WO2009016270A1 - Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales - Google Patents
Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales Download PDFInfo
- Publication number
- WO2009016270A1 WO2009016270A1 PCT/FR2007/001297 FR2007001297W WO2009016270A1 WO 2009016270 A1 WO2009016270 A1 WO 2009016270A1 FR 2007001297 W FR2007001297 W FR 2007001297W WO 2009016270 A1 WO2009016270 A1 WO 2009016270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- rotor
- hydraulic
- exhaust
- drawer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H39/00—Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
- F16H39/02—Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motors at a distance from liquid pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M19/00—Transmissions characterised by use of non-mechanical gearing, e.g. fluid gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/34—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
- F01C1/344—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F01C1/3441—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
- F01C1/3442—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C20/00—Control of, monitoring of, or safety arrangements for, machines or engines
- F01C20/06—Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for stopping, starting, idling or no-load operation
Definitions
- Hydraulic device in particular a hydraulic pump comprising a rotor with vanes, for vehicles equipped with pedals
- the present invention relates to a hydraulic device, intended to equip a vehicle equipped with pedals for the transmission of the driving energy supplied by the driver of the vehicle, said pedals to at least one driving wheel, comprising:
- a hydraulic pump provided with a rotor rotatably mounted in a pump casing
- a hydraulic motor provided with an engine rotor rotatably mounted in an engine casing
- Fluidic connection means between said hydraulic pump and said hydraulic motor, so as to establish a closed circuit for circulating a transmission fluid between the pump and the motor.
- the invention relates more specifically to the hydraulic pump of the device.
- the prior art teaches with US Pat. No. 5,387,000 such a device, the variable displacement hydraulic pump of which is a piston pump comprising a crankshaft, and a planetary gearbox for multiplying the number of rotations of the crankshaft.
- the ratio of the rotational speed of the drive wheel to the rotational speed of the crankshaft is determined by the ratio of the amount of oil sent by the pump to the amount of oil in the hydraulic motor.
- Such a device has the major disadvantage of being complex, heavy, and expensive to manufacture, mainly because of the use of a planetary gearbox, and a piston pump.
- the device disclosed by this document is not adaptable to a conventional frame of two-wheelers, and therefore requires a specific frame, which highlights a lack of flexibility of use.
- DE 196 12 519 which partially overcomes these disadvantages and discloses a bicycle-type vehicle with hydraulic transmission, comprising a variable displacement pump with a paddle rotor, the pump housing being a Fixed casing rigidly fixed to the frame.
- the flow variation is obtained by a mechanism internal to the pump housing, according to a system of joints comprising at least two hinges and a slide.
- Such a flow variation system is complex and requires sealing with the outside.
- the present invention proposes to overcome these disadvantages, and to provide other advantages. More specifically, it consists of a hydraulic device, intended to equip a vehicle equipped with pedals for the transmission of motive power provided by the driver of the vehicle, said pedals to at least one driving wheel, comprising:
- a hydraulic pump provided with a rotor rotatably mounted in a pump casing
- a hydraulic motor provided with an engine rotor rotatably mounted in an engine casing
- said hydraulic pump comprises a paddle rotor, and in that it comprises:
- means for varying the flow rate of the hydraulic pump, for a determined constant speed of rotation of the vane rotor comprising a drawer means, movable in translation in a chamber, in a radial direction with respect to said vane rotor; .
- the drawer means provides a simple means for the flow rate variation of the pump, which has the important advantage of not requiring a seal between the drawer and the outside.
- said vane rotor is connected to said pump casing in a connection having a single degree of freedom in rotation, and the device according to the invention comprises a contact surface between one end of the vanes of said vane rotor. and the pump housing.
- said means for a connection of the 0 pedals to said vane rotor comprise a rigid connection between the pedals and the rotor, at least in a direction of rotation of the pedals.
- said slide means movable in translation in a chamber, in a radial direction relative to said paddle rotor, separates an intake zone from the transmission fluid in the pump of an exhaust zone from the transmission fluid; of the pump, said drawer means comprising:
- a first end having a first surface in contact with at least one pallet of said paddle rotor, a first part of said first end of the drawer means being subjected to the exhaust pressure of the transmission fluid, a second part of said first end of the drawer means being subjected to the inlet pressure of the transmission fluid in the pump,
- the drawer means moves away from the axis of the paddle rotor under the effect of the first part of the first end of the drawer means, which is subjected to the exhaust pressure of the transmission fluid, and
- said means for putting the second surface, via the transmission fluid, either at the exhaust pressure or at the intake pressure comprise:
- the device according to the invention comprises resilient return means of said drawer means, in maximum away position from the axis of the vane rotor.
- the device according to the invention comprises a first and a second blade, integral with said drawer means, for guiding said pallets, in their displacements between the pump casing and said drawer means and vice versa.
- the device according to the invention comprises an overpressure means disposed on the exhaust of the pump, so as to increase the exhaust pressure of the transmission fluid.
- Such a feature facilitates the entry into action of the means for vary the flow rate of said hydraulic pump, from the actuation of the pedals by the user.
- said overpressure means is disposed in the exhaust zone of the pump downstream of said first valve connecting the exhaust zone of the pump to the chamber in which said drawer means moves, on the side of said second surface.
- said overpressure means comprises:
- valve means capable of closing off the exhaust of the hydraulic pump
- valve means such that said valve means releases the exhaust of the hydraulic pump beyond a predetermined pressure of the transmission fluid to the exhaust.
- said paddle rotor comprises an outer surface of circular cross section, intended to be in contact with the transmission fluid.
- said vane rotor comprises an outer surface of elliptical cross section intended to be in contact with the transmission fluid.
- said vane rotor comprises vane chambers provided with at least one spring exerting a thrust on each vane, so as to seal each vane against the surface of the casing of the hydraulic pump.
- the device according to the invention comprises separate manual control means:
- said first valve connecting the exhaust zone of the pump to the chamber in which the drawer means is moving, on the side of said second surface;
- said second valve connecting the inlet zone of the pump to the chamber in which the drawer means is moving, on the side of said second surface.
- the device according to the invention comprises:
- a hydraulic sensor for measuring the torque exerted on the pump rotor;
- a rotational speed sensor for measuring the rotational speed of the rotor of the hydraulic pump;
- said second valve connecting the inlet zone of the pump to the chamber in which the drawer means is moving, on the side of said second surface.
- a first mode, manual comprising for example a speed increase button and a speed decrease button, all advantageously operating entirely by hydraulic system
- a second mode, automatic also advantageously fully managed by hydraulics.
- the controllers for varying the flow rate of the pump are then controlled by a hydraulic sensor for the rotational speed of the rotor of the pump, as well as by a hydraulic force torque sensor advantageously integrated with the pump, for example placed between the hub of the pump. drive the pump and the paddle rotor. It is thus proposed a true power-controlled automatic transmission, intended for example to equip the bicycles. Such a mechanism allows the cyclist to no longer worry about the gear change as a function of the resistance to effort.
- the device according to the invention further comprises means for selecting manual control means or automatic control means, said first and second valves.
- said selection means comprise a hydraulic selector of the hydraulic distributor type, and manual control means of said hydraulic selector.
- said means for a rigid connection of the pump casing to a frame or chassis of said vehicle comprise: - a threaded cylinder integral with said pump casing, adapted to be screwed into the threaded sleeve of said frame intended to house a pedal, - Clamping jaws, for clamping said pump housing on a tube of said frame.
- This feature offers a device for example in the form of ready-to-mount adaptable on standard bicycle frames as they exist today.
- This kit may for example include a hydraulic pump, a crankset, a hydraulic vane motor adapted to be fixed on the freewheel hubs currently on the market, hydraulic transmission lines, joystick control knobs and their hydraulic cables.
- FIGS. 1A and 1B respectively represent a schematic cross-sectional view of an exemplary embodiment of a hydraulic pump comprising a vane rotor forming part of a device according to the invention, according to two operating positions.
- Figures 2A and 2B show respectively an enlarged schematic cross-sectional view of an exemplary embodiment of a detail of the hydraulic pump according to Figures IA and IB, according to two operating positions.
- FIG. 3 shows a schematic rear view of the hydraulic pump according to Figures IA and IB.
- FIG. 4 represents an overall schematic view of an exemplary embodiment of a device according to the invention, mounted on a standard bicycle frame, and comprising a hydraulic pump according to the example of FIGS. 1A and 1B.
- Fig. 1A shows the hydraulic pump 100 of the device 90 in the minimum flow position
- Fig. 1B shows the hydraulic pump 100 in the maximum flow position, as will be explained in more detail below.
- the hydraulic device 90 intended to equip a vehicle 91 provided with pedals (not shown) for the transmission of the driving energy supplied by the driver (not shown) of the vehicle 91, by example a bicycle, pedals with a driving wheel 93, comprises:
- a hydraulic pump 100 as more particularly shown in FIGS. 1A and 1B, provided with a rotor 102 with vanes 104 rotatably mounted in a pump housing 101,
- a hydraulic motor 131 as shown in FIG. 5, provided with a rotor (not shown) for a motor rotatably mounted in an engine casing,
- the means for a rigid connection of the pump casing 101 to the frame 94 of the bicycle 91 advantageously comprise :
- the pump 100 is rigidly fixed to the frame, advantageously without modification of the latter, by using the location for fixing a conventional bottom bracket bearing, and a frame tube leaving the threaded sleeve to prevent the casing from pump to rotate around the crank axle.
- the means 130 for linking the pedals (not shown) to the rotor 102 with vanes 104 comprise a rigid connection between the pedals and the rotor, at least in a direction of rotation of the pedals, for example a square for taking the pedals, formed and centered along the axis of rotation of the rotor 102.
- the connection between the pedals and the rotor 102 may comprise a free wheel so that the pedals drive the rotor 102 in a direction of rotation only, that of course the advancement of the bicycle.
- the pump 100 shown in Figures IA and IB, consists of a housing 101 external whose basic shape is substantially a rectangular parallelepiped which is attached a half-disk in the lower part. The set is about a few centimeters thick.
- the housing 101 has two flat faces, the front face 106 and the rear face 107 shown in Figure 3.
- the housing 101 has between the two flat faces 106 and 107, a slice, having a front slice 108, a rear slice 109 , an upper wafer 150, and a lower wafer 144.
- the wafer 108 may comprise, for example, as shown, a plug 143 which serves as a filler cap and fluid drain plug of the pump 100.
- the upper wafers 150, before 108, and rear 109 will adopt for example a flat profile or substantially flat, while the lower portion 144 will preferably adopt a rounded profile in the form of a half-disk, advantageous to avoid hanging the housing 101 obstacles encountered on the ground on which the bicycle is traveling.
- FIG. 1A or 1B at the point of concurrence of the radii of the half-disk of the casing 101 on the front and rear face of the casing 101, there are two bearings (not shown) of the rotor 102, determining the theoretical axis 137 of FIG. rotation of the rotor, and allowing the passage of the pedals.
- an inlet orifice 146 preferably of circular section, situated on the side of the front edge 108, and which corresponds to the input of the transmission fluid into the pump 100 in a zone of intake 11 of the fluid
- an outlet port 147 preferably of circular section, located on the side of the rear slice 109, and which corresponds to the output of the transmission fluid under pressure, outside the exhaust zone 1 12 of the pump 100.
- the rotor 102 Inside the housing 101 is the rotor 102 whose central axis 137 is positioned at the point of concurrence of the radii of the half-disk constituting the lower part of the outer casing 101.
- the rotor 102 is pierced at its center by a hole 145 for example square allowing a grip for the pedals so that the latter can drive the rotor 102 in rotation in its circular motion in the housing 101 about the axis 137.
- the rotor 102 with pallets 104 comprises an outer surface 141 cylindrical circular cross section as shown, intended to be in contact with the transmission fluid, or alternatively a cylindrical outer surface of elliptical cross section (not shown), intended to be in contact with the transmission fluid.
- the elliptical shape makes it possible to obtain variations in resistance during a cycle of rotation of the pedal.
- the resistance will be maximum, and when they are aligned vertically, the resistance will be minimal.
- the thickness of the rotor 102 is equal to the internal thickness of the casing 101, between the front 106 and the rear 107 of the latter.
- the outer diameter of the rotor 102 is smaller than a dimension of the inner surface of the housing 101 opposite the outer surface of the rotor, so that there is a volume 103 in which the fluid of transmission can flow through the pallets 104, inside the housing 101, between the outer surface of the rotor 102 and the inner surface of the housing 101.
- the inner surface of the housing 101 advantageously adopts a half-cylindrical shape with a semi-circular cross section .
- the free surfaces, outer rotor 102 on the one hand and inner housing 101 on the other hand, vis-à-vis one another, are advantageously parallel to the part of the rotor located below the axis of rotation 137, as shown in Figures IA or I B.
- the sealing of the pump 100 will be provided in any manner known to those skilled in the art in the field of pallet pump, for example by means of O-ring, rotary joint, suitable mechanical machining for sealing against pressure between rotor 102 and outer casing 101.
- the rotor 102 with vanes 104 is thus connected to the casing 101 of the pump 100 in a connection having a single degree of freedom in rotation, and a contact surface 132 is present between one end 133 of the radial pallets 104 of the rotor 102 with pallets Ie pump housing.
