procédé de détermination de la présence d'ARNm dans un échantillon, à savoir soit la détection directe de l'ARNm, soit la détection indirecte de l'ARNm, ou tout autre procédé de détermination de la présence d'un ARN dans un échantillon, connu de l'homme du métier.
Par détection directe de l'ARNm, on entend la mise en évidence de l'ARNm lui-même dans l'échantillon biologique.
La détection directe de l'ARNm dans l'échantillon biologique peut être mise en œuvre par tout moyen connu de l'homme du métier, comme par exemple par hybridation avec un partenaire de liaison spécifique de l'ARNm, le cas échéant après amplification par la technique PCR ou NASBA. Par hybridation, on entend le processus au cours duquel, dans des conditions appropriées, deux fragments nucléotidiques se lient avec des liaisons hydrogènes stables et spécifiques pour former un complexe double brin. Ces liaisons hydrogène se forment entre les bases complémentaires Adénine (A) et Thymine (T) (ou Uracile (U)) (on parle de liaison A-T) ou entre les bases complémentaires Guanine (G) et Cytosine (C) (on parle de liaison G-C). L'hybridation de deux fragments nucléotidiques peut être totale (on parle alors de fragments nucléotidiques ou de séquences complémentaires), c'est-à-dire que le complexe double brin obtenu lors de cette hybridation comprend uniquement des liaisons A-T et des liaisons C-G. Cette hybridation peut être partielle (on parle alors de fragments nucléotidiques ou de séquences suffisamment complémentaires), c'est-à-dire que le complexe double brin obtenu comprend des liaisons A-T et des liaisons C-G permettant de former le complexe double brin, mais également des bases non liées à une base complémentaire. L'hybridation entre deux fragments nucléotidiques dépend des conditions opératoires qui sont utilisées, et notamment de la stringence. La stringence est définie notamment en fonction de la composition en bases des deux fragments nucléotidiques, ainsi que par le degré de mésappariement entre deux fragments nucléotidiques. La stringence peut également être fonction des paramètres de la réaction, tels que la concentration et le type d'espèces ioniques présentes dans la solution d'hybridation, la nature et la concentration d'agents dénaturants et/ou la température d'hybridation. Toutes ces données sont bien connues et les conditions appropriées peuvent être déterminées par l'homme du métier. En général, selon la longueur des fragments nucléotidiques que l'on souhaite hybrider, la température d'hybridation est comprise entre environ 20 et 7O0C, en particulier entre 35 et 650C dans une solution saline à une concentration d'environ 0,5 à 1 M. Les partenaires de liaison spécifiques ou non de l' ARNm sont tout partenaire susceptible de se lier à cet ARNm. A titre d'exemple, on peut citer les sondes nucléiques, les amorces d'amplification, et toute autre molécule capable de se lier à cet ARNm.
Par sonde d'hybridation, on entend un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, notamment de 10 à 35 motifs nucléiques, possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec le matériel spécifique du gène cible d'intérêt. La sonde d'hybridation peut comprendre un marqueur permettant sa détection.
Au sens de la présente invention, on entend par amorce d'amplification, un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, préférentiellement de 15 à 30 motifs nucléiques permettant l'initiation d'une polymérisation enzymatique, telle que notamment une réaction d'amplification enzymatique. Par réaction d'amplification enzymatique, on entend un processus générant de multiples copies d'un fragment nucléotidique par l'action d'au moins une enzyme. De telles réactions d'amplification sont bien connues de l'homme du métier et on peut citer notamment les techniques suivantes :
PCR (Polymerase Chain Reaction), telle que décrite dans les brevets US 4,683,195, US 4,683,202 et US 4,800,159,
NASBA (Nucleic Acid Sequence-Based Amplification) avec la demande de brevet WO 91/02818, et
TMA (Transcription Mediated Amplification) avec le brevet US 5,399,491. Par détection, on entend soit une méthode physique, soit une méthode chimique avec un agent colorant intercalant tel que SYBR® Green I ou le bromure d'éthydium, soit une méthode de détection à l'aide d'un marqueur. De nombreuses méthodes de détection existent pour la détection des acides nucléiques62. Les marqueurs appropriés sont tels que définis précédemment.
Au sens de la présente invention, la sonde d'hybridation peut être une sonde dite de détection. Dans ce cas, la sonde dite de détection est marquée au moyen d'un marqueur tel que défini précédemment. Grâce à la présence de ce marqueur, on peut détecter la présence d'une réaction d'hybridation entre une sonde de détection donnée et le transcrit à détecter.
La sonde de détection peut être notamment une sonde de détection « molecular beacons »63. Ces « molecular beacons » deviennent fluorescentes lors de l'hybridation. Elles possèdent une structure de type tige-boucle et contiennent un fluorophore et un groupe « quencher ». La fixation de la séquence de boucle spécifique avec sa séquence complémentaire d'acide nucléique cible provoque un déroulement de la tige et l'émission d'un signal fluorescent lors de l'excitation à la longueur d'onde qui convient. La sonde d'hybridation peut être également une sonde dite de capture. Dans ce cas, la sonde dite de capture est immobilisée ou immobilisable sur un support solide par tout moyen approprié, c'est-à-dire directement ou indirectement, par exemple par covalence ou adsorption. Les supports solides appropriés sont connus de l'homme du métier et on peut citer à titre d'exemples les matériaux de synthèse ou les matériaux naturels, les latex, les particules magnétiques, les dérivés métalliques, les gels, etc. Le support solide peut être sous la forme d'une plaque de microtitration, d'une membrane comme décrit dans la demande WO-A-94/12670, d'une particule. On peut également immobiliser sur le support plusieurs sondes de capture différentes, chacune étant spécifique d'un transcrit cible. En particulier, on peut utiliser comme support une biopuce sur laquelle peuvent être immobilisées un grand nombre de sondes.
L'immobilisation des sondes sur le support est également connue de l'homme du métier et on peut citer un dépôt de sondes par transfert direct, la micro-déposition, la synthèse in situ et la photolithographie.
La mise en évidence, dans l'échantillon biologique, des modifications ou anomalies d'ADN au niveau du gène codant pour le marqueur tumoral d'intérêt peut être réalisée par tout procédé de détermination des altérations de l'ADN dans un échantillon, à savoir soit la détection directe de mutations, soit la mise en évidence d'altérations dans le profil de méthylation des loci d'intérêt, ou tout autre procédé de détermination d'altérations de l'ADN dans un échantillon, connu de l'homme du métier.
Les mutations peuvent inclure des substitutions ponctuelles d'un nucléotide par un autre, des délétions de un ou plusieurs nucléotides et des insertions de un ou plusieurs nucléotides. Les mutations peuvent être situées dans la partie codant du gène du marqueur tumoral d'intérêt, ou dans les parties 5' et 3' non codant comme la région promotrice ou la région terminatrice de transcription. Les stratégies de mise en évidence de mutation s'appuient sur les techniques de la biologie moléculaire et comprennent des étapes d'extraction d'ADN, d'amplification par PCR ou autre technique d'amplification, d'hybridation et/ou de séquençage. Dans le cas du cancer colorectal, le procédé suivant a été utilisé avec succès pour réaliser la détection de mutations dans l'ADN des selles : concentration de l'ADN par précipitation, enrichissement en cible en utilisant des oligonucléotides de capture sur billes magnétiques, amplification PCR des gènes d'intérêt, séquençage en phase solide pour identifier les mutations ponctuelles64. Les délétions ont été identifiées par rapport à la différence de taille entre le fragment de référence attendu et le fragment muté. Impériale et al.64 ont décrit un panel de 21 mutations situées dans les gènes K- ras, APC, et p53 qui permet de détecter 16/31 des cancers invasifs.
D'autres marqueurs ADN utilisés sont la délétion BAT-26, qui est un marqueur d'instabilité des microsatellites et l'ADN hautement amplifiable appelé long ADN (L- ADN), qui n'est pas un marqueur spécifique mais qui semble refléter l'apoptose désordonné des cellules tumorales exfoliées dans le lumen colique65. Ces marqueurs ne sont satisfaisants ni par rapport à leur sensibilité, ni par rapport à leur spécificité.
Comme indiqué précédemment, les altérations de l'ADN peuvent aussi correspondre à une modification du profil de méthylation du gène correspondant au marqueur tumoral d'intérêt. La modification du profil de méthylation peut correspondre à une hypométhylation (diminution du nombre de méthylations) ou à une hyperméthylation (augmentation du nombre de méthylations). Les motifs altérés peuvent être situés dans la partie codant du gène du marqueur tumoral d'intérêt, ou dans les parties 5' et 3' non codant comme la région promotrice ou la région terminatrice de transcription.
L'analyse de la méthylation de l'ADN peut être effectuée en utilisant des techniques basées sur la PCR qualitative et/ou quantitative comme la MSP (méthylation- spécifie PCR), le séquençage bisulfite, la digestion par une enzyme de restriction sensible aux méthylations couplée avec la PCR, COBRA (combined bisulfite restriction analysis) et Ms-SNuPE (methylation-sensitive single nucleotide primer extension). L'ensemble de ces techniques a été revu en détail et de façon comparée dans un article de méthodologie66. Dans la littérature plusieurs gènes hyperméthylés en cas de cancer colorectal ont été rapportés. A titre d'exemple on peut citer le gène ALX4 (Aristaless-like homeobox- 4)56, la région promotrice du gène TPEF/HHP1 (transmembrane protein containing epidermel growth factor and follistatin domain)67 ou encore le gène Septin-968.
Lorsque, dans le procédé de l'invention, on détecte au moins deux marqueurs, ils peuvent être mis en évidence de façon séparée, par exemple à l'aide de dosages immunoessais différents, ou bien de façon simultanée, en dosage multiplex.
Lorsque, dans le procédé de l'invention, on détecte deux marqueurs de nature différente, par exemple un marqueur protéique et un marqueur ARNm, on peut utiliser deux procédés de détection différents, choisis parmi ceux décrits précédemment. On peut également les détecter simultanément, dans le même milieu de détection et dans les mêmes conditions réactionnelles, comme décrit dans la demande de brevet
WO03/104490. Les étapes du procédé de détection décrit dans cette demande de brevet, qui consiste à détecter simultanément des réactions d'hybridation et immunologiques dans un échantillon susceptible de contenir des analytes cibles constitués d'au moins un acide nucléique et d'au moins un autre ligand de nature différente, consistent à :
(i) déposer une quantité connue en volume de l'échantillon dilué dans un tampon de réaction, sur une surface de capture préalablement revêtue des partenaires de capture desdits analytes cibles, lesdits partenaires de capture consistant en au moins une sonde nucléique et au moins un anti-ligand,
(ii) mettre à réagir à une température comprise entre 150C et 6O0C et (iii) visualiser les réactions d'hybridation et immunologiques ainsi obtenues. L'échantillon biologique peut nécessiter un traitement particulier car il peut contenir le ou les marqueurs tumoraux recherchés dans le procédé de l'invention en tant que tels, ou bien il peut contenir des cellules tumorales circulantes qui contiennent les marqueurs recherchés dans le procédé de l'invention et/ou des cellules tumorales circulantes qui sont capables de sécréter le ou les marqueurs recherchés dans le procédé de l'invention.
Ainsi, selon un mode de réalisation de l'invention, l'échantillon biologique est préalablement traité pour isoler les cellules tumorales circulantes contenues dans le dit fluide.
Par isoler les cellules tumorales circulantes, on entend obtenir une fraction cellulaire enrichie en cellules tumorales circulantes.
Le traitement de l'échantillon biologique pour isoler les cellules tumorales circulantes peut être effectué par tri cellulaire dans un cytomètre de flux, par enrichissement sur Ficoll, par enrichissement par billes magnétiques recouvertes d'anticorps spécifiques, ou par toute autre méthode d'enrichissement spécifique connue de l'homme du métier.
Dans le cas du sang à titre d'échantillon biologique, les cellules tumorales circulantes peuvent être isolées grâce à une technique de séparation cellulaire sur Ficoll associée à une déplétion des cellules sanguines utilisant des anticorps anti-CD45 couplés à des billes magnétiques (Dynal Biotech ASA, Norvège).
La détection du ou des marqueurs tumoraux recherchés dans le procédé de l'invention peut alors être effectuée directement à partir de cellules tumorales circulantes isolées de l'échantillon biologique, par exemple par marquage immunocytochimique de ces cellules avec un anticorps anti-marqueur(s) tumoral(aux) recherché(s) dans le procédé de l'invention, après avoir déposé les cellules tumorales circulantes sur une lame par cytospin. La détection du ou des marqueurs tumoraux recherchés dans le procédé de l'invention peut également être effectuée directement dans les cellules tumorales circulantes en utilisant la méthode de cytométrie de flux telle que décrite dans Métézeau et al.69.
Dans ces conditions, lesdites cellules circulantes peuvent être traitées dans des conditions permettant le blocage du ou des marqueurs tumoraux recherchés dans le procédé de l'invention à l'intérieur desdites cellules. Un tel traitement est décrit par Mathieu at al.70. La détection du ou des marqueurs tumoraux recherchés dans le procédé de l'invention se fait alors après avoir rendu perméable la membrane des cellules pour faire rentrer les partenaires de liaison spécifique du ou des marqueurs recherchés dans le procédé de l'invention.