- the rotor 102 is the support of the pallets 104, which are the driving elements of the pump.
- the rotor 102 is pierced with several parallelepiped cavities, called pallet chambers 105, arranged on its radial planes parallel to the axis of rotation 137 of the rotor. These pallet chambers 105 are angularly distributed regularly on the rotor 102. They are intended to accommodate the pallets 104.
- Their depth is at least equal to the length of the pallets 104 so that the latter can retract completely to the pallet. inside.
- the mechanical machining of the pallets 104 is carried out in a precise manner so that there is a pressure seal between the chambers 105 with vanes and the internal cavity 103 of the pump 100.
- springs 148 may be placed inside chambers 105 with pallets. These springs 148 will function to push the pallets 104, in particular abutment on the inner surface 132 of the housing 101, to ensure a better seal on the pump, and more generally on any surface on which the end of a pallet is intended to slide while sealing.
- each pallet chamber 105 may be pressurized in order to push the pallets 104 abutting on the friction surfaces mentioned above. The internal pressure of the vane chambers 105 will be ensured by a connection with the pressurized transmission fluid recovered at the outlet of the pump, for example in the exhaust zone thereof.
- the number of pallets 104, their angular distribution on the rotor 102 and their external shape may differ.
- the pallets 104 may be hollow inside in their longitudinal direction, in order to gain mass. In the case where the abutment of the pallets 104 is held by a pressurization of fluid, as explained above, the inner hollow of the pallets 104 would be closed, at least on the side of the end of the pallets, distal to the center of rotation 137 of the rotor 102.
- the means 110 for varying the flow rate of the hydraulic pump 100, for a fixed constant speed of rotation of the rotor 102 with vanes 104, comprise a drawer means 113, movable in translation in a chamber 1 19, in a radial direction 134 relative to said vane rotor.
- the axis 134 of translational movement of the drawer means is vertical, parallel to the front faces 108 and rear 109 of the pump casing 101, and located between the inlet openings 146 and exhaust 147 pump.
- the drawer means 13 comprising:
- the hydraulic pump 100 further comprises:
- said first 14 and second 17 surfaces of the drawer means 13 being defined so that: when the second surface 17 is subjected to the inlet pressure, the drawer means 13 moves away from the axis 137 of rotor 102 with vanes 104 under the effect of the first portion 15 of the first end 135 of the slide means, which is subjected to the exhaust pressure of the transmission fluid, and
- the slide means 13 approaches the axis 137 of the rotor 102 with blades 104, under the effect of the second portion 16 of the first end. 135 of the drawer means, which is subjected to the inlet pressure of the transmission fluid.
- the sliding drawer means 1 13 modifies the geometry of the pump 100 by separating the intake zone 11 1 of the exhaust zone 1 12 in the cavity internal
- This drawer means 1 13 has for example the shape of a rectangular parallelepiped, two corners of which have been recessed at the end 135 of the side of the rotor 102, giving way to two lateral surfaces, for example concaves 115 and 116, separating the central surface 1 14 remaining on the rotor side 102, also concave with for example a circular arc profile.
- This central surface 1 14 is in contact with the distal end of the pallets
- the front side surface 1 16 is located on the side of the zone 1 1 1, and the rear side surface 1 15 is located on the side of the exhaust zone 1 12.
- the profile of the central contact surface 114 of the rotor is advantageously that of an arc of a circle whose radius is slightly greater than the radius of the outer surface 141 of the rotor 102.
- the length of this arc is slightly greater than the length of the virtual arc constituted by the ends of two successive pallets 104 when they are in extension outside the rotor 102 and against this central surface 1 14, that is to say when the drawer means is in abutment in the farthest position of the rotor 102.
- the aim is that there is always a pressure-tight separation between the intake zone 1 1 1 and the exhaust zone 1 12 of the pump 100 regardless of the position of the drawer means 1 13.
- This watertight separation is ensured by the fact that there is always at least one pallet 104 whose extr The distal eminence is in contact with the separating surface 1 14 regardless of the angular position of the rotor 102.
- the shape of the separating surface 1 14 can be varied to minimize friction while sealing with the pallets 104.
- the lateral surfaces rear 1 15 and before 1 16 have the function of exercising simultaneously on the tray 1 13 a pressure corresponding to the exhaust and the admission on their respective surfaces, to allow the displacement of the drawer 1 13 as will be explained further.
- the front and rear ends of the central contact separating surface 1 14 are respectively integral with a first 1 18 and a second 138 blades, whose function is to guide the radial displacement of the pallets 104 in the rotor 102 between the housing pump and the drawer means 1 13, and vice versa, as shown in Figures IA and IB, regardless of the direction of rotation of the rotor.
- the blades 1 18 and 138 each adopt an elongate shape in their longitudinal direction along a connection curve defined to minimize, or make as progressive as possible, the forces or stresses imposed on a pallet 104 in its displacement between the surface 132 of the housing and the surface 114 of the drawer means, and vice versa.
- the assembly constituted by the two blades 118 and 138 combined with the contact surface 1 14 of the drawer 1 13 is called a vane guide.
- the blades 18 and 138 comprise a plurality of passages (not shown) allowing the transmission fluid to pass through.
- the shape of the longitudinal profile of the blades can vary, in addition to seeking a minimum resistance to the flow of the fluid.
- the blades 1 18 and 138 will advantageously be rigid to ensure sufficient resistance to the guidance of the pallets 104, and their displacement relative to the pump housing is a translation similar to that of the drawer means.
- the connection profile of the blades 1 18, 138 on the wall 132 of the housing will preferably be tangential in order to minimize the surface change force for a pallet 104.
- the drawer means 113 is embedded in a parallelepiped chamber 1 19 with which it is sealed, for example by means of a peripheral seal, O-ring type.
- the volume of the chamber 119 varies according to the position of the means drawer.
- the means for putting the second surface 1 17 of the slide means 1 13, via the transmission fluid, either to the exhaust pressure or to the inlet pressure advantageously comprise:
- a first valve 122 called exhaust valve 122, connecting the exhaust zone 112 of the pump 100 to the chamber 119 in which the drawer means 1 13 moves, on the side of said second surface 117,
- a second valve 121 called intake valve 121, connecting the intake zone 11 of the pump 100 to the chamber 1 19 in which the drawer means 1 13 moves, on the side of said second surface 1 17.
- the inlet valve 121 is preferably located as close as possible to the bottom surface 120 of the chamber 119. This intake valve 121 makes it possible to control a fluidic opening between the chamber 1 19 and the inlet zone 11. 1.
- the exhaust valve 122 is also preferably located as close as possible to the bottom surface 120 of the chamber 1 19. This exhaust valve 122 makes it possible to control a fluid opening between the chamber 119 and the exhaust zone 1 12.
- the hydraulic pump 100 advantageously comprises elastic return means 142 of the slide means 113, in the position of maximum distance from the axis 137 of the rotor 102 to pallets 104, that is to say in the contact position of the bottom surfaces 120 119 and 117 of the drawer means.
- the elastic return means 142 may for example consist of traction springs as shown, embedded in the bottom of the chamber 119.
- the elastic return means 142 make it possible to keep the pump in the minimum flow position when no action is taken. on the pedals, and allows don a vehicle start by providing minimal effort.
- FIG. 2A represents an exemplary embodiment of a valve 121 or
- a valve 121 or 122 consists of a plate 201, for example round, and contiguous tangentially to a valve axis 202. This axis 202 slides on one side in a perforation of the chamber 119, and on the other in a support 203 of the axis 202, fixed on the surface containing a valve orifice 204 through which the transmission fluid passes when the valve is open.
- Precise machining allows the axis 202 sliding in its supports to slide the plate 201 on the surface having the orifice 204.
- the plate 201 is sealingly joined to the surface having the orifice 204.
- the diameter of the plate 201 from the valve is necessarily greater than the diameter of the orifice of the valve 204, so that there is an overlap surface between the two, sufficiently large to ensure pressure tightness.
- valve 121 or 122 The opening and closing of a valve 121 or 122 is therefore done by translation of the plate 201 which either free or obstruct the orifice of the valve 204.
- the axis 202 of the valve 121 or 122 passes through one of the walls of the chamber 119 and extends outside and then ends with a piston 208.
- a cylindrical cap 210 is slipped on the outer portion of the axis 202 of the valve. This cap 210 thus encloses a cylindrical volume containing the piston 208, and constituting the cylinder 205 of the valve. By precise machining, the cap 210 ensures a pressure-tight contact with the piston 208.
- An opening 206 at the top of the cylinder 205 of the valve receives a hydraulic inlet which allows the control of the valve. The diameter of the opening is smaller than the diameter of the piston 208 so that it does not rush into the opening.
- a spring is threaded on the axis 202 of the valve and serves to reposition the valve at rest in the closed position.
- the valve When the valve is at rest, it is closed, that is to say that the orifice 204 is obstructed by the plate 201 of the valve. This means that the piston is released as far as possible towards the arrival of the opening 206 for controlling the valve.
- the piston When a fluid under pressure is brought into the opening 206 of the valve, the piston 208 is translated inwardly of the chamber 1 19 of the drawer means.
- the plate 201 of the valve shifts relative to the orifice, and the valve is open.
- the stroke of the piston 208 is equal to the exact distance to be traveled so that the orifice 204 is completely exposed by the plate 201.
- the open state of the valve can be reversed in relation to its state of rest.
- the orifice in the rest position, the orifice is not located below the plate, but offset by a distance substantially equal to the stroke of the piston. In this way when the piston is operated to the maximum, the orifice is completely covered by the plate, and conversely, when the piston is released, the orifice is fully open.
- the shape of the orifice 204 of the valve and the shape of the plate 201 of the valve can of course vary.
- the hydraulic device shown partially in FIGS. 1A and 1B advantageously comprises a pressure relief means 123 disposed on the exhaust of the pump 100, so as to increase the exhaust pressure of the transmission fluid.
- the means 123 of excess pressure is preferably arranged in the exhaust zone 1 12 of the pump downstream of the exhaust valve 122 connecting the exhaust zone 1 12 of the pump 100 to the chamber 1 19 in which moves the drawer means 113 on the side of the second surface 117 thereof.
- the means 123 of overpressure comprises for example:
- valve means 139 able to close off the exhaust of the hydraulic pump 100
- valve means 139 releases the exhaust of the hydraulic pump 100 beyond a determined pressure of the transmission fluid to the exhaust.
- the overpressure means 123 may be disposed on the upper edge 150 of the casing 101.
- the valve means 139 may consist of a small piston 151, for example parallelepiped, lightened, which slides in a channel 124, one side of which opens on the outside the pump, in the open air, and the other side opens into the exhaust zone 112 of the pump, between the rotor 102 and the exhaust port 147.
- the piston 151 comprises a first end face 125 facing the exhaust zone 112, and a second end face 126 opposite to the first face on the outside. Piston 151 and piston channel 124 are both precisely machined so that there is a pressure seal between the two.
- the stroke of the piston 151 is limited on one side by a stop against the inner wall of the pump housing in the exhaust zone 1 12, and on the other side by a stop 127 transverse to the channel.
- a compression spring 140 connects the stop 127 of the piston 151 to the surface 126 in the open air thereof.
- the contact surface 125 of the piston 151 has a profile specially designed so that, since the piston is abutting on the wall of the housing in the exhaust zone 112, the pressurized fluid escaping from the rotor 102 can act on the surface of the piston. contact 125 in order to push the piston 151 inside its channel 124, in order to release the passage of the transmission fluid through the exhaust opening 147.
- the contact surface 125 of the piston is designed to match the profile of the exhaust channel at their contact.
- the piston 151 When the piston 151 is fully retracted into its channel 124, it completely releases the exhaust channel to let the transmission fluid to the hydraulic motor 131.
- the pallets 104 of the rotor 102 draw the fluid at the intake zone 111.
- a certain volume of fluid is trapped between two successive pallets 104.
- This volume which is constant regardless of the position of the drive, is called admitted fluid unit.
- the rotor 102 continues to rotate and drives this fluid unit admitted to the exhaust 112 of the pump.
- the contact surface 114 of the drawer means 113 is at a maximum distance from the rotor 102, the fluid, driven by the pallets 104, can rush into this space and return to the inlet 111 of the pump . That is the amount of transmission fluid between the rotor 102, the contact surface 114 of the spool 113, and two consecutive pallets 104: this fluid quantity is referred to as the return fluid unit.
- a return fluid unit is slightly less than one admitted fluid unit.
- the volume difference between an admitted fluid unit and a return fluid unit is referred to as a pumped fluid unit.
- the balance sheet is therefore as follows: for each unit of fluid admitted, there is a unit of return fluid which goes back to the inlet 111 and a pumped fluid unit which is compressed towards the exhaust 112;
- the flow rate of the pump becomes respectively zero or negative.
- the prerequisite is that the pallets 104 always seal with the piston between the intake 111 and the exhaust 112. A negative flow then means that the fluid is sucked on the exhaust side 112 to be discharged on the side of the exhaust. admission 111.
- the second case is the intermediate level.
- the drawer 113 is halfway between its minimum flow position (FIG. 1A) and its maximum flow position (FIG. 1B).