La détection directe du ou des marqueurs tumoraux utilisés dans le procédé de l'invention à partir des cellules circulantes peut également être effectuée à l'aide d'un procédé ELISPOT, par exemple à l'aide du procédé décrit dans la demande de brevet WO03/076942 déposée par la Demanderesse. Ce procédé est un procédé de détection et/ou quantification de cellules tumorales circulantes d'un échantillon biologique, lesquelles sont capables de relarguer ou sécréter in vitro un ou plusieurs marqueurs tumoraux, comprenant les étapes consistant à : (i) déposer une quantité desdites cellules au fond d'une surface de culture sur laquelle est fixé au moins un partenaire de liaison spécifique dudit ou desdits marqueurs tumoraux,
(ii) cultiver lesdites cellules en conditions telles qu'elles relarguent ou sécrètent lesdits marqueurs tumoraux qui sont immunocapturés au fond de la surface de culture, (iii) éliminer les cellules par lavage,
(iv) ajouter au moins un conjugué marqué spécifique desdits marqueurs tumoraux et
(v) visualiser le marquage ainsi obtenu.
La détection directe du ou des marqueurs tumoraux utilisés dans le procédé de l'invention dans les cellules tumorales peut encore être effectuée dans le milieu de culture desdites cellules après les avoir cultivées dans des conditions telles qu'elles sécrètent du ou des marqueurs tumoraux utilisés dans le procédé de l'invention.
Les conditions de culture pour le relarguage ou l'expression des marqueurs tumoraux sont des conditions classiques telles que 370C sous atmosphère humide et à 5% de CO2.
Lorsque l'échantillon biologique est un échantillon solide, la présence du ou des marqueurs tumoraux peut également être montrée in vivo, in situ dans les tumeurs.
Pour montrer la présence d'un marqueur tumoral au sein d'une tumeur in vivo, on peut utiliser toute méthode d'imagerie connue de l'homme du métier. Pour cela, on peut coupler un partenaire de liaison dudit marqueur tumoral à un traceur d'imagerie.
Par couplage des partenaires de liaison à un traceur d'imagerie, on entend la fixation d'un traceur capable d'être détecté par toute méthode d'imagerie connue de l'homme du métier, et de générer directement ou indirectement un signal détectable. Ainsi, le traceur peut être un traceur radioactif comme le technétium-99. Dans ce cas, l'organe atteint du cancer primitif ou des métastases va fixer le marqueur tumoral et son traceur. Le rayonnement émis par l'organe peut être filmé par une caméra spéciale, par exemple une gamma-caméra. L'appareil recueille les scintillations générées par la substance radioactive et permet ainsi de visualiser l'organe.
Dans un autre procédé de l'invention, le traceur peut comprendre un corps radioactif émettant des positrons (Fluor 18). Les images seront ensuite acquises par un système de Tomographie par Émission de Positrons.
Dans un autre procédé préféré de l'invention, le partenaire du ou des marqueurs tumoraux peut être couplé à des nanoparticules. A titre d'exemple, il peut s'agir de nanoparticules supramagnétiques. Par exemple des nanoparticules magnétiques anioniques pour l'application au marquage cellulaire direct et la détection in vivo par imagerie par résonance magnétique nucléaire. Il peut également s'agir de nanoparticules d'or.
Grâce aux procédés de l'invention permettant la détection du marqueur tumoral in vivo, on pourra visualiser les zones de l'organisme où il y a eu fixation du partenaire de liaison du marqueur tumoral, les cancers produisant du marqueur tumoral, et en particulier le cancer colorectal, ainsi que les localisations de leurs métastases à distance et les atteintes ganglionnaires.
Le procédé de l'invention peut être utilisé tant pour le diagnostic précoce, que pour le dépistage, le suivi thérapeutique, le pronostic et le diagnostic des rechutes dans le cadre du cancer colorectal puisque seules les cellules cancéreuses sécrètent de l'Aminoacylase 1 et que cette production est fonction du grade du cancer, ce qui constitue un autre objet de l'invention.
L'invention sera mieux comprise à l'aide des exemples suivants donnés à titre illustratif et non limitatif, ainsi qu'à l'aide des figures 1 à 21 annexées, sur lesquelles : - la figure 1 est un graphe relatif au dosage par ELISA du LEI, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 2 est un graphe relatif au dosage par ELISA de l'Ezrine, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 3 est un graphe relatif au dosage par ELISA de l'Aminoacylase 1, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 4 est un graphe relatif au dosage par ELISA du L-FABP, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 5 est un graphe relatif au dosage par ELISA du I-FABP, en pg/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 6 est un graphe relatif au dosage par ELISA de l'Apolipoprotéine AI, en μg/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), soit en microplaque ELISA (figure 6A), soit avec le kit Lincoplex (figure 6B),
- la figure 7 est un graphe relatif au dosage par le kit multiplex de Linco de l'Apolipoprotéine AII, en μg/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 8 est un graphe relatif au dosage par ELISA de la Plastine-I, en RFV (Relative Fluorescence Value), dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 9 est un graphe relatif au dosage par ELISA de la béta2 Microglobuline, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 10 est un graphe relatif au dosage par ELISA d'ACE, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 11 est un graphe relatif au dosage par ELISA du CA 19-9, en U/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 12 est un graphe relatif au dosage par ELISA de la Testostérone, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 13 est un graphe relatif au dosage par ELISA de la E-Cadhérine, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 14 est un graphe relatif au dosage par ELISA de la PAPl, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 15 est un graphe relatif au dosage par ELISA de la Galectine-3, en RFV, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 16 est un graphe relatif au dosage par ELISA de la LDH, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 17 est un graphe relatif au dosage par ELISA du Protéasome 2OS, en ng/ml, dans le sérum de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-),
- la figure 18 est un graphe relatif au dosage par ELISA d'Aminoacylase 1, en ng/ml, dans les selles de patients présentant un cancer colorectal (CCR+) et de patients sains
(CCR-),
- la figure 19 est un graphe relatif au dosage par ELISA de Galectine-3, en RFV, dans les selles de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), - la figure 20 est un graphe relatif au dosage par ELISA de Protéasome 2OS, en RFV, dans les selles de patients présentant un cancer colorectal (CCR+) et de patients sains (CCR-), et
- la figure 21 est une représentation graphique d'un dosage ELISPOT du LEI, de l'Ezrine et de la Galectine-3, en nombre de spots par 106cellules cancéreuses des lignées Caco-2, HT-29 et HT29-B6.
Exemple 1 : Clonage des gènes codant pour les marqueurs tumoraux et expression des protéines recombinantes
1. Amplification de TADNc et clonage La lignée de cancer colorectal Caco-2 est cultivée dans le milieu DMEM contenant 2 mM de L-Glutamine, sans SVF (sérum de veau fœtal) (tous Gibco). Pour le clonage des gènes LEI, L-FABP et Gal-3, les ARN messagers ont été extraits à partir d'un culot de 108 cellules Caco-2 en utilisant le kit FastTrack 2.0 de Invitrogen (Cat. No. 45-0019), en suivant le protocole fourni par le fabricant. Les étapes de transcription inverse et de PCR sont réalisées en une seule fois à partir de 450 ng d'ARNm Caco-2, avec le kit Superscript III One Step RT-PCR System (Invitrogen Cat. No. 12574-018) utilisant l'enzyme Platinum Taq DNA polymérase en suivant le protocole fourni par le fabricant. Les amorces de PCR utilisées pour l'amplification des gènes sont données dans le Tableau 1.
Tableau 1.
Gènes et Amorces Oligonucléotides
LEI
OL215 (SEQ ID01 ) 5 ' - ATGG AGC AGCTG AGCTC AGC A A AC- 3 ' OL216 (SEQ ID°2) 5 ' -CTAAGGGGAAGAAAATCTCCCCAA-3 ' L-FABP
Forward (SEQ ID°3) 5 ' -CGGAGCGTCTCCCATGAGTTTCTCCGGCAAGTA-3 ' Reverse (SEQ ID°4) 5 ' -GAAATGC AGACTTGTCTAGATGCGCTTGCTGATGCGC
TTGAAGAC AATG-3 ' Gal-3
OL217 (SEQ ID°5) 5'-ATGGCAGACAATTTTTCGCTCC-S'
OL218 (SEQ ID°6) 5'-TTATATCATGGTATATGAAGCACTGG-S'
Les fragments d'ADN obtenus ont été clones dans le vecteur pCR2.1 TOPO
(LEI et Gal-3) avec le TA Cloning kit (Invitrogen Cat. No. K4520-01) ou le vecteur pCMV6-XL4 d'Origene (L-FABP) après digestion par Bsm BI et Xba I. Les plasmides ont été séquences afin de vérifier que l'ADNc est bien conforme à la séquence attendue.
Pour le clonage du gène codant pour l'Aminoacylase 1, les ARN totaux ont été extraits à partir d'un culot de 108 cellules Caco-2 en utilisant le kit RNA Easy Mini de Qiagen, en suivant le protocole fourni par le fabricant. La transcription inverse est réalisée à partir de 10 ng de ARN Caco-2, avec l'enzyme Superscript II (Invitrogen) en suivant le protocole fourni par le fabricant. L'amorce de transcription inverse est un oligo(dT).
L'ADNc issu de cette réaction a été utilisé comme matrice dans une réaction de PCR utilisant le kit AccuPrime Pfx (Invitrogen Cat. No. 12344-024) en suivant le protocole fourni par le fabricant. Les amorces de PCR sont : ACY-I Fwd2 (SEQ ID°7 : 5 ' -GCGAATTCTTTAAGAAGGAGATATACATATGACGAGCAAAGGTCCGGAA GAGGAGCACCCATCG-3') et ACY-I Rev (SEQ ID°8 : 5'- GCAAGCTTCAGCTGTCACTGGGCAGGGC-3 ' )
Dans ces conditions, il a été possible d'amplifier un fragment de 1,3 kb qui a été clone dans un vecteur de clonage de type Zéro Blunt TOPO PCR Cloning kit (Invitrogen Cat. No. K2820-20). Ce plasmide a été séquence afin de vérifier que 1' ADNc est bien conforme à la séquence attendue.
Le fragment d'ADN suivant (SEQ ID°9) contenant le cadre de lecture ouvert I- FABP a été obtenu par synthèse chimique, effectué par la société Geneart. SEQ ID°9 :
GGTACCGAATTCCGCGTTTGACAGCACTTGGAAGGTAGACCGGAGTGAAAACTATGACAAG TTCATGGAAAAAATGGGTGTTAATATAGTGAAAAGGAAGCTTGCAGCTCATGACAATTTGA AGCTGACAATTACACAAGAAGGAAATAAATTCACAGTCAAAGAATCAAGCGCTTTTCGAA ACATTGAAGTTGTTTTTGAACTTGGTGTCACCTTTAATTACAACCTAGCAGACGGAACTGAA CTCAGGGGGACCTGGAGCCTTGAGGGAAATAAACTTATTGGAAAATTCAAACGGACAGAC AATGGAAACGAACTGAATACTGTCCGAGAAATTATAGGTGATGAACTAGTCCAGACTTATG TGTATGAAGGAGTAGAAGCCAAAAGGATCTTTAAAAAGGATTCTAGAGTCGACGAGCTC
2. Construction des vecteurs d'expression
Les gènes codant pour le LEI et la Galectine-3 ont été sous-clonés dans le vecteur d'expression procaryote pMR7871 et le gène de L-FABP dans le vecteur pET3d
(New England Biolabs). Les sites de restriction nécessaire au clonage ont été introduits par PCR en utilisant comme matrice les plasmides pCR2.1 TOPO-LEI, pCR2.1 TOPO-
Gal-3 et pCMV6-LFABP. L'enzyme de PCR est la Pfu DNA polymérase de Promega, la réaction de PCR a été réalisée selon les instructions du fabricant avec les amorces données dans le Tableau 2.
Tableau 2
Gènes et Amorces Oligonucléotides
LEI
OL228 (SEQ ID010) 5 ' - ATGGG AATTCAGGAGCAGCTGAGCTC AGCAA-3 '
OL229 (SEQ ID011 ) 5 ' -CGATAAGCTTAAGGGGAAGAAAATCTCCCC-3 ' L-FABP
Forward (SEQ ID°12) 5'-GCTGGCCATGGGCAGCAGCCATCATCATCATCATCA
C ATGAGTTTCTCCGGCAAGTACCAAC-3 '
Reverse (SEQ ID°13) 5'-GCACGGATCCTAGATGCGCTTGCTGATGCGCTTGAA
GAC-3' Gal-3
OL230 (SEQ ID014) 5'-ATGGGAATTCAGGCAGACAATTTTTCGCTCC-S' OL231 (SEQ ID015) 5 ' -CGATAAGCTTATATCATGGTATATGAAGCACTGG-S '
Les produits de PCR contenant les cadres de lecture ouverts codant pour le LEI ou la Galectine-3 ont été digérés par les enzymes de restriction Eco RI et Hind III. Les fragments ont été introduits dans le vecteur pMR78 restreint par les mêmes enzymes (plasmides pMR-LEI et pMR-Gal-3). Le vecteur pMR78 contient une séquence 6- histidine en phase avec la protéine à exprimer qui permet la purification par chromatographie d'affinité métal-chélate. Le produit de PCR L-FABP a été clone dans le vecteur pET3d, au niveau des sites de restriction Nco I et Bam HI.
Pour l'Aminoacylase 1, le vecteur de clonage TOPO a été directement digéré par les enzymes de restriction Eco RI et Hind III afin de générer un fragment de 1,3 kb contenant le cadre de lecture ouvert acyl, qui a été introduit dans le vecteur pStabyl (Eurogentec). Le plasmide recombinant est appelé pStabyl-ACY.
Pour la I-FABP, le vecteur de clonage fourni par Geneart a été digéré par les enzymes de restriction Eco RI et SaI I afin de générer un fragment d'environ 400 pb contenant la séquence codante qui a été introduite dans le vecteur pMRCH79 (dérivé du vecteur pMR78, bioMérieux). Le plasmide recombinant est appelé pMRCH-IFABP .
Les plasmides pGEX-Ezrine et pGEX-Plastine-I, permettant d'exprimer respectivement l'Ezrine et la Plastine-I en fusion avec la GST (Glutathione S- transférase), ont été fournis par l'Institut Curie. 3. Expression et purification des protéines recombinantes
Les plasmides d'expression permettant de produire les marqueurs tumoraux recombinants sont introduits dans des bactéries E. coli BL21 et dérivées (Stratagene).
Les cultures sont réalisées à température ambiante sous agitation. Les conditions de culture précises pour chaque protéine sont récapitulées dans le Tableau 3. L' IPTG est l'isopropyl beta-D-1-thiogalactosidase.
Les culots bactériens sont repris en tampon PBS 2X (phosphate buffered saline) et passé dans un désintégrateur de cellules à 1,5 kbar (Constant System). Les lysats sont centrifugés à 3000 g pendant 30 min à 40C. Le surnageant contient les protéines solubles. Le culot contient les corps d'inclusion. Le tampon de solubilisation des corps d'inclusion dépend de la protéine.
Pour le LEI, la purification se fait à partir de la fraction soluble, sur une colonne contenant 5 mL de résine Ni-NTA-Sepharose (Qiagen) et la protéine est éluée avec du PBS 2X contenant de l'imidazole 450 mM, pH 7,5. Pour la Galectine-3, les corps d'inclusions sont solubilisés en PBS 2X, urée IM, passés sur 5 mL de résine Ni-NTA-Sepharose (Qiagen) et la protéine Gal-3 est éluée avec du PBS 2X contenant de l'imidazole 450 mM, urée IM pH 7,5.
Pour la L-FABP, la purification se fait à partir de la fraction soluble, en utilisant le kit Ni-IDA de Macherey-Nagel.
Tableau 3
Souche Volume Induction Purification
Culture IPTG
LEI BL21 25O mL 0,I mM Ni-NTA
Gal-3 BL21-Codon 40O mL 0,5 mM Ni-NTA plus (DE3)-RIPL
L-FABP BL21 50O mL 0,I mM Ni-IDA
GST-Ezrin BL21 25O mL 0,I mM GST
ACY-I BL21-Codon 50O mL 0,I mM Autre plus (DE3)-RIPL
Pour la GST-Ezrine, la purification se fait à partir des corps d'inclusions solubilisés dans le tampon Tris 100 mM, urée 8M, DTT 10 mM par chromatographie d'affinité GST. On utilise une colonne contenant 5 mL de gel Glutathione Sepharose 4 fast flow (Amersham). Le tampon d'équilibration et de lavage est du PBS 2x, Tween 20 0,05%. Le tampon d'élution est du Tris-HCl 50 mM, glutathione réduite 20 mM, pH 8.
Pour l'Aminoacylase 1, la fraction soluble de la culture est passée sur une colonne Amersham HiTrap Q FF et la protéine ACY-I a été éluée avec 0.3M NaCl à pH 7,5. Comme plusieurs autres protéines ont été co-éluées dans ces conditions, la purification a été poursuivie sur une colonne à interaction hydrophobe (HIC Phenyl
HP, Amersham). La protéine ACY-I a été éluée par 0,5M NaCl à pH 7.
La protéine recombinante GST-Plastine-I a été fournie par l'Institut Curie sous forme purifiée.
La protéine recombinante Calréticuline a été produite par la société Proteus Services for Industry (Dijon, France). La séquence codant pour la Calréticuline a été obtenue par synthèse chimique.
Exemple 2 : Obtention d'anticorps monoclonaux dirigés contre les marqueurs tumoraux
1. Modèle animal
Les expériences d'immunisation ont été réalisées chez des souris BALB/c (H- 2d) femelles âgées de 6 à 8 semaines au moment de la première immunisation.
2. Immunogènes et immunisations Afin d'augmenter les réponses immunes obtenues chez les souris et pouvoir générer des anticorps monoclonaux, les marqueurs tumoraux ont été produits sous forme de protéines recombinantes produites selon les modes opératoires décrits dans l'exemple 1. La protéine LDH a été obtenue auprès de la société SciPac (Cat. No. 103- 133). Ces protéines ont été mélangées volume pour volume avec l'adjuvant de Freund (Sigma), préparé sous forme d'émulsion eau-dans-huile et dont il est connu qu'il présente un bon pouvoir immunogène. Pour chaque marqueur tumoral, 3 souris ont été immunisées. Les souris ont reçu 3 doses successives de 10 μg des immunogènes à 0, 2 et 4 semaines. Toutes les injections ont été réalisées par voie sous-cutanée. La première injection est faite en mélange avec l'adjuvant de Freund complet, les deux suivantes se font en mélange avec l'adjuvant de Freund incomplet. Entre J50 et J70 après la première injection, les réponses humorales ont été restimulées avec une injection intraveineuse de 100 μg de la protéine recombinante. 3. Suivi de l'apparition de la réponse humorale Afin de suivre l'apparition des anticorps, on effectue régulièrement sur les souris des prélèvements de sang. La présence des anticorps anti-marqueur tumoral est testée en utilisant un ELISA. La protéine d'intérêt est utilisée en capture (1 μg/puits), après saturation on fait réagir avec l'antigène différentes dilutions des sérums à tester (incubation à 370C, pendant Ih). Les anticorps spécifiques présents dans le sérum sont révélés par un anticorps de chèvre anti-IgG de souris AffiniPure conjugué à la phosphatase alcaline (H+L, Jackson Immunoresearch, Cat no. 115-055-146), qui se lie aux anticorps recherchés (0,1 μg/puits). 4. Obtention d'anticorps monoclonaux
Trois jours après la dernière injection, pour chaque marqueur tumoral, une des souris immunisée a été sacrifiée ; le sang et la rate ont été prélevés. Les splénocytes obtenues à partir de la rate ont été mises en culture avec les cellules de myélome Sp2/0- Agl4 pour qu'elles fusionnent et s'immortalisent, selon le protocole décrit par Kôhler et Milstein72'73. Après une période d'incubation de 12-14 jours les surnageants des hybridomes obtenus ont été criblés pour déterminer la présence d'anticorps antimarqueur tumoral en utilisant le test ELISA décrit dans le point 3 de cet exemple. Lorsque des protéines de fusion GST ont été utilisées comme immunogène, les clones dirigés contre la GST sont éliminés en effectuant un criblage ELISA avec en capture la GST non couplée. Les colonies d'hybridome positives ont été sous-clonées deux fois selon la technique de la dilution limite, bien connue par l'homme du métier.
5. Caractérisation des anticorps monoclonaux par immunoblot
La liste des anticorps monoclonaux obtenus contre les différents marqueurs tumoraux est présentée dans le Tableau 4. Ces anticorps monoclonaux ont été analysés par la technique du Western blot.
Tableau 4
Marqueurs Tumoraux Nom des Anticorps Monoclonaux
Leucocyte Elastase Inhibitor (LEI) 21 B 10A5 et 1 OE 1 H 1
Ezrine 4A7A6C1 et 4A9H5
Aminoacylase- 1 2A7F6 et 11 H7D9
Plastine-I 3Dl IDlO, 8C8C5, 3A3H2, 8G2D2
Calréticuline 5C10H10 et 11B6D11
L-lactate déshydrogénase chaîne B (LDH) 3Fl IEl 1 et 12F10G8
Galectine-3 12F8A12 et 14A5G1
5.7. Méthodologie Les extraits de culture cellulaires de lignées Caco-2 et HT-29 sont préparés en lysant directement le culot cellulaire par 600 μl d'une solution en eau d'urée 8,3M, thiourée 2M, sulfonate de 3- [(3-cholamidopropyl)-dimethylammonio]-l -propane (CHAPS) 4%, DTT 10O mM, Servalyte 4-9 (Serva, Heidelberg, Allemagne) 2%, Orange G 0.1g/l, puis traités selon le protocole de préparation d'échantillon des gels NuPAGE Novex (Invitrogen). Pour obtenir les extraits de tissu, les biopsies tumeur et muqueuse des patients GHBD001, GHBD004 et CLSP109 ont été dissociées au scalpel, puis ont subi 10 cycles d'extraction dans le système Medimachine (Becton Dickinson) en utilisant des Medicons 50 μm avec 1 ml de tampon PBS, 2,5 mM EDTA, inhibiteurs des protéases (pastilles Roche). Ces 10 ml de suspension cellulaire sont poolés, complétés à 25 ml puis centrifugés 15 min à 600g. Le surnageant correspond à l'extrait de tissu qui est traité selon le protocole de préparation d'échantillon des gels NuPAGE Novex. On utilise des échantillons réduits, à une concentration finale en protéine totale de 0,4 mg/ml. Le volume de dépôt est de 20 μl par puits, sur un gel NuPAGE Novex Bis-Tris 4-12%, tampon de migration MOPS. Après migration (sous 200V, pendant 1 heure) et transfert sur membrane de PVDF (sous 400 mA, pendant 45 min), la qualité du transfert est appréciée par une coloration à l'amidoblack.
Les membranes sont saturées par 5% de lait écrémé (Régilait) dans une solution de TNT (Tris 15 mM, NaCl 0,14M, Tween 20 0,5% pH8) à température ambiante pendant 1 heure. Après saturation, les membranes sont incubées pendant 1 heure avec les différents anticorps à tester dilués à 10 μg/ml dans la solution de saturation. Après rinçages au TNT, les membranes sont incubées 1 heure à température ambiante avec un conjugué anti-souris-peroxydase de raifort dilué au 1 : 5000, (Cat No. 115-035-062, Jackson Immunoresearch) dans la solution de saturation. Après rinçage, la révélation est réalisée avec le kit Substrat Supersignal West Dura Extended (Cat No. 34076, Pierce) suivant les données d'utilisation recommandées. Le signal de chemiluminescence sur les membranes a été mesuré avec le système d'imagerie VersaDoc de Biorad. A partir de l'image du Western blot, les volumes des bandes qui correspondent aux différents marqueurs tumoraux ont été évalués avec le logiciel QuantityOne (Bio-Rad). Le volume correspond à l'intensité du signal de chemiluminescence multipliée par la surface de la bande. 5.2. Résultats
Les résultats de Western blot récapitulés dans le Tableau 5 qui donne le volume des bandes correspondant au marqueur tumoral d'intérêt sur les analyses par Western blot, en fonction des différents échantillons testés. Ces résultats montrent que les marqueurs tumoraux testés sont bien exprimés par les lignées de cancer du côlon Caco- 2 et HT-29, ainsi que dans les tissus, comme montré avec les extraits de tumeur et muqueuse, obtenus à partir des patients. L'intensité du signal obtenu avec un anticorps sur un échantillon peut être comparée aux signaux obtenus avec les autres échantillons et le même anticorps. La technique utilisée permet de confirmer la présence ou l'absence du marqueur dans le tissu (échantillon non distant) et la spécificité des anticorps vis-à-vis des marqueurs. Cette technique n'a pas été mise en œuvre dans cet exemple dans les échantillons distants car elle ne permettrait pas de conclure à la présence ou non du marqueur tumoral dans les échantillons distants, ni de déterminer si sa concentration sera augmentée ou diminuée dans ceux-ci. De plus, le schéma expérimental utilisé ne permet pas de comparer la réactivité d'un anticorps à l'autre. Tableau 5
Marqueur Caco-2 HT-29 Tissu Tissu Tissu Tissu Tissu tumoral et tumeur muqueuse tumeur muqueuse tumeur
Anticorps GHBD001 GHBD004 GHBD004 CLSP 109 CLSP 109
LEI
21B10A5 8365 7678 NT 60200 36506 NT NT
10E1H1 0 0 NT 13357 6893 NT NT
Ezrine
4A9H5 7066 4742 NT NT NT 1588 2446
4A7A6C1 123436 116448 42480 15303 67439 NT NT
Armnoacylase-1
2A7F6 10687 4787 NT NT NT 4477 7238
11H7D9 217664 232005 36093 10513 30233 NT NT
Plastine-I
3D11D10 136725 NT NT NT NT 275477 246564
8C8C5 557 1110 4364 77 0 NT NT
Calréticulin e 5C10H10 2842 3040 NT NT NT 2503 3294
11B6D11 3261 2937 NT NT NT 2070 2764
LDH
3F11E11 45391 NT NT NT NT 30411 13942
12F10G8 122907 154593 11841 15811 53285 NT NT
Galectine-3
12F8A12 245712 65790 18262 12961 7307 NT NT
14A5G1 254531 120010 79833 98361 45872 NT NT
NT: non testé.
5.3. Anticorps monoclonaux dirigés contre la Plastine-I
Chez le patient GHBD004, l'anticorps 8C8C5 n'allume pas ou que très faiblement la bande qui correspond à la Plastine-I. La présence de Plastine-I dans ces échantillons peut être mise en évidence en utilisant par exemple l'anticorps 8G2D2 qui présente une meilleure affinité pour la Plastine-I en blot.
Comme la Plastine-I est membre d'une famille de protéines comprenant 2 autres isoformes (Plastines L et T) avec lesquels elle présente plus de 70% d'homologie, nous avons testé l'ensemble des clones d'anticorps monoclonaux obtenus pour leur réactivité vis-à-vis des protéines GST-Plastine-L et GST-Plastine-T (fournies par l'Institut Curie). A l'issu de ce criblage, nous avons sélectionné les clones 3Dl IDlO, 8C8C5, 3A3H2 et 8G2D2 qui ne présentent pas de réactivité croisée avec les autres membres de la famille. Ces anticorps sont bien spécifiques de l' isoforme Plastine-I.
Exemple 3 : Dosages sériques des marqueurs tumoraux 1. Patients et prélèvements
La collecte des échantillons de sang se fait au niveau d'un réseau de 8 centres cliniques répartis dans toute la France, dans le cadre de 2 protocoles loi Huriet.
Pour l'obtention de sérum, le prélèvement sanguin se fait sur tube sec. Pour l'obtention du plasma, le prélèvement sanguin se fait sur tube EDTA. Après coagulation, le tube est centrifugé 10 min à 1000 g, le sérum est prélevé, aliquoté et conservé à -8O0C. Le tube de plasma est directement centrifugé 10 min à 1000 g, le plasma est prélevé, aliquoté et conservé à -8O0C. Les échantillons sont parfaitement documentés pour l'histoire clinique des patients. 2. Dosage sérique du marqueur tumoral LEI
La protéine LEI a été dosée à l'aide des anticorps décrit dans l'exemple 2 et d'un test ELISA utilisant l'automate Vidas® (bioMérieux). Pour ce faire, le test ELISA a été construit en utilisant les réactifs du kit Vidas® HBs Ag Ultra (bioMérieux, Cat.
No. 30315). Les réactifs ont été utilisés tels que décrits dans la notice correspondante (réf. 11728 D - FR - 2005/05), avec les modifications suivantes :
1. Les cônes ont été sensibilisés avec l'anticorps de capture 10E1H1 à une concentration de 10 μg/ml.
2. Le contenu du deuxième puits de la cartouche HBs Ag Ultra a été remplacé par 300 μl d'anticorps de révélation 21B 10A5, couplé à la biotine, dilué à 1 μg/ml dans le tampon du deuxième puits du kit Vidas® HBs Ag Ultra (tampon avec sérum de chèvre et azoture de sodium à 1 g/1). 3. Les échantillons de sérum, de plasma ou de selle (50μl) ont été dilués directement dans le deuxième puits de la cartouche HBs Ag Ultra, pur ou après une dilution préalable au 1/20 dans le tampon du deuxième puits du kit Vidas®
HBs Ag Ultra (tampon avec sérum de chèvre et azoture de sodium à 1 g/1). 4. La réaction ELISA a été réalisée à l'aide de l'automate Vidas® et du protocole du kit HBs Ag Ultra.
5. Les résultats ont été obtenus sous forme de valeurs brutes après soustraction du bruit de fond (lecture du substrat avant réaction).
Une courbe étalon a été établie en dosant une gamme de concentrations du marqueur tumoral sous forme de protéine recombinante. La courbe étalon a été tracée en reportant en abscisse la concentration du marqueur tumoral et en ordonnée le signal lu par Vidas® (RFV ou Relative Fluorescence Value). La concentration de marqueur tumoral présente dans le fluide corporel à doser (sang, sérum, plasma, selle) a été calculée en reportant la concentration correspondant au signal RFV lu par Vidas®. Les doses obtenues pour les patients analysés sont reportées sur la Figure 1. On peut noter sur cette figure que 3 sérums de patients ayant un cancer colorectal de stade
IV et 1 sérum de patient ayant un cancer colorectal de stade III montrent une nette augmentation de leur dose de LEI sérique.
3. Dosage sérique du marqueur tumoral Ezrine La protéine Ezrine a été dosée à l'aide des anticorps décrit dans l'exemple 2 et d'un test ELISA utilisant l'automate Vidas® (bioMérieux). Pour ce faire, le test ELISA a été construit en utilisant les réactifs du kit Vidas® HBs Ag Ultra (bioMérieux, Cat. No. 30315). Les réactifs ont été utilisés tels que décrits dans la notice correspondante (réf. 11728 D - FR - 2005/05), avec les modifications suivantes : 1. Les cônes ont été sensibilisés avec l'anticorps de capture 4A9H5 à une concentration de 30 μg/ml.
2. Le contenu du deuxième puits de la cartouche HBs Ag Ultra a été remplacé par 300 μl d'anticorps de révélation 4A7A6C1, couplé à la biotine, dilué à 1 μg/ml dans le tampon du deuxième puits du kit Vidas® HBs Ag Ultra (tampon avec sérum de chèvre et azoture de sodium à 1 g/1).
3. Les échantillons de sérum, de plasma ou de selle (50μl) ont été dilués directement dans le deuxième puits de la cartouche HBs Ag Ultra.