- FIG. 1A minimum flow position
- FIG. 1B maximum flow position
- the third level is the maximum level, shown in Figure IB.
- the drawer means is pressed against the rotor 102.
- the pallets 104 when they reach the pallet guide, are progressively retracted until they are almost completely sunk into the rotor 102, while still ensuring sealing.
- the drawer 113 is almost pressed against the wheel 102, the pallets 104 forming a seal between the intake 11 and the exhaust 112 of the pump. In this configuration, all the fluid driven by the pallets 104 is forced toward the pump outlet.
- the intermediate positions of the spool between the extreme positions are as follows. It is assumed that one is placed in the case of a nominal application, in which the direction of rotation of the pump is nominal, and in which the exhaust flow is positive and not bad. From the moment when the pump is rotating, there is a differential pressure which is created between the intake 111 and the exhaust 112. If this were not the case, we can add, according to an alternative described above. , a positive pressure means 123 positioned on the exhaust 112, as shown in Figures 1. The role of this pressure means 123 is to obstruct the exhaust 112 of the pump as a certain pressure value n ' is not reached to the exhaust 1 12, creating the differential pressure necessary for the operation of the drawer means 113. When the necessary pressure is reached at the exhaust 112, this pressure has the effect of retracting the piston 151 of overpressure in its channel, thus freeing the exit of the exhaust 112.
- the pressure P 3 is applied on the side surface 116 of the inlet, and partly on the central surface 114 of contact with the pallets, to the point of contact of the first pallet 104 which is sealing the 111.
- the force on the side of the chamber 119 is greater. It has the effect of pushing the drawer 113 to the rotor 102, and therefore increase the flow rate of the pump.
- the exhaust valve 122 is closed, the drawer 113 remains at the position where it is at the time of closing of the valve, and this due to the incompressible characteristic of the fluid.
- the device shown advantageously comprises separate manual control means 401, 301, 303:
- the device shown advantageously also comprises:
- a hydraulic sensor (not shown) for measuring the torque exerted on the rotor 102 of the pump 100
- a rotational speed sensor (not shown), for measuring the rotation speed of the rotor 102 of the pump 100, separate automatic control means 304, 305:
- the manual and automatic control means of the exhaust and intake valves advantageously allow the user of the vehicle to have two modes of regulation of the power transmitted via the pedals.
- the first mode is the manual mode.
- the user has a control lever 401 preferably fixed on the handlebars of the vehicle, comprising two hydraulic pushbuttons (not shown), which, when pressed, pump a small volume of fluid to a control of the vehicle. pump to which they are respectively connected, as described below, via a hydraulic cable, for example similar to those currently existing on the market cycles to actuate the hydraulic disc brakes.
- the first push button called the deceleration button, is connected to the manual control 301 for reducing the flow rate of the pump. This is itself connected via a hydraulic selector 302, for example, for selecting the transmission mode, to the inlet valve 121 of the pump.
- the second push button, called the acceleration button is connected to the manual control 303 for increasing the flow rate of the pump. The latter is itself connected, via the hydraulic selector 302 of the transmission mode, to the exhaust valve 122 of the pump.
- the user When the user has selected the manual transmission mode, via for example a manual control 306 of the hydraulic selector 302, and that he presses the deceleration button, it opens the intake valve 121, which slides the drawer 1 13 of the pump towards the bottom surface 120. This causes a decrease in the pumped flow for the same speed of rotation of the pedal, so a lower power transmission, so less resistance of the pedal to the user.
- the converse of the phenomenon is true and causes the opposite effects when the user actuates the acceleration button.
- the user releases either button it stops and locks the drawer to the position where it is, thus freezing the flow rate of the pump in proportion to the speed of rotation of the pedal.
- the second mode is the automatic transmission mode. In this case, the user has no action to perform to manage the power transmission.
- the system automatically regulates the flow rate of the pump according to the resistance exerted on the pedals, and the speed of rotation of the rotor 102.
- the pump 100 is advantageously equipped at its hub with a hydraulic force torque sensor. on the one hand, and it is equipped on the edge of the rotor 102 with a hydraulic speed sensor on the other hand.
- the hydraulic force torque sensor is for example a small system that pumps a small volume of fluid proportional to the torque exerted on the hub. This volume of fluid is injected at the inlet of an automatic control 304 for reducing the flow rate of the hydraulic selector 302 of the transmission mode, as shown in FIG. 3.
- the hydraulic force torque sensor opens the intake valve 121, thus reducing the flow rate of the fluid pumped by the pump for the same speed of rotation.
- the hydraulic speed sensor is a small system that pumps a small volume of fluid proportional to the speed of rotation of the pump. This volume of fluid is injected at the input of the automatic control 305 for increasing the flow rate of the hydraulic selector 302 of the transmission mode, as shown in FIG. 3.
- the hydraulic speed sensor opens the exhaust valve 122, thereby increasing the flow rate of the fluid pumped by the pump for the same speed of rotation.
- the cyclist has a button on the handlebar which actuates the 306 control of the hydraulic selector 302 and switches it from one hydraulic circuit to another.
- the hydraulic selector 302 may advantageously be of the 3/2 double hydraulic distributor type, as shown in FIG.
- the control handle 401 is fixed on the handlebar by a conventional clamping system identical to the current brake handle attachment systems.
- the hydraulic pump requires a suitable fixing at the level of its housing.
- a threaded tube on the outer side, male thread, called screwing cylinder 402 centered on the hub of the pump wheel, perpendicular to the rear face 107 of the pump, and the diameter of the screw is compatible with the female thread of the crankset of the frame of the bicycle, is welded on the pump housing.
- a clamping jaw 403 of the pump is welded perpendicular to the rear face 107 of the pump.
- the attachment of the pump is as follows: first, the pump is positioned in the axis of attachment of the female threaded tube of the pedal.
- the drive shaft of the pedal is inserted into the hub of the pump. Then the male threaded tube is screwed into the female threaded tube of the crankset. Finally, the clamping jaw of the pump 403 is blocked at the base of the seat tube of the frame of the bicycle.
- the hydraulic motor 131 of the rear wheel is of known type and commercially available, and also contains special fixings. Its hub is identical to the hubs of the gears cassettes of the current market. It also contains a jaw 404 for fixing and clamping the engine.
- the attachment of the hydraulic motor 131 is as follows: the rear wheel is removed from the bicycle; the hub of the motor 131 is introduced in the axis of the freewheel; the rear wheel 93 motor is raised on the frame of the bicycle; finally, the motor clamping jaw 404 is locked on the lower tube of the rear triangle of the bicycle frame.
- the fluidic connection means 405 between the hydraulic pump 100 and the hydraulic motor 131, so as to establish a closed circuit for circulating a transmission fluid between the pump and the engine, are hydraulic pipes of any known type, of which the ends are attached to the appropriate inputs and outputs of the hydraulic pump and motor as described above.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Rotary Pumps (AREA)
Abstract
Dispositif hydraulique (90), destiné à équiper un véhicule muni de pédales en vue de la transmission de l'énergie motrice fournie par le conducteur du véhicule, des pédales à une roue motrice au moins, comportant : une pompe hydraulique (100) munie d'un rotor (102) monté rotatif dans un carter de pompe (101); des moyens (130) pour une liaison des pédales au rotor; des moyens pour une liaison rigide du carter de pompe à un cadre ou châssis du véhicule; un moteur hydraulique (131) munie d'un rotor de moteur monté rotatif dans un carter de moteur; des moyens pour une liaison du rotor de moteur à la roue motrice, suivant une liaison rigide dans un sens de rotation au moins; des moyens pour une liaison rigide du carter de moteur au cadre ou châssis du véhicule; des moyens de liaison fluidique entre ladite pompe hydraulique (100) et ledit moteur hydraulique, en sorte d'établir un circuit fermé de circulation d'un fluide de transmission entre la pompe et le moteur; la pompe hydraulique comprenant un rotor (102) à palettes (104); et le dispositif comprenant des moyens (110) pour faire varier le débit de la pompe hydraulique (100), pour une vitesse constante déterminée de rotation du rotor (102) à palettes (104), comprenant un moyen de tiroir (113), mobile en translation dans une chambre (119), suivant une direction radiale par rapport au rotor à palettes.
Description
Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales
La présente invention se rapporte à un dispositif hydraulique, destiné à équiper un véhicule muni de pédales en vue de la transmission de l'énergie motrice fournie par le conducteur du véhicule, desdites pédales à une roue motrice au moins, comportant :
- une pompe hydraulique munie d'un rotor monté rotatif dans un carter de pompe,
- des moyens pour une liaison des pédales au dit rotor, suivant une liaison au moins partielle dans un sens de rotation, - des moyens pour une liaison rigide dudit carter de pompe à un cadre ou châssis dudit véhicule,
- un moteur hydraulique munie d'un rotor de moteur monté rotatif dans un carter de moteur,
- des moyens pour une liaison du rotor de moteur à ladite roue motrice, suivant une liaison au moins partielle dans un sens de rotation,
- des moyens pour une liaison rigide dudit carter de moteur au dit cadre ou châssis dudit véhicule,
- des moyens de liaison fluidique entre ladite pompe hydraulique et ledit moteur hydraulique, en sorte d'établir un circuit fermé de circulation d'un fluide de transmission entre la pompe et le moteur.
L'invention se rapporte plus précisément à la pompe hydraulique du dispositif. L'art antérieur enseigne avec le document US 5,387,000 un tel dispositif, dont la pompe hydraulique à cylindrée variable est une pompe à pistons comportant un vilebrequin, et une boîte à engrenage planétaire pour multiplier le nombre de rotations du vilebrequin. Le rapport entre la vitesse de rotation de la roue motrice et la vitesse de rotation du vilebrequin est déterminé par le rapport de la quantité d'huile envoyée par la pompe à la quantité d'huile dans le moteur hydraulique. Un tel dispositif présente l'inconvénient majeur d'être complexe, lourd, et coûteux à fabriquer, principalement du fait de l'utilisation d'une boîte à engrenage planétaire, et d'une pompe à pistons. En outre, le dispositif divulgué par ce document n'est pas adaptable à un cadre conventionnel de deux-roues, et nécessite donc un cadre spécifique, ce qui met en évidence un manque de souplesse d'utilisation.
On connaît en outre Ie document DE 196 12 519 qui pallie en partie ces inconvénients et divulgue un véhicule de type bicyclette à transmission hydraulique, comportant une pompe à variation de débit, dotée d'un rotor à palette, le carter de la pompe étant un carter fixe rigidement fixé au cadre. La variation de débit est obtenue par un mécanisme interne au carter de pompe, selon un système d'articulations comportant au moins deux charnières et une glissière. Un tel système de variation de débit est complexe et nécessite une étanchéité avec l'extérieur. La présente invention propose de pallier ces inconvénients, et d'apporter d'autres avantages. Plus précisément, elle consiste en un dispositif hydraulique, destiné à équiper un véhicule muni de pédales en vue de Ia transmission de l'énergie motrice
fournie par le conducteur du véhicule, desdites pédales à une roue motrice au moins, comportant :
- une pompe hydraulique munie d'un rotor monté rotatif dans un carter de pompe,
- des moyens pour une liaison des pédales au dit rotor,
5 - des moyens pour une liaison rigide dudit carter de pompe à un cadre ou châssis dudit véhicule,
- un moteur hydraulique munie d'un rotor de moteur monté rotatif dans un carter de moteur,
- des moyens pour une liaison du rotor de moteur à ladite roue motrice, suivant une IQ liaison rigide dans un sens de rotation au moins,
- des moyens pour une liaison rigide dudit carter de moteur au dit cadre ou châssis dudit véhicule,
- des moyens de liaison fluidique entre ladite pompe hydraulique et ledit moteur hydraulique, en sorte d'établir un circuit fermé de circulation d'un fluide de j 5 transmission entre la pompe et le moteur, ledit dispositif étant caractérisé en ce que :
- ladite pompe hydraulique comprend un rotor à palettes, et en ce qu'il comprend :
- des moyens pour faire varier le débit de la pompe hydraulique, pour une vitesse 0 constante déterminée de rotation du rotor à palettes, comprenant un moyen de tiroir, mobile en translation dans une chambre, suivant une direction radiale par rapport au dit rotor à palettes.
L'usage d'une pompe à palette simple et légère confère au dispositif hydraulique selon l'invention simplicité, légèreté, et coûts de production raisonnables, 5 tout en permettant, grâce aux moyens combinés pour faire varier Ie débit de la pompe hydraulique, pour une vitesse constante déterminée de rotation du rotor à palettes, de fournir une transmission souple de l'énergie motrice, adaptable à la vitesse de rotation des pédales imposée par l'utilisateur, de tels moyens remplaçant avantageusement un système de changement de vitesse conventionnel à dérailleur et plateaux multiples par 0 exemple dans les transmissions à chaîne. En effet, la valeur de la vitesse de rotation de la roue motrice est liée à la valeur du débit de la pompe, en sorte que plus le débit de la pompe est élevé, plus la roue motrice tourne vite. Le moyen de tiroir propose un moyen simple pour la variation de débit de la pompe, qui présente l'avantage important de ne pas nécessiter d'étanchéité entre le tiroir et l'extérieur. ^ Selon une caractéristique avantageuse, ledit rotor à palettes est lié au dit carter de pompe suivant une liaison comportant un degré de liberté unique en rotation, et le dispositif selon l'invention comprend une surface de contact entre une extrémité des palettes dudit rotor à palettes et le carter de pompe.