4. La réaction ELISA a été réalisée à l'aide de l'automate Vidas® et du protocole HBS AG ULTRA dont l'étape d'incubation de l'échantillon avec les anticorps de capture et de révélation avait été porté à 100 cycles. 5. Les résultats ont été obtenus sous forme de valeurs brutes après soustraction du bruit de fond (lecture du substrat avant réaction).
La concentration du marqueur tumoral présente dans le fluide corporel à doser (sang, sérum, plasma, selle) a été calculée selon le mode opératoire décrit dans le paragraphe 2 concernant le dosage du LEI. Les doses obtenues pour les patients analysés sont reportées sur la Figure 2. On peut noter sur cette figure que 3 sérums de patients ayant un cancer colorectal de stade IV montrent une nette augmentation de leur dose d'Ezrine sérique. 4. Dosage sérique du marqueur tumoral Aminoacylase 1
La protéine Aminoacylase 1 a été dosée à l'aide des anticorps décrit dans l'exemple 2 et d'un test ELISA utilisant l'automate Vidas® (bioMérieux). Pour ce faire, le test ELISA a été construit en utilisant les réactifs du kit Vidas® HBs Ag Ultra
(bioMérieux, Cat. No. 30315). Les réactifs ont été utilisés tels que décrits dans la notice correspondante (réf. 11728 D - FR - 2005/05), avec les modifications suivantes :
1. Les cônes ont été sensibilisés avec l'anticorps de capture 2A7F6 à une concentration de 20 μg/ml.
2. Le contenu du deuxième puits de la cartouche HBs Ag Ultra a été remplacé par 300 μl d'anticorps de révélation 11H7D9, couplé à la biotine, dilué à 1 μg/ml dans le tampon du deuxième puits du kit Vidas® HBs Ag Ultra (tampon avec sérum de chèvre et azoture de sodium à 1 g/1). 3. Les échantillons de sérum, de plasma ou de selle (100 μl) ont été dilués directement dans le deuxième puits de la cartouche HBS Ag Ultra. 4. La réaction ELISA a été réalisée à l'aide de l'automate Vidas® et du protocole
HBS AG ULTRA dont l'étape d'incubation de l'échantillon avec les anticorps de capture et de révélation avait été porté à 100 cycles. 5. Les résultats ont été obtenus sous forme de valeurs brutes après soustraction du bruit de fond (lecture du substrat avant réaction). La concentration du marqueur tumoral présente dans le fluide corporel à doser (sang, sérum, plasma, selle) a été calculée selon le mode opératoire décrit dans le paragraphe 2 concernant le dosage du LEI.
Les résultats du dosage de l'Aminoacylase 1 sérique chez les patients par ELISA sur automate Vidas sont donnés dans le Tableau 6.
Tableau 6
Figure imgf000047_0001
Figure imgf000048_0001
a: CCR+ : patients atteints d'un cancer colorectal/ CCR- : sujet sain b : TNM : stade d'invasion tissulaire (T), ganglionnaire (lymph nodes, N) et à distance
(métastases, M)
Les doses obtenues pour les patients analysés sont reportées sur la Figure 3. On peut noter sur cette figure que 1 sérum de patients ayant un cancer colorectal de stade
II, 1 sérum de patients ayant un cancer colorectal de stade III et 2 sérums de patients ayant un cancer colorectal de stade IV montrent une nette augmentation de leur dose d'Aminoacylase 1 sérique.
5. Dosage sérique du marqueur tumoral L-FABP Nous avons utilisé un kit ELISA commercialisé par la société Hycult biotechnology pour doser la protéine L-FABP humaine (Cat. No. HK404). Ce kit permet de quantifier la protéine L-FABP dans les surnageants de culture cellulaire, dans le sérum, le plasma ou l'urine, afin de déterminer la présence de lésions au niveau hépatique. Nous avons suivi le mode opératoire préconisé par le fabricant avec 2 modifications : les incubations ont été effectuées à 370C et non à température ambiante, les sérums ont été dilués au l/10e avant le dosage. Le dosage de la protéine L-FABP peut être effectué par des techniques alternatives, bien connues des hommes du métier.
La Figure 4 présente les résultats de ce dosage. Dans le panel de sérum que nous avons testé, 41 patients sur 141 ayant un cancer colorectal ont une concentration sérique de L-FABP supérieure à 17 ng/ml, alors que dans le groupe témoin, aucun sujet ne dépasse cette valeur. Parmi ces 41 patients, on retrouve 8 patients ayant un cancer colorectal de stade I, 8 ayant un cancer colorectal de stade II, 13 ayant un cancer colorectal de stade III et 12 ayant un cancer colorectal de stade IV. La concentration moyenne de L-FABP sérique observée pour 141 patients avec un cancer colorectal est de 16,6 ± 1,3 ng/ml. La valeur moyenne est de 6,6 ± 0,2 ng/ml pour 112 individus sains (témoins négatifs). Cette différence est statistiquement significative (P<0,0001, Mest unilatéral avec correction de Welch pour variances inégales).
6. Dosage sérique du marqueur tumoral I-FABP Nous avons utilisé un kit ELISA commercialisé par la société Hycult biotechnology pour doser la protéine I-FABP humaine (Cat. No. HK406). Ce kit permet de quantifier la protéine I-FABP dans les surnageants de culture cellulaire, dans le sérum, le plasma ou l'urine, afin de déterminer la présence de lésions ischémiques au niveau de l'intestin grêle. Nous avons suivi le mode opératoire préconisé par le fabricant. Le dosage de la protéine I-FABP peut être effectué par des techniques alternatives, bien connues des hommes du métier.
La figure 5 présente les résultats de ce dosage. Dans le panel de sérum que nous avons testé, 15 patients sur 40 ayant un cancer colorectal ont une concentration sérique d' I-FABP supérieure à 40 pg/ml, alors que dans le groupe témoin uniquement 2 sujets sur 24 dépassent cette valeur. Plus nettement, 3 sérums de patients ayant un cancer colorectal de stade I, 2 sérums de patients ayant un cancer colorectal de stade III et 1 sérum de patient ayant un cancer colorectal de stade IV ont une concentration sérique d' I-FABP supérieure à 100 pg/ml. Aucune concentration supérieure à cette valeur n'a été trouvée dans le groupe témoin CCR-. 7. Dosage sérique du marqueur tumoral Apolipoprotéine AI
Le dosage de l' Apolipoprotéine AI sérique a été réalisé par deux techniques différentes d'immunoessai. Dans un premier temps, nous avons utilisé un ELISA sandwich en microplaque. Les plaques 96 puits ont été coatées avec l'anticorps monoclonal anti-Apo AI Clone 1404 (Biodesign Cat. No. H45404) à lμg par puits. Après 3 lavages PBS-Tween 20 0,05% (PBS-T), les plaques sont saturées par 10% de lait dans du PBS-T pendant Ih à 370C. On lave encore 3 fois en PBS-T, on dépose sur les plaques 100 μl des dilutions de la gamme étalon ou 100 μl de la dilution au 1/100 000 des échantillons de sérum à tester, et on incube 2h à 370C. La gamme étalon est réalisée en diluant la protéine Apo AI (Biodesign Cat. No. A50620H) dans du PBS- T, BSA 1% (1,6 à 100 ng/ml). Après 3 lavages PBS-T, l'anticorps de détection polyclonal couplé à la peroxydase de raifort (Biodesign Cat. No. K45452P) est rajouté à 0,1 μg par puits et on incube 2h à 370C. On effectue encore 3 lavages PBS-T, avant de rajouter le substrat OPT EIA (BD), 100 μl/puits. Au bout de 20 min, lorsque le développement de la coloration a lieu, on stoppe la réaction par de l'acide sulfurique 2N et on mesure l'absorbance à 450 nm. La Figure 6A présente les résultats de ce dosage. Nous avons mis en évidence une diminution de la concentration sérique d'Apo AI chez les sujets ayant un cancer colorectal. La concentration moyenne chez 38 sujets ayant un CCR de stade I à IV est de 675 ± 36 μg/ml alors qu'elle est bien plus élevée chez 27 sujets sains (témoins) : 1040 + 39 μg/ml. Cette différence est statistiquement très significative (P<0,0001, t- test unilatéral). A titre de comparaison, chez 13 sujets ayant un cancer du foie, la concentration sérique moyenne d'Apo AI est de 1175 + 87 μg/ml avec la technique ELISA sandwich utilisée. La diminution de la concentration sérique met en évidence que Apo AI est donc un marqueur spécifique du cancer colorectal, cette diminution pouvant être mis en évidence par un dosage immunoessai. La deuxième technique de dosage qui a été utilisée est un dosage multiplex commercialisé par la société Linco qui permet de doser plusieurs Apolipoprotéines dont AI et AII simultanément, dans le même échantillon (Cat. No. APO-62K). Le mode opératoire préconisé par le fabricant a été appliqué.
La Figure 6B présente les résultats de ce dosage. On confirme par cette deuxième technique la diminution de la concentration sérique d'Apo AI chez les patients ayant un CCR. La concentration moyenne d'Apo AI chez 34 sujets ayant un CCR de stade I à IV est de 768 + 30 μg/ml alors qu'elle est bien plus élevée chez 17 sujets sains (témoins) : 1194 + 51 μg/ml. Cette différence est statistiquement très significative (P<0,0001, t- test unilatéral). 8. Dosage sérique du marqueur tumoral Apolipoprotéine AII
Le dosage de l' Apolipoprotéine AII sérique a été réalisé avec le kit multiplex de Linco. La Figure 7 présente les résultats de ce dosage. Nous avons mis en évidence une diminution de la concentration sérique d'Apo AII chez les sujets ayant un cancer colorectal. La concentration moyenne d'Apo AII chez 34 sujets ayant un CCR de stade I à IV est de 170 + 11 μg/ml alors qu'elle est bien plus élevée chez 17 sujets sains (témoins) : 277 + 16 μg/ml. Cette différence est statistiquement très significative (P<0,0001, t- test unilatéral).
9. Dosage sérique du marqueur tumoral Plastine-I
La protéine Plastine-I a été dosée à l'aide des anticorps décrits dans l'exemple 2 et d'un test ELISA utilisant l'automate Vidas® (bioMérieux). Pour ce faire, le test ELISA a été construit en utilisant les réactifs du kit Vidas® HBs Ag Ultra (bioMérieux,
Cat. No. 30315). Les réactifs ont été utilisés tels que décrits dans la notice correspondante (réf. 11728 D - FR - 2005/05), avec les modifications suivantes :
1. Les cônes ont été sensibilisés avec l'anticorps de capture 3Dl IDlO à une concentration de 15 μg/ml. 2. Le contenu du deuxième puits de la cartouche HBs Ag Ultra a été remplacé par
300 μl d'anticorps de révélation 8C8C5, couplé à la biotine, dilué à 1 μg/ml dans le tampon du deuxième puits du kit Vidas® HBs Ag Ultra (tampon avec sérum de chèvre et azoture de sodium à 1 g/1).
3. Les échantillons de sérum, de plasma ou de selle (100 μl) ont été dilués directement dans le deuxième puits de la cartouche HBs Ag Ultra.
4. La réaction ELISA a été réalisée à l'aide de l'automate Vidas® et du protocole HBS AG ULTRA.
5. Les résultats ont été obtenus sous forme de valeurs brutes après soustraction du bruit de fond (lecture du substrat avant réaction). La concentration du marqueur tumoral présente dans le fluide corporel à doser
(sang, sérum, plasma, selle) a été calculée selon le mode opératoire décrit dans le paragraphe 2 concernant le dosage du LEI.
Les doses obtenues pour les patients analysés sont reportées sur la Figure 8. Les 2 sérums de patients ayant un cancer colorectal testés montrent une nette augmentation de leur dose de Plastine-I sérique.
10. Dosage sérique des marqueurs tumoraux du groupe B
Les marqueurs tumoraux Beta2 Microglobuline, ACE, CA 19-9 et Testostérone ont été dosés à l'aide des trousses de dosage de la Demanderesse, respectivement Vidas® Beta2 Microglobulin, Vidas® ACE, Vidas® CA 19-9™ et Vidas® Testostérone, en suivant le protocole opératoire propre à chaque trousse.
La protéine E-Cadhérine a été dosée à l'aide du kit E-Cadhérine EIA kit (Takara Biochemicals, Tokyo, Japon) en suivant le protocole opératoire du kit.
La protéine Regenerating islet-derived protein 3 alpha, autrement nommée Pancreatitis Associated Protein (PAPl), a été dosée à l'aide du kit ELISA PANCREPAP (DynaBio, Marseille, France) en suivant le protocole opératoire du kit. Les protéines Galectine-3 et LDH ont été dosées à l'aide des anticorps décrits dans l'exemple 2. Le Protéasome 20 S a été dosé à l'aide des anticorps décrits dans le brevet EP0434670. Pour ce faire, les tests ELISA ont été construits en utilisant l'automate Vidas® (bioMérieux) et les réactifs du kit Vidas® HBs Ag Ultra (bioMérieux, Cat. No. 30315). Les réactifs ont été utilisés tels que décrits dans la notice correspondante (réf. 11728 D - FR - 2005/05), avec les modifications suivantes :
1. Les cônes ont été sensibilisés avec l'anticorps de capture à une concentration entre 5 et 30 μg/ml.
2. Le contenu du deuxième puits de la cartouche HBs Ag Ultra a été remplacé par 300 μl d'anticorps de révélation, couplé à la biotine, dilué à 1 μg/ml dans du tampon avec sérum de chèvre et azoture de sodium à 1 g/1.
3. Les échantillons de sérum, de plasma ou de selle ont été dilués directement dans le deuxième puits de la cartouche HBs Ag Ultra après, si nécessaire, une dilution en tampon du deuxième puits.
4. La réaction ELISA a été réalisée à l'aide de l'automate Vidas® et du protocole HBS Ag Ultra. L'étape d'incubation de l'échantillon avec les anticorps de capture et de révélation a été comprise entre 14 et 100 cycles.
5. Les résultats ont été obtenus sous forme de valeurs brutes après soustraction du bruit de fond (lecture du substrat avant réaction).
La concentration du marqueur tumoral présente dans le fluide corporel à doser (sang, sérum, plasma, selle) a été calculée selon le mode opératoire décrit dans le paragraphe 2 concernant le dosage du LEI. Les conditions de dosage pour différents marqueurs tumoraux ont été récapitulées dans le Tableau 7. Tableau 7
Figure imgf000053_0001
Les doses obtenues pour les patients analysés avec les marqueurs tumoraux Beta2 Microglobuline, ACE, CA 19-9, Testostérone, E-Cadhérine, Regenerating islet- derived protein 3 alpha, Galectine-3, LDH et Protéasome 20S ont été reportées respectivement sur les figures 9 à 17.
Trois sérums de patients ayant un cancer colorectal montrent une augmentation de leur dose de β2 Microglobuline sérique.
Dix sérums de patients ayant un cancer colorectal montrent une augmentation de leur dose d'ACE sérique. Plus nettement, 1 sérum de patient ayant un cancer colorectal de stade III et 7 sérums de patients ayant un cancer colorectal de stade IV montrent une élévation importante de leur dose d'ACE sérique.
Neuf sérums de patients ayant un cancer colorectal montrent une augmentation de leur dose de CA 19-9 sérique. Plus nettement, 1 sérum de patient ayant un cancer colorectal de stade III et 7 sérums de patients ayant un cancer colorectal de stade IV montrent une élévation importante de leur dose de CA 19-9 sérique.
Dix sérums de patients ayant un cancer colorectal montrent une diminution de leur dose de Testostérone sérique. Plus nettement, 1 sérum de patient ayant un cancer colorectal de stade II, 1 sérum de patient ayant un cancer colorectal de stade III et 2 sérums de patients ayant un cancer colorectal de stade IV montrent un effondrement de leur dose de Testostérone sérique.
Deux sérums de patients ayant un cancer colorectal montrent une augmentation de leur dose de Regenerating islet-derived protein 3 alpha sérique.
Quatre sérums de patients ayant un cancer colorectal de stade IV, 2 sérums de patients ayant un cancer colorectal de stade III et 1 sérum de patient ayant un cancer colorectal de stade II montrent une nette augmentation de leur dose de Galectine-3 sérique.
Exemple 4 : Utilisation des dosages sériques des marqueurs tumoraux en combinaison
La Demanderesse a montré dans l'exemple 3 que des doses anormalement élevées ou anormalement diminuées de marqueurs tumoraux pouvaient être observées dans la circulation sanguine de certains patients atteints d'un cancer colorectal. De façon surprenante, l'augmentation ou la diminution de la dose sanguine de deux marqueurs donnés n'est pas systématiquement observée chez les mêmes patients. De ce fait, la combinaison de plusieurs marqueurs tumoraux permet d'augmenter le nombre de patients identifiés comme ayant un cancer colorectal. C'est ainsi qu'un patient A peut présenter une augmentation ou une diminution d'un ou plusieurs marqueurs tumoraux (groupe X), les dit marqueurs du groupe X pouvant être normaux chez un patient B ; chez ce même patient B un ou plusieurs autres marqueurs tumoraux (groupe Y) peuvent être élevés ou diminués, les dit marqueurs du groupe Y pouvant être normaux chez le patient A.
Les différents marqueurs tumoraux dosés par la Demanderesse peuvent ainsi être combinés au moyen de divers algorithmes mathématiques bien connus de l'homme du métier. A titre d'illustration et sans que cet exemple ait un caractère exhaustif, il a été mis en oeuvre le procédé suivant :
1. Une valeur seuil a été fixée pour chaque marqueur tumoral.
2. Lorsque la dose sanguine du marqueur tumoral était augmentée en cas de cancer colorectal, la dose sanguine obtenue pour un patient donné a été divisée par sa valeur seuil. Lorsque la dose sanguine du marqueur tumoral était diminuée en cas de cancer colorectal, la dose sanguine obtenue pour un patient donné a été inversée puis multipliée par sa valeur seuil.
3. Lorsque le ratio, dose sanguine divisée par valeur seuil, était supérieur à 1, le ratio a été multiplié par un coefficient, par exemple 10. La valeur ainsi obtenue a été baptisée « score » pour le patient étudié du marqueur tumoral considéré. 4. Les scores obtenus pour différents marqueurs tumoraux ont été ajoutés en les pondérant d'un facteur propre à chaque marqueur. Dans le cas de l'exemple ci- dessous tous les facteurs de pondération ont été fixés à 1.
5. La somme des scores a été divisée par le nombre total de scores sommés et la valeur ainsi obtenue a été baptisée « score total ».
6. Le patient est diagnostiqué comme ayant un cancer colorectal lorsque sont score total est augmenté par rapport à un score seuil.
Les scores totaux pour une sélection de 2, 4 et 8 marqueurs comprenant l'Aminoacylase-l sont donnés dans le Tableau 8. L'association des marqueurs tumoraux Aminoacylase 1 et Protéasome 2OS permet ainsi d'obtenir pour le même groupe de 22 patients des scores totaux « 2 » augmentés chez 9 patients atteints d'un cancer colorectal alors que le dosage seul d' Aminoacylase 1 ou de Protéasome 2OS était augmenté respectivement chez 4 et 7 patients seulement. L'association des marqueurs tumoraux Aminoacylase 1, Béta-2 Microglobuline,
Protéasome 2OS et CA 19-9 permet ainsi d'obtenir pour le même groupe de 22 patients des scores totaux « 4 » augmentés chez 13 patients atteints d'un cancer colorectal alors que le dosage seul d' Aminoacylase 1, Béta-2 Microglobuline, Protéasome 20S ou CA19-9 était augmenté respectivement chez 4, 3, 7 et 8 patients seulement. L'association des marqueurs tumoraux Aminoacylase 1, Béta-2 Microglobuline,
Protéasome 20S, CA19-9, L-FABP, PAP, E-Cadhérine et ACE permet ainsi d'obtenir pour le même groupe de 22 patients atteints d'un cancer colorectal des scores totaux « 8 » augmentés chez 18 patients alors que le dosage seul d' Aminoacylase- 1, Béta-2 Microglobuline, Protéasome 20S, CA19-9, L-FABP, PAP, E-Cadhérine ou ACE était augmenté respectivement chez 4, 3, 7, 8, 6, 2, 1 et 10 patients seulement. Tableau 8
Figure imgf000055_0001
Figure imgf000056_0001
a : association Aminoacylase 1 et Protéasome 20S b : association Aminoacylase 1, Béta-2 Microglobuline, Protéasome 20S et CA19-9 c : association Aminoacylase 1, Béta-2 Microglobuline, Protéasome 20S, CA19-9, L- FABP, PAP, E-Cadhérine et ACE
Exemple 5 : Dosages des marqueurs tumoraux dans les selles
L'extraction des selles est réalisée à partir d'un morceau pesant approximativement Ig, auquel on ajoute 10 ml de tampon phosphate de sodium 100 mM, pH 7,2 contenant 1 g/L d'azide. On homogénéise sur un Vortex pendant 1 min. L'échantillon subit ensuite 4 cycles d'ultrasons de 7s sur la glace. La fraction non solubilisée est éliminée par centrifugation à 2000 g, pendant 10 min, à 40C. Le surnageant est conservé à -3O0C jusqu'au dosage.
Les dosages ELISA décrits dans l'exemple 3 ont été utilisés pour rechercher les marqueurs tumoraux dans les selles après, si nécessaire, une dilution adaptée des selles dans le tampon du premier puits de la cartouche HBs Ag Ultra.
Les dosages obtenus avec les tests, Aminoacylase-1, Galectine-3 et Protéasome 20S ont été représentés respectivement sur les Figures 18 à 20. Une augmentation de la dose d'Aminoacylase 1, de Galectine-3 et de Protéasome 20S est observée respectivement pour 10, 14 et 8 selles de patients atteints d'un cancer colorectal.
Exemple 6 : Détection par la technique ELISPOT des marqueurs tumoraux 1. Culture cellulaire
La lignée de cancer de la prostate LnCAP est cultivée dans le milieu RPMI 1640 supplémenté avec 2 mM L-Glutamine, 10 mM HEPES, 1 mM sodium pyruvate et 10% SVF(tous Gibco). Ces cellules sont utilisées comme témoin négatif.
La lignée de cancer colorectal Caco-2 est cultivée dans le milieu DMEM contenant 2 mM de L-Glutamine, sans SVF (tous Gibco).
La lignée de cancer colorectal HT-29 est cultivée dans le milieu MEM contenant 2 mM de L-Glutamine et 10% SVF (tous Gibco).
La lignée de cancer colorectal HT-29/B6 est cultivée dans le milieu DMEM contenant 4 mM de L-Glutamine, sans SVF (tous Gibco). Les cellules sont maintenues à 370C, dans une étuve avec 5% de CO2.
2. La technique ELISPOT
Ce mode opératoire permet de déterminer le nombre de cellules sécrétant la protéine. Les plaques d'ELISPOT 96 puits avec des membranes de PVDF (Multiscreen
IP, Millipore) sont coatées par l'anticorps monoclonal de souris anti-marqueur tumoral à lOμg/ml (anticorps de capture, voir le Tableau 9 ci-dessous qui donne les anticorps utilisés en ELISPOT), 100 μl par puits, dans du PBS stérile, sur la nuit à +40C. Les plaques sont ensuite lavées au PBS et saturées avec du milieu de culture contenant 10% SVF. Parallèlement, les cellules sont trypsinées, comptées, puis diluées à 105 cellules/ml. On distribue 200 μl de cette suspension cellulaire par puits, ainsi que des dilutions en cascade de cette solution mère. Les plaques sont alors incubées 20 h à 370C en atmosphère humide à 5 % CO2, puis lavées au PBS contenant 0,05% de Tween-20. Les cellules restantes sont alors lysées par un traitement à l'eau glacée pendant 10 minutes, puis les plaques sont lavées encore. On ajoute ensuite l'anticorps de révélation, le monoclonal biotinylé dirigé contre le marqueur tumoral à doser (Tableau 9), à O,lμg/puits (incubation 2h à température ambiante). Les spots sont révélés par l'ajout d'extravidine-phosphatase alcaline (Sigma) et du substrat 5-bromo-4- chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT, Biorad). Le bruit de fond correspond au nombre de spots mesuré dans les puits LnCap et varie entre 0 et 8 spots dans les conditions de lecture utilisées. Le nombre moyen de spots non spécifiques a été soustrait du signal spécifique. Tableau 9
Marqueur Ac capture Ac détection
LEI 10E1H1 21B10A5
Ezrine 4A9H5 4A7A6C1 Galectine-3 12F8A12 14A5G1
3. Résultats
Le nombre de cellules Caco-2, HT-29 et HT-29 B 6 sécrétant le marqueur tumoral d'intérêt par 1 million de cellules incubées est présenté dans la Figure 21. La technique ELISPOT permet de confirmer le relarguage ou la sécrétion des marqueurs tumoraux par les lignées de cancer de côlon. Il sera possible d'effectuer une recherche de cellules tumorales circulantes chez les patients en utilisant cette technique, selon le procédé de la demande de brevet WO03/076942 déposé par la Demanderesse.
Exemple 7 : Détection des marqueurs tumoraux à partir de tissus coliques par immunohistochimie
1. Méthodologie
Dans un premier temps, les lames de tissue-micro-array sont déparaffinées. Pour cela, elles sont incubées successivement dans les bains suivants pendant 10 minutes : methycyclohexane (2 fois), éthanol 100%, éthanol 95%, éthanol 70% et eau. Les lames sont ensuite rincées au TBS 0,1% Tween 20 (TBS-T), pendant 10 min, sous agitation. Les antigènes sont réactivés dans le tampon citrate 10 mM pH6, en chauffant jusqu'à 9O0C pendant 40 min, puis en laissant refroidir à température ambiante pendant 30 min. Les peroxydases endogènes sont inhibées par incubation dans du TBS-T contenant 3% de H2O2, pendant 5 min. Les lames sont ensuite saturées par 3% de BSA en TBS-T, pendant Ih à 370C, en chambre humide.
Puis, les lames sont incubées pendant 2h avec l'anticorps primaire anti- Leucocyte Elastase Inhibitor (clone 3D9C2), anti-Ezrine (clone 5G2D12), anti- Aminoacylase 1 (clone 8A8A10) ou anti Plastine-I (clone 8D6A3) dilué à lOμg/ml dans du TBS-T contenant 3% de BSA (incubation à 370C en chambre humide). Après 3 lavages de 10 min au TBS-T, les lames sont incubées 2h à 370C en chambre humide avec l'anticorps secondaire anti-souris couplé à la peroxydase de raifort (Cat. No. 115- 035-003 Jackson Immunoresearch) dilué au 1/400 dans la solution de saturation. Les lames sont lavées 3 fois 10 minutes dans du TBS-T, puis encore 3 fois 10 min dans du PBS. La révélation est réalisée avec le substrat Sigma Fast (Cat. No. D-4168, Sigma- Aldrich) pendant 5 min. La coloration est arrêtée par lavage dans le PBS. On effectue une contre-coloration à l'hématoxyline de Harris (Cat. No. MHS 16, Sigma- Aldrich) pendant 30 sec. Après lavages à l'eau et au PBS, les lames sont montées pour observation au microscope.
Les anticorps utilisés pour le marquage par immunohistochimie ont été sélectionnés spécifiquement pour cette application, indépendamment de leur réactivité en ELISA ou en Western blot.
2. Détection du Leucocyte Elastase Inhibitor par immunohistochimie Des lames de tissue-micro-array ont été utilisées pour cribler un grand nombre de prélèvements. Il s'agit de tissus coliques spottés sur lames. Les caractéristiques des patients (caractéristiques des spots de tissu colique présents sur le tissue-micro-array cancer colorectal), ainsi que les résultats des immunomarquages par l'anticorps anti- Leucocyte Elastase Inhibitor sont récapitulés dans le Tableau 10. Tableau 10
Histologie et Marquage dans les Marquage dans le Diagnostic caractérisation génétique cellules épithéliales stroma Tumeur maligne Adénocarcinome conservé Positif Négatif
Tumeur maligne Adénocarcinome conservé Positif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Tumeur bénigne Adénome Négatif Négatif
Tumeur maligne Adénocarcinome conservé Positif Négatif
Tumeur maligne Adénocarcinome LOH Positif Négatif
Tumeur maligne Adénocarcinome LOH Positif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Tumeur maligne Adénocarcinome LOH Négatif Négatif
Tumeur maligne Adénocarcinome LOH Positif Négatif
Tumeur maligne Adénocarcinome MSI High Positif Négatif
Tumeur maligne Adénocarcinome MSI High Positif Négatif
Tumeur maligne Adénocarcinome Colloïde Négatif Négatif
Tumeur maligne Adénocarcinome Colloïde Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Normal Muqueuse normale Négatif Négatif
Les résultats dans le tableau mettent en évidence que, dans les biopsies de muqueuses coliques saines, il n'y a pas de marquage (10 négatifs). Le marquage est également négatif dans l'adénome (1/1). Le marquage est positif dans les cellules épithéliales des adénocarcinomes coliques (+ chez 8/11 patients). Il n'y a aucun marquage dans le stroma.
3. Détection de l'Ezrine par immunohistochimie
Des lames de tissue-micro-array ont été utilisées pour cribler un grand nombre de prélèvements. Il s'agit de tissus coliques spottés sur lames. Pour chaque patient avec un adénocarcinome colique, 3 prélèvements au centre de la tumeur, 3 prélèvements au niveau du front d'invasion et 3 prélèvements dans le tissu sain ont été effectués. Le
Tableau 11 présente les résultats des immunomarquages par l'anticorps anti-Ezrine, le niveau de marquage indiqué est le maximum d'intensité sur les 3 prélèvements analysés.
Tableau 11 Identifiant Centre de la Front patient tumeur invasion tumoral Tissu sain
55 + ++ 0
127 + + 0
329 + ++ +
475 + ++ +
544 + ++ +
726 + + +
1203 ++ ++ +
1310 ++ +++ +
2003 + 0 +
2296 ++ ++ 0
2301 + ++ +
2377 + + 0
3095 + + 0
3430 + + 0
3636 + + 0
3748 + + 0
3839 + ++ 0
3891 0 0 0
4054 + + 0
4322 + ++ 0
445 0 ++ +
4474 ++ ++ 0
4792 + + +
4958 ++ ++ +
5101 + ++ +
5318 ++ +++ 0
5374 + + 0
5472 + 0 +
6340 ++ + 0
6353 ++ + 0
Dans un échantillonnage du 30 patients, 25 ont une surexpression de l'Ezrine au niveau tumoral (centre de la tumeur ou front d'invasion) par rapport au tissu sain adjacent.
4. Détection de rAminoacylase 1 par immunohistochimie Des lames de tissue-micro-array ont été utilisées pour cribler un grand nombre de prélèvements. Il s'agit de tissus coliques spottés sur lames. Pour chaque patient avec un adénocarcinome colique, 3 prélèvements au centre de la tumeur, 3 prélèvements au niveau du front d'invasion et 3 prélèvements dans le tissu sain ont été effectués. Le Tableau 12 présente les résultats des immunomarquages par l'anticorps anti- Aminoacylase, le niveau de marquage indiqué est le maximum d'intensité sur les 3 prélèvements analysés. Tableau 12