Selon une caractéristique avantageuse, lesdits moyens pour une liaison des 0 pédales au dit rotor à palettes, comprennent une liaison rigide entre les pédales et le rotor, au moins dans un sens de rotation des pédales.
Cette caractéristique met en avant une simplicité de la liaison entre les pédales
et le rotor à palettes, qui est ici directe et exempte de toute boîte à engrenages. Selon une caractéristique avantageuse,
- ledit moyen de tiroir, mobile en translation dans une chambre, suivant une direction radiale par rapport au dit rotor à palettes, sépare une zone d'admission du fluide de transmission dans la pompe d'une zone d'échappement du fluide de transmission hors de la pompe, ledit moyen de tiroir comportant :
- une première extrémité possédant une première surface en contact avec une palette au moins dudit rotor à palettes, une première partie de ladite première extrémité du moyen de tiroir étant soumise à la pression d'échappement du fluide de transmission, une deuxième partie de ladite première extrémité du moyen de tiroir étant soumise à la pression d'admission du fluide de transmission dans la pompe,
- une deuxième extrémité, opposée à la première, définissant une deuxième surface apte à être mise en contact avec le fluide de transmission,
- des moyens pour mettre ladite deuxième surface, via le fluide de transmission, soit à la pression d'échappement, soit à la pression d'admission,
- lesdites première et deuxième surfaces étant définies en sorte que :
- lorsque la deuxième surface est soumise à la pression d'admission, le moyen de tiroir s'éloigne de l'axe du rotor à palettes sous l'effet de la première partie de la première extrémité du moyen de tiroir, qui est soumise à la pression d'échappement du fluide de transmission, et
- lorsque la deuxième surface est soumise à la pression d'échappement, le moyen de tiroir se rapproche de l'axe du rotor à palettes, sous l'effet de Ia deuxième partie de la première extrémité du moyen de tiroir, qui est soumise à la pression d'admission du fluide de transmission. Selon une caractéristique avantageuse, lesdits moyens pour mettre la deuxième surface, via le fluide de transmission, soit à la pression d'échappement, soit à la pression d'admission, comprennent :
- une première vanne connectant la zone d'échappement de la pompe à la chambre dans laquelle se déplace le moyen de tiroir, du côté de ladite deuxième surface, - une deuxième vanne connectant la zone d'admission de la pompe à la chambre dans laquelle se déplace le moyen de tiroir, du côté de ladite deuxième surface.
Selon une caractéristique avantageuse, le dispositif selon l'invention comprend des moyens de rappel élastique dudit moyen de tiroir, en position d'éloignement maximal de l'axe du rotor à palettes. Selon une caractéristique avantageuse, le dispositif selon l'invention comprend une première et une deuxième lames, solidaires dudit moyen de tiroir, pour guider lesdites palettes, dans leurs déplacements entre le carter de pompe et ledit moyen de tiroir et inversement.
Selon une caractéristique avantageuse, le dispositif selon l'invention comprend un moyen de surpression disposé sur l'échappement de la pompe, en sorte d'augmenter la pression d'échappement du fluide de transmission.
Une telle caractéristique permet de faciliter l'entrée en action des moyens pour
faire varier le débit de ladite pompe hydraulique, dès la mise en action des pédales par l'utilisateur.
Selon une caractéristique avantageuse, ledit moyen de surpression est disposé dans la zone d'échappement de la pompe en aval de ladite première vanne connectant la zone d'échappement de la pompe à la chambre dans laquelle se déplace ledit moyen de tiroir, du côté de ladite deuxième surface.
Selon une caractéristique avantageuse, ledit moyen de surpression comprend :
- un moyen de vanne apte à obturer l'échappement de la pompe hydraulique,
- des moyens de seuil en sorte que ledit moyen de vanne libère l'échappement de la pompe hydraulique au delà d'une pression déterminée du fluide de transmission à l'échappement.
Selon une caractéristique avantageuse, ledit rotor à palettes comprend une surface extérieure de section transversale circulaire, destinée à être en contact avec le fluide de transmission. Selon une alternative avantageuse à Ia caractéristique précédente, ledit rotor à palettes comprend une surface extérieure de section transversale elliptique, destinée à être en contact avec le fluide de transmission.
Selon une caractéristique avantageuse, ledit rotor à palettes comprend des chambres à palettes dotées d'au moins un ressort exerçant une poussée sur chaque palette, en sorte d'assurer une étanchéité de chaque palette contre la surface du carter de Ia pompe hydraulique.
Selon une caractéristique avantageuse, le dispositif selon l'invention comprend des moyens de commande manuelle séparée :
- de ladite première vanne connectant la zone d'échappement de la pompe à Ia chambre dans laquelle se déplace Ie moyen de tiroir, du côté de ladite deuxième surface,
- de ladite deuxième vanne connectant la zone d'admission de la pompe à la chambre dans laquelle se déplace le moyen de tiroir, du côté de ladite deuxième surface.
Selon une caractéristique avantageuse, le dispositif selon l'invention comprend :
- un capteur hydraulique, pour mesurer le couple exercé sur le rotor de la pompe, - un capteur de vitesse de rotation, pour mesurer la vitesse de rotation du rotor de la pompe hydraulique,
- des moyens de commande automatique séparée :
- de ladite première vanne connectant la zone d'échappement de la pompe à la chambre dans laquelle se déplace le moyen de tiroir, du côté de ladite deuxième surface,
- de ladite deuxième vanne connectant la zone d'admission de la pompe à la chambre dans laquelle se déplace le moyen de tiroir, du côté de ladite deuxième surface.
Cette caractéristique permet lorsqu'elle est combinée avec la précédente, de proposer deux modes de commande de variation de la vitesse. Un premier mode, manuel, comprenant par exemple un bouton d'augmentation de la vitesse et un bouton de diminution de la vitesse, le tout fonctionnant avantageusement entièrement par
système hydraulique, et un deuxième mode, automatique, lui aussi avantageusement entièrement géré par l'hydraulique. Les commandes de variation du débit de la pompe sont alors asservies par un capteur hydraulique de vitesse de rotation du rotor de la pompe, ainsi que par un capteur hydraulique de couple de force avantageusement intégré à la pompe, par exemple placé entre le moyeu d'entraînement de la pompe et le rotor à palettes. Il est ainsi proposé une véritable transmission automatique régulée en puissance, destinée par exemple à équiper les bicyclettes. Un tel mécanisme permet au cycliste de ne plus se préoccuper du changement de rapports en fonction de la résistance à l'effort. Selon une caractéristique avantageuse, le dispositif selon l'invention comprend en outre des moyens de sélection des moyens de commande manuelle ou des moyens de commande automatique, desdites première et deuxième vannes.
Selon une caractéristique avantageuse, lesdits moyens de sélection comprennent un sélecteur hydraulique du type distributeur hydraulique, et des moyens de commande manuelle dudit sélecteur hydraulique.
Selon une caractéristique avantageuse, lesdits moyens pour une liaison rigide du carter de pompe à un cadre ou châssis dudit véhicule comprennent : - un cylindre fileté solidaire dudit carter de pompe, apte à se visser dans le manchon taraudé dudit cadre destiné à loger un pédalier, - des mâchoires de serrage, permettant de serrer ledit carter de pompe sur un tube dudit cadre.
Cette caractéristique offre un dispositif par exemple sous forme de prêt-à- monter adaptable sur les cadres de bicyclettes standard tels qu'ils existent aujourd'hui.
Ce kit peut par exemple comporter une pompe hydraulique, un pédalier, un moteur hydraulique à palettes apte à être fixé sur les moyeux de roues libres actuellement sur le marché, des canalisations de transmission hydraulique, des manettes de commandes au guidon et leurs câbles hydrauliques.
D'autres caractéristiques et avantages apparaîtront à la lecture qui suit d'un exemple de mode de réalisation d'un dispositif hydraulique selon l'invention, accompagnée des dessins annexés, exemple donné à titre illustratif non limitatif.
Les figures IA et IB représentent respectivement une vue schématique en coupe transversale d'un exemple de mode de réalisation d'une pompe hydraulique comportant un rotor à palettes entrant dans la constitution d'un dispositif selon l'invention, suivant deux positions de fonctionnement. Les figures 2A et 2B représentent respectivement une vue schématique agrandie en coupe transversale d'un exemple de mode de réalisation d'un détail de la pompe hydraulique selon les figures IA et IB, suivant deux positions de fonctionnement.
La figure 3 représente une vue schématique arrière de la pompe hydraulique selon les figures IA et IB. La figure 4 représente une vue schématique d'ensemble d'un exemple de mode de réalisation d'un dispositif selon l'invention, monté sur un cadre de bicyclette standard, et comportant une pompe hydraulique suivant l'exemple des figures IA et IB.
La figure IA représente la pompe hydraulique 100 du dispositif 90 en position de débit minimal, et la figure IB représente la pompe hydraulique 100 en position de débit maximal, comme cela va être expliqué plus en détail ci-dessous.
Comme représenté sur les figures 1 et 5, le dispositif hydraulique 90, destiné à équiper un véhicule 91 muni de pédales (non représentées) en vue de la transmission de l'énergie motrice fournie par le conducteur (non représenté) du véhicule 91, par exemple une bicyclette, des pédales à une roue motrice 93, comporte :
- une pompe hydraulique 100, comme plus particulièrement représenté sur les figures IA et IB, munie d'un rotor 102 à palettes 104 monté rotatif dans un carter 101 de pompe,
- des moyens 130 pour une liaison des pédales au dit rotor,
- des moyens 402, 403, comme montré sur la figure 5, pour une liaison rigide du carter 101 de pompe à un cadre 94 du véhicule 91 ,
- un moteur hydraulique 131, comme montré sur la figure 5, munie d'un rotor (non représenté) de moteur monté rotatif dans un carter de moteur,
- des moyens (non représentés) pour une liaison du rotor de moteur à ladite roue motrice, suivant une liaison rigide dans un sens de rotation au moins,
- des moyens 404, comme montré sur la figure 5, pour une liaison rigide du carter de moteur au cadre 94 de la bicyclette 91, - des moyens de liaison fluidique 405 entre la pompe hydraulique 100 et le moteur hydraulique 131, en sorte d'établir un circuit fermé de circulation d'un fluide de transmission entre la pompe et le moteur,
- des moyens 110 pour faire varier Ie débit de la pompe hydraulique 100, pour une vitesse constante déterminée de rotation du rotor 102 à palettes 104. Les moyens pour une liaison rigide du carter 101 de pompe 100 au cadre 94 de la bicyclette 91 comprennent avantageusement :
- un cylindre fileté 402 solidaire du carter 101 de pompe, apte à se visser dans le manchon taraudé du cadre 94 destiné à loger un pédalier,
- des mâchoires de serrage 403, permettant de serrer le carter 101 de pompe 100 sur un tube 95 du cadre 94, par exemple le tube sensiblement vertical reliant Ie pédalier à la selle.
Ainsi, la pompe 100 se fixe rigidement sur le cadre, avantageusement sans modification de ce dernier, en utilisant l'emplacement pour la fixation d'un palier de pédalier conventionnel, et un tube du cadre partant du manchon taraudé visant à empêcher le carter de pompe de tourner autour de l'axe du pédalier.
Les moyens 130 pour une liaison des pédales (non représentées) au rotor 102 à palettes 104, comprennent une liaison rigide entre les pédales et le rotor, au moins dans un sens de rotation des pédales, par exemple un carré pour la prise des pédales, formé et centré suivant l'axe de rotation du rotor 102. La liaison entre les pédales et le rotor 102 peut comporter une roue libre afin que les pédales entraînent le rotor 102 dans un sens de rotation seulement, celui bien sûr de l'avancement de la bicyclette.
La pompe 100, représentée sur les figures IA et IB, est constituée d'un carter
101 externe dont la forme de base est sensiblement un parallélépipède rectangle auquel est accolé un demi-disque en partie inférieure. L'ensemble a une épaisseur d'environ quelques centimètres. Le carter 101 présente deux faces plates, la face avant 106 et la face arrière 107 représenté sur la figure 3. Le carter 101 présente entre les deux faces 5 plates 106 et 107, une tranche, comportant une tranche avant 108, une tranche arrière 109, une tranche supérieure 150, et une tranche inférieure 144. La tranche avant 108 paut comprendre par exemple, comme représenté, un bouchon 143 qui sert de bouchon de remplissage et de bouchon de vidange du fluide de la pompe 100. Les tranches supérieure 150, avant 108, et arrière 109 adopteront par exemple un profil plat ou0 sensiblement plat, alors que la tranche inférieure 144 adoptera de préférence un profil arrondi en forme de demi-disque, avantageux pour éviter d'accrocher le carter 101 aux obstacles rencontrés sur le terrain sur lequel circule la bicyclette. Comme représenté sur la figure IA ou IB, au point de concours des rayons du demi-disque du carter 101 en face avant et arrière du carter 101, se trouvent deux paliers (non représentés) du rotor5 102, déterminant l'axe 137 théorique de rotation du rotor, et permettant le passage des pédales. Sur la tranche supérieure 150 se trouvent : un orifice 146 d'admission, de préférence à section circulaire, situé du côté de la tranche avant 108, et qui correspond à l'entrée du fluide de transmission dans la pompe 100 dans une zone d'admission 1 11 du fluide, et0 " un orifice 147 d'échappement, de préférence à section circulaire, situé du côté de la tranche arrière 109, et qui correspond à la sortie du fluide de transmission sous pression, hors de la zone d'échappement 1 12 de la pompe 100.