Identifiant Centre de la Front patient tumeur invasion tumoral Tissu sain
55 ++ ++ 0
127 0 0 0
329 ++ ++ 0
475 ++ ++ +
544 + 0 0
726 0 0 0
1203 0 + 0
1310 0 + +
2003 ++ 0 0
2296 + + 0
2301 + + +
2377 + + +
3095 + + 0
3430 + + +
3636 ++ + +
3748 ++ ++ 0
3839 ++ ++ +
3891 ++ ++ 0
4054 + ++ 0
4322 +++ +++ +
445 + ++ +
4474 + ++ +
4792 ++ ++ +
4958 + + +
5101 + + ++
5318 +++ ++ 0
5374 + + 0
5472 ++ ++ +
6340 ++ ++ +
6353 ++ ++ ++
Dans un échantillonnage du 30 patients, 21 ont une surexpression de l'Aminoacylase au niveau tumoral (centre de la tumeur ou front d'invasion) par rapport au tissu sain adjacent.
5. Détection de la Plastine-I par immunohistochimie
Des lames de tissue-micro-array ont été utilisées pour cribler un grand nombre de prélèvements. Il s'agit de tissus coliques et rectaux spottés sur lames. Les caractéristiques des patients (caractéristiques des spots de tissu colique présents sur le tissue-micro-array cancer colorectal), ainsi que les résultats des immunomarquages par l'anticorps anti-Plastine-I sont récapitulés dans le Tableau 13.
Tableau 13 Histologie et caractérisation Marquage dans les Marquage
Diagnostic génétique cellules épithéliales dans le stroma
Tumeur maligne côlon Adénocarcinome conservé ++ Négatif Tumeur maligne côlon Adénocarcinome conservé ++ Négatif Normal côlon Muqueuse normale + Négatif Normal côlon Muqueuse normale + Négatif Normal côlon Muqueuse normale + Négatif Tumeur bénigne côlon Adénome + Négatif Tumeur maligne côlon Adénocarcinome conservé + Négatif Tumeur maligne côlon Adénocarcinome LOH ++ Négatif Tumeur maligne côlon Adénocarcinome LOH ++ Négatif Normal côlon Muqueuse normale + Négatif Normal côlon Muqueuse normale + Négatif Normal côlon Muqueuse normale + Négatif Tumeur maligne côlon Adénocarcinome LOH ++ Négatif Tumeur maligne côlon Adénocarcinome LOH ++ Négatif Tumeur maligne côlon Adénocarcinome MSI High + Négatif Normal côlon Muqueuse normale + Décollé Normal côlon Muqueuse normale + Décollé Tumeur maligne côlon Adénocarcinome Colloïde + Négatif Normal côlon Muqueuse normale ++ Négatif Normal côlon Muqueuse normale ++ Négatif Normal rectum Muqueuse normale rectum ++ Négatif Normal rectum Muqueuse normale rectum Non spécifique Négatif Normal rectum Muqueuse normale rectum Non spécifique Négatif Normal rectum Muqueuse normale rectum Non spécifique Négatif Tumeur maligne rectum Adénocarcinome LOH + Négatif Tumeur maligne rectum Adénocarcinome LOH ++ Négatif Tumeur maligne rectum Adénocarcinome LOH ++ Négatif Tumeur maligne rectum Adénocarcinome LOH ++ Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade ++ Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade ++ Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade + Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade + Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade + Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade + Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade ++ Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade ++ Négatif Tumeur bénigne rectum Adénome dysplasie de bas grade ++ Négatif
Les résultats dans le tableau mettent en évidence que :
- dans les biopsies de muqueuses coliques saines, le marquage est faible dans 8 prélèvements (+) et 2 prélèvements sont à ++. Le marquage est également faible à + dans l'adénome colique (1/1). Le marquage est positif fort ++ dans les cellules épithéliales des adénocarcinomes coliques (++ chez 6/9 patients et 3 faibles + dont les adénocarcinomes colloïdes coliques). Il n'y a aucun marquage dans le stroma.
- dans les biopsies de muqueuses rectales saines, le marquage est présent au niveau de l'épithélium de surface de manière non spécifique (3/4) et à ++ dans un prélèvement. Le marquage est positif fort à ++ dans les adénomes rectaux (5/9) ou discret à + (4/9). Le marquage est également fort ++ dans les cellules épithéliales des adénocarcinomes rectaux (++ chez 3/4 patients, 1 faible +). Il n'y a aucun marquage dans le stroma.
Exemple 8 : Détection des marqueurs tumoraux par la technique LC-MRM-MS 1. Méthodologie
Afin de pouvoir baisser la limite de détection à quelques ng/ml, un procédé amélioré de MRM-MS a été mis en œuvre. Les étapes successives de ce procédé sont :
1) immunodéplétion des protéines abondantes, 2) digestion trypsique, 3) fractionnement SPE (solid-phase extraction) des peptides, 4) chromatographie liquide
(LC) couplée à la MRM-MS.
La mise au point a été réalisée sur des échantillons surchargés (spike) en ajoutant les protéines recombinantes ACY, Ezrine, L-FABP, PDI ou Plastine I dans un pool de sérum contrôle, à une concentration de 10-250 ng/ml. Les Apolipoprotéines Al et A2 sont naturellement présentes dans le sérum.
Immunodéplétion. La déplétion des protéines abondantes du sérum a été réalisée en utilisant le kit commercial Vivapure anti-HSA de Vivascience. Alternativement, le kit Proteoextract Albumin/IgG de Calbiochem et le Aurum™ sérum Protein Minikit de Bio-Rad ont aussi été utilisés. Il est aussi possible de produire les résines spécifiques au laboratoire, en couplant un anticorps monoclonal dirigé contre la protéine à dépléter sur une résine Sepharose 4B activée au CNBr (Amersham Bioscience), en suivant les instructions du fabricant.
Digestion enzymatique. Les échantillons de sérums dépiétés sont dénaturés dans une solution d'urée 6M tamponnée par 10 mM de Tris pH 8 et contenant 30 mM de dithiothreitol, pendant 40 minutes à 4O0C, puis alkylés par de l'iodoacétamide 50 mM, à température ambiante, pendant 40 minutes, à l'obscurité. Ils sont dilués 6 fois dans l'eau, puis la digestion trypsique est réalisée à 370C, sur la nuit, en utilisant un ratio enzyme substrat de 1:30 (Promega). La digestion est arrêtée par ajout d'acide formique à une concentration finale de 0,5%. Les échantillons digérés sont dessalés par extraction sur phase solide (SPE, solid phase extraction) en utilisant les cartouches en phase inverse Oasis HLB 3cc (60 mg) (Waters). Après application de l'échantillon, les cartouches sont lavées par 1 ml d'acide formique à 0,1%, puis l'élution a été réalisée par un mélange méthanol/eau (80/20 v/v) contenant 0,1% d'acide formique. Les éluats sont séchés sous vide.
Fractionnement SPE. Les échantillons secs sont repris dans 1 ml de tampon acétate et chargés sur les cartouches mixtes (hydrophobe et échange de cation) Oasis MCX (mixed cation exchange) 60 mg (Waters) équilibrées au préalable en tampon acétate et méthanol. Les cartouches sont lavées par 1 ml de tampon acétate et 1 ml de méthanol. Les peptides d'intérêt (Tableau 14) sont élues par 1 ml d'un mélange méthanol/tampon acétate (50/50 v/v)). Le pH du tampon acétate est choisi en fonction du point isoélectrique du peptide d'intérêt. Les éluats sont séchés sous vide, dissous dans 200 μl d'une solution d'acétonitrile/eau (3/97 v/v) contenant 0,1% d'acide formique. Un aliquot de 50 μl a été injecté dans la LC couplée à un système MS-MS.
Chromato 'graphie liquide et spectrométrie de masse. L'analyse LC-MS a été effectuée sur un système chromato graphique haute pression (HPLC) de type HP 1100 séries avec pompe binaire et injecteur (Agilent Technologies) couplé à un spectromètre de masse, soit un Sciex API 2000 triple quadripôle, soit un Sciex API 4000 Qtrap (MS hybride triple quadripôle - trappe ionique) (MDS Sciex) pour une meilleure sensibilité. La séparation LC a été effectuée sur une colonne C18 Symmetry (Waters), à un débit d'élution de 300 μl/min. (Eluent A = 0,1% acide formique dans l'eau, éluent B = 0,1% acide formique dans l'acétonitrile, gradient linéaire de 5%B à 50%B en 25 min, puis de 50%B à 100%B en 3 min). L'analyse MS est réalisée en mode d'ionisation positive à une tension de 5500 V appliquée à l'aiguille permettant l'ionisation dans la source. Le contrôle de l'instrument et l'acquisition des données sont réalisés avec le logiciel Analyst 1.4.1. Les débits du gaz de nébulisation (air) et du gaz rideau (azote) sont de 30 et 20 psi, respectivement. La source ionique Turbo V™ est réglée à 4000C, le flux d'azote auxiliaire à 40 psi. Les transitions MRM enregistrées pour chaque peptide sont récapitulées dans le Tableau 14. L'énergie de collision (CE), la tension d'orifice (DP,declustering potential) et la tension à la sortie de la cellule de collision (CXP, collision cell exit potential) sont optimisées pour chacune des transitions MRM sélectionnées.
2. Résultats
Pour chaque marqueur tumoral (protéines du Tableau 14), la liste des transitions MRM théoriques a été générée en utilisant le logiciel MIDAS (MRM-initiated Détection and Sequencing). Cette liste comprend tous les ions parents di- ou tri- chargés des peptides tryptiques théoriques dans un intervalle de masse allant de 800 à 3000 Da et tous les ions fragments possibles de type y ou b. Pour chaque protéine, chaque transition possible a été testée afin de déterminer les transitions les plus sensibles et les plus spécifiques. Le résultat de cette sélection est récapitulé dans le Tableau 14. En utilisant un peptide lourd de type AQUA (Sigma) ou encore une protéine recombinante lourde qui serviront d'étalon de dosage, il est possible de quantifier de manière absolue le marqueur tumoral d'intérêt dans un milieu biologique complexe.
Tableau 14
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Références bibliographiques
J.D. Porter, 1999, J Natl Cancer Inst, 91, 916-32
J. Faivre, 2001, Epidémiologie et dépistage du cancer colorectal, Ed. Springer
M. Anders et W. Dekant, 1994, Advances in Pharmacology, 431-448
K. Lorentz et al, 1975 , Clinica Chimica Acta, 263-269
K. Lorentz et B. Flatter, 1975, Clinica Chimica Acta, 271-274
R.M. Cook et al, 1993, J Bio Chem, 17010-17017
7 Y.E. Miller et al, 1989, J Clin Invest, 2120-2124 8 S. Balabanov et al, 2001, Eur J Biochem, 5977-5980
E. Remold-O'Donnell et al, 1992, Proc Natl Acad Sci USA, 89, 563-5639
10 : J. Cooley et al, 2001, Biochemistry, 15762-15770
11 : M. Algrain et al, 1993, J CeIl Biol, 120, 129-139
12 : W.G. Jiang et S. Hiscox, 1996, Anticancer Res, 16, 861-865 13 : S. Hiscox et W.G. Jiang, 1999, J CeIl Sci, 112, 3081-3090
14 : T. Xiao et al, 2005, Mol CeIl Proteomics, 4, 1480-1486
15 : E. Chan et al, 1985, J Biol Chem, 260, 2629-2632
16 : R. Das et al, 2001, Clin Cancer Res, 7, 1706-1715
17 : J. Stulik et al, 2001, Electrophoresis, 22, 3019-3025 18 : T. Yamazaki et al, 1999, J Surg Oncol, 72, 83-87
19 : D.A. Sweetser et al, 1987, J Biol Chem, 266, 16060-16071
20 : M. Pelsers et al, 2003, Clin Biochem, 36, 529-535
21 : R. Xiao, et al, 2005, Molecular Cancer, 4, 1-17
22 : E.E. Niederkofler et al, 2003, J Lipid Res, 44, 630-639 23 : G.L. Hortin, 2006, Clinical Chemistry, 52(7), 1223-1237
24 : J.Y. Engwegen et al, 2006, World J Gastroenterol, 12(10), 1536-1544
25 : Z. Zhang et al, 2004, Cancer Research, 64, 5882-5890
26 : H. Hachem et al, 1986, J Chem Clin Biochem, 24, 161-166
27 : CS. Lin, et al, 1993, J Biol Chem, 268, 2781-92 28 : V. Delanote et al, 2005, Acta Pharama Sinica, 769-779 29 : A.P. Arrigo et al, 1988, Nature, 331, 192-194 30 : T Lavabre-Bertrand et al, 2001, Cancer, 92, 2493-2500
31 : S. Nakahara et al, 2005, Apoptosis, 10, 267-275
32 : 1. Iurisci et al, 2000, Clin Can Res, 6, 1389-1393
33 : M.K. Scwartz, 2006, Clin Chi. Acta, 1992, 77-82 34 : DJ. McCool et al., 1999, Biochem J, 593-600
35 : J.L. Iovanna et al, 1994, Gastroenterology, 106, 728-734
36 : Y. Motoo et al, 1999, Dig Dis Sci, 44, 1142-1147
37 : M. Herlyn et al, 1979, Proc Natl Acad Sci USA, 76, 1438-1442
38 : A. Armstrong et S. Eck, 2003, Cancer Biol. Ther, 2, 320-325 39 : D. Herlyn et al., 1982, Proc Natl Acad Sci USA, 79, 4761-4765
40 : H Abe et al., 2002, J Immunol Methods, 270, 227-233
41 : V. Barak et al, 2004, Clin Biochem, 37, 529-540
42 : H. Kim et al, 2006, Ann Clin Lab Sci, 36, 294-298
43 : F. Roca et al, 2006, J Surg Oncol, 151-160 44 : CH. Damsky et al, 1983, CeIl, 455-466
45 : M. Katayama et al., 1994, Br J Cancer, 580-585
46 : C. Willmanns et al, 2004, Clin Exp Metastasis, 75-78
47 : P. GoId et S. Freedman, 1965, J Exp Med, 467-481
48 : M. Duffy, 2001, Clin Chem 624-630 49 : Y. Kim et al, 2003, Ann Clin Lab Sci, 32-38
50 : J.L. Magnani et al, 1983, Cancer Research, 43, 5489-5492
51 : J. Holmgren et al., 1984, Br Med J (Clin. Re. Ed.), 288, 1479-1482
52 : T.L. Klug et al, 1986, Int J Cancer, 38, 6661-669
53 : P. Kuusela et al, 1991, Br J Cancer, 63, 636-640 54 : M. Holland et al, 1993, Medicina (B. Aires), 53(2), 117-23
55 : F. Model et al., juillet 2006, World Congress on Gastrointestinal Cancer, « Détection of Methylated DNA in Plasma from Colorectal Cancer Patients and Controls by Real-Time PCR Analysis of Septin 9 »
56 : M.P. Ebert et al, 2006, Gastroentrology, 131(5), 1418-1430 57 : C. Bianco et al, 2006, Clin. Cancer Res, 12, 5158-5164
58 : R. Yasumatsu et al, 2006, Am J Physiol Lung CeIl Mol Physiol 291, L619-L627 59 J. Chevalier et al, 1997, J. Histochem. Cytochem., 45, 481-491 60 S. Patterson , 2000, Physiological Genomics 2, 59-65 61 L. Anderson et CL. Hunter, 2006, Mol CeIl Proteomics, 5, 573-588. 62 LJ. Kricka et al, 1999, Clinical Chemistry, 45(4), 453-458 63 S. Tyagi et F.R. Kramer, 1996, Nature Biotech, 14, 303-308 64 T. F. Impériale et al, 2004, N Engl J Med, 351(26), 2704-2714 65 D.A. Ahlquist et al, 2000, Gastroenterology, 119, 1219-1227 66 I. H. Wong, 2006, Methods Mol Biol, 336, 33-46 67 M. P. Ebert et al, 2005, Neoplasia, 7(8), 771-778 68 : C. Lofton-Day et al, 2007, AACR Annual Meeting 2007, Los Angeles, U.S.A., Poster no LB- 165, Clinical case-control study in plasma shows that the DNA methylation biomarker, Septin-9, detects 70% of stage I- III colorectal cancer patients 69 : P. Métézeau et al., La cytométrie en flux pour l'étude de la cellule normale ou pathologique (Tome I), Eds Medsi-MacGrawhill 70 : Mathieu J. et al. 2006. Fonctions cellulaires et métabolisme. In: (coordonnateurs : Ronot X.et al). La cytométrie en flux. Tec & Doc, 255-298. ISBN 978-2-7430-0898-7
71 : V. Cheynet et al, 1993, Protein Expr Purif, 4(5), 367-372
72 : G. Kôhler et C. Milstein, 1975, Nature, 256, 495-497
73 : G. Kôhler et C. Milstein, 1976, Eur J Immunol, 6, 511-519

Claims

REVENDICATIONS
1. Procédé de diagnostic in vitro du cancer colorectal par détermination de la présence du marqueur Aminoacylase 1 dans un échantillon biologique issu d'un patient suspecté d'être atteint du cancer colorectal.
2. Procédé selon la revendication 1, caractérisé en ce que l'échantillon biologique est un échantillon distant de la tumeur.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste également à déterminer la présence d'au moins un autre marqueur tumoral choisi parmi les marqueurs suivants : Leucocyte Elastase Inhibitor, Ezrine, Liver Fatty Acid- Binding Protein, Intestinal Fatty Acid-Binding Protein, Apolipoprotéine AI, Apolipoprotéine AII et Plastine-I.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste également à déterminer la présence d'au moins un autre marqueur tumoral choisi parmi les marqueurs suivants : Beta 2 Microglobuline, Protéasome 2OS, Galectine-3, L-Lactate Deshydrogénase Chaîne B, Calréticuline, Regenerating Islet- Derived Protein 3 Alpha, Tumor- Associated Calcium Signal Transducer 1, Kératine type II Cytoskeletal 8, Kératine type I Cytoskeletal 18, Kératine type I Cytoskeletal 19, Epithelial-Cadhérine, ACE, Villine, CA 19-9, CA 242, CA 50, CA 72-2, Testostérone, TIMP-I, Cripto-1, Intélectine-1, Protéine Disulfide Isomérase, Cytokératine 20, Translationally-Controlled Tumor Protein, (Pro)défensine-A5, la détection d'ADN méthylé dans le sang, de préférence l'ADN méthylé du gène AXL4 ou l'ADN méthylé du gène Septin-9, la détection d'altérations spécifiques de fragments d'ADN dans les selles comme des mutations spécifiques de l'ADN dans les selles ou des altérations spécifiques du profil de méthylation de l'ADN dans les selles, la détection d'hémoglobine humaine dans les selles.
5. Utilisation du procédé selon l'une quelconque des revendications 1 à 4 dans le diagnostic précoce, le dépistage, le suivi thérapeutique, le pronostic et le diagnostic des rechutes dans le cadre du cancer colorectal.
PCT/FR2008/051290 2007-07-19 2008-07-10 Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal WO2009019366A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2008285555A AU2008285555B2 (en) 2007-07-19 2008-07-10 Aminoacylase 1 assay method for the in vitro diagnosis of colorectal cancer
ES08827058T ES2570609T3 (es) 2007-07-19 2008-07-10 Método para someter a ensayo la aminoacilasa 1 para el diagnóstico in vitro del cáncer colorrectal
US12/452,048 US8367362B2 (en) 2007-07-19 2008-07-10 Aminoacylase 1 assay method for the in vitro diagnosis of colorectal cancer
CA2693090A CA2693090A1 (fr) 2007-07-19 2008-07-10 Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal
CN200880025245.2A CN102124343B (zh) 2007-07-19 2008-07-10 体外诊断结肠直肠癌的酰化氨基酸水解酶1测定方法
EP08827058.2A EP2167970B1 (fr) 2007-07-19 2008-07-10 Procede de dosage in vitro de l'aminoacylase 1 pour le diagnostic du cancer colorectal
JP2010516548A JP5559050B2 (ja) 2007-07-19 2008-07-10 結腸直腸癌のインビトロ診断のためのアミノアシラーゼ1・アッセイ方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705201A FR2919062B1 (fr) 2007-07-19 2007-07-19 Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal.
FR0705201 2007-07-19

Publications (2)

Publication Number Publication Date
WO2009019366A2 true WO2009019366A2 (fr) 2009-02-12
WO2009019366A3 WO2009019366A3 (fr) 2009-05-07

Family

ID=38912485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051290 WO2009019366A2 (fr) 2007-07-19 2008-07-10 Procede de dosage de l'aminoacylase 1 pour le diagnostic in vitro du cancer colorectal

Country Status (9)