À l'intérieur du carter 101, se trouve le rotor 102 dont l'axe central 137 est5 positionné au point de concours des rayons du demi disque constituant la partie inférieure du carter externe 101. Le rotor 102 est percé en son centre d'un trou 145 par exemple carré permettant une prise pour les pédales en sorte que ces dernières puissent entraîner le rotor 102 en rotation dans son mouvement circulaire dans le carter 101 autour de l'axe 137. Q Le rotor 102 à palettes 104 comprend une surface extérieure 141 cylindrique de section transversale circulaire comme représenté, destinée à être en contact avec le fluide de transmission, ou de manière alternative une surface extérieure cylindrique de section transversale elliptique (non représentée), destinée à être en contact avec le fluide de transmission. 5 Dans le cadre d'une application pour bicyclette, la forme elliptique permet d'obtenir des variations de résistance au cours d'un cycle de rotation du pédalier. Ainsi, lorsque les pédales seront alignées à l'horizontale, la résistance sera maximum, et lorsqu'elles seront alignées à la verticale, la résistance sera minimale.
L'épaisseur du rotor 102 est égale à l'épaisseur interne du carter 101, comprise0 entre les faces avant 106 et arrière 107 de celui-ci. Le diamètre externe du rotor 102 est inférieur à une dimension de la surface interne du carter 101 en vis à vis de la surface externe du rotor, de sorte qu'il existe un volume 103 dans lequel le fluide de
transmission puisse circuler grâce aux pallettes 104, à l'intérieur du carter 101, entre la surface extérieure du rotor 102 et la surface intérieure du carter 101. La surface intérieure du carter 101 adopte avantageusement une forme demi-cylindique à section transversale demi-circulaire. Ainsi, les surfaces libres, extérieure du rotor 102 d'une part et intérieure du carter 101 d'autre part, en vis-à-vis l'une de l'autre, sont avantageusement parallèles sur la partie du rotor située au dessous de l'axe de rotation 137, comme représenté sur les figures IA ou I B. L'étanchéité de la pompe 100 sera assurée de toute manière connue par l'homme de l'art en matière de pompe à palette, par exemple au moyen de joint torique, joint tournant, usinage mécanique approprié assurant l'étanchéité à la pression entre le rotor 102 et Ie carter externe 101.
Le rotor 102 à palettes 104 est ainsi lié au carter 101 de pompe 100 suivant une liaison comportant un degré de liberté unique en rotation, et une surface de contact 132 se présente entre une extrémité 133 des palettes 104 radiales du rotor 102 à palettes et Ie carter de pompe. Le rotor 102 est le support des palettes 104, qui sont les éléments moteurs de Ia pompe. Le rotor 102 est percé de plusieurs cavités parallélépipédiques, appelées chambres 105 à palettes, disposées sur ses plans radiaux parallèles à l'axe de rotation 137 du rotor. Ces chambres 105 à palettes sont réparties angulairement de manière régulière sur le rotor 102. Elles sont destinées à accueillir les palettes 104. Leur profondeur est au moins égale à la longueur des palettes 104 de manière à ce que ces dernières puissent se rétracter complètement à l'intérieur. L'usinage mécanique des palettes 104 est effectué de manière précise de façon à ce qu'il y ait étanchéité à la pression entre les chambres 105 à palettes et Ia cavité interne 103 de la pompe 100.
Selon une caractéristique avantageuse du dispositif selon l'invention, des ressorts 148 pourront être placés à l'intérieur des chambres 105 à palettes. Ces ressorts 148 auront pour fonction de repousser les palettes 104, notamment en butée sur la surface interne 132 du carter 101, afin d'assurer une meilleure étanchéité sur le pompage, et plus généralement sur toute surface sur laquelle l'extrémité d'une palette est destinée à glisser tout en faisant étanchéité. Selon une alternative à la caractéristique précédente du dispositif selon l'invention, chaque chambre 105 à palette pourra être mise sous pression afin de repousser les palettes 104 en butée sur les surfaces de frottement évoquées ci-dessus. La pression interne des chambres 105 à palettes sera assurée par une liaison avec Ie fluide de transmission pressurisé récupéré en sortie de la pompe, par exemple dans la zone d'échappement de celle-ci.
Le nombre des palettes 104, leur répartition angulaire sur le rotor 102 et leur forme externe pourra différer. Les palettes 104 pourront être creuses à l'intérieur dans leur sens longitudinal, dans un souci de gain de masse. Dans le cas où le maintien en butée des palettes 104 se ferait par une mise sous pression de fluide, comme expliqué précédemment, le creux interne des palettes 104 serait fermé, au moins du côté de l'extrémité des palettes, distale du centre de rotation 137 du rotor 102.
Les moyens 110 pour faire varier le débit de la pompe hydraulique 100, pour
une vitesse constante déterminée de rotation du rotor 102 à palettes 104, comprennent un moyen de tiroir 113, mobile en translation dans une chambre 1 19, suivant une direction radiale 134 par rapport au dit rotor à palettes. Dans l'exemple représenté, l'axe 134 de déplacement en translation du moyen de tiroir est vertical, parallèle aux faces avant 108 et arrière 109 du carter 101 de pompe 100, et situé entre les ouvertures d'admission 146 et d'échappement 147 de la pompe.
Comme représenté sur les figures IA et IB, le moyen de tiroir 1 13, mobile en translation dans une chambre 1 19, suivant une direction radiale 134 par rapport au rotor
102 à palettes 104, sépare une zone d'admission 1 1 1 du fluide de transmission dans la pompe 100 d'une zone d'échappement 1 12 du fluide de transmission hors de la pompe,
Ie moyen de tiroir 1 13 comportant :
- une première extrémité 135 possédant une première surface 1 14 en contact avec une palette 104 au moins dudit rotor 102 à palettes, une première partie 1 15 de la première extrémité 135 du moyen de tiroir 1 13 étant soumise à la pression d'échappement du fluide de transmission, une deuxième partie 1 16 de la première extrémité 135 du moyen de tiroir 1 13 étant soumise à la pression d'admission du fluide de transmission dans la pompe,
- une deuxième extrémité 136, opposée à la première extrémité 135, définissant une deuxième surface 1 17 apte à être mise en contact avec le fluide de transmission. La pompe hydraulique 100 comprend en outre :
- des moyens 122, 121 pour mettre la deuxième surface 1 17, via le fluide de transmission, soit à la pression d'échappement, soit à la pression d'admission,
- lesdites première 1 14 et deuxième 1 17 surfaces du moyen de tiroir 1 13 étant définies en sorte que : - lorsque la deuxième surface 1 17 est soumise à la pression d'admission, le moyen de tiroir 1 13 s'éloigne de l'axe 137 du rotor 102 à palettes 104 sous l'effet de Ia première partie 1 15 de la première extrémité 135 du moyen de tiroir, qui est soumise à la pression d'échappement du fluide de transmission, et
- lorsque la deuxième surface 1 17 est soumise à la pression d'échappement, le moyen de tiroir 1 13 se rapproche de l'axe 137 du rotor 102 à palettes 104, sous l'effet de la deuxième partie 1 16 de la première extrémité 135 du moyen de tiroir, qui est soumise à la pression d'admission du fluide de transmission.
Pour assurer la fonction de débit variable pour une vitesse de rotation constante, le moyen de tiroir 1 13 coulissant vient modifier la géométrie de la pompe 100 en séparant la zone d'admission 1 1 1 de la zone d'échappement 1 12 dans la cavité interne
103 de la pompe.
Ce moyen de tiroir 1 13 a par exemple la forme d'un parallélépipède rectangle, dont deux coins ont été évidés à l'extrémité 135 du côté du rotor 102, laissant place à deux surfaces latérales, par exemple concaves 115 et 1 16, séparant la surface centrale 1 14 restante du côté du rotor 102, également concave avec par exemple un profil d'arc de cercle. Cette surface centrale 1 14 est en contact avec l'extrémité distales des palettes
104 lors de la rotation du rotor. La surface latérale avant 1 16 est sise du côté de la zone
d'admission 1 1 1, et la surface latérale arrière 1 15, est sise du côté de la zone d'échappement 1 12. Le profil de Ia surface centrale 114 de contact du rotor est avantageusement celui d'un arc de cercle dont le rayon est légèrement supérieur au rayon de la surface extérieure 141 du rotor 102. La longueur de cet arc de cercle est légèrement supérieur à la longueur de l'arc de cercle virtuel constitué par les extrémités de deux palettes 104 successives lorsqu'elles sont en extension maximale hors du rotor 102 et contre cette surface centrale 1 14, autrement dit lorsque le moyen de tiroir est en butée dans la position la plus éloignée du rotor 102. Le but recherché est qu'il y ait toujours une séparation étanche à la pression entre la zone d'admission 1 1 1 et la zone d'échappement 1 12 de la pompe 100 quelle que soit la position du moyen de tiroir 1 13. Cette séparation étanche est garantie par le fait qu'il y ait toujours au moins une palette 104 dont l'extrémité distale est en contact avec la surface séparatrice 1 14 quelle que soit la position angulaire du rotor 102. La forme de la surface séparatrice 1 14 peut varier afin de minimiser les frottements tout en assurant l'étanchéité avec les palettes 104. Les surfaces latérales arrière 1 15 et avant 1 16 ont pour fonction d'exercer simultanément sur le tiroir 1 13 une pression correspondant à l'échappement et à l'admission sur leurs surfaces respectives, en vue de permettre le déplacement du tiroir 1 13 comme cela sera expliqué plus loin.
Les extrémités avant et arrière de la surface centrale séparatrice de contact 1 14 sont respectivement solidaire d'une première 1 18 et d'une deuxième 138 lames, dont la fonction est de guider le déplacement radial des palettes 104 dans le rotor 102 entre le carter de pompe et le moyen de tiroir 1 13, et inversement, comme représenté sur les figures IA et IB, et ce quel que soit le sens de rotation du rotor. Les lames 1 18 et 138 adoptent chacune une forme allongée dans leur sens longitudinal suivant une courbe de raccordement définie en vue minimiser, ou rendre le plus progressif possible, les efforts ou contraintes imposés à une palette 104 dans son déplacement entre la surface 132 du carter et la surface 114 du moyen de tiroir, et inversement. L'ensemble constitué par les deux lames 118 et 138 combinées à la surface 1 14 de contact du tiroir 1 13 est nommé guide à palettes. Les lames 1 18 et 138 comprennent une pluralité de passages (non représentés) permettant au fluide de transmission de les traverser. La forme du profil longitudinal des lames peut varier, afin en outre de rechercher une résistance minimum à l'écoulement du fluide. Les lames 1 18 et 138 seront avantageusement rigide afin d'assurer une résistance suffisante au guidage des palettes 104, et leur déplacement par rapport au carter de pompe est une translation similaire à celle du moyen de tiroir. Le profil de raccordement des lames 1 18, 138 sur la paroi 132 du carter sera de préférence tangentiel en vue de minimiser l'effort de changement de surface pour une palette 104.
La deuxième surface 1 17 opposée à la première surface, dite surface centrale séparatrice 114 de contact du rotor définie précédemment, est appelée surface de commande 1 17 du moyen de tiroir 1 13. Le moyen de tiroir 113 est encastré dans une chambre 1 19 parallélépipédique avec laquelle il fait étanchéité, par exemple au moyen d'un joint périphérique, de type joint torique. Le volume de la chambre 119 varie en fonction de la position du moyen
de tiroir. Lorsque le moyen de tiroir 1 13 s'enfonce à l'intérieur de la chambre 1 19, c'est à dire lorsque'il s'éloigne de l'axe 137 de rotation du rotor 102, il se rapproche de la surface de fond 120 de la chambre 1 19, qui se présente avantageusement sous la forme d'une paroi en relief échancrée sur les bords, comme représenté sur les figures IA et IB.
Les moyens pour mettre la deuxième surface 1 17 du moyen de tiroir 1 13, via le fluide de transmission, soit à la pression d'échappement, soit à la pression d'admission, comprennent avantageusement:
- une première vanne 122, dite vanne d'échappement 122, connectant la zone d'échappement 112 de la pompe 100 à la chambre 119 dans laquelle se déplace le moyen de tiroir 1 13, du côté de ladite deuxième surface 117,
- une deuxième vanne 121 , dite vanne d'admission 121, connectant la zone d'admission 1 11 de la pompe 100 à la chambre 1 19 dans laquelle se déplace le moyen de tiroir 1 13, du côté de ladite deuxième surface 1 17. La vanne d'admission 121 est de préférence située le plus proche possible de la surface de fond 120 de la chambre 119. Cette vanne d'admission 121 permet de contrôler une ouverture fluidique entre la chambre 1 19 et la zone d'admission 1 1 1.