Country Link
US (1) US8367362B2 (fr)
EP (1) EP2167970B1 (fr)
JP (1) JP5559050B2 (fr)
CN (1) CN102124343B (fr)
AU (1) AU2008285555B2 (fr)
CA (1) CA2693090A1 (fr)
ES (1) ES2570609T3 (fr)
FR (1) FR2919062B1 (fr)
WO (1) WO2009019366A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118474A1 (fr) 2013-02-01 2014-08-07 bioMérieux Procédé de detection d'un cancer colorectal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565267B (zh) * 2012-01-06 2014-12-10 北京师范大学 筛查结直肠癌的试剂盒
CN102662012B (zh) * 2012-05-08 2014-06-11 北京师范大学 筛查结直肠腺瘤的试剂盒
EP3466975A1 (fr) * 2017-10-05 2019-04-10 Laboratoire Français du Fractionnement et des Biotechnologies Molécule de liaison spécifique dirigée contre la protéine galectin-3
US20210214797A1 (en) * 2018-06-01 2021-07-15 Geneoscopy, Llc Detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082533A1 (en) * 2001-01-26 2003-05-01 Henry Yue Intelectin
US20030087818A1 (en) * 2001-02-02 2003-05-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
US20040157278A1 (en) * 2002-12-13 2004-08-12 Bayer Corporation Detection methods using TIMP 1
WO2005015219A1 (fr) * 2003-07-21 2005-02-17 Roche Diagnostics Gmbh Utilisation de la proteinase 3(prn3) et de l'inhibiteur de l'elastase leucocytaire (ileu) en tant que marqueur pour le cancer colorectal
US20060179496A1 (en) * 2000-10-02 2006-08-10 Bayer Healthcare Llc Nucleic acid sequences differentially expressed in cancer tissue
EP1724586A2 (fr) * 2005-05-21 2006-11-22 ProteoSys AG Annexine pour l'évaluation du risque de cancer

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2920484A1 (de) 1979-05-21 1980-12-04 Bosch Gmbh Robert Messeinrichtung mit magnetischem kreis zum messen eines gleichstroms
US4529931A (en) * 1983-04-07 1985-07-16 Ford Motor Company Single-coil current measuring circuit
FR2581456B1 (fr) 1985-05-02 1987-07-17 Pasteur Institut Villine humaine, en tant que marqueur de cellules malignes primaires originaires du tube digestif, et moyens, en particulier anticorps diriges contre la villine humaine, pour la detection desdites cellules malignes
US5360715A (en) * 1988-06-07 1994-11-01 California Institute Of Technology Plastin isoforms and their uses
US5002870A (en) * 1988-06-07 1991-03-26 California Institute For Medical Research Plastin isoforms and their use
JP2816175B2 (ja) 1989-04-28 1998-10-27 三菱電機株式会社 直流電流測定装置
US5223789A (en) * 1989-06-23 1993-06-29 Fuji Electric Co., Ltd. AC/DC current detecting method
JPH0464068A (ja) 1990-07-02 1992-02-28 Fuji Electric Co Ltd 直流電流検出方法
CA2054149A1 (fr) 1990-10-29 1992-04-30 Eric Pringault Sequence du promoteur du gene de la villine et son utilisation dans des vecteurs, des lignees cellulaires mammaliennes transformees, des animaux transgeniques et des lignees cellulaires derivees de ces animaux
JP2892171B2 (ja) * 1991-03-22 1999-05-17 寳酒造株式会社 ポリペプチド
US6291205B1 (en) * 1992-06-12 2001-09-18 Merck & Co., Inc. Method of increasing production of disulfide bonded recombinant proteins by saccharomyces cerevisiae
US6001632A (en) * 1996-05-15 1999-12-14 Incyte Pharmaceuticals, Inc. Human protein disulfide isomerase
DE19642472A1 (de) 1996-10-15 1998-04-16 Abb Research Ltd Flußkompensierter Stromsensor
EP1135686B1 (fr) 1998-12-01 2006-11-22 WRAIR (Walter Reed Army Institute of Research) Diagnostic de la phase d'evolution ou de l'agressivite de cancers
EP1155126A2 (fr) 1999-02-22 2001-11-21 Incyte Pharmaceuticals, Inc. Genes associes a des maladies du colon
WO2000062070A2 (fr) * 1999-04-09 2000-10-19 Rigshospitalet Inhibiteur tissulaire de metalloproteinases matricielles type-1 (timp-1) comme marqueur de cancer
CA2384713A1 (fr) * 1999-09-29 2001-04-05 Human Genome Sciences, Inc. Polynucleotides et polypeptides associes au colon et au cancer du colon
AU2001289864A1 (en) 2000-09-08 2002-03-22 Bayer Aktiengesellschaft Regulation of human protein disulfide isomerase-like enzyme
US20020160382A1 (en) * 2000-10-11 2002-10-31 Lasek Amy W. Genes expressed in colon cancer
US7691567B2 (en) * 2000-10-30 2010-04-06 Board Of Regents, The University Of Texas System Methods and compositions relating to fortilin, an anti-apoptotic molecule, and modulators of fortilin
US20040018973A1 (en) 2002-01-25 2004-01-29 University Of Pittsburgh Nuclear matrix protein alterations associated with colon cancer and colon metastasis to the liver, and uses thereof
GB0208331D0 (en) 2002-04-11 2002-05-22 Oxford Glycosciences Uk Ltd Proteins
KR100595364B1 (ko) 2003-02-20 2006-07-03 재단법인 목암생명공학연구소 Lk8 단백질을 유효성분으로 포함하는 항암제
US20040191782A1 (en) * 2003-03-31 2004-09-30 Yixin Wang Colorectal cancer prognostics
WO2005015218A1 (fr) 2003-07-21 2005-02-17 Roche Diagnostics Gmbh Utilisation de la proteinase 3(prn3) et de l'inhibiteur de l'elastase leucocytaire (ileu) en tant que marqueurs pour le cancer colorectal
WO2005015226A1 (fr) 2003-08-08 2005-02-17 Roche Diagnostics Gmbh Utilisation de la plastine t de proteine (plst) comme marqueur du cancer colono-rectal
EP2026071B1 (fr) 2004-02-19 2013-07-31 Yale University Identification de biomarqueurs de protéines du cancer en utilisant des techniques protéomiques
EP1766091A4 (fr) * 2004-05-27 2009-03-18 Vertex Pharma Biomarqueurs pour le suivi d'inhibition de la voie de l'inosine monophosphate deshydrogenase (impdh)
CA2569079A1 (fr) * 2004-06-03 2005-12-15 The Johns Hopkins University Methodes de criblage de proliferation cellulaire ou de troubles neoplasiques
US20090297523A1 (en) 2004-07-27 2009-12-03 Yale University Erm family binding agents and their use in diagnosis and treatment of proliferative conditions
AT500719B1 (de) 2004-09-08 2010-06-15 Red Bull Gmbh Chaperone als tumormarker
JP2008527351A (ja) 2005-01-06 2008-07-24 イースタン バージニア メディカル スクール 前立腺癌のバイオマーカーとしてのアポリポタンパク質a−iiアイソフォーム
US20060192550A1 (en) 2005-02-25 2006-08-31 Sandquist David A Current sensor with magnetic toroid single frequency detection scheme
JP2008547028A (ja) 2005-06-24 2008-12-25 サイファージェン バイオシステムズ, インコーポレイテッド 卵巣癌用のバイオマーカー
EP2166357A1 (fr) 2005-08-18 2010-03-24 Zadec Aps Marqueur de protéines pour le diagnostic du cancer colorectal
EP1775590A1 (fr) * 2005-10-11 2007-04-18 Laboratorios S.A.L.V.A.T., S.A. Procédé non invasif pour la détection in vitro du carcinome transitionnel de la vessie
CN1967246A (zh) * 2005-11-18 2007-05-23 上海中科新生命生物科技有限公司 酰化氨基酸水解酶1及其抗体检测肝癌的应用
EP2537525A1 (fr) 2005-12-16 2012-12-26 Electrophoretics Limited Diagnostic et pronostic du cancer colorectal
WO2007140352A2 (fr) 2006-05-26 2007-12-06 Invitrogen Corporation Membrane plasmatique et biomarqueurs de cancer sécrétés
EP2057465A4 (fr) 2006-08-09 2010-04-21 Homestead Clinical Corp Protéines spécifiques d'organes et procédés d'utilisation
JP2010502970A (ja) 2006-09-08 2010-01-28 アンスティテュ・グスターブ・ルシ カルレティキュリン、KDEL受容体および/またはERp57の細胞表面露出を調節する化合物および癌の処置の効率を評価するためのその使用
CA2665090A1 (fr) 2006-09-22 2008-03-27 Dana-Farber Cancer Institute, Inc. Procedes pour traiter des troubles en rapport avec le mica
FR2919065B1 (fr) * 2007-07-19 2009-10-02 Biomerieux Sa Procede de dosage de l'apolipoproteine ai pour le diagnostic in vitro du cancer colorectal
ES2565512T3 (es) * 2007-07-19 2016-04-05 bioMérieux Procedimiento de ensayo de la proteína de unión a ácidos grasos del hígado, de ACE y de CA19-9 para el diagnóstico in vitro del cáncer colorrectal
FR2919063B1 (fr) * 2007-07-19 2009-10-02 Biomerieux Sa Procede de dosage du leucocyte elastase inhibitor pour le diagnostic in vitro du cancer colorectal.
FR2919064B1 (fr) * 2007-07-19 2009-10-02 Biomerieux Sa Procede de dosage de l'apolipoproteine all pour le diagnostic in vitro du cancer colorectal
FR2919061B1 (fr) * 2007-07-19 2009-10-02 Biomerieux Sa Procede de dosage de la plastine-i pour le diagnostic in vitro du cancer colorectal.
FR2919060B1 (fr) * 2007-07-19 2012-11-30 Biomerieux Sa Procede de dosage de l'ezrine pour le diagnostic in vitro du cancer colorectal.
FR2933773B1 (fr) * 2008-07-10 2013-02-15 Biomerieux Sa Procede de dosage de la proteine disulfide isomerase pour le diagnostic in vitro du cancer colorectal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060179496A1 (en) * 2000-10-02 2006-08-10 Bayer Healthcare Llc Nucleic acid sequences differentially expressed in cancer tissue
US20030082533A1 (en) * 2001-01-26 2003-05-01 Henry Yue Intelectin
US20030087818A1 (en) * 2001-02-02 2003-05-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
US20040157278A1 (en) * 2002-12-13 2004-08-12 Bayer Corporation Detection methods using TIMP 1
WO2005015219A1 (fr) * 2003-07-21 2005-02-17 Roche Diagnostics Gmbh Utilisation de la proteinase 3(prn3) et de l'inhibiteur de l'elastase leucocytaire (ileu) en tant que marqueur pour le cancer colorectal
EP1724586A2 (fr) * 2005-05-21 2006-11-22 ProteoSys AG Annexine pour l'évaluation du risque de cancer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200777 Thomson Scientific, London, GB; AN 2007-817830 XP002464797 & CN 1 967 246 A (PROTEOME ANALYSIS RESEARCH CENTER) 23 mai 2007 (2007-05-23) *
DUFFY M.J. ET AL.: "Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use." EUR. J. CANCER, vol. 43, no. 9, 7 juin 2007 (2007-06-07), pages 1348-1360, XP022107659 ISSN: 0959-8049 *
MILLER Y.E. ET AL.: "Lack of expression of aminoacylase-1 in small cell lung cancer ; Evidence for investigation of genes encoded by chromosome 3p." J. CLIN. INVEST., vol. 83, no. 6, juin 1989 (1989-06), pages 2120-2124, XP002464796 cité dans la demande *
MORI Y. ET AL.: "A genome-wide search identifies epinenetic silencing of somatostatin tachykinin-1, and 5 other genes in colon cancer." GASTROENTEROLOGY, vol. 131, 2006, pages 797-808, XP002464795 *
MORI Y. ET AL.: "Two-dimensional electrophoresis database of fluorescence-labeled proteins of colon cancer cells." J. CHROMATOGR. B, vol. 823, 2005, pages 82-97, XP002464794 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118474A1 (fr) 2013-02-01 2014-08-07 bioMérieux Procédé de detection d'un cancer colorectal

Also Published As

Publication number Publication date
US20100129844A1 (en) 2010-05-27
AU2008285555B2 (en) 2014-08-14
FR2919062B1 (fr) 2009-10-02
JP5559050B2 (ja) 2014-07-23
EP2167970B1 (fr) 2016-02-17
CN102124343B (zh) 2014-07-02
CA2693090A1 (fr) 2009-02-12
ES2570609T3 (es) 2016-05-19
US8367362B2 (en) 2013-02-05
JP2010533850A (ja) 2010-10-28
FR2919062A1 (fr) 2009-01-23
WO2009019366A3 (fr) 2009-05-07
AU2008285555A1 (en) 2009-02-12
CN102124343A (zh) 2011-07-13
EP2167970A2 (fr) 2010-03-31

Similar Documents

Publication Publication Date Title
EP2171469B1 (fr) Procede in vitro de dosage du leucocyte elastase inhibitor pour le diagnostic du cancer colorectal
EP2171467B1 (fr) Procede de dosage de la liver fatty acid-binding protein, de l&#39;ace et du ca19-9 pour le diagnostic in vitro du cancer colorectal
EP2294421B1 (fr) Procede de dosage de la proteine disulfide isomerase pour le diagnostic in vitro du cancer colorectal
EP2171468B1 (fr) Procede de dosage de l&#39;apolipoproteine ai pour le diagnostic in vitro du cancer colorectal
EP2167972B1 (fr) Procede de dosage de l&#39;apolipoproteine aii pour le diagnostic in vitro du cancer colorectal
EP2443152B1 (fr) Procédé de dosage de la prodéfensine-a6 pour le diagnostic in vitro du cancer colorectal
EP2167971B1 (fr) Procede de dosage in vitro de l&#39;ezrine pour le diagnostic du cancer colorectal
EP2171466B1 (fr) Procede de dosage de la plastine-i pour le diagnostic in vitro du cancer colorectal
EP2167970B1 (fr) Procede de dosage in vitro de l&#39;aminoacylase 1 pour le diagnostic du cancer colorectal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880025245.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08827058

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008827058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12452048

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008285555

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2693090

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010516548

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008285555

Country of ref document: AU

Date of ref document: 20080710

Kind code of ref document: A