La vanne d'échappement 122 est également de préférence située le plus proche possible de la surface de fond 120 de la chambre 1 19. Cette vanne d'échappement 122 permet de contrôler une ouverture fluidique entre la chambre 119 et la zone d'échappement 1 12.
La pompe hydraulique 100 comprend avantageusement des moyens de rappel élastique 142 du moyen de tiroir 113, en position d'éloignement maximal de l'axe 137 du rotor 102 à palettes 104, c'est à dire en position de contact des surfaces 120 de fond de chambre 119 et 117 du moyen de tiroir. Les moyens de rappel élastique 142 peuvent par exemple être constitués de ressorts de traction comme représenté, encastrés dans le fond de la chambre 119. Les moyens de rappel élastique 142 permettent de maintenir la pompe en position de débit minimal lorsque aucune action n'est exercée sur les pédales, et permet don un démarrage du véhicule en fournissant un effort minimal. La figure 2 A représente un exemple de mode de réalisation d'une vanne 121 ou
122, vue en coupe dans son état ouvert et la figure 2B représente la même vanne en position fermée. Les vannes d'échappement et d'admission peuvent être identiques. La vanne figures 2A et 2B est représentée en coupe transversale. Il est précisé que tout type de vanne reprenant les fonctions générales de la vanne décrite peut cependant convenir. Une vanne 121 ou 122 est constituée d'une plaque 201, par exemple ronde, et accolée tangentiellement à un axe 202 de vanne. Cet axe 202 coulisse d'un côté dans une perforation de la chambre 119, et de l'autre dans un support 203 de l'axe 202, fixé sur la surface contenant un orifice 204 de vanne par où passe le fluide de transmission lorsque la vanne est ouverte. Un usinage précis permet à l'axe 202 coulissant dans ses supports de faire glisser la plaque 201 sur la surface présentant l'orifice 204. La plaque 201 est accolée de façon étanche sur la surface présentant l'orifice 204. Le diamètre de la plaque 201 de
la vanne est forcément supérieur au diamètre de l'orifice de la vanne 204, afin qu'il y ait une surface de recouvrement entre les deux, suffisamment grande pour assurer l'étanchéité à la pression.
L'ouverture et la fermeture d'une vanne 121 ou 122 se fait donc par translation de la plaque 201 qui vient soit libérer soit obstruer l'orifice de la vanne 204.
L'axe 202 de la vanne 121 ou 122 traverse une des parois de la chambre 119 et se prolonge à l'extérieur, puis se termine par un piston 208. Un capuchon cylindrique 210 vient s'enfiler sur la partie externe de l'axe 202 de la vanne. Ce capuchon 210 renferme donc un volume cylindrique contenant le piston 208, et constituant le vérin 205 de la vanne. Par un usinage précis, le capuchon 210 assure un contact étanche à la pression avec le piston 208. Une ouverture 206 au sommet du vérin 205 de la vanne accueille une arrivée hydraulique qui permet la commande de la vanne. Le diamètre de l'ouverture est inférieur au diamètre du piston 208 afin que celui-ci ne s'engouffre pas dans l'ouverture. Dans le vérin 205 de la vanne, un ressort est enfilé sur l'axe 202 de la vanne et sert à repositionner la vanne au repos en position de fermeture.
Lorsque la vanne est au repos, elle est donc fermée, c'est-à-dire que l'orifice 204 est obstrué par la plaque 201 de la vanne. Cela signifie que le piston est relâché au maximum vers l'arrivée de l'ouverture 206 de commande de la vanne. Lorsqu'un fluide sous pression est amené dans l'ouverture 206 de la vanne, le piston 208 subit une translation vers l'intérieur de la chambre 1 19 du moyen de tiroir. La plaque 201 de la vanne se décale par rapport à l'orifice, et la vanne est ouverte. La course du piston 208 est égale à la distance exacte à parcourir pour que l'orifice 204 soit entièrement découvert par la plaque 201. Selon une alternative à la caractéristique du dispositif selon l'invention, l'état d'ouverture de la vanne peut être inversé par rapport à son état de repos. Pour cela, en position de repos, l'orifice ne se situe non pas en dessous de la plaque, mais décalé d'une distance quasi égale à la course du piston. De cette manière lorsque le piston est actionné au maximum, l'orifice est entièrement recouvert par la plaque, et inversement, lorsque le piston est relâché, l'orifice est entièrement ouvert.
Il est précisé que la forme de l'orifice 204 de la vanne et la forme de la plaque 201 de la vanne peuvent bien entendu varier.
Le dispositif hydraulique représenté partiellement sur les figures IA et I B comprend avantageusement un moyen 123 de surpression disposé sur l'échappement de la pompe 100, en sorte d'augmenter la pression d'échappement du fluide de transmission. Le moyen 123 de surpression est de préférence disposé dans la zone d'échappement 1 12 de la pompe en aval de la vanne d'échappement 122 connectant la zone d'échappement 1 12 de la pompe 100 à la chambre 1 19 dans laquelle se déplace le moyen de tiroir 113, du côté de la deuxième surface 117 de ce dernier. Le moyen 123 de surpression comprend par exemple :
- un moyen de vanne 139 apte à obturer l'échappement de la pompe hydraulique 100,
- des moyens de seuil 125, 126, 140 en sorte que le moyen de vanne 139 libère
l'échappement de la pompe hydraulique 100 au-delà d'une pression déterminée du fluide de transmission à l'échappement.
Le moyen de surpression 123 peut être disposé sur la tranche supérieure 150 du carter 101. Le moyen de vanne 139 peut être constitué d'un petit piston 151 , par exemple parallélépipédique, allégé, qui coulisse dans un canal 124 dont un côté débouche sur l'extérieur de la pompe, à l'air libre, et l'autre côté débouche à l'intérieur de la zone d'échappement 112 de la pompe, entre le rotor 102 et l'orifice d'échappement 147. Le piston 151 comporte une première face 125 d'extrémité donnant sur la zone d'échappement 112, et une deuxième face 126 d'extrémité opposée à la première donnant sur l'extérieur. Le piston 151 et le canal 124 du piston sont tous deux usinés de manière précise de sorte qu'il y ait étanchéité à la pression entre les deux. La course du piston 151 est limitée d'un côté par une butée contre la paroi interne du carter de pompe dans la zone d'échappement 1 12, et de l'autre côté par une butée 127 transversale au canal. Un ressort 140 de compression relie la butée 127 du piston 151 à la surface 126 à l'air libre de celui-ci. La surface 125 de contact du piston 151 possède un profil spécialement étudié pour que, Ie piston étant en butée sur la paroi du carter dans la zone d'échappement 112, le fluide sous pression s'échappant du rotor 102 puisse agir sur la surface de contact 125 afin de repousser le piston 151 à l'intérieur de son canal 124, en vue de libérer le passage du fluide de transmission à travers l'ouverture d'échappement 147. De plus, Ia surface de contact 125 du piston est étudiée pour épouser le profil du canal d'échappement au niveau de leur contact. Lorsque le piston 151 est entièrement rétracté dans son canal 124, il libère entièrement le canal d'échappement pour laisser passer le fluide de transmission vers le moteur hydraulique 131. Il est à noter que tout moyen de type limiteur de pression, soupape de sûreté, clapet de surpression, clapet de décharge, ou analogue, dont l'entrée et la sortie sont placées en série sur l'échappement de la pompe, reprenant les fonctions générales décrites ci-dessus à l'égard du moyen de surpression, peut convenir en remplacement du moyen de surpression décrit ci-dessus.
Le fonctionnement dynamique de la pompe 100 représenté sur les figures IA et IB va maintenant être décrit : Rappelons qu'un intérêt essentiel de la pompe 100 est de délivrer un débit variable pour une vitesse de rotation constante selon des moyens simple, léger et peu coûteux à réaliser. On établie en s'appuyant sur la figure IA que le sens de rotation nominal de la pompe est le sens des aiguilles d'une montre correspondant au sens de rotation des pédales pour faire avancer le véhicule. On considère, pour l'exemple, trois cas qui correspondent à trois niveaux de débit différents, pour une vitesse de rotation donnée du rotor 102: le débit minimal, un débit intermédiaire arbitraire, et le débit maximal. À ces trois niveaux de débit correspondent trois états de la pompe, et plus précisément, trois positions différentes du moyen de tiroir 113 dans sa chambre 119. Dans le premier cas, niveau de débit minimum, représenté sur la figure IA, le moyen de tiroir 113 est en butée contre la surface de fond 120 de la chambre 119. Si
l'on suit le parcours du fluide de la zone d'admission 111 jusqu'à la zone d'échappement 112 de la pompe, on constate que :
- les palettes 104 du rotor 102 aspirent le fluide au niveau de la zone d'admission 111. Un certain volume de fluide est emprisonné entre deux palettes 104 successives. Ce volume, qui est constant quelle que soit la position du variateur, est appelé unité de fluide admis. Le rotor 102 continue de tourner et entraîne cette unité de fluide admis vers l'échappement 112 de la pompe. À ce niveau, puisque la surface de contact 114 du moyen de tiroir 113 est à une distance maximale du rotor 102, le fluide, entraîné par les palettes 104, peut s'engouffrer dans cet espace et retourner vers l'admission 111 de la pompe. Soit la quantité de fluide de transmission comprise entre le rotor 102, la surface 114 de contact du tiroir 113, et deux palettes 104 consécutives : on appelle unité de fluide de retour cette quantité de fluide. En position de pompage minimal, figure IA, une unité de fluide de retour est légèrement inférieure à une unité de fluide admis. La différence de volume entre une unité de fluide admis et une unité de fluide de retour est appelée unité de fluide pompé. Le bilan est donc le suivant : pour chaque unité de fluide admis, on a une unité de fluide de retour qui repart vers l'admission 111 et une unité de fluide pompé qui est comprimée vers l'échappement 112 ;
- si la distance entre le rotor 102 et la surface 114 de contact du tiroir 113 est augmentée, en position de pompage minimal, on aurait une unité de fluide de retour égale ou même supérieure à l'unité de fluide admis, le fluide supplémentaire provenant de l'échappement 112. Dans ce cas, toujours avec la même vitesse et le même sens de rotation, le débit de la pompe devient respectivement nul ou négatif. La condition sine qua non est que les palettes 104 fassent toujours étanchéité avec le piston entre l'admission 111 et l'échappement 112. Un débit négatif signifie alors que le fluide est aspiré du côté de l'échappement 112 pour être refoulé du côté de l'admission 111.
Le deuxième cas est le niveau intermédiaire. Le tiroir 113 est à mi-course entre sa position de débit minimal (figure IA) et sa position de débit maximal (figure IB). Lorsque la pompe 100 est en rotation, seule la moitié du fluide entraîné par les palettes 104 peut refluer vers l'admission 111. L'autre moitié du fluide est forcée vers la sortie de la pompe.
Le troisième niveau est le niveau maximal, représenté sur la figure IB. Le moyen de tiroir est plaqué contre le rotor 102. Les palettes 104, lorsqu'elles atteignent le guide à palettes, sont progressivement rétractées, jusqu'à être quasiment complètement enfoncées dans le rotor 102, tout en garantissant toujours Pétanchéité. Le tiroir 113 est quasiment plaqué contre la roue 102, les palettes 104 formant étanchéité entre l'admission 1 11 et l'échappement 112 de la pompe. Dans cette configuration, tout le fluide entraîné par les palettes 104 est forcé vers la sortie de la pompe.
Les positions intermédiaires du tiroir entre les positions extrêmes, autrement appelées commandes de variations de débit de la pompe, s'opèrent comme suit. On admet que l'on se place dans le cas d'une application nominale, dans lequel le sens de rotation de la pompe est nominal, et dans lequel le débit d'échappement est positif et
non nul. À partir du moment où la pompe est en rotation, il existe un différentiel de pression qui se crée entre l'admission 111 et l'échappement 112. Si ce n'était pas le cas, on peut ajouter, selon une alternative décrite plus haut, un moyen de surpression 123 positionné sur l'échappement 112, comme représenté sur les figures 1. Le rôle de ce moyen de surpression 123 est donc d'obstruer l'échappement 112 de la pompe tant qu'une certaine valeur de pression n'est pas atteinte à l'échappement 1 12, créant ainsi le différentiel de pression nécessaire au fonctionnement du moyen de tiroir 113. Lorsque la pression nécessaire est atteinte à l'échappement 112, cette pression a pour effet de rétracter le piston 151 de surpression dans son canal, libérant ainsi la sortie de l'échappement 112.
Pour augmenter le débit de la pompe, il faut ouvrir la vanne d'échappement 122. Cela a pour effet de faire pénétrer le fluide de transmission à l'intérieur de la chambre 119 du tiroir 113, et de placer cette dernière à la même pression que le fluide à l'échappement 112. On appelle cette pression Pe. Soit P3 la pression côté admission 111. La pression Pe s'applique sur toute la surface 117 d'extrémité du tiroir 113, induisant une force Fe qui pousse le tiroir 113 vers le rotor 102. Du côté du rotor 102, sur le tiroir 113, la pression P3 s'applique sur la surface latérale 116 de l'admission, et en partie sur la surface centrale 114 de contact avec les palettes, jusqu'au point de contact de la première palette 104 qui fait étanchéité du côté de l'admission 111. Si l'on calcule le bilan des forces exercées sur les surfaces du tiroir 113 côté chambre et côté rotor 102, on constate que la force s'appliquant du côté de la chambre 119 est supérieure. Elle a pour effet de pousser le tiroir 113 vers le rotor 102, et par conséquent d'augmenter le débit de la pompe. Lorsque la vanne d'échappement 122 est refermée, le tiroir 113 reste à la position où il se trouve au moment de la fermeture de la vanne, et ce du fait de la caractéristique incompressible du fluide.
Pour diminuer le débit de la pompe, il faut ouvrir la vanne d'admission 121. Cela a pour effet de mettre le fluide à l'intérieur de la chambre du variateur 119 à la même pression que le fluide se trouvant dans la zone d'admission 111. On appelle cette pression P3. Elle s'applique sur toute la surface 117 du tiroir, côté chambre 119. Du côté du rotor 102, la pression Pe, pression d'échappement 112 supérieure à P3, s'applique sur la surface latérale 116 du tiroir, et en partie sur la surface centrale 1 14 de contact du tiroir, jusqu'au point de contact de la dernière palette 104 qui fait étanchéité avec cette surface de contact 114. Si l'on calcule le bilan des forces exercées sur les surfaces du tiroir 113 côté chambre et côté rotor 102, on constate que la force s'appliquant du côté du rotor 102 est supérieure. Elle a pour effet de pousser le tiroir 113 vers la surface de fond 120 de la chambre 119, et par conséquent de diminuer le débit de la pompe. Lorsque la vanne d'admission 121 est refermée, le tiroir 113 reste également à la position où il se trouve au moment de la fermeture de la vanne.
En se rapportant maintenant aux figures 3 et 4, le dispositif représenté comprend avantageusement des moyens de commande manuelle 401, 301, 303 séparée :
- de la vanne d'échappement 122 connectant la zone d'échappement 1 12 de la pompe à la chambre 1 19 dans laquelle se déplace le moyen de tiroir 113, du côté de la deuxième
surface 1 17 de ce dernier,
- de la vanne d'admission 121 connectant la zone d'admission 1 11 de la pompe à Ia chambre 1 19 dans laquelle se déplace Ie moyen de tiroir 1 13, du côté de ladite deuxième surface 1 17 de ce dernier. Le dispositif représenté comprend avantageusement en outre :
- un capteur hydraulique (non représenté), pour mesurer le couple exercé sur Ie rotor 102 de la pompe 100,
- un capteur de vitesse de rotation (non représenté), pour mesurer la vitesse de rotation du rotor 102 de la pompe 100, - des moyens de commande automatique 304, 305 séparée :
- de la vanne d'échappement 122 connectant la zone d'échappement 1 12 de la pompe à la chambre 1 19 dans laquelle se déplace le moyen de tiroir 1 13, du côté de la deuxième surface 1 17 de ce dernier,
- de Ia vanne d'admission 121 connectant la zone d'admission 1 1 1 de la pompe à la chambre 1 19 dans laquelle se déplace le moyen de tiroir 1 13, du côté de ladite deuxième surface 1 17 de ce dernier,
- des moyens de sélection 306, 302 des moyens de commande manuelle 401, 301 , 303 ou des moyens de commande automatique 304, 305, des vannes d'échappement 122 et d'admission 121. Le schéma de la figure 4 illustre une vue d'ensemble schématique du dispositif.
Il ne sera pas décrit ici plus précisément les capteurs hydraulique d'effort et de vitesse de rotation évoqués plus haut, car ce type de capteur est connu, et l'homme de l'art choisira le plus approprié en fonction des besoins parmi ceux disponibles sur le marché.
Les moyens de commande manuels et automatiques des vannes d'échappement et d'admission permettent avantageusement à l'utilisateur du véhicule de disposer de deux modes de régulation de la puissance transmise par l'intermédiaire des pédales.
Le premier mode est le mode manuel. L'utilisateur dispose d'une manette de commande 401 fixée de préférence sur le guidon du véhicule, comportant deux boutons-poussoirs hydrauliques (non représentés), qui, lorsqu'ils sont pressés, pompent un petit volume de fluide vers une commande de la pompe à laquelle ils sont respectivement relié, comme décrit ci-après, via un câble hydraulique, par exemple similaire à ceux qui existent actuellement sur le marché des cycles pour actionner les freins à disques hydrauliques. Le premier bouton-poussoir, appelé bouton de décélération, est relié à la commande manuelle 301 de diminution du débit de la pompe. Celle-ci est elle-même reliée, via un sélecteur hydraulique 302, par exemple, de sélection du mode de transmission, à la vanne d'admission 121 de la pompe. Le deuxième bouton-poussoir, appelé bouton d'accélération, est relié à la commande manuelle 303 d'augmentation du débit de la pompe. Cette dernière est elle-même reliée, via le sélecteur hydraulique 302 du mode de transmission, à la vanne d'échappement 122 de la pompe.
Lorsque l'utilisateur a sélectionné le mode de transmission manuel, via par exemple une commande manuelle 306 du sélecteur hydraulique 302, et qu'il presse le
bouton de décélération, il ouvre la vanne d'admission 121, ce qui fait coulisser le tiroir 1 13 de la pompe en direction de la surface de fond 120. Ceci entraîne une diminution du débit pompé pour une même vitesse de rotation du pédalier, donc une transmission de puissance moins élevée, donc une résistance moins grande du pédalier envers l'utilisateur. La réciproque du phénomène est vraie et provoque les effets inverses lorsque l'utilisateur actionne le bouton d'accélération. Lorsque l'utilisateur relâche l'un ou l'autre des boutons, il stoppe et bloque le tiroir à la position où il se trouve, figeant ainsi le débit de la pompe proportionnellement à la vitesse de rotation du pédalier. Le deuxième mode est le mode de transmission automatique. Dans ce cas, l'utilisateur n'a aucune action à effectuer pour gérer la transmission de puissance. Le système régule automatiquement le débit de la pompe en fonction de la résistance exercée sur les pédales, et de la vitesse de rotation du rotor 102. Pour cela, la pompe 100 est avantageusement équipée en son moyeu d'un capteur hydraulique de couple de force, d'une part, et elle est équipée sur la tranche du rotor 102 d'un capteur hydraulique de vitesse de rotation, d'autre part. Le capteur hydraulique de couple de force est par exemple un petit système qui pompe un petit volume de fluide proportionnel au couple exercé sur le moyeu. Ce volume de fluide est injecté à l'entrée d'une commande automatique 304 de diminution du débit du sélecteur hydraulique 302 du mode de transmission, comme représenté sur la figure 3. Lorsque le mode de transmission automatique est sélectionné, si le couple de force dépasse une valeur trop importante pour un effort humain, le capteur hydraulique de couple de force ouvre la vanne d'admission 121, diminuant ainsi le débit du fluide pompé par la pompe pour une même vitesse de rotation. Le capteur hydraulique de vitesse de rotation est un petit système qui pompe un petit volume de fluide proportionnel à la vitesse de rotation de la pompe. Ce volume de fluide est injecté à l'entrée de la commande automatique 305 d'augmentation du débit du sélecteur hydraulique 302 du mode de transmission, comme représenté sur la figure 3. Lorsque le mode de transmission automatique est sélectionné, si la vitesse de rotation de la pompe, donc la vitesse de rotation du pédalier dépasse une valeur trop importante pour une vitesse humaine, le capteur hydraulique de vitesse de rotation ouvre la vanne d'échappement 122, augmentant ainsi le débit du fluide pompé par la pompe pour une même vitesse de rotation.
Pour passer du mode automatique au mode manuel ou vice-versa, le cycliste dispose d'un bouton au guidon qui actionne la commande 306 du sélecteur hydraulique 302 et le fait basculer d'un circuit hydraulique à l'autre. Le sélecteur hydraulique 302 peut être avantageusement du type distributeur hydraulique 3/2 double, comme représenté sur la figure 3.
Le dernier point de ce document décrit la façon dont l'ensemble du système, tel qu'il a été décrit précédemment, peut être adapté n'importe quel type de bicyclette ou de vélo au sens large du terme. Cette description est illustrée par le schéma de la figure 4.
La manette de commande 401 est fixée sur le guidon par un système de serrage classique identique aux systèmes de fixation des poignées de freins actuelles.
La pompe hydraulique nécessite une fixation adaptée au niveau de son carter. Premièrement, comme évoqué plus haut, un tube fileté côté externe, filetage mâle, appelé cylindre de vissage 402, centré sur le moyeu de la roue de la pompe, perpendiculaire à la face arrière 107 de la pompe, et dont le diamètre de la vis est compatible avec le tube taraudé femelle du pédalier du cadre de la bicyclette, est soudé sur le carter de la pompe. Deuxièmement, une mâchoire 403 de serrage de la pompe, est soudée perpendiculairement à la face arrière 107 de la pompe. La fixation de la pompe s'effectue ainsi : d'abord, la pompe est positionnée dans l'axe de fixation du tube taraudé femelle du pédalier. L'axe d'entraînement du pédalier est introduit dans le moyeu de la pompe. Ensuite le tube fileté mâle est vissé dans le tube taraudé femelle du pédalier. Pour terminer, la mâchoire de serrage de la pompe 403 est bloquée à la base du tube de selle du cadre de la bicyclette.
Le moteur hydraulique 131 de la roue arrière est de type connu et disponible dans le commerce, et contient lui aussi des fixations spéciales. Son moyeu est identique aux moyeux des cassettes de pignons du marché actuel. Il contient lui aussi une mâchoire 404 de fixation et serrage du moteur. La fixation du moteur hydraulique 131 s'effectue ainsi : la roue arrière est démontée de la bicyclette ; le moyeu du moteur 131 est introduit dans l'axe de la roue libre ; la roue arrière 93 motrice est remontée sur le cadre de la bicyclette ; pour terminer, la mâchoire 404 de serrage du moteur est bloquée sur le tube inférieur du triangle arrière du cadre de la bicyclette.
Les moyens de liaison fluidique 405 entre la pompe hydraulique 100 et le moteur hydraulique 131, en sorte d'établir un circuit fermé de circulation d'un fluide de transmission entre la pompe et le moteur, sont des tuyaux hydrauliques de tout type connu, dont les extrémités sont fixées aux entrées et sorties appropriées de la pompe et du moteur hydrauliques, comme décrit plus haut.
Claims
1. Dispositif hydraulique (90), destiné à équiper un véhicule (91) muni de pédales en vue de la transmission de l'énergie motrice fournie par le conducteur du
5 véhicule, desdites pédales à une roue motrice (93) au moins, comportant :
- une pompe hydraulique (100) munie d'un rotor (102) monté rotatif dans un carter de pompe (101),
- des moyens (130) pour une liaison des pédales au dit rotor,
- des moyens (402, 403) pour une liaison rigide dudit carter de pompe à un cadre (94) ] Q ou châssis dudit véhicule,
- un moteur hydraulique (131) munie d'un rotor de moteur monté rotatif dans un carter de moteur,
- des moyens pour une liaison du rotor de moteur à ladite roue motrice, suivant une liaison rigide dans un sens de rotation au moins, j 5 - des moyens (404) pour une liaison rigide dudit carter de moteur au dit cadre ou châssis dudit véhicule,
- des moyens de liaison fluidique (405) entre ladite pompe hydraulique (100) et ledit moteur hydraulique (131), en sorte d'établir un circuit fermé de circulation d'un fluide de transmission entre la pompe et le moteur, o ledit dispositif étant caractérisé en ce que :
- ladite pompe hydraulique comprend un rotor (102) à palettes (104), et en ce qu'il comprend :
- des moyens (1 10) pour faire varier le débit de la pompe hydraulique (100), pour une vitesse constante déterminée de rotation du rotor (102) à palettes (104), comprenant un 5 moyen de tiroir (1 13), mobile en translation dans une chambre (1 19), suivant une direction radiale par rapport au dit rotor à palettes.
2. Dispositif hydraulique suivant la revendication 1, caractérisé en ce que ledit rotor à palettes est lié au dit carter (101) de pompe suivant une liaison comportant un degré de liberté unique en rotation, et en ce qu'il comprend une surface de contact 0 (132) entre une extrémité (133) des palettes (104) dudit rotor (102) à palettes et le carter de pompe.
3. Dispositif hydraulique suivant Ia revendication 1 ou 2, caractérisé en ce que lesdits moyens (130) pour une liaison des pédales au dit rotor (102) à palettes (104), comprennent une liaison rigide entre les pédales et le rotor, au moins dans un sens de 5 rotation des pédales.
4. Dispositif hydraulique suivant la revendication 1, caractérisé en ce que :
- ledit moyen de tiroir (113), mobile en translation dans une chambre (119), suivant une direction radiale (134) par rapport au dit rotor (102) à palettes (104), sépare une zone d'admission (111) du fluide de transmission dans la pompe (100) d'une zone 0 d'échappement (112) du fluide de transmission hors de la pompe, ledit moyen de tiroir comportant :
- une première extrémité (135) possédant une première surface (1 14) en contact avec une palette (104) au moins dudit rotor (102) à palettes, une première partie ( 1 15) de ladite première extrémité du moyen de tiroir étant soumise à la pression d'échappement du fluide de transmission, une deuxième partie (1 16) de ladite première extrémité du moyen de tiroir étant soumise à la pression d'admission du fluide de 5 transmission dans la pompe,
- une deuxième extrémité (136), opposée à la première (135), définissant une deuxième surface (1 17) apte à être mise en contact avec le fluide de transmission,
- des moyens (122, 121) pour mettre ladite deuxième surface (1 17), via Ie fluide de transmission, soit à la pression d'échappement, soit à la pression d'admission,
IQ - lesdites première (1 14) et deuxième (1 17) surfaces étant définies en sorte que :
- lorsque Ia deuxième surface (1 17) est soumise à la pression d'admission, Ie moyen de tiroir (1 13) s'éloigne de l'axe (137) du rotor (102) à palettes (104) sous l'effet de la première partie (1 15) de la première extrémité (135) du moyen de tiroir, qui est soumise à Ia pression d'échappement du fluide de transmission, et j 5 - lorsque la deuxième surface (1 17) est soumise à la pression d'échappement, le moyen de tiroir (1 13) se rapproche de l'axe (137) du rotor (102) à palettes (104), sous l'effet de Ia deuxième partie (1 16) de la première extrémité (135) du moyen de tiroir, qui est soumise à la pression d'admission du fluide de transmission.
5. Dispositif hydraulique suivant Ia revendication 4, caractérisé en ce que Q Iesdits moyens pour mettre la deuxième surface (1 17), via le fluide de transmission, soit à Ia pression d'échappement, soit à la pression d'admission, comprennent :
- une première vanne (122) connectant la zone d'échappement (1 12) de la pompe (100) à la chambre (1 19) dans laquelle se déplace le moyen de tiroir (1 13), du côté de ladite deuxième surface (1 17), 5 - une deuxième vanne (121) connectant la zone d'admission (1 1 1) de Ia pompe (100) à la chambre (1 19) dans laquelle se déplace le moyen de tiroir (113), du côté de ladite deuxième surface (1 17).
6. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend des moyens de rappel élastique (142) dudit moyen de 0 tiroir (1 13), en position d'éloignement maximal de l'axe (137) du rotor (102) à palettes (104).
7. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend une première (118) et une deuxième (138) lames, solidaires dudit moyen de tiroir (1 13), pour guider lesdites palettes (104), dans leurs 5 déplacements entre le carter de pompe et ledit moyen de tiroir et inversement.
8. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un moyen (123) de surpression disposé sur l'échappement de la pompe (100), en sorte d'augmenter la pression d'échappement du fluide de transmission. 0 9. Dispositif hydraulique suivant les revendications 5 et 8, caractérisé en ce que ledit moyen (123) de surpression est disposé dans la zone d'échappement (1 12) de la pompe en aval de ladite première vanne (122) connectant la zone d'échappement de
Ia pompe à la chambre ( 1 19) dans laquelle se déplace ledit moyen de tiroir ( 1 13), du côté de ladite deuxième surface (1 17).
10. Dispositif hydraulique suivant la revendication 8 ou 9, caractérisé en ce que ledit moyen (123) de surpression comprend : - un moyen de vanne (139) apte à obturer l'échappement de la pompe hydraulique (100),
- des moyens de seuil ( 125, 126, 140) en sorte que ledit moyen de vanne libère l'échappement de la pompe hydraulique (100) au delà d'une pression déterminée du fluide de transmission à l'échappement.
11. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit rotor (102) à palettes ( 104) comprend une surface extérieure (141) de section transversale circulaire, destinée à être en contact avec le fluide de transmission.
12. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit rotor (102) à palettes ( 104) comprend une surface extérieure de section transversale elliptique, destinée à être en contact avec le fluide de transmission.
13. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que ledit rotor (102) à palettes ( 104) comprend des chambres (105) à palettes dotées d'au moins un ressort exerçant une poussée sur chaque palette, en sorte d'assurer une étanchéité de chaque palette contre la surface du carter (101 ) de la pompe hydraulique.
14. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 13, caractérisé en ce qu'ïï comprend des moyens de commande manuelle (401 , 301, 303) séparée :
- de ladite première vanne (122) connectant la zone d'échappement (1 12) de la pompe à la chambre ( 1 19) dans laquelle se déplace le moyen de tiroir ( 1 13), du côté de ladite deuxième surface (117),
- de ladite deuxième vanne (121) connectant la zone d'admission (1 1 1) de la pompe à la chambre (119) dans laquelle se déplace le moyen de tiroir (1 13), du côté de ladite deuxième surface (1 17).
15. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend :
- un capteur hydraulique, pour mesurer Ie couple exercé sur le rotor (102) de Ia pompe (100),
- un capteur de vitesse de rotation, pour mesurer la vitesse de rotation du rotor (102) de la pompe hydraulique (100),
- des moyens de commande automatique (304, 305) séparée :
- de ladite première vanne ( 122) connectant la zone d'échappement ( 1 12) de la pompe à la chambre (1 19) dans laquelle se déplace le moyen de tiroir (1 13), du côté de ladite deuxième surface (1 17),
- de ladite deuxième vanne (121) connectant la zone d'admission (1 1 1 ) de la pompe à la chambre (1 19) dans laquelle se déplace le moyen de tiroir (1 13), du côté de ladite deuxième surface (1 17).
16. Dispositif hydraulique suivant les revendications 14 et 15, caractérisé en ce qu'il comprend en outre des moyens de sélection (306, 302) des moyens de commande manuelle (401, 301, 303) ou des moyens de commande automatique (304, 305), desdites première (122) et deuxième (121) vannes.
17. Dispositif hydraulique suivant la revendication 16, caractérisé en ce que lesdits moyens de sélection comprennent un sélecteur hydraulique (302) du type distributeur hydraulique, et des moyens de commande manuelle (306) dudit sélecteur hydraulique.
18. Dispositif hydraulique suivant l'une quelconque des revendications 1 à 17, caractérisé en ce que lesdits moyens (402, 403) pour une liaison rigide du carter (101) de pompe (100) à un cadre (94) ou châssis dudit véhicule (91) comprennent :
- un cylindre fileté (402) solidaire dudit carter de pompe, apte à se visser dans le manchon taraudé dudit cadre (94) destiné à loger un pédalier,
- des mâchoires de serrage (403), permettant de serrer ledit carter (101) de pompe (100) sur un tube (95) dudit cadre.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2007/001297 WO2009016270A1 (fr) | 2007-07-27 | 2007-07-27 | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales |
EP07823354A EP2173608A1 (fr) | 2007-07-27 | 2007-07-27 | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2007/001297 WO2009016270A1 (fr) | 2007-07-27 | 2007-07-27 | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009016270A1 true WO2009016270A1 (fr) | 2009-02-05 |
Family
ID=39672059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/001297 WO2009016270A1 (fr) | 2007-07-27 | 2007-07-27 | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2173608A1 (fr) |
WO (1) | WO2009016270A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2623359A1 (es) * | 2017-03-01 | 2017-07-11 | Universidad Politecnica De Madrid | Bicicleta con transmisión hidráulica con regulación automática |
CN107000810A (zh) * | 2014-09-02 | 2017-08-01 | 李东远 | 液压自动变速自行车 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE606178C (de) * | 1931-08-23 | 1934-11-26 | Eugenio Merello | Fluessigkeitspumpe, insbesondere fuer Fluessigkeitsgetriebe von Kraftfahrzeugen |
DE850405C (de) * | 1950-08-12 | 1952-09-25 | Fritz Mehrens | Fahrrad mit Kraftuebertragung durch Druckfluessigkeit |
DE3035630A1 (de) * | 1980-09-20 | 1982-05-06 | Kurt 6800 Mannheim Willig | Hydraulischer fahrradantrieb |
US4688815A (en) * | 1984-03-27 | 1987-08-25 | Lectrolarm Custom Systems, Inc. | Hydraulically driven bicycle |
DE19612519A1 (de) * | 1996-03-29 | 1997-10-02 | Helmut Goeb | Hydraulisches Getriebe für Fahrräder |
WO2005014386A1 (fr) * | 2003-08-08 | 2005-02-17 | Alberto Rizzi | Moteur hydraulique avec capsule arriere pour bicyclette |
FR2897663A1 (fr) * | 2006-02-21 | 2007-08-24 | Olivier Gouny | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor a palettes, pour vehicules muni de pedales. |
-
2007
- 2007-07-27 EP EP07823354A patent/EP2173608A1/fr not_active Withdrawn
- 2007-07-27 WO PCT/FR2007/001297 patent/WO2009016270A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE606178C (de) * | 1931-08-23 | 1934-11-26 | Eugenio Merello | Fluessigkeitspumpe, insbesondere fuer Fluessigkeitsgetriebe von Kraftfahrzeugen |
DE850405C (de) * | 1950-08-12 | 1952-09-25 | Fritz Mehrens | Fahrrad mit Kraftuebertragung durch Druckfluessigkeit |
DE3035630A1 (de) * | 1980-09-20 | 1982-05-06 | Kurt 6800 Mannheim Willig | Hydraulischer fahrradantrieb |
US4688815A (en) * | 1984-03-27 | 1987-08-25 | Lectrolarm Custom Systems, Inc. | Hydraulically driven bicycle |
DE19612519A1 (de) * | 1996-03-29 | 1997-10-02 | Helmut Goeb | Hydraulisches Getriebe für Fahrräder |
WO2005014386A1 (fr) * | 2003-08-08 | 2005-02-17 | Alberto Rizzi | Moteur hydraulique avec capsule arriere pour bicyclette |
FR2897663A1 (fr) * | 2006-02-21 | 2007-08-24 | Olivier Gouny | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor a palettes, pour vehicules muni de pedales. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107000810A (zh) * | 2014-09-02 | 2017-08-01 | 李东远 | 液压自动变速自行车 |
ES2623359A1 (es) * | 2017-03-01 | 2017-07-11 | Universidad Politecnica De Madrid | Bicicleta con transmisión hidráulica con regulación automática |
Also Published As
Publication number | Publication date |
---|---|
EP2173608A1 (fr) | 2010-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3189998B1 (fr) | Dispositif hydraulique comprenant un sélecteur basse pression et véhicule incorporant un tel dispositif | |
WO2005123435A1 (fr) | Element de transmission a embrayages humides pour chaine de traction hybride de vehicule automobile, et vehicule automobile equipe d'un tel element | |
EP1154170B1 (fr) | Système de freinage d'un rotor par rapport à un stator | |
FR2659041A1 (fr) | Visseuse motorisee actionnee par pression. | |
FR2940674A1 (fr) | Machine de gain en puissance de type rotatif | |
WO2001011262A1 (fr) | Ensemble d'entrainement pour vehiclule avec transmission variable en continu | |
EP0082039A1 (fr) | Embrayage hydrostatique | |
FR2834317A1 (fr) | Pompe | |
EP2199198B1 (fr) | Dispositif de transmission pour cycle | |
EP2173608A1 (fr) | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor à palettes, pour véhicules munis de pédales | |
FR2716494A1 (fr) | Machine à pistons rotatifs utilisable notamment en tant que moteur thermique. | |
FR2897663A1 (fr) | Dispositif hydraulique, notamment pompe hydraulique comportant un rotor a palettes, pour vehicules muni de pedales. | |
WO1996030680A1 (fr) | Dispositif pour la distribution d'un fluide comprenant au moins un moteur commande a distance, notamment un mitigeur d'eau | |
EP0042774B1 (fr) | Dispositif pour produire successivement des débits de fluide hydraulique de valeurs échelonnées | |
EP2436919B1 (fr) | Dispositif de distribution hydraulique au moyen d'une pompe à double sens et à débit variable | |
EP0953502A1 (fr) | Dispositif de fixation rapide d'une chaussure sur une pédale de bicyclette | |
EP0604888B1 (fr) | Pompe pour matière visqueuse, comportant un organe de distribution rotatif | |
FR2568952A1 (fr) | Pompe multicellulaire a palettes | |
FR2680829A1 (fr) | Dispositif d'entrainement pour au moins un organe auxiliaire de moteur. | |
FR2831221A1 (fr) | Dispositif de pompe hydraulique basse pression pour l'alimentation d'au moins un moteur hydraulique, notamment destine a equiper une bicyclette a entrainement hydraulique | |
EP2300291B1 (fr) | Dispositif d'assistance hydraulique de freinage | |
FR3015998A1 (fr) | Mecanisme d'adaptation pour cylindre a panneton | |
EP1489302B1 (fr) | Dispositif de pompe hydraulique basse pression à débit variable, notamment destiné à équiper une bicyclette à entrainement hydraulique | |
FR2759665A1 (fr) | Dispositif de transmission automatique pour vehicule a roues propulse par le conducteur | |
BE443167A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07823354 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2007823354 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007823354 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |